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Abstract 1 

Background: To achieve the ambitious goal of eliminating schistosome infections, the Chinese 2 

government has implemented diverse control strategies. This study explored the progress of the 3 

2 most recent national schistosomiasis control programs in an endemic area along the Yangtze 4 

River in China. 5 

Methods: We obtained village-level parasitological data from cross-sectional surveys 6 

combined with environmental data in Anhui Province, China from 1997 to 2015. A 7 

convolutional neural network (CNN) based on a hierarchical integro-difference equation (IDE) 8 

framework (i.e., CNN-IDE) was used to model spatio-temporal variations in schistosomiasis. 9 

Two traditional models were also constructed for comparison with 2 evaluation indicators: the 10 

mean-squared prediction error (MSPE) and continuous ranked probability score (CRPS). 11 

Results: The CNN-IDE model was the optimal model, with the lowest overall average MSPE 12 

of 0.04 and the CRPS of 0.19. From 1997 to 2011, the prevalence exhibited a notable trend: it 13 

increased steadily until peaking at 1.6 per 1000 in 2005, then gradually declined, stabilizing at 14 

a lower rate of approximately 0.6 per 1000 in 2006, and approaching zero by 2011. During this 15 

period, noticeable geographic disparities in schistosomiasis prevalence were observed; high-16 

risk areas were initially dispersed, followed by contraction. Predictions for the period 2012 to 17 

2015 demonstrated a consistent and uniform decrease. 18 

Conclusions: The proposed CNN-IDE model captured the intricate and evolving dynamics of 19 

schistosomiasis prevalence, offering a promising alternative for future risk modeling of the 20 

disease. The comprehensive strategy is expected to help diminish schistosomiasis infection, 21 

emphasizing the necessity to continue implementing this strategy.  22 

 23 

Key words: deep learning; schistosomiasis; spatio-temporal model; national schistosomiasis 24 

control programs 25 

 26 

Introduction 27 

Schistosomiasis is a chronic parasitic disease associated with poverty, caused by blood flukes 28 

belonging to the genus Schistosoma [1, 2]. Considered by the World Health Organization as a 29 

neglected tropical disease, schistosomiasis is mainly prevalent in low-resource tropical and 30 
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subtropical areas, with an estimated 140 million cases worldwide in 2019 [3]. Three species of 31 

Schistosoma are commonly seen in Asia, with Schistosoma japonicum the most prevalent, 32 

followed by S. mekongi and S. malayensis [4]. S. japonicum has a history of more than 2200 33 

years in China [5]. Over the past 60 years, China has made significant strides in reducing the 34 

prevalence of schistosomiasis; currently, fewer than 29,000 people nationwide are estimated to 35 

be living with the disease, and only 5 new cases were reported in 2020 [6]. However, the risk 36 

of S. japonicum infection still exists in some areas of China, and the goal of eliminating the 37 

infection by 2030 remains a challenge [7]. 38 

 39 

Over the past 6 decades, China has made great strides toward reducing the prevalence of 40 

schistosomiasis. The World Bank Loan Project (WBLP) for schistosomiasis control and 41 

prevention from 1992 to 2001 made substantial progress; however, it focused on the treatment 42 

(e.g., praziquantel chemotherapy) [8] and not the transmission sources (e.g., intermediate snail 43 

host), and the epidemic rebounded following the end of the project. The integrated control 44 

strategy implemented in 2005, which focused on eliminating the intermediate snail host, again 45 

reduced the number of S. japonicum infections [9, 10], and the prevalence of schistosomiasis 46 

in the country has now stabilized at a historical low.  47 

 48 

In order to better understand the transmission patterns and the temporal trend of schistosomiasis, 49 

previous studies employed numerous spatio-temporal models to estimate the infection risk and 50 

the contributing factors. Most studies have used Kriging [11, 12], regression techniques [13, 51 

