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Abstract
The work is devoted to a new immuno-epidemiological model with distributed recov-
ery and death rates considered as functions of time after the infection onset. Disease
transmission rate depends on the intra-subject viral load determined from the immuno-
logical submodel. The age-dependentmodel includes the viral load, recovery and death
rates as functions of age considered as a continuous variable. Equations for suscepti-
ble, infected, recovered and dead compartments are expressed in terms of the number
of newly infected cases. The analysis of the model includes the proof of the existence
and uniqueness of solution. Furthermore, it is shown how the model can be reduced to
age-dependent SIR or delay model under certain assumptions on recovery and death
distributions. Basic reproduction number and final size of epidemic are determined for
the reduced models. The model is validated with a COVID-19 case data. Modelling
results show that proportion of young age groups can influence the epidemic progres-
sion since disease transmission rate for them is higher than for other age groups.
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1 Introduction

Major epidemic outbreaks such as H5N1 influenza in 2005 (Chen et al. 2006; Kil-
patrick et al. 2006), H1N1 in 2009 (Girard et al. 2010), Ebola in 2014 (Frieden et al.
2014) and very recently COVID-19 pandemic have strong influence on public health
andworld economy.Mathematical models in epidemiology, starting with fundamental
works by Daniel Bernoulli in XVIII century and by W.O. Kermack and A.G. McK-
endrick in the beginning of the last century (Kermack and McKendrick 1927, 1932,
1933) allow the description of epidemic progression and elaboration of proper control
measures. More recent developments in mathematical epidemiology include multi-
compartmental models (Brauer 2008; Brauer et al. 2019; Chattopadhyay et al. 2021),
models with nonlinear transmission rate (Fenichel et al. 2011; Hethcote and Van den
Driessche 1991), multi-patch models (Bichara and Iggidr 2018; Gao and Ruan 2012;
Jansen and Lloyd 2000), agent-based models (Bouchnita and Jebrane 2020; Rockett
et al. 2020), network models (Bansal et al. 2007; Lindquist et al. 2011), multi-scale
models (Barbarroux et al. 2016, 2018), immuno-epidemic models (Bocharov et al.
2018; Ghosh et al. 2022b; Gilchrist and Sasaki 2002).

Compartmental epidemiologicalmodels, such as conventional SIRmodel, are based
on the assumption that the rate of disease transmission is proportional to the product
of the number of susceptible S(t) and infected I (t) individuals at time t . Another
important assumption is that the recovery and death rates at time t are proportional to
the number of infected I (t) at the same moment of time. It neglects disease duration
and can lead to a significant discrepancy. Indeed, if an average disease duration is τ ,
then the number of recoveries and deaths at time t is determined by I (t − τ) and not
by I (t). During the periods of exponential growth or decay of the number of infected
individuals, the difference between them can be quite essential.

In order to get a more precise description of epidemic progression, the recovery and
death rates should be considered as distributed functions of the time-since-infection.
Moreover, the within-body viral dynamics and recovery time are patient-specific and
depend, in particular, on age group (Vattiatio et al. 2022). Hence, more detailed epi-
demiological models should take into account the heterogeneity of the population.
Among different types of population heterogeneity, age-structure is one of the most
crucial factors in disease progression. As example, although malaria affects people of
all age groups, children have the highest risk of infection. The incidence of HIV is
highest in the age group 20-45 years. The death rate of the recent coronavirus disease
also strongly depends on the age group (Levin et al. 2020).

Linear age-structured epidemic models were considered in von Foerster (1959).
More recent developments include nonlinear models (Liu et al. 2018), age-structured
model with diffusion (Kang and Ruan 2021; Ou and Wu 2006) and vaccination
(Castillo-Chavez and Feng 1998; Müller 1998; Shim et al. 2006), with age-since-
infection (Li et al. 2020; Qesmi et al. 2011, 2015), periodic infection rate (Kang
et al. 2020; Kuniya and Inaba 2013), multi-group age-structured model (Kuniya 2011;
Kuniya et al. 2016). Age-since-infection is used in immuno-epidemiological models
where the within-host dynamics is linked to the between-host dynamics. For simplic-
ity, it is often assumed that the within-host dynamics is the same for all individuals,
though this approximation may not be justified for every epidemic diseases.
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In this work we propose a new immuno-epidemiological model with time-
distributed and age-dependent recovery and death rates. In some particular cases,
this model can be reduced to age-dependent SIR and delay models.

The contents of the paper are as follows. In Sect. 2 we introduce an age-dependent
immunological model and determine viral load which will determine the infectiv-
ity rate in the epidemiological model. In Sect. 3, we propose an age-dependent
immuno-epidemiological model with distributed recovery and death rates. Existence
and uniqueness of solution are proved. Next, we reduce thismodel to an age-dependent
SIR model and calculate some relevant epidemiological quantities in Sect. 4. In Sect.
5, we discuss the properties of a delay model which can be derived for a particular
choice of the recovery and death distributions. In Sect. 6, we estimate model parame-
ters. Some numerical results and themodel validationwith the data onOmicron variant
of SARS-CoV-2 infection are discussed in Sect. 7.

2 Immunological submodel

In this section we determine viral load in infected individuals. It will be used below
in the epidemiological model in order to determine the infectivity rate. Consider the
following model for infection development in the human organism:

du

dt
= −auv, (2.1a)

dz

dt
= auv − σ1z, (2.1b)

dv

dt
= bz(t − θ) − σ2v, (2.1c)

where u is the concentration of uninfected cells in the target tissue, z is the concentra-
tion of infected cells, and v is the concentration of virus within an individual at time
t ; θ is time delay in virus replication (Baccam et al. 2006). Parameter a characterizes
the infection rate of uninfected target cells, σ1 is the death rate of infected cells, σ2 is
the clearance rate of virus, b is the virus production rate in infected cells. The model
(2.1) is subject to the initial conditions:

u(0) = u0, v(0) = v0, z(t) = 0, −θ ≤ t ≤ 0. (2.2)

Here v0 is the initial viral load. Parameters of this model and its solution can depend
on patient’s age. In particular, innate and adaptive immune responses, which are taken
implicitly into account in the coefficients σ1 and σ2 are patient-specific and depend
on the age group.
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2.1 Virus replication number

The disease-free equilibrium for model (2.1) is (u0, 0, 0). The corresponding charac-
teristic equation is as follows:

λ

(
λ2 + (σ1 + σ2)λ + (

σ1σ2 − abu0e
−λθ

) )
= 0.

Let us set

f (λ) ≡ λ2 + (σ1 + σ2)λ + (σ1σ2 − abu0e
−λθ ).

Then

f (0) = σ1σ2 − abu0 = σ1σ2

(
1 − abu0

σ1σ2

)
,

and for all real λ > 0,

f ′(λ) = 2λ + σ1 + σ2 + abu0θe
−λθ > 0.

Also note that limλ→∞ f (λ) = ∞. Since f ′(λ) > 0 for all λ > 0, it can be easily
observed that equation f (λ) = 0 has a positive root if abu0

σ1σ2
> 1. There are no positive

roots if the inequality is opposite.
Let us introduce the virus replication number for the immunological model (2.1):

Rv = abu0
σ1σ2

. (2.3)

IfRv > 1, thenvirus concentrationgrows in the beginningof the infectionprogression,
then it reaches maximum and converges to 0 due to the exhaustion of infected cells.
If the virus replication number is less than 1, infection does not develop.

In the next section we will introduce the total viral load and will determine it with
the help of the virus replication number.

