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A multi-ethnic polygenic risk score is associated
with hypertension prevalence and progression
throughout adulthood
Nuzulul Kurniansyah1, Matthew O. Goodman1,2, Tanika N. Kelly3, Tali Elfassy 4, Kerri L. Wiggins 5,

Joshua C. Bis 5, Xiuqing Guo 6, Walter Palmas7, Kent D. Taylor6, Henry J. Lin 6, Jeffrey Haessler8,

Yan Gao9, Daichi Shimbo10, Jennifer A. Smith 11, Bing Yu12, Elena V. Feofanova 12, Roelof A. J. Smit13,

Zhe Wang 13, Shih-Jen Hwang14, Simin Liu 15, Sylvia Wassertheil-Smoller 16, JoAnn E. Manson2,17,

Donald M. Lloyd-Jones18, Stephen S. Rich 19, Ruth J. F. Loos 13, Susan Redline 1,2, Adolfo Correa 20,

Charles Kooperberg 8, Myriam Fornage 12,21, Robert C. Kaplan8,22, Bruce M. Psaty 23, Jerome I. Rotter 6,

Donna K. Arnett 24, Alanna C. Morrison 12, Nora Franceschini25, Daniel Levy26,27, the NHLBI Trans-Omics in

Precision Medicine (TOPMed) Consortium* & Tamar Sofer 1,2,28✉

In a multi-stage analysis of 52,436 individuals aged 17-90 across diverse cohorts and bio-

banks, we train, test, and evaluate a polygenic risk score (PRS) for hypertension risk and

progression. The PRS is trained using genome-wide association studies (GWAS) for systolic,

diastolic blood pressure, and hypertension, respectively. For each trait, PRS is selected by

optimizing the coefficient of variation (CV) across estimated effect sizes from multiple

potential PRS using the same GWAS, after which the 3 trait-specific PRSs are combined via

an unweighted sum called “PRSsum”, forming the HTN-PRS. The HTN-PRS is associated with

both prevalent and incident hypertension at 4-6 years of follow up. This association is further

confirmed in age-stratified analysis. In an independent biobank of 40,201 individuals, the

HTN-PRS is confirmed to be predictive of increased risk for coronary artery disease, ischemic

stroke, type 2 diabetes, and chronic kidney disease.
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Hypertension affects over 1.1 billion people in the world1.
Globally, the number of people with hypertension has
increased over time, reflecting the aging of the population

and is predicted to reach 1.56 billion people by 20252. Hyper-
tension is a leading risk factor for cardiovascular, kidney, cere-
brovascular disease, and a leading cause of global mortality3–5.
The causes of hypertension are genetic and environmental,
including dietary factors, and the rising prevalence of obesity6–8.
Genome-wide association studies (GWAS) have identified more
than 900 genomic regions associated with blood pressure (BP)
phenotypes9–14, and GWAS from diverse race/ethnic back-
grounds as well as admixture mapping studies demonstrate that
BP phenotypes have some ancestry-specific or ancestry-enriched
genetic components (e.g. genetic variants that are more common
in one continental genetic ancestry)15–20.

Polygenic Risk Scores (PRS) estimate the effect of many genetic
variants on an individual’s genetic susceptibility to a disease or
trait, typically calculated as a weighted sum of trait-associated
alleles, with weights often being the effect estimates correspond-
ing to each allele. PRS are typically constructed using results from
GWAS to guide the selection of single nucleotide polymorphisms
(SNPs) into the PRS, and their weights21,22. Developing PRS that
are useful across a diverse, globally representative population
remains a challenge when the underlying GWAS is performed
primarily in people of European ancestries23–25. A recent study of
PRS for hypertension found that a BP PRS was useful in pre-
dicting longitudinal development of hypertension in a Finnish
population26. With the availability of recent, large multi-ethnic
and non-European GWAS of BP phenotypes, such as from the
Million Veteran Program (MVP), the UK Biobank (UKBB), and
Biobank Japan (BBJ)10,27, it is possible to include SNPs that are
common in genetic ancestries that are traditionally less repre-
sented in GWAS, permitting the construction of multi-ethnic PRS
for hypertension risk prediction28.