14], or linear dynamic models (e.g., integro-difference equations [IDE])  [15]. However, the 52 

dynamic transmission patterns of schistosomiasis are not fully captured by descriptive or linear 53 

models due to the complexity of the process and the multitude of contributing factors, which 54 

include environmental changes, human behavior, and evolving interventions. Therefore, in this 55 

study, we have adopted a deep learning (DL) approach with the aim of capturing the intricate 56 

and dynamic patterns of the disease. Our analysis provides detailed information on the annual 57 

prevalence of schistosomiasis across a grid of 1 × 1 km. This information is valuable for both 58 

researchers and local policymakers, enabling them to comprehend the evolution of 59 
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schistosomiasis distribution patterns under the 2 national schistosomiasis control programs 60 

(NSCPs) and to identify areas in urgent need of disease intervention. 61 

 62 

Materials and Methods 63 

Study area 64 

The study was conducted at the village level in Anhui Province, located in eastern China, where 65 

the Yangtze River traverses the province (Figure 1). Anhui Province covers a geographic area 66 

of approximately 140,100 km² and had a population of nearly 65 million in 2019 67 

(http://tjj.ah.gov.cn/). The province experiences a humid subtropical climate, with average 68 

annual temperatures ranging from 15°C to 16°C. Summers are typically hot, with temperatures 69 

frequently exceeding 30°C, while winters are cooler, with temperatures often falling below 70 

10°C. The region receives a significant amount of rainfall, averaging between 1,000 and 1,500 71 

mm annually, with the heaviest precipitation occurring in late spring and early summer. 72 

Humidity levels are generally high, often surpassing 80% during the rainy season. These 73 

climatic conditions—high temperatures, ample rainfall, and elevated humidity—create an ideal 74 

environment for the proliferation of Oncomelania hupensis, the freshwater snail that serves as 75 

the intermediate host for S. japonicum. Therefore, snail populations increase during the warmer 76 

and wetter months, which in turn affects the transmission dynamics of schistosomiasis in Anhui 77 

Province. 78 

 79 

Figure 1 about here 80 

 81 

Parasitological data 82 

Prevalence data for schistosomiasis from 1997 to 2015 were obtained from cross-sectional 83 

surveys conducted by the Anhui Institute of Parasitic Diseases. In China, schistosomiasis is 84 

classified as a Class B notifiable infectious disease, ensuring that case detection at the village 85 

level is comprehensive, with a coverage rate of 100%. Upon identifying a schistosomiasis case, 86 

healthcare providers are required to complete an infectious disease report card within 24 hours 87 

of diagnosis for network reporting. Data collection occurred annually at the village level, 88 

targeting the population aged 5-65. A 2-tiered diagnostic approach was employed: all 89 
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participants were initially screened using the indirect hemagglutination assay  [16], and 90 

positive readings were confirmed by Kato-Katz stool examinations [17] of all seropositive 91 

individuals. Individuals testing positive by both methods were diagnosed with S. japonicum 92 

infection. The study's annual selection of sample villages was systematically conducted in 93 

accordance with the "Control and Elimination of Schistosomiasis (GB15976 - 1995)" 94 

guidelines established by the National Health Commission of the People's Republic of China in 95 

1995. Each year, villages categorized as level 1, with a human prevalence exceeding 5% in the 96 

previous year, were included in the study. In contrast, villages categorized as level 2, with a 97 

human prevalence below 5% in the previous year, were included every 2 years. Furthermore, 98 

villages categorized as level 3, indicating a human prevalence of less than 1% in the year before, 99 

were selected every 3 years. To ensure the accuracy of our disease prevalence calculations and 100 

maintain consistency with the methodologies of our previous studies [12, 18], sample villages 101 

with fewer than 100 participants were omitted to mitigate the impact of statistical outliers. 102 

Throughout the duration of the study, the number of sample villages varied between 1028 and 103 

1683. Detailed enumerations are provided in the Supplementary Material (Table S1). 104 

 105 

Environmental data 106 

Considering the environmental factors that affect snail habitats and the growth and reproduction 107 

of O. hupensis, the intermedia host snail of S. japonicum, we included the following covariates: 108 

precipitation, hours of daylight, distance to water bodies, daytime land surface temperature 109 

(LSTday) and the normalized difference vegetation index (NDVI). We collected raster variable 110 

data for the corresponding years (1997-2015) for the areas included in the study, and the data 111 

for the distance to water bodies were from 2015. Average daily precipitation and hours of 112 

daylight were obtained from the China Meteorological Data Sharing Service System 113 