2.2 Total viral load

Let us note that z(∞) = v(∞) = 0 and use the notation u f = u(∞). Then from
equation (2.1a) we obtain:

ln

(
u f

u0

)
= −a

∫ ∞

0
v(t)dt . (2.4)
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Taking a sum of equations (2.1a) and (2.1b) and integrating over the time interval
[0,∞), we obtain:

u f − u0 = −σ1

∫ ∞

0
z(t)dt . (2.5)

Finally, integrating equation (2.1c), we get:

− v0 = b
∫ ∞

0
z(t)dt − σ2

∫ ∞

0
v(t)dt . (2.6)

Define the total viral load as the integral of virus concentration with respect to time:

W =
∫ ∞

0
v(t)dt .

Then we get from equations (2.4) and (2.5):

∫ ∞

0
z(t)dt = (u0 − u f )/σ1 = u0

σ1

(
1 − e−aW

)
.

Hence, from (2.6),

W − v0

σ2
= u0b

σ1σ2

(
1 − e−aW

)
. (2.7)

Introducing the notation W = aW , w0 = av0/σ2, we can write the last equation as
follows:

W − w0 = Rv

(
1 − e−W

)
, (2.8)

whereRv is defined in (2.3). If we suppose that the initial viral load is small enough,
that is w0 ≈ 0, then equation (2.8) becomes:

W = Rv

(
1 − e−W

)
. (2.9)

This equation has a positive solution W if and only if Rv > 1. If the parameters of
the model (2.1) depend on patient’s age x , then we obtain an age-dependent viral load
W (x) = ∫ ∞

0 v(x, t)dt which determines the disease transmission rate (D’Agata et al.
2006; Webb et al. 2005).

3 Age-dependent immuno-epidemic model with time-distributed
recovery and death rates

The recovery and death rates of infected individuals depend on their age and on
time after the infection onset. In this section, we derive an age-dependent immuno-
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epidemic model incorporating the effect of total viral load on disease transmission
rate. The model is formulated in terms of the number of newly infected individuals
and taking into account distributed recovery and death rates and age structure of
the population. The demographic factors in an epidemic model is essential in case
of vertical transmission of the disease or to study the epidemic progression over a
sufficiently long span of time. In this work, our main objective is to study the epidemic
progression in a comparatively shorter span of time, and also we do not consider the
vertical transmission of the disease. That is why the demographic factor, such as
natality and natural (not related to disease) mortality are not considered in this work.
Previously, a similar model without age structure was studied in Ghosh et al. (2022).

3.1 Model formulation

Let J (x, t) denote the number of newly infected individuals of age x at time t , while
S(x, t), I (x, t), R(x, t), and D(x, t) represent the numbers of susceptible, infected,
recovered and dead individuals. Then the total number of infected individuals is given
by the following relation:

I (x, t) =
∫ t

0
J (x, η)dη − R(x, t) − D(x, t). (3.1)

We assume that the total population size with a specific age x remains unaltered, that
is,

S(x, t) + I (x, t) + R(x, t) + D(x, t) = S0(x),

where S0(x) is the initial age-dependent distribution of the population, which is con-
sidered as a given function of x . Differentiating (3.1) with respect to t and taking into
account the last equality, we get:

∂S(x, t)

∂t
= −J (x, t).

Suppose that the infectivity of an infected individual of age x is determined by the age-
dependent viral load W (x). Then the total infectivity of the population is described
by the integral

∫ ∞
0 W (y)I (y, t)dy. The susceptibility to infection depends on the age

group with the coefficient α(x). Therefore, the disease transmission rate is determined
by their product. Hence, we can write

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy (≡ −J (x, t)).

The right-hand side of this equation represents the rate of infection progression in the
population which takes into account that susceptible S(x, t) of age group x can be
infected by all other age groups.
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Let r(x, t − η) and d(x, t − η) be the recovery and death rates for individuals
of age x , depending on the time-since-infection t − η. Then the number of infected
individuals of age x , who will recover at time t is given by the integral:

∫ t

0
r(x, t − η)J (x, η)dη.

Similarly, we determine the number of infected individuals of age x , who will die at
time t :

∫ t

0
d(x, t − η)J (x, η)dη.

Hence, from (3.1) we obtain the rate of change of the number of infected individuals:

∂ I (x, t)

∂t
= α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy −

∫ t

0
r(x, t − η)J (x, η)dη

−
∫ t

0
d(x, t − η)J (x, η)dη.

The rates of change of R(x, t) and D(x, t) are given by the equations:

∂R(x, t)

∂t
=

∫ t

0
r(x, t − η)J (x, η)dη,

∂D(x, t)

∂t
=

∫ t

0
d(x, t − η)J (x, η)dη.

Thus, we obtain the following system of equations:

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy (≡ −J (x, t)), (3.2a)

∂ I (x, t)

∂t
= α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy −

∫ t

0
r(x, t − η)J (x, η)dη

−
∫ t

0
d(x, t − η)J (x, η)dη, (3.2b)

∂R(x, t)

∂t
=

∫ t

0
r(x, t − η)J (x, η)dη, (3.2c)

∂D(x, t)

∂t
=

∫ t

0
d(x, t − η)J (x, η)dη, (3.2d)

with the initial condition:

S(x, 0) = S0(x) > 0, I (x, 0) = I0(x) > 0, R(x, 0) = 0 and D(x, 0) = 0. (3.3)

We note that, S(x, t) + I (x, t) + R(x, t) + D(x, t) = S0(x) + I0(x) for all x , t under
consideration. It is important to mention here that the immunological model is used
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to determine how the total viral loadW (x) depends on age-dependent immunological
parameters.

In what follows we assume that the recovery and death rates satisfy the following
inequality

∫ t0

η

(r(x, t − η) + d(x, t − η))dt ≤ 1 (3.4)

for any η and t0, t0 > η and x . This condition means that the total number of recovered
and dead individuals among those infected at time η remains less than J (x, η).

3.2 Existence and uniqueness of solution

In this section we will prove the existence and uniqueness of solution of system (3.2)
for (x, t) ∈ [0, Q] × [0, T f ], where Q, T f ∈ (0,∞), Q is an upper bound of human
age. Then system (3.2) reduces to the following one:

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ Q

0
W (y)I (y, t)dy (≡ −J (x, t)), (3.5a)

∂ I (x, t)

∂t
= α(x)S(x, t)

∫ Q

0
W (y)I (y, t)dy −

∫ t

0
r(x, t − η)J (x, η)dη

−
∫ t

0
d(x, t − η)J (x, η)dη, (3.5b)

∂R(x, t)

∂t
=

∫ t

0
r(x, t − η)J (x, η)dη, (3.5c)

∂D(x, t)

∂t
=

∫ t

0
d(x, t − η)J (x, η)dη, (3.5d)

with the initial conditions given in (3.3). We assume that the coefficients and initial
conditions are continuous and positive. Note that if J (x, t) is uniquely determined
then the equations (3.5c) and (3.5d) have unique solutions. Hence, it is sufficient to
prove the existence and uniqueness of solution for the two equations (3.5a)-(3.5b).

Before proving the existence and uniqueness of solution, we will verify that the
solutions of system (3.5) with initial conditions (3.3) are positive and bounded.

Lemma 1 If condition (3.4) is satisfied, then any solution S(x, t), I (x, t), R(x, t), and
D(x, t) of system (3.5) with initial condition (3.3) satisfies the inequality

0 ≤ A ≤ S0(x) + I0(x),

where A = {
S(x, t), I (x, t), R(x, t), D(x, t)

}
.

Proof From (3.5a) we observe that if S(x, t∗) = 0 for some x and t∗, then
∂S(x,t)

∂t

∣∣∣
t=t∗

= 0. This shows that S(x, t) ≥ 0 for all x , t > 0. From (3.5c), (3.5d) we

conclude that R(x, t) and D(x, t) also remain positive for all x , t .
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It follows from equation (3.1) that

I (x, t0) =
∫ t0

0
J (x, η)dη − R(x, t0) − D(x, t0), (3.6)

for some t = t0 > 0. Integrating (3.5c), (3.5d) with respect to t from 0 to t0 and taking
into account the initial conditions R(x, 0) = D(x, 0) = 0, we get

R(x, t0) + D(x, t0) =
∫ t0

0

( ∫ t

0

(
r(x, t − η) + d(x, t − η)

)
J (x, η)dη

)
dt .