Here we leverage a multi-ethnic dataset, with harmonized
genotypes and phenotypes, from the Trans-Omics in Precision
Medicine Initiative (TOPMed) program29,30 to construct and
assess PRS for hypertension based on summary statistics from
multiple GWAS of hypertension and BP phenotypes. Individuals
were from a few U.S. race/ethnic backgrounds: African Amer-
icans (AA, also referred to as Black individuals), Hispanic/Latino
Americans (HA), Asian Americans (AsA), and European
Americans (EA, also referred to as White individuals), allowing
for assessment of the PRS across major U.S. demographic seg-
ments. Our use of two names for the same race/ethnic back-
ground group reflects the fact that these are socially constructed
groups and preferred identifications vary by TOPMed studies and
their participants. We used multiple independent subsets of the
TOPMed dataset to train, test, and assess PRS associations with
hypertension across the lifespan. We evaluated the association of
the final HTN-PRS with incident outcomes in the Mass General
Brigham (MGB) Biobank. To develop the PRS, we propose a new
approach for selecting tuning parameters for PRS construction,
based on optimizing the coefficient of variation of the effect size
estimates of five independent subsets of the training dataset, as
well as combination of PRS based on GWAS of multiple BP
phenotypes into a single PRS.

Results
Figure 1 provides an overview of the study. At stage 1, we used
summary statistics from multiple GWAS of BP phenotypes to
construct PRS in a training dataset (stage 1 dataset) with pre-
valent hypertension. We selected GWAS that were based on
individuals not overlapping with our dataset (published Million
Veterans Program GWAS10, and summary statistics from the UK

Biobank database). We used a clump & threshold methodology
which requires selection of tuning parameters. Importantly, we
evaluated a few methods to select tuning parameters, and an
approach to combine PRS across phenotypes. At stage 2, we
further assessed the methods for tuning parameter selection and
the combined PRS in a stage 2 dataset using prevalent hyper-
tension at a baseline exam. We selected the best performing PRS,
and used it in analyses of PRS association with hypertension
using data from two visits in the stage 2 dataset. At stage 3, we
studied the PRS association with incident hypertension in young
Black and White adults, using a longitudinal, stage 3 dataset with
6 exams. At stage 4, we tested the association of the PRS with
disease status in individuals from the MGB Biobank (stage 4
dataset).

Supplementary Table S2 characterizes the stage 1 dataset, used
for training the PRS using prevalent hypertension analysis. Rates
of hypertension among the race/ethnic groups ranged from 56%
with 32% treated (AsA) to 79% with 57% treated (AA). Mean age
ranged from 53 (AsA) to 58 (HA). Supplementary Table S3
characterizes the sample across the eight studies participating
in the stage 2 dataset. The data were collected over two time-
points with an average of 4-6 years between measures. There were
39,035 individuals in the analytic sample, of which 22,701 were
EA, 8822 were AA, 6718 were HA, and 794 were AsA.
The characteristics of the race/ethnic background groups were
quite heterogeneous. The average age across backgrounds ranged
from 51 (HA) to 62 (AsA) at baseline. The EA group had the
highest proportion of female participants (72.2%) while the HA
group had the lowest (62%). The number of hypertension cases
increased between the exams in all background groups. AAs had
the highest proportion of hypertension cases in both exams:
76.5% and 53% treated (baseline), and 83.3% and 66% treated
(follow-up). HAs had the fewest cases: with 51.7% and 23%
treated (baseline) and 59.6% and 39.5% treated (follow-up).

PRS tuning parameters selection based on stage 1 dataset.
Based on each GWAS, we selected PRS using three criteria:
Genome-wide Significant PRS; Selected CV-PRS; Selected PVAL-
PRS. Supplementary Fig. 1 describes the association of each PRS
with hypertension in the stage 1 dataset. Selected CV-PRS had the
highest AUC compared to other PRS. Supplementary Fig. 2 fur-
ther reports these associations for the secondary GWAS as well,
showing that they mostly performed less well than the primary
GWAS, with the exception of the PRS based on the UKBB+
ICBP EA GWAS9, in which all TOPMed EA individuals parti-
cipated. The meta-analysis of all available independent GWAS
performed less well than the primary GWAS. Supplementary
Table S4 reports the clumping parameters and number of SNPs
for each of the primary and secondary GWAS and each selection
criterion.