(http://cdc.cma.gov.cn/home.do), from 610 weather stations across China. We performed 114 

Kriging interpolation to produce continuous overlays each year during the study period for all 115 

of China and then extracted the interpolated meteorological measures for Anhui Province using 116 

ArcGIS 10.5 (ESRI, Redlands, CA, USA). Water-body data were downloaded from the World 117 

Wildlife Fund’s Conservation Science Data Sets (http://worldwildlife.org), and the Euclidean 118 
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distances between the geographic centroids of each sampled villages and water bodies were 119 

calculated. The NDVI and LSTday data were obtained from NASA’s Level 1 and Atmosphere 120 

Archive and Distribution System (http://ladsweb.nascom.nasa.gov),which included 8-day 1-121 

km2 images for LSTday and the monthly 1-km2 for NDVI. All the above data were processed 122 

using annual data and the raster data with a resolution of 1 km. The detailed sources of all the 123 

environmental data, as well as the resolution of time and space, are presented in the 124 

Supplementary Material (Table S2). 125 

 126 

Statistical analysis 127 

We treated the prevalence of schistosomiasis as a continuous variable and converted it to a 128 

Gaussian distribution, and the prevalence was transformed by the Box-Cox method [19] to 129 

satisfy the assumptions of a Gaussian model. We used univariate analysis for initial variable 130 

screening, and retained any variables with a p-value <0.1 [20]. We then assessed the correlations 131 

among the remaining variables, where correlation coefficients >0.6 indicated strong 132 

collinearity [21]. The 5 covariates we selected proved not to be colinear.  133 

 134 

Convolutional neural network (CNN)  135 

To evaluate the potential nonlinear spatio-temporal trends of schistosomiasis and the influence 136 

of environmental factors, we considered a convolutional neural network (CNN) based on an 137 

IDE framework (i.e., CNN-IDE) [22] to model the nonlinear trend. We employed a 2-level 138 

hierarchical structure [23] in the IDE model, with a data level and a process level. The former 139 

modeled the data generating mechanism, conditioned on the underlying spatial-temporal 140 

process and parameters, while the latter considered the unobserved process given by the 141 

parameters. Details on this CNN-IDE model can be found in the Supplementary Material. 142 

 143 

Model comparison and validation 144 

In addition to the CNN-IDE, we also implemented 2 spatio-temporal models (IDE and ST 145 

Kriging [7]) to estimate the risk of S. japonicum infection. The IDE model was the same as the 146 

IDE framework in CNN-IDE. Similarly, we constructed a hierarchical structure including a data 147 
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level and a process level. Detailed descriptions of the 2 models can be found in the 148 

Supplementary Material. 149 

 150 

Cross-validation is used to evaluate model predictions by splitting the data into training and 151 

validation samples, then training the model with the training sample, and evaluating the model 152 

with the validation sample. In K-fold cross-validation, the available data are randomly divided 153 

into K folds. Each fold is excluded, the model is trained on the remaining K−1 folds, and then 154 

the model is evaluated on the initially excluded fold. Specifically, for k = 1..., K folds, the model 155 

is fit after removing the Kth fold, and the prediction result 𝑍𝑣̂
(-k) is obtained for 𝑖=1…𝑚𝑘, 156 

where 𝑚𝑘 is the number of data in the Kth fold. We conducted 10-fold cross-validation [23] 157 

in to evaluate the performance of the 3 models and to identify the optimal model. We used 2 158 

evaluation indicators, the mean-squared prediction error (MSPE) and continuous ranked 159 

probability score (CRPS), which are defined as follows: 160 

𝑀𝑆𝑃𝐸 =
1

𝑇𝑚
∑ ∑ {𝑍𝑣(𝑠𝑖; 𝑡𝑗) − 𝑍𝑣̂(𝑠𝑖; 𝑡𝑗)}

2𝑚
𝑖

𝑇
𝑗=1                   (4) 161 

{𝑍𝑣(𝑠𝑖; 𝑡𝑗)} represent observations of a randomly selected 10% of samples, and 𝑍𝑣̂(𝑠𝑖; 𝑡𝑗) are 162 

predictions from modeling the rest of the observations. 163 

𝐶𝑅𝑃𝑆 = ∫ (1{𝑍𝑣 ≤ 𝑍𝑣̂} − 𝐹(𝑍𝑣̂))
2

𝑑𝑍𝑣̂                       (5) 164 

Where 1{𝑍𝑣 ≤ 𝑍𝑣̂} indicates that if 𝑍𝑣 is less than 𝑥, the value is 1, otherwise 0, and 𝐹() is 165 

the cumulative distribution function of the observed 10% of samples. Smaller values of MSPE 166 

and CRPS indicate better model performance. Our analyses were all done in R (version 3.6.3, 167 