Changing the order of integration and taking into account inequality (3.4), we find

R(x, t0) + D(x, t0) =
∫ t0

0

( ∫ t0

η

(
r(x, t − η) + d(x, t − η)

)
dt

)
J (x, η)dη

≤
∫ t0

0
J (x, η)dη.

Together with (3.6), this gives I (x, t0) ≥ 0. Furthermore,

S(x, t) + I (x, t) + R(x, t) + D(x, t) = S0(x) + I0(x).

Thus, any solution of system (3.5a)-(3.5d) lies between 0 and S0(x) + I0(x). ��
We now proceed to the proof of the existence theorem.

Theorem 1 There exists a unique solution (S, I ) of system (3.5a)-(3.5b) in the domain
Ω2, where Ω ⊂ C

([0, Q] × [0, T f ], R
)
is defined by

Ω :=
{
T ∈ C

([0, Q] × [0, T f ],R
) : 0 ≤ T (x, t) ≤ S0(x) + I0(x),∀(x, t) ∈ [0, Q] × [0, T f ]

}
.

To prove this theorem we need a mathematical setup of complete metric space,
which is defined properly in the following lemma.

Lemma 2
(
Ω, d

)
is a complete metric space with respect to the metric d(T1, T2)

defined by

d(T1, T2) = sup
(x,t)∈[0,Q]×[0,T f ]

{
e−γ t |T1(x, t) − T2(x, t)|

}
,

where γ > 0 is a constant.

Proof Note that Ω is a closed subset of C
([0, Q] × [0, T f ], R

)
. Since C

([0, Q] ×
[0, T f ], R

)
is a complete metric space with respect to the supremum metric

dsup(T1, T2) = sup
(x,t)∈[0,Q]×[0,T f ]

{|T1(x, t) − T2(x, t)|} ,
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then (Ω, dsup) is a complete metric space.
Next, we have the following relation between the two metrics d and dsup on Ω

e−γT f dsup(T1, T2) ≤ d(T1, T2) ≤ dsup(T1, T2),

which implies that dsup and d are equivalent metrics. This proves that (Ω, d) is a
complete metric space. ��

We now proceed to prove the existence and uniqueness of solution of system (3.5a)-
(3.5b) in the metric space (Ω, d). For any given function T (x, t) ∈ Ω and for every
x , equation

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ Q

0
W (y)T (y, t)dy (3.7)

with initial condition S(x, 0) = S0(x) has a unique solution

ST (x, t) = S0(x)e
−α(x)

∫ t
0

( ∫ Q
0 W (y)T (y,η)dy

)
dη

. (3.8)

Note that subscript T is used to denote the unique solution of equation (3.7) for a given
function T (x, t) ∈ Ω . Let us denote

JT (x, t) = α(x)ST (x, t)
∫ Q

0
W (y)T (y, t)dy.

Then equation

∂ I (x, t)

∂t
= α(x)ST (x, t)

∫ Q

0
W (y)T (y, t)dy

−
∫ t

0

(
r(x, t − η) + d(x, t − η)

)
JT (x, η)dη (3.9)

with I (x, 0) = I0(x) also has a unique solution which can be written in the form

IT (x, t) = I0(x) +
∫ t

0
G(x, η, T )dη, (3.10)

where

G(x, η, T ) = α(x)S0(x)e
−α(x)

∫ η
0

( ∫ Q
0 W (y)T (y,ξ)dy

)
dξ

∫ Q

0
W (y)T (y, η)dy

−
∫ η

0

[(
r(x, η − ξ) + d(x, η − ξ)

)

α(x)S0(x)e
−α(x)

∫ ξ
0

( ∫ Q
0 W (y)T (y,ζ )dy

)
dζ

∫ Q

0
W (y)T (y, ξ)dy

]
dξ.

(3.11)
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Let us now consider the map L : (Ω, d) → (Ω, d) defined by the equality

L(T )(x, t) = I0(x) +
∫ t

0
G(x, η, T )dη, (3.12)

where G(x, η, T ) is given in (3.11). Before proceeding further, we verify that Lmaps
(Ω, d) into itself.

Lemma 3 The map L : (Ω, d) → (Ω, d) is well-defined.

Proof From (3.8) we obtain

∂ST (x, t)

∂t
= −α(x)S0(x)e

−α(x)
∫ t
0

( ∫ Q
0 W (y)T (y,η)dy

)
dη

∫ Q

0
W (y)T (y, t)dy.

Substituting this relation into (3.11), we can write

G(x, η, T ) = −
[
∂ST (x, η)

∂η
−

∫ η

0

(
r(x, η − ξ) + d(x, η − ξ)

)∂ST (x, ξ)

∂ξ
dξ

]
.

Next,

∫ t

0
G(x, η, T )dη = −

[ ∫ t

0

∂ST (x, η)

∂η
dη −

∫ t

0

∫ η

0

(
r(x, η − ξ) + d(x, η − ξ)

)
∂ST (x, ξ)

∂ξ
dξdη

]
.

Changing the order of integration in the right-hand side, we get

∫ t

0
G(x, η, T )dη = −

[ ∫ t

0

∂ST (x, η)

∂η
dη −

∫ t

0

( ∫ t

ξ

(
r(x, η − ξ)

+d(x, η − ξ)
)
dη

)
∂ST (x, ξ)

∂ξ
dξ

]

= −
[ ∫ t

0

(
1 −

∫ t

ξ

(
r(x, η − ξ) + d(x, η − ξ)

)
dη

)
∂ST (x, ξ)

∂ξ
dξ

]
.

Note that ∂ST (x,ξ)
∂ξ

≤ 0 and following condition (3.4), we conclude that

∫ t

0
G(x, η, T )dη ≤ −

∫ t

0

∂ST (x, ξ)

∂ξ
dξ = S0(x) − ST (x, t) ≤ S0(x).

This implies

L(T )(x, t) = I0(x) +
∫ t

0
G(x, η, T )dη ≤ I0(x) + S0(x).
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Let us also note that if T1(x, t), T2(x, t) ∈ Ω and T1(x, t) = T2(x, t), then
ST1(x, t) = ST2(x, t) and consequently G(x, η, T1) = G(x, η, T2). Hence the map L
is well-defined. ��

Next,weprove that themapL : (Ω, d) → (Ω, d)defined in (3.12) is a contraction.

Lemma 4 The map L : (Ω, d) → (Ω, d) defined in (3.12) is a contraction map.

Proof For any two functions T1(x, t), T2(x, t) ∈ Ω ,

∣∣L(T1)(x, t) − L(T2)(x, t)
∣∣ ≤

∫ t

0

∣∣G(x, η, T1) − G(x, η, T2)
∣∣dη.