PRS associations with baseline hypertension in the stage 2
dataset. Figure 2 demonstrated the trained PRS associations with
prevalent hypertension at baseline in the stage 2 dataset. PRS were
associated with prevalent hypertension and showed a similar
association patterns as in the training dataset, with the exception
that here Selected CV-PRS often having higher OR and AUC for
each PRS. This pattern was more pronounced for SBP and
PRSsum. Here, Selected CV-PRS often had lower p value com-
pared to the Selected PVAL-PRS. PRSsum based on selected CV-
PRS had the strongest association with hypertension (OR= 2.10,
95% CI [1.99, 2.21], p value <1 × 10−100, AUC= 0.76). Based on
these results, we move forward with PRSsum based on Selected
CV-PRS for analysis of incident hypertension. Figure 3 shows the
distributions of Selected CV-PRS based on each GWAS and their
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combined PRSsum. For all PRS, the AA group tended to have the
highest PRS values. We computed the correlation between PRS
and stratified by race/ethnic background as described in Sup-
plementary Fig. 5. As expected, PRSsum based on Selected CV
showed a strong correlation with each PRS. In what follows, we
refer to PRSsum based on Selected CV-PRS as the HTN-PRS, for
brevity.

In secondary analysis, we compared the HTN-PRS to four
additional PRS constructed using approaches that specifically
model pleiotropy between the BP traits. Results are provided in
Supplementary Fig. 12 (stage 1 dataset) and 13 (stage 2 dataset) in
the Supplementary Information. The HTN-PRS had better
performance.

Distributions of longitudinal BP categories across deciles of
the HNT-PRS. Figure 4 visualizes the distribution of the long-
itudinal BP categories across deciles of the HTN-PRS, and Sup-
plementary Table S5 in the Supplementary Information provides
results from an analysis using linear regression to test for a linear
change in the number of individuals from each BP category as a
function of HTN-PRS decile. Indeed, higher deciles have higher
proportions of individuals with severe BP category (having
hypertension already at baseline) with p value < 0.001 indicating
increase in the number of individuals in this category in each
decile, and lower deciles have higher proportions of individuals
who were free of hypertension in both exams (p value < 0.001
indicating a decrease in the number of individuals in the “always
normal or elevated” category with increasing HTN-PRS deciles).
Relatively few individuals were categorized as “worsened” or
“improved” (transitioning between normal BP, elevated BP, and

HTN between exams). No association was observed with the
number of individuals in the “worsened” category in HTN-PRS
deciles (p value= 0.21), while the number of individuals in the
“improved” category decreased with increasing HTN-PRS deciles
(p value < 0.001). Supplementary Fig. 3 shows similar data stra-
tified by race/ethnic background and demonstrates generally
similar patterns across backgrounds, except for AsA, who are also
the group of the smallest sample size (n= 794), and therefore
there is higher uncertainty in results for this group. Supplemen-
tary Fig. 4 visualizes similar data stratified by age decades at
baseline (≤20, 21–30, 31–40, … 71–80, >80). We observed
longitudinal associations of the HTN-PRS with BP category is
most age groups (age 31 to age 80), with most the pronounced
associations from ages 41–70, for which each severity category is
well represented in the data.

HTN-PRS association with prevalent and incident hyperten-
sion across race/ethnic backgrounds. Figure 5 demonstrates the
association of the HTN-PRS with three hypertension measures:
prevalent hypertension at baseline, new onset hypertension
among individuals with normal BP at baseline, and new onset
hypertension among individuals with elevated BP at baseline. In
the multi-ethnic analysis, the PRS was associated with each of the
measures, with strongest association with hypertension at base-
line (OR= 2.10, 95% CI [1.99, 2.21], p value < 1 × 10−100,
AUC= 0.76), while new onset hypertension among individuals
with normal BP at baseline had OR= 1.72, 95% CI [1.55, 1.91],
p value= 4.67 × 10−24, AUC= 0.66, and among those with ele-
vated BP at baseline had OR= 1.48, 95% CI [1.27, 1.71],
p value= 2.39 × 10−7, AUC= 0.59). Stratifying the association by