R Foundation for Statistical Computing, Vienna, Austria; http://cran.r-Project.org). A high-168 

resolution spatial prediction (1 km2) of schistosomiasis prevalence was mapped using the 169 

optimal model. 170 

 171 

Results 172 

As shown in Figure 2, the median annual prevalence of schistosomiasis began to increase in 173 

1997 and reached a peak in 2005 (1.6 per 1000). There was a sharp decline to 0.6 per 1000 in 174 

2006, and the prevalence continued to decrease rapidly, approaching zero after 2010. The mean 175 
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annual prevalence exhibited a similar pattern. The interquartile range widened from 0-0.8 (per 176 

1000) in 1997 to 1.2-2.4 (per 1000) in 2005, then diminished to 0% by 2013. 177 

 178 

Figure 2 about here 179 

 180 

Figure 3 presents the results of model comparison. As shown in the figure, both the MSPE and 181 

CRPS for the CNN-IDE model were lower than those from the other 2 models for most of years. 182 

The overall average MSPE values of the CNN-IDE model, the IDE model, and ST Kriging 183 

model were 0.04, 0.05 and 0.06, respectively, and the overall CRPS values were 0.19, 0.22 and 184 

0.25, respectively. 185 

 186 

Figure 3 about here 187 

 188 

Table 1 shows the final environmental covariates and parameters in the CNN-IDE model. The 189 

average daily precipitation (p=0.02) and NDVI (p <0.01) showed statistically significant 190 

positive associations with schistosomiasis prevalence, while LSTday (p <0.01), with longer 191 

hours of daylight (p <0.01), and distance to a water body (p <0.01) exhibited statistically 192 

significant negative associations. The estimate for the diffusion parameter 𝜃𝑝,1 was 2.31E+02, 193 

and those for the shift parameters 𝜃𝑝,2, and 𝜃𝑝,3 were 6.50E-03 and 2.45E-02, respectively. 194 

 195 

Table 1. Estimations of parameters for schistosomiasis in the CNN-IDE model. 196 

Parameters Estimate Standard error z p 

Intercept -2.76 1.23 -7.78 <0.01 

Average daily precipitation 1.35E-05 1.63 2.26 0.02 

Hours of daylight -1.13E-03 0.42 -10.21 <0.01 

Distance to water body -8.44E-03 0.19 6.61 <0.01 

LSTday
    -1.17E-05 1.12 -7.24 <0.01 

NDVI  4.16E-06 0.10 -6.71 <0.01 

θp,1
 a 2.31E+02 10.11 1.89 0.21 

θp,2
 b 6.50E-03 13.01 2.01 0.14 
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θp,3
 d 2.45E-02 10.92 3.92 0.04 

CNN, convolutional neural network; IDE, integro-difference equation; LSTday, daytime land 197 

surface temperature; NDVI, normalized difference vegetation index. 198 
aDiffusion parameter. 199 
b Shift parameter. 200 

 201 

A map of the annual predicted prevalence for schistosomiasis is displayed in Figure 4. Starting 202 

in 1997, the prevalence was relatively high and showed a gradual increase, as indicated by the 203 

expanding yellow areas and the occasional red spots. The epidemic reached its peak in 2005, 204 

characterized by extensive light yellow and small red areas. Following this peak, the prevalence 205 

began to decline and remained relatively stable at a low level from 2006 to 2011. The 206 

predictions, represented by a dark green shade, showed a consistent uniformity across the study 207 

area, with values nearing zero from 2012 to 2015. Figure 5 illustrates the standard error of the 208 

corresponding estimates, indicating that the values were higher in areas where the sample 209 

villages were less densely distributed. However, the standard errors remained low throughout 210 

the study period. 211 

 212 

Figures 4 and 5 about here 213 

Discussion 214 

Our study presents a comprehensive application of advanced DL methods for quantifying local 215 

trends of schistosomiasis prevalence to assess the effectiveness of 2 NSCPs in the Yangtze River 216 