Then we have the following estimate:

∣∣G(x, η, T1) − G(x, η, T2)
∣∣ = α(x)S0(x)

∣∣∣∣
[
e−α(x)

∫ η
0 T̃1(ξ)dξ T̃1(η)

−
∫ η

0
(r(x, η − ξ) + d(x, η − ξ))e−α(x)

∫ ξ
0 T̃1(ζ )dζ T̃1(ξ)dξ

]

−
[
e−α(x)

∫ η
0 T̃2(ξ)dξ T̃2(η)

−
∫ η

0
(r(x, η − ξ) + d(x, η − ξ))e−α(x)

∫ ξ
0 T̃2(ζ )dζ T̃2(ξ)dξ

]∣∣∣∣,
where

T̃ j (ξ) =
∫ Q

0
W (y)Tj (y, ξ)dy, j = 1, 2.

Therefore,

∣∣G(x, η, T1) − G(x, η, T2)
∣∣ = α(x)S0(x)

∣∣∣∣e−α(x)
∫ η
0 T̃1(ξ)dξ

(
T̃1(η) − T̃2(η)

)

+
∫ η

0
(r(x, η − ξ) + d(x, η − ξ))e−α(x)

∫ ξ
0 T̃1(ζ )dζ

(
T̃2(ξ) − T̃1(ξ)

)
dξ

+(
e−α(x)

∫ η
0 T̃1(ξ)dξ − e−α(x)

∫ η
0 T̃2(ξ)dξ

)
T̃2(η) +

∫ η

0
(r(x, η − ξ)

+d(x, η − ξ))
(
e−α(x)

∫ ξ
0 T̃2(ζ )dζ − e−α(x)

∫ ξ
0 T̃1(ζ )dζ

)
T̃2(ξ)dξ

∣∣∣∣,
Using the inequalities

∣∣e−x − e−y
∣∣ ≤ ∣∣x − y

∣∣, ∣∣e−x
∣∣ ≤ 1
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for any x, y ≥ 0, we get

∣∣G(x, η, T1) − G(x, η, T2)
∣∣ ≤ α(x)S0(x)

(∣∣T̃1(η) − T̃2(η)
∣∣

+
∫ η

0
(r(x, η − ξ) + d(x, η − ξ))

∣∣T̃2(ξ) − T̃1(ξ)
∣∣dξ

+α(x)T̃2(η)

∫ η

0

∣∣T̃1(ξ) − T̃2(ξ)
∣∣dξ +

∫ η

0

(
r(x, η − ξ)

+d(x, η − ξ)

)(
α(x)

∫ ξ

0

∣∣T̃2(ζ ) − T̃1(ζ )
∣∣dζ

)
T̃2(ξ)dξ

)
.

Since, Tj (x, t) ≤ S0(x) + I0(x), ∀(x, t) ∈ [0, Q] × [0, T f ], we get

T̃ j (ξ) ≤ M, j = 1, 2,

where

M = (S0(x) + I0(x))
∫ Q

0
W (y)dy.

Next,

∣∣T̃1(η) − T̃2(η)
∣∣ ≤

∫ Q

0
W (y)

∣∣T1(y, η) − T2(y, η)
∣∣dy ≤ eγ ηd(T1, T2)

∫ Q

0
W (y)dy.

Using this inequality and condition (3.4), we can write

∣∣G(x, η, T1) − G(x, η, T2)
∣∣ ≤ α(x)S0(x)d(T1, T2)

∫ Q

0
W (y)dy

[
eγ η +

∫ η

0
eγ ξdξ

+α(x)M
∫ η

0
eγ ξdξ + α(x)M

∫ η

0

∫ ξ

0
eγ ζdζdξ

]

≤ α(x)S0(x)d(T1, T2)
∫ Q

0
W (y)dy

[
eγ η + 1

γ

(
eγ η − 1

)

+α(x)M
1

γ

(
eγ η − 1

)
+ α(x)M

1

γ 2

(
eγ η − 1

)]

≤ α(x)S0(x)d(T1, T2)

[
eγ η

(
1 + 1

γ
+ α(x)M

γ

+α(x)M

γ 2

)] ∫ Q

0
W (y)dy.
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This implies the estimate

∣∣L(T1)(x, t) − L(T2)(x, t)
∣∣ ≤ α(x)S0(x)d(T1, T2)

(
1 + 1 + α(x)M

γ

+α(x)M

γ 2

)∫ t

0
eγ ηdη

∫ Q

0
W (y)dy

= α(x)S0(x)d(T1, T2)

(
1 + 1 + α(x)M

γ

+α(x)M

γ 2

)
eγ t − 1

γ

∫ Q

0
W (y)dy.

Hence,

e−γ t
∣∣L(T1)(x, t) − L(T2)(x, t)

∣∣ ≤
[
α(x)S0(x)

(
1

γ
+ 1 + α(x)M

γ 2

+α(x)M

γ 3

) ∫ Q

0
W (y)dy

]
d(T1, T2).

Since α(x), S0(x) are positive continuous functions on [0, Q], there exists positive
constants Mα and Ms such that

α(x) ≤ Mα , S0(x) ≤ Ms,

for all x ∈ [0, Q]. Let
∫ Q

0
W (y)dy = Mw.

Then we have

e−γ t
∣∣L(T1)(x, t) − L(T2)(x, t)

∣∣ ≤
[
MαMsMw

(
1

γ
+ 1 + MαM

γ 2 + MαM

γ 3

)]
d(T1, T2).

Taking the supremum from both sides, we get

d(L(T1),L(T2)) ≤
[
MαMsMw

(
1

γ
+ 1 + MαM

γ 2 + MαM

γ 3

)]
d(T1, T2).

We now choose the value of γ > 0 large enough so that

MαMsMw

(
1

γ
+ 1 + MαM

γ 2 + MαM

γ 3

)
< 1.
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Consequently,

L : (Ω, d) → (Ω, d)

is a contraction map on the complete metric space (Ω, d). ��

To finish the proof of existence of solution, we use the following theorem.

Theorem 2 Let (X , d) be a completemetric space and let T : X → X be a contraction
mapping on X. Then T has a unique fixed point x ∈ X (such that T (x) = x).

It follows from this theorem that the map L has a unique fixed point. Thus, there
exists a unique function Tu ∈ Ω ⊂ C

([0, Q] × [0, T f ], R
)
satisfying the equality

Tu(x, t) = I0(x) +
∫ t

0
G(x, η, Tu)dη,

where G(x, η, Tu) is given in (3.11). Besides, we note that G(x, η, T ) is a continuous
function.Hence, the derivative ∂Tu (x,t)

∂t exists. This completes the proof of the existence
and uniqueness of solution of system (3.5a)-(3.5d).

4 Age-dependent immuno-epidemic model with time-independent
recovery and death rates

In this section we reduce the immuno-epidemic model (3.2a)–(3.2d) to a SIR type
model assuming that recovery and death rates are age-dependent but they do not
depend on time.

4.1 Reduction to SIRmodel

In a particular case, consider the recovery and death rates r(x, t − η) and d(x, t − η)

in the form

r(x, t − η) =
{

γ (x), t − τ(x) < η ≤ t
0, η < t − τ(x)

, d(x, t − η) =
{

δ(x), t − τ(x) < η ≤ t
0, η < t − τ(x)

,

(4.1)

where τ(x) > 0 is the disease duration of an infected individual of age x , γ (x) and
δ(x) are some functions of x . Substituting these functions into (3.2c) and (3.2d), we
get

∂R(x, t)

∂t
= γ (x)

∫ t

t−τ(x)
J (x, η)dη,

∂D(x, t)

∂t
= δ(x)

∫ t

t−τ(x)
J (x, η)dη. (4.2)
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Integrating these two equations from t − τ(x) to t , we obtain the following relations:

R(x, t) − R(x, t − τ(x)) = γ (x)
∫ t

t−τ(x)

( ∫ s

s−τ(x)
J (x, η)dη

)
ds,

and

D(x, t) − D(x, t − τ(x)) = δ(x)
∫ t

t−τ(x)

( ∫ s

s−τ(x)
J (x, η)dη

)
ds.

Since τ(x) > 0 is the disease duration of an infected individual of age x , then
the expressions (R(x, t) − R(x, t − τ(x))) and (D(x, t) − D(x, t − τ(x))) represent
the number of recovered and dead individuals of age x during the time interval (t −
τ(x), t), respectively. Hence, (3.1) can be written as follows:

I (x, t) =
∫ t

t−τ(x)
J (x, η)dη − (R(x, t) − R(x, t − τ(x)))

−(D(x, t) − D(x, t − τ(x))). (4.3)

Therefore, from (4.3), we conclude that

I (x, t) =
∫ t

t−τ(x)
J (x, η)dη − (γ (x) + δ(x))

∫ t

t−τ(x)

( ∫ s

s−τ(x)
J (x, η)dη

)
ds.