Fig. 1 Study organization. In stage 1, we used the stage 1 dataset to select tuning parameters for PRS construction based on GWAS of BP phenotypes. We
compared a few methods for tuning parameter selection and constructed PRSsum combining a few phenotype-specific PRS. In stage 2 we evaluate the
methods for tuning parameter selection in the stage 2 dataset, and selected one PRS, namely HTN-PRS, to move forward for two-visit longitudinal analysis.
In stage 3, we used a longitudinal dataset from CARDIA to study hypertension development in young adults, and compared Black and White individuals. In
stage 4, we tested the association of the HTN-PRS with disease outcomes in MGB biobank (stage 4 dataset).
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race/ethnic background and testing for heterogeneity suggested
differences in the PRS association with hypertension at baseline
(heterogeneity p value < 1.0 × 10−4) but weak evidence for het-
erogeneity otherwise, perhaps due to decreased sample sizes and
lower power. Overall, the PRS had the weakest estimated effect
sizes, for all outcomes, in the AA group. Supplementary Fig. 6
reports an analysis mimicking that in Fig. 5, with now effect sizes
reported per 1 SD increase in the PRS where the SD is computed
within the group, rather than in all TOPMed. Within European
and Asian Americans, the ORs per SD become lower when
accounting for group-specific PRS distribution. In secondary
analysis, we computed the risk of hypertension at baseline in top
versus bottom decile of the PRS within each race/ethnic back-
ground. Results are provided in Supplementary Fig. 7. The
association was strongest in the HA group (OR= 4.33, 95% CI
[2.81, 6.68]) followed by the EA, AsA, and AA groups.

Supplementary Fig. 8 further provides results from association
analyses stratified by age decade at baseline. Significant (p < 0.05)
associations with prevalent and with new onset hypertension are
observed throughout adulthood, starting with the 21–30 age group,
and up to the 71–80 age group, with the exception that association
of incident hypertension among individuals with elevated BP in the

21–40 and 51–60 age groups were not statistically significant. This
could be due to low sample sizes (see figure for more details).

Supplementary Fig. 9 provides a comparison of effect sizes and
predictive performance measured by AUC of the multi-ethnic
PRS, BMI, and current smoking, in prevalent and incident
hypertension analyses. The PRS is comparable to BMI, and both
perform better than current smoking.

PRS Association with development of hypertension in young
Black and White adults. We estimated trajectories of hypertension
development as second order polynomial functions of age within
strata defined by quantiles of the PRS. Characteristics of the stage 4
CARDIA dataset are provided in Supplementary Table 6. As shown
in Fig. 5, in the combined analysis of both Black and White
CARDIA participants, trajectories of hypertension risk are separated
between the PRS-defined strata, with individuals in strata defined by
higher PRS values consistently develop higher hypertension risk
compared to those in lower PRS strata. Note that Black individuals
obtain higher PRS values compared to White individuals and vice
versa. Looking at the race-defined strata, this pattern is seen much
more clearly in Black individuals, but less so in White individuals
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AUC [95% CI]
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PRSsum
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Odd ratios (log scale)

Threshold Genome−wide Significant Selected CV−PRS Selected PVAL−PRS

Fig. 2 Association of PRS with prevalent hypertension at baseline in the stage 2 data set. Associations of PRS in stage 2 dataset (N= 37,667
individuals). PRS were trained for hypertension association using stage 1 dataset. “Genome-wide significant PRS” are PRS constructed using genome-wide
significant SNPs in the discovery GWAS, with fixed LD parameters or R2= 0.1 and distance= 1000 kb. “Selected CV PRS” are PRS that minimized the
coefficient of variation (CV) across effect size (log odds ratio (OR)) estimates in 5 independent subsets of the stage 1 dataset. “Selected PVAL-PRS” are
PRS that minimized the association p value with hypertension in the stage 1 dataset. Each point provides the estimated OR per 1 standard deviation (SD)
increase of the PRS, and error bars represent 95% confidence intervals (CIs). For each PRS association the figure also provides the p value of the estimated
association with hypertension based on the Wald test (chi-squared test with one degree of freedom based on two-sided alternative hypothesis), and Area
Under the Receiver Operator Curve (AUC). PRS associations were estimated in models adjusted for sex, age, age2, study site, race/ethnic background,
smoking status, BMI, and 11 ancestral principal components. PRS SDs were defined according to the sampling SDs of the PRS estimated in the entire
TOPMed dataset.
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alone, suggesting that Black individuals with high PRS values
(compared to other Black individuals) are likely to develop hyper-
tension earlier than White individuals with high PRS values (com-
pared to other White individuals). At age 50, Black individuals at the
90–100% percentile of the HTN-PRS had 2.11 OR (95% CI [1.77,
2.50]) for the risk of hypertension compared that in age 17, indi-
viduals at the 50–90% stratum had 2.07 OR (95% CI [1.90, 2.23])
relative to age 17, and individuals at the 10–50% stratum had 1.76
OR (95% CI [1.63, 1.91]) relative to age 17. Individuals at the
bottom stratum, 0–10%, had 1.43 the OR (95% CI [1.23, 1.67]). In
contrast, in White individuals, the ORs at age 50 relative to age 17
are 1.43, 1.27, 1.22, 1.15 for the 90–100%, 50–90%, 10–50%, and
1–10% strata, respectively.