Basin, China. These estimates highlight substantial differences within the study area in levels 217 

and trends. The annual predicted prevalence map illustrates the disease's progression, showing 218 

fluctuating trends until a relatively stable low level after 2011. These findings contribute to our 219 

understanding of schistosomiasis dynamics and control strategies currently implemented in 220 

China.  221 

 222 

The environmental factors that affect snail habitats and the growth and reproduction of the 223 

snails have been confirmed in previous studies [12, 24-26]. A study found that an ideal snail 224 

habitat is distributed less than 1 km from the water source [24]. In line with this, our study 225 
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found a negative association between the proximity to water bodies and the prevalence of 226 

schistosomiasis. Increased rainfall can facilitate the dispersal of snails to new areas, including 227 

rivers, lakes, and wetlands [4]. The optimal survival temperature for the eggs of the parasite 228 

varies between 16°C and 35°C [27], a fact that supports the transmission of S. japonicum in 229 

snails that reproduce and grow under conditions of higher LSTday and therefore longer hours of 230 

daylight. Vegetation could reduce solar radiation and regulate the water temperature for host 231 

snails, thus providing comfortable spawning shelters [25]. As a result, a higher NDVI is more 232 

conducive to snail survival. 233 

 234 

The results of model comparison indicated that our CNN-IDE was the optimal model that best 235 

accounted for the spatio-temporal variation in schistosomiasis prevalence. Figure 3 shows its 236 

superiority in predicting the schistosomiasis prevalence data, possibly because the complexity 237 

of the dynamics presented in a latent process can be captured flexibly if a sufficient number of 238 

parameters is available, and the CNN was trained on a massive amount of spatial data to obtain 239 

this [22]. Deep neural nets, especially CNNs, contain the necessary structure to harness this 240 

complexity. Furthermore, CNNs offer a global prior model for the dynamics that is both realistic 241 

and computationally efficient [22]. 242 

 243 

We found that the distribution patterns of schistosomiasis infection varied over space and time 244 

throughout the study period. These shifts in pattern can likely be attributed to changes in control 245 

strategies implemented at different stages of schistosomiasis management, potentially leading 246 

to a nonlinear dynamic process in the prevalence of the disease [15, 28]. The 10-year WBLP, 247 

launched in 1992, has effectively facilitated the praziquantel chemotherapy strategy [10]. 248 

Figure 4 shows that the predictions indicated schistosomiasis was maintained at a relatively 249 

stable and low level until 2001, after which there was a resurgence following the conclusion of 250 

the WBLP. This resurgence may be due to the fact that chemotherapy measures were limited to 251 

bovines and humans. Considering that over 40 species of mammals can act as potential zoonotic 252 

reservoirs, these measures are insufficient to completely interrupt the life cycle of the 253 

parasite [29]. Another possible explanation for the rebound is environmental and social factors, 254 
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such as the floods of the Yangtze River in the late 1990s, ecological changes, and population 255 

movements [30, 31].  256 

 257 

To address this issue, a comprehensive national control strategy was put into place in 2005, 258 

encompassing agricultural mechanization, improved sanitation, and health education [32, 33]. 259 

This strategy has been effective, leading to positive changes in both environmental conditions 260 

and human behaviors. Socioeconomic improvements, including better access to healthcare, 261 

enhanced sanitation facilities, and changes in water-related activities, have contributed to the 262 

reduction in disease transmission [34]. Furthermore, modifications in agricultural practices and 263 

water management may have impacted snail habitats [35]. The success of this comprehensive 264 

control strategy is evident based on the reduced number of schistosomiasis foci from 2006 to 265 