(4.4)

Next, from (3.2b) and (4.4),

∂ I (x, t)

∂t
= α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy − (γ (x) + δ(x))

∫ t

t−τ(x)
J (x, η)dη

= α(x)S(x, t)
∫ ∞

0
W (y)I (y, t)dy

−(γ (x) + δ(x))

[
I (x, t) + (γ (x) + δ(x))

∫ t

t−τ(x)

(∫ s

s−τ(x)
J (x, η)dη

)
ds

]
.

If we suppose that, for every x , (γ (x) + δ(x)) is small enough and we neglect the
term involving (γ (x) + δ(x))2, then we obtain

∂ I (x, t)

∂t
≈ α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy − (γ (x) + δ(x))I (x, t).
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In this case, system (3.2a)-(3.2d) is reduced to the age-dependent SIR-type model:

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy, (4.5a)

∂ I (x, t)

∂t
= α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy − (γ (x) + δ(x))I (x, t), (4.5b)

∂R(x, t)

∂t
= γ (x)I (x, t),

∂D(x, t)

∂t
= δ(x)I (x, t). (4.5c)

4.2 Basic reproduction number

Let us study stability of the disease-free equilibrium E0 = (S0(x), 0, 0, 0). Consider
the perturbation of this solution:

S(x, t) = S0(x) + S̃(x, t); I (x, t) = Ĩ (x, t); R(x, t) = R̃(x, t); D(x, t) = D̃(x, t).

Then the linearized system corresponding to (4.5a)-(4.5c) with respect to the above
perturbation takes the form:

∂ S̃(x, t)

∂t
= −α(x)S0(x)

∫ ∞

0
W (y) Ĩ (y, t)dy, (4.6)

∂ Ĩ (x, t)

∂t
= α(x)S0(x)

∫ ∞

0
W (y) Ĩ (y, t)dy − γ (x) Ĩ (x, t) − δ(x) Ĩ (x, t), (4.7)

∂ R̃(x, t)

∂t
= γ (x) Ĩ (x, t),

∂ D̃(x, t)

∂t
= δ(x) Ĩ (x, t). (4.8)

We search for a solution of system (4.6)-(4.8) of the form

S̃(x, t) = eλtφ1(x); Ĩ (x, t) = eλtφ2(x); R̃(x, t) = eλtφ3(x); D̃(x, t) = eλtφ4(x).

Substituting this solution into (4.7), we obtain

λφ2(x) = α(x)S0(x)
∫ ∞

0
W (y)φ2(y)dy − γ (x)φ2(x) − δ(x)φ2(x). (4.9)

Let

Λ =
∫ ∞

0
W (y)φ2(y)dy. (4.10)

Then we have

φ2(x) = Λα(x)S0(x)

(λ + γ (x) + δ(x))
.
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Inserting it into (4.10), we get

Λ = Λ

∫ ∞

0

W (y)α(y)S0(y)

(λ + γ (y) + δ(y))
dy.

Since we are looking for nonzero solution, Λ �= 0, we obtain the following character-
istic equation

1 =
∫ ∞

0

W (y)α(y)S0(y)

(λ + γ (y) + δ(y))
dy.

Set

G(λ) =
∫ ∞

0

W (y)α(y)S0(y)

(λ + γ (y) + δ(y))
dy.

We define the basic reproduction number R0 as G(0):

R0 =
∫ ∞

0

W (y)α(y)S0(y)

(γ (y) + δ(y))
dy.

Theorem 3 If R0 > 1, then the disease-free equilibrium E0 is unstable. If R0 < 1,
then E0 is locally asymptotically stable.

Proof LetR0 > 1. Observe that G(λ) is a decreasing function of λ, if λ is considered
as a real variable. Now, R0 > 1 implies G(0) > 1, also limλ→∞ G(λ) = 0. Thus, we
can conclude that there is a real positive number λ∗ such that G(λ∗) = 1. Hence, the
disease-free equilibrium is unstable.

Let R0 < 1. For any λ = a + ib with a ≥ 0 we have

|G(λ)| ≤ G(a) ≤ G(0) = R0 < 1.

This result implies that the systemhas no eigenvaluewith nonnegative real part. Hence,
the disease-free equilibrium is locally asymptotically stable. ��
Remark If S0(x) = N , γ (x) = γ0, δ(x) = δ0, α(x) = β, and if we replace W (y) by
the Dirac delta-function δ(y− x), thenR0 = βN

γ0+δ0
. We obtain the basic reproduction

number for the conventional SIR model with a homogeneous population.

4.3 Final size of the epidemic

Let limt→∞ S(x, t) = S f (x). We divide (4.5a) by S(x, t) and integrate with respect
to t from 0 to ∞:

ln
S f (x)

S0(x)
= −α(x)

∫ ∞

0

∫ ∞

0
W (y)I (y, t)dydt = −α(x)

∫ ∞

0
W (y)

( ∫ ∞

0
I (y, t)dt

)
dy.

(4.11)
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Adding (4.5a), (4.5b) and then integrating with respect to t from 0 to ∞, we get

S f (x) − S0(x) = −(γ (x) + δ(x))
∫ ∞

0
I (x, t)dt . (4.12)

Substituting (4.12) into (4.11), we obtain the following equality:

ln
S f (x)

S0(x)
= −α(x)

∫ ∞

0
W (y)

S0(y) − S f (y)

γ (y) + δ(y)
dy.

Let

A =
∫ ∞

0
W (y)

S0(y) − S f (y)

γ (y) + δ(y)
dy.

Then

S f (x) = S0(x)e
−Aα(x).

We substitute S f (x) in the expression for A:

A =
∫ ∞

0
W (y)

S0(y)(1 − e−Aα(y))

γ (y) + δ(y)
dy.

Let

F(A) = A −
∫ ∞

0
W (y)

S0(y)(1 − e−Aα(y))

γ (y) + δ(y)
dy.

Clearly, F(0) = 0 and

F ′(A) = 1 −
∫ ∞

0
W (y)

S0(y)α(y)e−Aα(y)

γ (y) + δ(y)
dy.

Hence,

F ′(0) = 1 −
∫ ∞

0
W (y)

S0(y)α(y)

γ (y) + δ(y)
dy = 1 − R0.

Suppose that R0 > 1. Then, F ′(0) = 1 − R0 < 0, and limA→∞ F(A) = ∞.

Moreover,F ′(A) is a strictly increasing function of A. Hence, the equationF(A) = 0
has unique positive root. Thus, if R0 > 1, then the final size of epidemic is given by
the relation:

S f (x) = S0(x)e
−A∗α(x), (4.13)

where A∗ is the unique positive solution of equation F(A) = 0.
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5 Age-dependent immuno-epidemic model with delayed recovery
and death rates

As before, we consider in this section a fixed disease duration but different recovery
and death distribution which allow us to obtain an age-dependent delay model.

5.1 Reduction to the delaymodel

We assume that the disease duration for an infected individual with age x is τ(x). Set

r(x, t − η) = r0(x) δ(t − η − τ(x)), d(x, t − η) = d0(x) δ(t − η − τ(x)),

where r0(x) + d0(x) = 1 for all x , and δ is the Dirac delta-function. Then

∂R(x, t)

∂t
=

∫ t

0
r(x, t − η)J (x, η)dη = r0(x)J (x, t − τ(x))

and

∂D(x, t)

∂t
=

∫ t

0
d(x, t − η)J (x, η)dη = d0(x)J (x, t − τ(x)).