PRS association with disease outcomes in MGB Biobank.
Supplementary Fig. 10 describes the association of the multi-
ethnic hypertension PRS with hypertension, ischemic stroke,
CAD, type 2 diabetes, CKD, and obesity, in the MGB Biobank. In
multi-ethnic analysis, the PRS was associated with hypertension
(OR= 1.45, p value < 9 × 10−100), as well as with all other out-
comes (OR= 1.1–1.4 for all outcomes, p value < 0.05). Associa-
tion of the HTN-PRS with obesity is likely because the pan-
ancestry UKBB GWAS of hypertension, which we used, was not
adjusted for BMI, and/or due to residual effects of BMI that were
not fully accounted for by the BMI adjustment in the
MVP GWAS.

Secondary analysis of the HTN-PRS using genetic ancestry. In
an additional secondary analysis, we created groups of individuals
defined by having at least 80% of a specific genetic ancestry: at
baseline, 5447 individuals with at least 80% African ancestry, and
similarly 97, 783, and 20,939 individuals with at least 80%
Amerindian, East Asian, and European ancestry. Sample sizes are
smaller when excluding individuals with hypertension at baseline.
Notably, most of the HA individuals could not participate in this
analysis because they do not have a single predominant ancestry.
The distributions of the PRS in each of these groups (Supple-
mentary Fig. 14) show that PRS distributions differ between
ancestries, due to differences in allele frequencies between them.
Supplementary Fig. 15 further provides results from association
analysis with hypertension at baseline and incident hypertension
in the stage 2 dataset. While the effect size of the PRS per 1 SD of
the PRS (with SD computed over all the TOPMed dataset) is
largest in the European ancestry group, at the baseline hyper-
tension analysis, the AUC is about the same in the African (0.76)
and European ancestry (0.75) groups.

Discussion
We developed a HTN-PRS based on multi-ethnic GWAS for SBP,
DBP and assessed its association in a multi-ethnic TOPMed
dataset. A BioMe stage 1 dataset was used to select optimal tuning
parameters for PRS based on each GWAS using three approaches:
the novel Selected CV-PRS approach, Selected PVAL-PRS, and

Pan UKBB−HTN PRSsum

MVP−DBP MVP−SBP

−2 0 2 4 −2 0 2

−2 0 2 4 −2 0 2

0.0

0.5

1.0

0.0

0.5

1.0

PRS

de
ns

ity

Background African−American Asian−American European−American Hispanic−American

Fig. 3 PRS distribution stratified by race/ethnic background. Density plots showing the distributions of Selected CV-PRS based on each GWAS used
(Table 1) and PRSsum constructed by summing Selected CV-PRS from the three GWAS (the final HTN-PRS). The figure was created using the stage 2
dataset. The densities are stratified by race/ethnic background.
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genome-wide significant PRS. We further proposed to combine
BP phenotypes PRS based on GWAS of different phenotypes
using the PRSsum approach: an unweighted sum of the separate
phenotypes’ PRS. This final HTN-PRS, PRSsum based on Selected
CV-PRS, was associated with hypertension prevalence in the
independent stage 2 dataset, as well as with longitudinal cate-
gories of BP trajectories across race/ethnic backgrounds. In ana-
lysis stratified by age decade, the association of the PRS with both
prevalent and incident hypertension is consistent across ages
21–80. In the stage 3 CARDIA study of young adults with 15-
years follow up, individuals in strata defined by the top decile of
the PRS developed hypertension earlier, especially Black indivi-
duals, who tend to have higher PRS values compared to White
individuals. Thus, the HTN-PRS can be potentially useful for
assessing risk for developing hypertension throughout adulthood.
Finally, the HTN-PRS was significantly associated with cardio-
vascular outcomes in the MGB Biobank (stage 4 dataset).