2011, as shown in Figure 4. The sustained low prevalence of the disease from 2012 to 2015 266 

further demonstrates the effectiveness and durability of these measures, underscoring the 267 

importance of continuing with this strategy. 268 

 269 

Our CNN-IDE model has proven its superiority over traditional models in capturing the 270 

intricate spatio-temporal variations of schistosomiasis prevalence. This success is rooted in the 271 

model's flexible ability to comprehend latent process complexities through an ample parameter 272 

set, bolstered by extensive training on spatial data using a CNN [24]. The CNN's inherent ability 273 

to process complex multilayered information enables it to accurately represent the dynamics of 274 

schistosomiasis. This advantage highlights the potential of our model as a promising tool for 275 

future spatio-temporal risk modeling in schistosomiasis, contributing to the advancement of 276 

precision public health methodologies. 277 

 278 

The limitations of the study need to be discussed. First, the low prevalence of schistosomiasis 279 

might result from the suboptimal specificity of serological analysis and sensitivity of stool 280 

examinations. It will be necessary to consider diagnostic errors in future modeling research to 281 

improve prediction accuracy. Second, we only considered a limited number of environmental 282 

factors and socioeconomic factors, such as household financial situations and medical 283 
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conditions, were not included because these covariates were not available at the village level. 284 

Nevertheless, the random effect, 𝜂𝑡(𝑠), as shown in Supplementary Material Equation (2), is 285 

the "residual" after discounting what the covariates explain [36]. This suggests that covariates 286 

not included in our analysis are left in this “residual.” Third, we obtained data on water bodies 287 

in 2015, since historical and updated data on tributaries of the Yangtze River were not available. 288 

 289 

In summary, the proposed CNN-IDE model effectively captured the complex dynamic process 290 

of schistosomiasis prevalence. The high-resolution 1 × 1-km grid-level maps in our study 291 

facilitate the quantification of inequalities in prevalence to guide the efficient deployment of 292 

resources and interventions to those with the greatest need. As researchers, policymakers, and 293 

program implementors need to work together to achieve schistosomiasis elimination, our study 294 

provides a precision tool, guiding them where to go next.  295 

 296 

Ethics approval 297 

The collection of parasitological data was part of a continuing public health investigation 298 

determined by the National Health and Family Planning Commission. Hence, this study was 299 

exempt from institutional review board assessment.  300 

 301 

Competing Interests 302 

We declare that we have no conflicts of interest. 303 

 304 

Consent for publication 305 

Not applicable. 306 

 307 

Availability of data and materials 308 

The datasets used and analyzed during the current study are available from the corresponding 309 

author on reasonable request and from a website repository (http://cdc.cma.gov.cn/home.do, 310 

http://ladsweb.nascom.nasa.gov, http://worldwildlife.org). 311 

 312 

Ep
ub

 ah
ea

d 
of
 p
rin

t

http://cdc.cma.gov.cn/home.do
http://ladsweb.nascom.nasa.gov/
http://worldwildlife.org/


12 

 

Funding 313 

This work is primarily being funded by the National Natural Science Foundation of China 314 

(81773487,81973102). 315 

 316 

Acknowledgements 317 

We would like to express gratitude to all the people who participated in data collection, as well 318 

as to our teachers for guiding and revising the paper. 319 

 320 

 321 

References 322 

1. King CH, Dickman K, Tisch DJ. Reassessment of the cost of chronic helmintic infection: a meta-analysis of 323 

disability-related outcomes in endemic schistosomiasis. Lancet 2005; 365:1561-1569. 324 

2. WHO. Control of Neglected Tropical Diseases. World Health Organization; 2021 [cited 2022 Apr 17]. Available 325 

from:https://www.who.int/health-topics/schistosomiasis. 326 

3. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries 327 

for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. 328 

Lancet 2018; 392:1789-1858. 329 

4. Gordon CA, Kurscheid J, Williams GM, Clements ACA, Li Y, Zhou XN, et al. Asian Schistosomiasis: Current 330 

Status and Prospects for Control Leading to Elimination. Trop Med Infect Dis 2019; 4 331 

5. Shou-Pai M, Bao-Ruo S. Schistosomiasis control in the People's Republic of China. The American journal of 332 

tropical medicine and hygiene 1982; 31:92-99. 333 

6. Zhang LJ, Xu ZM, Yang F, Dang H, Li YL, Lü S, et al. Endemic status of schistosomiasis in People's Republic 334 

of China in 2020. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2021; 33:225-233. 335 