We assume that J (x, t) = 0 for t < 0. Integrating the above two equations from 0 to
t , we get

R(x, t) = r0(x)
∫ t

0
J (x, s − τ(x))ds = r0(x)

∫ t−τ(x)

−τ(x)
J (x, y)dy

= r0(x)
∫ t−τ(x)

0
J (x, y)dy,

D(x, t) = d0(x)
∫ t

0
J (x, s − τ(x))ds = d0(x)

∫ t−τ(x)

−τ(x)
J (x, y)dy

= d0(x)
∫ t−τ(x)

0
J (x, y)dy.

Then the model (3.2a)-(3.2d) reduces to the age-dependent delay model:

∂S(x, t)

∂t
= −α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy (= −J (x, t)), (5.1a)

∂ I (x, t)

∂t
= α(x)S(x, t)

∫ ∞

0
W (y)I (y, t)dy − J (x, t − τ(x)), (5.1b)

∂R(x, t)

∂t
= r0(x)J (x, t − τ(x)), (5.1c)

∂D(x, t)

∂t
= d0(x)J (x, t − τ(x)). (5.1d)
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It follows from (3.1) that the number of active cases I (x, t) of age x at time t is given
by

I (x, t) =
∫ t

t−τ(x)
J (x, η)dη. (5.2)

It can be substituted in the right-hand sides of equations (5.1a) and (5.1b).

5.2 Growth rate and basic reproduction number

In the beginning of epidemic, the change of the number of susceptible can be neglected,
S(x, t) ≈ S0(x). From (5.1a), we get

J (x, t) = α(x)S0(x)
∫ ∞

0
W (y)

( ∫ t

t−τ(y)
J (y, η)dη

)
dy.

Hence, we can write,

J (x, t) = α(x)S0(x)Ω(t),

where

Ω(t) =
∫ ∞

0
W (y)

( ∫ t

t−τ(y)
J (y, η)dη

)
dy.

Therefore,

Ω(t) =
∫ ∞

0

∫ t

t−τ(y)
W (y)α(y)S0(y)Ω(η)dηdy.

After the change of variables ξ = t − η in the integral, we get

Ω(t) =
∫ ∞

0

∫ τ(y)

0
W (y)α(y)S0(y)Ω(t − ξ)dξdy. (5.3)

Substituting Ω(t) = Ω0 eμt in the equation (5.3) we get

F(μ) = 1, (5.4)

where

F(μ) =
∫ ∞

0

∫ τ(y)

0
W (y)α(y)S0(y)e

−μξdξdy.

Here, F(μ) is a decreasing function of μ and converging to 0 as μ → ∞. Therefore,
the equation (5.4) has a positive solution if and only if F(0) > 1. Hence, the basic
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reproduction number R0 is given by F(0),

R0 =
∫ ∞

0
W (y)α(y)S0(y)τ (y)dy.

In order to determine an approximate value for the growth rate μ, we take the first
two terms of the Taylor expansion of the function F(μ):

F(0) + F ′(0)μ = 1.

Hence,

μ = R0 − 1

R1
,

where

R1 = 1

2

∫ ∞

0
W (y)α(y)S0(y)τ (y)2dy.

In a particular case, if we consider a fixed disease duration, τ(x) = τ (constant),
then,

R0 = τσ, R1 = τ 2

2
σ,

where

σ =
∫ ∞

0
W (y)α(y)S0(y)dy.

Consequently, the growth rate μ is given by the expression

μ = 2(R0 − 1)

τR0
.

Remark For different values of τ , the value of σ can be adjusted to keep the basic
reproduction number R0 fixed, but the growth rate μ will be different. In fact, the
growth rateμ decreases for a longer disease duration τ . So, growth rates of the number
of infected individuals can be different for the same values of the basic reproduction
number.
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5.3 Final size of epidemic

As above, set limt→∞ S(x, t) = S f (x). We divide (5.1a) by S(x, t) and integrate with
respect to t from 0 to ∞:

ln
S f (x)

S0(x)
= −α(x)

∫ ∞

0

∫ ∞

0
W (y)I (y, t)dydt

= −α(x)
∫ ∞

0
W (y)

( ∫ ∞

0
I (y, t)dt

)
dy. (5.5a)

Next, integrating (5.2), we get

∫ ∞

0
I (x, t)dt =

∫ ∞

0

( ∫ t

t−τ(x)
J (x, η)dη

)
dt

=
∫ 0

−τ(x)

(∫ η+τ(x)

0
J (x, η)dt

)
dη +

∫ ∞

0

(∫ η+τ(x)

η

J (x, η)dt

)
dη.

Since J (x, t) = 0 for all t ∈ [−τ(x), 0], we can write

∫ ∞

0
I (x, t)dt =

∫ ∞

0

(∫ η+τ(x)

η

J (x, η)dt

)
dη = τ(x)

∫ ∞

0
J (x, η)dη. (5.6)

Integrating the equation (5.1a) with respect to t from 0 to ∞

S0(x) − S f (x) =
∫ ∞

0
J (x, t)dt

and substituting this relation into (5.6), we obtain the following equality:

∫ ∞

0
I (x, t)dt = τ(x)

(
S0(x) − S f (x)

)
. (5.7)

Next, from (5.7) and (5.5) it follows that

ln
S f (x)

S0(x)
= −α(x)

∫ ∞

0
W (y)τ (y)

(
S0(y) − S f (y)

)
dy. (5.8)

Set

B =
∫ ∞

0
W (y)τ (y)

(
S0(y) − S f (y)

)
dy.

Then from (5.8) we get

S f (x) = S0(x)e
−Bα(x).
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We substitute S f (x) in the expression for B:

B =
∫ ∞

0
W (y)S0(y)(1 − e−Bα(y))τ (y)dy.

Denote

G(B) = B −
∫ ∞

0
W (y)S0(y)(1 − e−Bα(y))τ (y)dy.

Clearly, G(0) = 0 and

G′(B) = 1 −
∫ ∞

0
W (y)S0(y)α(y)e−Bα(y)τ (y)dy.

Hence,

G′(0) = 1 −
∫ ∞

0
W (y)S0(y)α(y)τ (y)dy = 1 − R0.

Suppose that R0 > 1. Then G′(0) = 1 − R0 < 0. Since limB→∞ G(B) = ∞ and
G′(B) is a strictly increasing function of B, then the equation G(B) = 0 has a unique
positive root B∗.

Thus, ifR0 > 1, then the final size of epidemic is given by the relation:

S f (x) = S0(x)e
−B∗α(x), (5.9)

where B∗ is the unique positive solution of the equation G(B) = 0.

6 Estimation of age-dependent distributed rate functions

In this section we estimate the parameters of the model (3.2) on the basis of epidemi-
ological, clinical and experimental data for COVID-19 during Omicron outbreak. We
consider a case study for New Zealand for which the required data are available in the
literature (Vattiatio et al. 2022). Age interval is considered 0 and 100 years (Q = 100).
Estimations are performed using the statistical tools discussed in the Appendix 2 and
with the help of MATLAB software.

6.1 Estimation of S0(x)

We estimate the initial age-dependent susceptible population for New Zealand using
the census data available in (Wikipedia 2018). In Fig. 1a, the blue bars are the real data
of age-specific distribution of the population, S0(x)/N , where N is the total population
size N = 4, 699, 755. The red curve is the fitting polynomial PS(x) obtained using
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Fig. 1 a Population distribution S0(x)/N with respect to age, N is the total population size, N =
4, 699, 755. b Total viral load W (x) for Omicron as a function of individual’s age x

the ’Curve Fitting Tool’ in MATLAB:

PS(x) = 2.5666 × 10−11x5 − 5.428 × 10−9x4 + 3.67 × 10−7x3 − 1.086 × 10−5x2

+1539 × 10−4x + 0.0125,

x represents the age of an individual. Hence, the estimated curve for the initial age-
dependent susceptible population can be obtained as N PS(x).