Recently, a study in Finnish Europeans from FinnGen26, stu-
died the use of BP PRS to predict longitudinal and lifetime risk of
hypertension. The PRS were highly associated hypertension and
with cardiovascular disease (CVD) risk, underscoring the
potential of PRS to predict hypertension and stratify individuals
for intervention to potentially reduce CVD risk. Here, we
addressed a similar problem while focusing on a multi-ethnic
population and on 4–6 years from between two exams. The
distribution of the various constructed PRS, including the final
HTN-PRS (PRSsum based on Selected CV-PRS), differed across
race/ethnic backgrounds. This is expected, because PRS are sums
of alleles, which have different distributions (defined by allele
frequencies) across genetic ancestries, and therefore, also race/
ethnic background, as these generally have different ancestry

admixture. Indeed, PRS distributions also differed when assessed
over groups constructed using individuals with high proportions
of specific genetic ancestries. While we expect PRS values in the
upper decile to be associated with higher risk of hypertension
across all race/ethnicities, a natural question is how to define
individuals as “at risk”. An “at risk” classification may use a
specific cut-off value of the PRS, which may be based on a per-
centile of the distribution31. Clearly, this approach cannot be used
when distributions differ across race/ethnicities, and moreover,
admixed individuals are not accurately represented by any spe-
cific distribution. Therefore, more work is needed on approaches
that do not require categorization of neither individuals nor of
specific PRS values to define risk. Rather, models that take into
account multiple risk factors (such as demographic, clinical, and
other risk factors, as well as PRS32) and allow for flexible asso-
ciation model may be more powerful and equitable, in that they
could be applied to more individuals. Notably, we generally
avoided using the standard approach of quantifying hypertension
risk between individuals in the top HTN-PRS decile to the bot-
tom, in the multi-ethnic analysis: such an approach would
separate AAs from others (as in Fig. 6), and therefore will be
confounded by other social race/ethnic-related environmental
exposures that lead to increased hypertension in AAs.

It is notable that AA individuals had higher HTN-PRS values
on average, compared to other backgrounds. While, as noted,
these distributional differences stem from allele frequency dif-
ferences, there are two questions that may be asked: First, is there
any reason for these difference, such as population-level selection
pressure, or are they random? Second, do these differences drive
higher rates of hypertension in AA individuals? While our work
cannot inform the answer to the first question, the analysis in
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CARDIA (Fig. 6) does suggest that higher PRS values are asso-
ciated with earlier hypertension, supporting a genetic role for
earlier hypertension in AAs. However, this should be interpreted
with caution. BP has been consistently shown to be affected by
lifestyle, including, lifestyle interactions with genetic variants to
increase their estimated effect on BP. It is plausible that detected
BP variants tend to be those that interact with dietary and other
lifestyle exposures that are more common in individuals with
lower socioeconomic status, such as Black Americans. In this case
there could be a dual bias: bias of higher likelihood to detect
specific variants that interact with such exposures, and a bias of
some background groups, here AA individuals, having higher
rates of the same exposures. Therefore, we cannot separate
genetic factors from the dietary, lifestyle and environmental

factors as their interactions are the ultimate driver determining
group differences in hypertension rates.

Methodologically, while we first constructed various PRS using
a standard clump and threshold methodology22, we used two
novel approaches to construct the new HTN-PRS. First, we
leveraged stage 1 and stage 2 independent datasets to study how
to select the tuning parameters for a PRS, and chose the Selected
CV-PRS as a method. This approach attempts to avoid overfitting
to a particular dataset by splitting the training data to 5 inde-
pendent subsets, i.e., with no related individuals between them,
and assessing association of the PRS with the outcome in each.
The Selected CV-PRS is the one that has consistent, high, effect
size across these subsets, represented by smallest CV across them.
Other measures can be used rather than effect size, but we
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chose the latter because of clinical interpretability. In the testing
dataset, the effect size was indeed the highest when using the
Selected CV-PRS compared with other PRS. A second metho-
dological choice was the construction of PRSsum. PRSsum
allowed us to combine information across PRS that were based on
GWAS of different phenotypes (SBP, DBP, hypertension).
Another motivation behind it is that high values of PRSsum may
capture individuals with either high SBP, DBP, or hypertension
PRS values, or combined, meaning that their hypertension may
be captured by various underlying genetic components. While
PRSsum is an unweighted sum of PRS, a weighted sum (or with
adaptive weights) can be constructed as well33,34. In particular,
there are published methods for leveraging pleiotropy between
multiple traits for both discovery of genetic associations and for
creating potentially more powerful PRS for each of the traits. We
attempted to implement a few of these methods, based on two
models of multivariate associations between traits that account
for pleiotropy35,36. However, PRSsum without adaptive weights
had stronger associations with hypertension in both stage 1 and
stage 2 datasets. We think that PRSsum was more robust because
the other methods had to rely on LD inference (for estimating
heritability and genetic correlations from summary statistics37,
for generating LD scores, and for genetic SBLUPs38). For LD
inference we used our own TOPMed datasets, because we do not
have access to the multi-ethnic data that were used for generating
the GWAS summary statistics, and moreover, the datasets used to
generate the SBP and DBP GWAS are different than the dataset
used for generating the hypertension GWAS. Future work should
study weighted combination of PRS in diverse populations,
including where the PRS were developed based on GWAS in
diverse populations.