7. Heuvelink GB, Griffith DA. Space–Time Geostatistics for Geography: A Case Study of Radiation Monitoring 336 

Across Parts of Germany. . Geographical analysis 2010; 42:161-179. 337 

8. Xianyi C, Liying W, Jiming C, Xiaonong Z, Jiang Z, Jiagang G, et al. Schistosomiasis control in China: the 338 

impact of a 10-year World Bank Loan Project (1992-2001). Bull World Health Organ 2005; 83:43-48. 339 

9. Collins C, Xu J, Tang S. Schistosomiasis control and the health system in P.R. China. Infect Dis Poverty 2012; 340 

1:8. 341 

10. Liu R, Dong HF, Jiang MS. The new national integrated strategy emphasizing infection sources control for 342 

schistosomiasis control in China has made remarkable achievements. Parasitol Res 2013; 112:1483-1491. 343 

11. Hu Y, Gao J, Chi M, Luo C, Lynn H, Sun L, et al. Spatio-temporal patterns of schistosomiasis japonica in lake 344 

and marshland areas in China: the effect of snail habitats. Am J Trop Med Hyg 2014; 91:547-554. 345 

12. Hu Y, Li R, Bergquist R, Lynn H, Gao F, Wang Q, et al. Spatio-temporal transmission and environmental 346 

determinants of Schistosomiasis Japonica in Anhui Province, China. PLoS Negl Trop Dis 2015; 9:e0003470. 347 

13. Hu Y, Zhang Z, Chen Y, Wang Z, Gao J, Tao B, et al. Spatial pattern of schistosomiasis in Xingzi, Jiangxi 348 

Province, China: the effects of environmental factors. Parasit Vectors 2013; 6:214. 349 

14. Zhang ZJ, Carpenter TE, Lynn HS, Chen Y, Bivand R, Clark AB, et al. Location of active transmission sites of 350 

Schistosoma japonicum in lake and marshland regions in China. Parasitology 2009; 136:737-746. 351 

Ep
ub

 ah
ea

d 
of
 p
rin

t



13 

 

15. Hu Y, Bergquist R, Chen Y, Ke Y, Dai J, He Z, et al. Dynamic evolution of schistosomiasis distribution under 352 

different control strategies: Results from surveillance covering 1991-2014 in Guichi, China. PLoS Negl Trop 353 

Dis 2021; 15:e0008976. 354 

16. Miyashita K, Itoh H, Nakao K. [Idiopathic hyperaldosteronism (IHA)]. Nihon Rinsho 2006; Suppl 1:624-627. 355 

17. Yu JM, de Vlas SJ, Jiang QW, Gryseels B. Comparison of the Kato-Katz technique, hatching test and indirect 356 

hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. Parasitol Int 357 

2007; 56:45-49. 358 

18. Su Q, Bergquist R, Ke Y, Dai J, He Z, Gao F, et al. A comparison of modelling the spatio-temporal pattern of 359 

disease: a case study of schistosomiasis japonica in Anhui Province, China. Trans R Soc Trop Med Hyg 2021;  360 

19. Box GE, Cox DR. An analysis of transformations. J R Stat Soc: Series B (Methodological) 1964; 26:211-243. 361 

20. Diggle PJ, Tawn JA, Moyeed RA. Model‐based geostatistics. J R Stat Soc: Series C (Applied Statistics) 1998; 362 

47:299-350. 363 

21. Hu Y, Xiong C-L, Zhang Z-J, Bergquist R, Wang Z-L, Gao J, et al. Comparison of data-fitting models for 364 

schistosomiasis: a case study in Xingzi, China. Geospatial health 2013:125-132. 365 

22. Mangion AZ, Wikle CK. Deep Integro-Difference Equation Models for Spatio-Temporal Forecasting. CoRR, 366 

vol. abs/1910.13524 2019;  367 

23. Wikle CK, Zammit-Mangion A, Cressie N. Spatio-temporal statistics with R: CRC Press; 2019, p. 258-266. 368 

24. Zhu HR, Liu L, Zhou XN, Yang GJ. Ecological Model to Predict Potential Habitats of Oncomelania hupensis, 369 

the Intermediate Host of Schistosoma japonicum in the Mountainous Regions, China. PLoS Negl Trop Dis 370 