6.2 Estimation of total viral loadW(x)

We estimate the total viral load for the Omicron strain of SARS-CoV-2 infection
depending on the age of infected people. We use the experimental data on viral load
for different age groups (Hirotsu et al. 2022). The data points are shown by red dots
as shown in Fig. 1b. We fit the data with the exponential function W (x) = 10a−bx ,

where a = 5.92968, b = 0.003263, and x ∈ [0, 100]. The fitted function W (x) is
shown in Fig. 1b by the blue curve.

6.3 Estimation of the susceptibility function˛(x)

Let αp(x) be the proportion of people with age x infected by the Omicron variant. It
is shown by blue bars in Fig. 2a (Vattiatio et al. 2022). It increases with age, reaches
maximum around 25 years and then decreases. The red curve in Fig. 2a represents a
gamma distribution fitted to the data using MATLAB function ’fitdist’:

αp(x) = 1

q pΓ (p)
x p−1e− x

q .
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Fig. 2 a Age distribution of Omicron infected individuals αp(x) in New Zealand. bDeath rate for different
age groups

The parameters of the gamma distribution are estimated as p = 2.91955 and q =
12.9779. We assume that the coefficient α(x) in (3.2a)-(3.2d) is proportional to the
function αp(x), α(x) = cαp(x), where c is a positive constant determined below.

6.4 Estimation of recovery and death rates

Let q(x) be the probability of an infected individual of age x to die after getting
infection (blue bars in Fig. 2b) (Vattiatio et al. 2022). It can be fitted with the function

q(x) = 2.126 × 10−12x5.341,

(red curve in Fig. 2b).
Denote by r̂(t) and d̂(t) average (age-independent) recovery anddeath distributions,

respectively, as functions of time after the infection onset. Then we approximate the
age-dependent recovery and death distributions r(x, t) and d(x, t) as follows:

r(x, t) = (1 − q(x))r̂(t); d(x, t) = q(x)d̂(t).

We use the functions r̂(t) and d̂(t) determined in Ghosh et al. (2022b) and applicable
for different case studies (see Appendix 1):

r̂(t) = 0.85

ba11 Γ (a1)
ta1−1e

− t
b1 + 0.15

dc11 Γ (c1)
tc1−1e

− t
d1 ,

d̂(t) = 0.94

ba22 Γ (a2)
ta2−1e

− t
b2 + 0.06

dc22 Γ (c2)
tc2−1e

− t
d2 ,

where a1 = 32.17136, b1 = 0.2206, c1 = 65.40545, d1 = 0.210, a2 = 36.02855,
b2 = 0.57511, c2 = 140.11379, d2 = 0.27636. The detailed justification behind
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considering bi-modal gamma distribution for r̂(t) and d̂(t) can be found in Paul and
Lorin (2021).

7 Numerical simulation

In this section we perform some numerical simulations to validate the proposed model
and to compare the complete model with the two reduced models.

7.1 Influence of S0(x)

In order to study the influence of the initial age-dependent population distribution
on epidemic progression, we consider three hypothetical functions representing the
age-dependent initial susceptible population distribution S0(x), as shown in Fig. 3a
by different colors. These cases differ by the proportion of younger age groups with
the same total population (integral).

Since the initial age distribution of infected individuals is unknown, and it is proba-
bly does not essentially influence infection progression, we set I0(x) = 1 for x = even
and I0(x) = 0, otherwise. We have taken α(x) = cαp(x), where c = 4.5 × 10−12,
N = 107, where αp(x) and other distributions are estimated in the previous section.

We carry out numerical simulation of system (3.2a)-(3.2d) and characterize infec-
tion progression by the total number of newly infected individuals for all age groups:

J̄ (t) =
∫ 100

0
J (x, t)dx .

In Fig. 3b we observe that the maximum number of infected and the time to maximum
can change significantly depending on the initial age-dependent distribution of the
susceptible population.

The blue curve in Fig. 3a corresponds to the population distribution in Fig. 1a. If the
proportion of the young age groups increases (green curves), then themaximal number
of newly infected individuals also increases while the time to maximum decreases.
This is related to higher infection transmission by younger population (Fig. 1b). In the
case of a smaller proportion of these age groups (red curves), the maximal number of
new infections decreases and the time to maximum increases.

7.2 Comparison among themodels (3.2), (4.5), and (5.1)

In this subsection, we compare the epidemic progression determined by the three dif-
ferent models proposed here, with equivalent age-dependent parameters as described
in Sect. 6.More completemodel (3.2)may givemore precise results, but it also requires
more detailed age-specific immunological data, which may not be easily available. On
the other hand, model (4.5) and the delay model (5.1) require less detailed data. As
per the estimates regarding the recovery and death rates determined in Sect. 6.4, the
mean values of the bimodal gamma distributions r̂(t) and d̂(t) are approximately 8
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Fig. 3 aDifferent age structures S0(x)/N of the initial susceptible populationwith the same total population.
b Epidemic progression for the three cases in the left panel is shown with the same color

and 20, respectively. Hence, in the delay model (5.1), we can take the age-dependent
disease duration τ(x) as follows:

τ(x) = 8(1 − q(x)) + 20q(x),

where, q(x) is as estimated in Sect. 6.4. The corresponding age-dependent recovery
and death rates for the model (4.5) is given by the expression

γ (x) + δ(x) = 1/τ(x).

All other parameters are the same as estimated in Sect. 6.
Numerical simulation for the three models are presented in Fig. 4. The results for

the main immuno-epidemiological model (3.2) (magenta curve) coincides with the
delay model (5.1) (yellow curve). However, the SIR-type model (4.5) (cyan curve)
gives smaller maximal number of infected and larger time to maximum. Due to the
assumption that the recovery and death rates are proportional to I (x, t), this model
overestimates the recovery and death rates and, consequently, underestimates the num-
ber of infected individuals.

7.3 Epidemic progression due to Omicron in New Zealand

Finally, we validate the immuno-epidemiological model (3.2) with the data on the
epidemic progression in New Zealand during the Omicron outbreak. Namely, we
compare modelling results with reported new daily cases from January 1, 2022 to
June 25, 2022. Let us recall that new daily cases J (x, t) can be expressed through the
total number of infected I (x, t) and the number of susceptible S(x, t) (see (3.2a)).
Together with the coefficients α(x) and W (y) we can determine new daily cases J̄ (t)
for all age groups. Thus, we take I (x, t) and S(x, t) from the reported data, determine
J (x, t) by formula (3.2a), find J̄ (t) taking a sum of all age groups and compare the
result with the reported data on new daily cases.
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Fig. 4 The number of new daily
cases in numerical simulations
with the main model (3.2)
(magenta curve), the model (4.5)
(cyan curve) and the delay
model (5.1) (yellow curve)

Fig. 5 Comparison of new daily
cases in modelling and data:
model fitting (green), model
validation (blue). The black dots
are the real data for Omicron in
New Zealand. The magenta
curve corresponds to modelling
with the increased disease
transmission rate due to the
emergence of new strain in
April, 2022

It remains to note that we determine the value of c in the expression α(x) = cαp(x)
fitting modelling results with the data for the first 50 days (green curve in Fig. 5). We
get c = 4.4 × 10−12.

Black dots in Fig. 5 represent the real data on daily new cases of Omicron in New
Zealand, and the blue curve is the simulation result obtained as described above. We
can observe that modelling results fit quite well the real data up to the end of April,
2022.