Strengths of our study are the use of large multi-ethnic datasets
with harmonized genetic and phenotypic data, a range of ages of
participants, and longitudinal datasets, allowing us to explore the
association of hypertension PRS across adulthood. Due to the

lower effect size of the HTN-PRS in AAs in stage 2 analysis,
which included middle-aged and older adults, in stage 3 we
focused on one study, CARDIA, with longer follow up of younger
individuals. We compared trajectories of hypertension risk by age
across Black and White individuals, demonstrating that Black
individuals with high PRS values develop hypertension earlier
than those with low PRS values, supporting the usefulness of the
HTN-PRS in prediction hypertension across race/ethnicities.
Additional longitudinal datasets from underrepresented popula-
tions are needed to study long-term trajectories of disease
development and usefulness of PRS across the lifespan, especially
considering sociocultural and environmental exposures that may
confound association analyses due to association with hyperten-
sion, coupled with correlation with genetic ancestry. Our study
also has additional weaknesses. For example, our primary analysis
did not use the largest available GWAS of SBP and DBP to
construct PRS, namely a meta-analysis of the European ancestry
participants UKBB and of the international consortium for BP9 as
most of our study individuals participated in it, and the overlap
could lead to overfitting. More work is needed to assess over-
fitting effects across samples sizes and overlaps of discovery
GWAS, training, and testing datasets. While the GWAS that we
used (MVP and Pan-UKBB) are the largest ones available with
multi-ethnic populations, individuals of European ancestry indi-
viduals are still over-represented in these GWAS: 61.9% in MVP
and 93% in Pan-UKBB. Future work should utilize additional,
diverse, sources of summary statistics as they become available.
Also, to construct PRS we used the clump & threshold metho-
dology, rather than a more modern approach such as LDpred39

or lassosum40. We chose to focus on clump & threshold meth-
odology because we think that these other methods still need to
be separately studied for diverse populations.

In summary, we applied novel methodology for developing
PRS and constructed a PRS predictive of incident hypertension
across adulthood in a multi-ethnic population. The PRS was also
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Fig. 6 Trajectories of hypertension risk by strata defined by HTN-PRS in young adults from CARDIA. Results from analysis of age-dependent risk of
hypertension in young adults from CARDIA (stage 3 dataset). We used generalized linear mixed model to model the risk of hypertension by age within
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significantly associated with clinical outcomes. Future work will
incorporate rare variants and pleiotropic variants41 in the con-
struction of PRS, and will investigate models for clinical uses of
hypertension PRS in diverse populations.

Methods
The TOPMed dataset. The TOPMed dataset included 52,436 individuals from 10
TOPMed studies. Based on the characteristics of these studies, the TOPMed data
was split into stage 1, stage 2, and stage 3 datasets. Stage 1 dataset was the Mount
Sinai BioMe Biobank, which included 10,314 diverse individuals with prevalent
hypertension status. It was used as a training dataset for constructing the hyper-
tension PRS. Stage 2 dataset included 39,035 individuals from an additional eight
studies, with all individuals being genetically unrelated (at the third degree) to
those in the training dataset. Stage 2 dataset was longitudinal, with hypertension
status assessed in two exams, on average 4-6 years apart. Individuals were self-
reported from four predominant U.S. race/ethnic backgrounds, with 22,701 EA,
8822 AA, 6718 HA, and 794 AsA individuals. Stage 3 dataset included the CARDIA
study, with 6 exams over 15 years follow up of young Black and White individuals,
and was used to compare the development of hypertension risk within PRS strata
across the two race/ethnic backgrounds.