2015; 9:e0004028. 371 

25. Ajakaye OG, Adedeji OI, Ajayi PO. Modeling the risk of transmission of schistosomiasis in Akure North Local 372 

Government Area of Ondo State, Nigeria using satellite derived environmental data. PLoS Negl Trop Dis 2017; 373 

11:e0005733. 374 

26. Gao F, Ward MP, Wang Y, Zhang Z, Hu Y. Implications from assessing environmental effects on spatio-375 

temporal pattern of schistosomiasis in the Yangtze Basin, China. Geospat Health 2018; 13 376 

27. Pflüger W. Experimental epidemiology of schistosomiasis. Zeitschrift für Parasitenkunde 1980; 63:159-169. 377 

28. Hu Y, Xiong C, Zhang Z, Luo C, Ward M, Gao J, et al. Dynamics of spatial clustering of schistosomiasis in 378 

the Yangtze River Valley at the end of and following the World Bank Loan Project. Parasitol Int 2014; 63:500-379 

505. 380 

29. Zhou YB, Liang S, Jiang QW. Factors impacting on progress towards elimination of transmission of 381 

schistosomiasis japonica in China. Parasit Vectors 2012; 5:275. 382 

30. Zhou XN, Guo JG, Wu XH, Jiang QW, Zheng J, Dang H, et al. Epidemiology of schistosomiasis in the People's 383 

Republic of China, 2004. Emerg Infect Dis 2007; 13:1470-1476. 384 

31. Wang L, Utzinger J, Zhou XN. Schistosomiasis control: experiences and lessons from China. Lancet 2008; 385 

372:1793-1795. 386 

32. Wang LD, Guo JG, Wu XH, Chen HG, Wang TP, Zhu SP, et al. China's new strategy to block Schistosoma 387 

japonicum transmission: experiences and impact beyond schistosomiasis. Trop Med Int Health 2009; 14:1475-388 

1483. 389 

33. Wang LD, Chen HG, Guo JG, Zeng XJ, Hong XL, Xiong JJ, et al. A strategy to control transmission of 390 

Schistosoma japonicum in China. N Engl J Med 2009; 360:121-128. 391 

34. Ben-Jiao H, Hong-Ling X, Sheng-Ming L, Zheng-Yuan Z, Yi-Biao Z, Zhi-Hong L, et al. [Measures and 392 

achievements of schistosomiasis control in the Yangtze River Basin]. Zhongguo Xue Xi Chong Bing Fang Zhi 393 

Za Zhi 2018; 30:592-595. 394 

35. Guo S, Dang H, Li Y, Zhang L, Yang F, He J, et al. Sentinel Surveillance of Schistosomiasis - China, 2021. 395 

Ep
ub

 ah
ea

d 
of
 p
rin

t



14 

 

China CDC Wkly 2023; 5:278-282. 396 

36. Wikle CK, Zammit-Mangion A, Cressie N. Spatio-temporal statistics with R: CRC Press; 2019, p. 210-226. 397 

398 

Ep
ub

 ah
ea

d 
of
 p
rin

t



15 

 

Figure legend 399 

 400 

Figure 1. Endemic areas of schistosomiasis in Anhui Province, China. Anhui Province is 401 

located in the lower reaches of the Yangtze River in eastern China. 402 

 403 

Figure 2. Box plot for the observed prevalence of schistosomiasis in sample villages in 404 

Anhui, China, from 1997 to 2015. The blue line represents the average annual prevalence, and 405 

the red points are the median annual prevalence. The boxes denote minimum, median, 406 

maximum, and interquartile ranges. 407 

 408 

Figure 3. Average mean squared prediction error (MSPE) (top) and continuous ranked 409 

probability score (CRPS) (bottom) of the CNN-IDE predictions (red), the IDE predictions 410 

(green) and the ST Kriging predictions (blue) as a function of time. CNN, convolutional 411 

neural network; IDE, integro-difference equation. 412 

 413 

Figure 4. Plot for the annual prevalence of schistosomiasis predicted from 1997 to 2015 in 414 

Anhui Province, China. 415 

 416 

Figure 5. Plot for the annual standard error of the predicted prevalence of schistosomiasis 417 

from 1997 to 2015 in Anhui Province, China. 418 
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