From the end of April 2022, new daily cases have some increase instead of further
decreasing predicted by the model (Fig. 5). A possible explanation of this discrepancy
is related to the emergence of new strain BA.2 (instead of the previous BA.1) for which
vaccination can be less efficient due to immune escape or which can have a slightly
larger transmission rate (Our world in data 2022). In order to describe this effect, we
change the value of c from 4.4 × 10−12 to 5.7 × 10−12, in the beginning of May,
2022. The corresponding result is shown by the magenta curve in Fig. 5, which shows
a larger number of daily cases.
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8 Discussion

Model with distributed parameters. Compartmental epidemiological models can be
derived starting from the number of new daily cases. All other compartments, such
as susceptible, infected, recovered and dead can be expressed through it with a given
recovery and death rates. The latter can be taken either from the epidemiological data
or considered in some simplified model form allowing, in particular, the derivation
of the SIR or delay models. Previously, this approach was suggested in Ghosh et al.
(2022). Here we develop it for an age-structured population.

The disease transmission rate is supposed to be proportional to the intra-individual
viral load. It can be considered as a distributed function depending on time from the
infection onset (Grassly and Fraser 2008), or as an average value determined by the
virus replication rate and individual immune response. We use in this work the second
approach since it is more appropriate for age-structured populations, and obtain the
immuno-epidemiologicalmodel. Indeed, exposed individuals become infectiouswhen
the viral load in the upper respiratory tract becomes sufficiently large. In the case of
COVID-19 this latent period is sufficiently short. Depending on SARS-CoV-2 variant,
it can be between 2 and 5 days. The time-dependent infectivity rate is considered in
our previous work Ghosh et al. (2022b), where it was taken into account through the
distributed infectivity rate proportional to viral load depending on time from the infec-
tion onset.However, taking into account time-dependent and age-dependent infectivity
rates at the same time leads to a more complex model. In order to avoid this excessive
complexity, we neglect here the latency in the disease transmission rate. This question
will be considered in the forthcoming works.

The influence of asymptomatic individuals was largely discussed in the literature
devoted to COVID-19 pandemic. The estimated number of asymptomatic cases can
vary between 25% and 50% (Nishiura et al. 2020; Mizumoto et al. 2020). Moreover,
they can also transmit the disease (Huff and Singh 2020). Formally, they can be intro-
duced in the model as a separate compartment with a different disease transmission
rate. However, viral load and disease transmission rate are smaller for asymptomatic
individuals. Therefore, infected by those individuals have a smaller initial viral load
and will likely be also asymptomatic (though it depends on the individual immune
response).Hence, in the first approximation,we can expect that the influence of asymp-
tomatic on symptomatic subclass can be neglected.

SIR and delay models. The data on distributed recovery and death rates depending
on time from the infection onset are not easily available, moreover, for different age
groups. Therefore, some simplified models are of interest. Conventional SIR model
and delaymodel can be obtained as two limiting cases, for constant (time-independent)
recovery and death rates and for concentrated (delta-function) rates.

Comparison of these three models shows that SIR model overestimates recovery
and death because they begin right after infection onset (constant rates), while this
is not the case in reality. On the other hand, delay model with an average disease
duration gives practically the same result as the distributed model. This conclusion
allows the simplification of modelling approach since we do not need to determine
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Fig. 6 Percentageof the agegroup0-14years (https://donnees.banquemondiale.org/indicator/SP.POP.0014.
TO.ZS) versus the total number of infection cases from the beginning of epidemic till August 21, 2022 with
respect to 1000 people (https://www.worldometers.info/coronavirus/#countries)

distributed rate functions, and the point-wise delay model is simpler than the model
with distributed delay (Ghosh et al. 2022a).

Age-dependent populations. The main novelty of this work in comparison with the
previous ones is that we consider age-dependent populations together with distributed
recovery and death rates. We show that proportion of young age groups influences
the epidemic progression since disease transmission rate is higher for them. Figure 3
clearly illustrates that if proportion of the young age groups increases (green curves),
then the maximal number of newly infected individuals also increases while the time
to maximum decreases due to higher infection transmission by younger population
in case of Omicron (see Fig. 1b). On the other hand, for a smaller proportion of the
younger age group (red curves), the maximal number of new infections decreases
and the time to maximum increases in Fig. 3. Though it can be difficult to justify this
conclusion with the data from different countries because of the influence of numerous
other factors (climate, economy, social restrictions) and different methods of data
collection, if we restrict this comparison to some neighboring European countries, for
which these differences can be less essential, then some tendency can be observed
(Fig. 6).

Vaccination. In this work, we do not take into account the influence of vaccination.
However, during Omicron outbreak many countries (including New Zealand) reached
a plateau in the number of vaccinated people. Therefore, vaccination can be taken into
account implicitly through the fitted parameter c which includes the proportionality
coefficient to the number of susceptible reduced due to vaccination.

This argument is applicable for the Omicron outbreak since the booster vaccine
dose was fully efficient. However, in a longer time scale, immunity waning decreases
vaccine efficiency and can lead to further epidemic outbreaks. Let us note that more
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detailed models taking into account vaccination dynamics and vaccine waning can
give reliable predictions of epidemic progression (Ghosh et al. 2022b).

Collective immunity. The question of collective immunity was largely discussed in
the beginning of epidemic. However, the measures of social distancing which were
necessarily introduced to decrease the number of hospitalizations and collapse of
public health system, kept the number of infected individuals essentially below the
level of collective immunity.

The situation was quite different during the Omicron outbreak. Relatively weak
symptoms and low mortality rate did not require strong social distancing measures.
They remained quite relaxed and unchanged in many countries. On the other hand,
high transmission rate and decreased number of susceptible due to vaccination and
disease acquired immunity allowed some countries to reach the level of collective
immunity (Saldaña and Scoglio 2022). The number of daily infected passed through
the maximal value and decreased due to the decrease of the susceptible population.
Similar behavior is observed in the simulations presented above.

Let us note that collective immunity does not imply the end of epidemic because
of the immunity waning and possible emergence of new strains. However, after two
years of COVID-19 epidemic, we can expect that it approaches a long-term dynamics
with some ground-based level of infected individuals and occasional outbreaks due to
seasonal changes and new variants.

Limitations and perspectives.We have already mentioned above that we did not con-
sider in this work exposed and asymptomatic cases which can possibly influence the
epidemic progression up to certain extent. They can be introduced in more detailed
models, but rigorous analysis of the concerned model can be quite involved. Intro-
duction of vaccination in the model allows a longer and more reliable prediction of
epidemic progression and controlling further outbreaks. Finally, let us note that the
models considered in this work are generic and can be applied to other epidemics.
Especially, this concerns more simple and still accurate delay model.

Fig. 7 Probability distribution (taken from Ghosh et al. (2022b); Sharma et al. (2022)) of (a) recovery r̂(t)
and (b) death d̂(t) as functions of time (in days) after the onset of infection. The red curves show the best
fitted bimodal gamma distributions
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Appendix 1: Recovery and death distributions

The time dependent average recovery (r̂(t)) and death (d̂(t)) distributions are shown
in Fig. 7.

Appendix 2: Statistical tools

Gamma distributions are estimated using the inbuilt function fitdist(:,gamma) inMAT-
LAB. This function is used to fit a vector of data X = (x1, x2, . . . , xn) by a gamma
distribution of the form 1

baΓ (a)
xa−1e−x/b, where a and b are the shape and scale

parameters. This function gives the maximum likelihood estimators of a and b for the
gamma distribution which are the solutions of the simultaneous equations

log â − Ψ (â) = log

(
X̄/

( n∏
i=1

xi
)1/n)

,

b̂ = X̄/â,

where X̄ is the sample mean of the data X and Ψ is the digamma function given by

Ψ (x) = Γ ′(x)/Γ (x).

The function fitdist(:,gamma) estimates the shape and scale parameters with 95%
confidence interval.

All other estimations and curve fittings are done byminimizing the Sum of Squared
Errors (SSE). We applied three methods to minimize the SSE function: first, gradient-
based method followed by a step of minimization with a gradient-free method, again
followed by a third step of gradient-based method. MATLAB nonlinear least-square
solvers fmincon and patternsearch are used to fit day-wise number of cases. Detailed
description of this method and its implementation can be found in Kelley (1999).
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