Prevalent and longitudinal measures of hypertension. Systolic BP (SBP) and
diastolic BP (DBP) were measured in each study according to methods provided in
the study descriptions in Supplementary Note 3. Hypertension stages were defined
according to (1) Normal BP: SBP ≤ 120 mmHg and DBP ≤ 80 mmHg and
untreated; (2) Elevated BP: SBP between 120–129 and DBP ≤ 80 mmHg, and
untreated; (3) Hypertension: SBP ≥ 130 mmHg, DBP ≥ 80 mmHg, self-reported
physician diagnosed hypertension, or use of anti-hypertensive medications42.
When examining 2-exams longitudinal patterns of hypertension using the stage 2
dataset, we performed data visualization in which we categorized individuals as: not
having hypertension across the two exams (healthy longitudinal trajectory; may
include individuals with normal and with elevated BP, but without change in these
categories between the exams); having hypertension in the two exams (severe
longitudinal trajectory); BP category worsen between exams, including individuals
who had normal BP at the baseline exam, and elevated BP or hypertension at the
follow-up exam, or elevated BP followed by hypertension; BP category improved
between exams, including individuals who were not treated by antihypertensive
medications in any of the exams, and had improved BP category (hypertensive to
elevated or normal, or elevated to normal). Individuals treated with anti-
hypertensive medication in either baseline or follow-up exam were never cate-
gorized as “improved”. We also performed association analysis of the PRS with new
onset hypertension at the follow-up exam, focusing, separately, on individuals who
had normal BP at baseline and who had elevated BP at baseline.

Whole-genome sequencing. We used whole-genome sequencing data from the
Trans-Omics in Precision Medicine (TOPMed) program Freeze 8 release29. Only
variants with minor allele frequency (MAF) ≥ 0:01 were used in this analysis.
Information about genome sequencing, variant calling, and quality control pro-
cedures is available here https://www.nhlbiwgs.org/topmed-whole-genome-
sequencing-methods-freeze-8. The TOPMed Data Coordinating Center con-
structed a sparse kinship matrix estimating recent genetic relatedness where values
were set to zero when the genetic relationship was estimated to be more distant
than 4th degree relatedness, and principal components (PCs), using the PC-Relate
algorithm43.

Published GWAS of BP phenotype. Table 1 provides information about hyper-
tension and BP GWAS used to construct PRS. In primary analysis, we used multi-
ethnic GWAS: hypertension “pan ancestry” GWAS from UKBB (https://pan.ukbb.
broadinstitute.org/), and systolic BP (SBP), and diastolic BP (DBP) from MVP10.
Note that UKBB pan ancestry GWAS are multi-ethnic, however, U.S. minorities
are not well represented compared to MVP, and therefore we prioritized MVP as a
primary GWAS for SBP and DBP. All these GWAS are based on large sample sizes

and have no overlap in participants with the TOPMed BP dataset. In secondary
analysis, we also used hypertension GWAS from FinnGen (https://www.finngen.fi/
en) and SBP and DBP GWAS from UKBB pan ancestry and BBJ44, and performed
inverse-variance fixed-effects meta-analyses using METAL45 for each BP trait
GWAS (SBP, DBP and hypertension). These are described in Supplementary
Table 1. Secondary analyses were only performed on the training dataset.

Quality control on summary statistics. We filtered SNPs with MAF < 0.01 in the
discovery GWAS from Table 1 and/or in the dataset comprising of all TOPMed
analysis participants (stage 1, 2 and 3 datasets combined), and SNPs that did not
pass TOPMed quality filters. We re-coded the variant positions and alleles to match
those in the TOPMed data (via the UCSC hg19 to hg38 chain file) using rtracklayer
R package version 1.46.046.

PRS construction based on a single GWAS. We constructed PRS using the
clump-and-threshold method implemented in the PRSice 2 software version
v2.3.322 using each of the GWAS in Table 1. Three tuning parameters are required:
p value threshold, and two clumping parameters. As p value thresholds, we used
5 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 0.1, 0.2, 0.3,
0.4, 0.5. For clumping, we used the entire TOPMed dataset (stage 1, 2, and 3
datasets combined) as a reference panel for Linkage Disequilibrium (LD) and set
clumping parameters to R2= 0.1, 0.2 and 0.3 and distance 250 kb, 500 kb, and
1000 Kb. To standardize PRS while keeping effect sizes comparable in all analyses,
we computed the mean and standard deviations (SDs) of each type of PRS based on
the complete TOPMed dataset. Then, we used these means and SDs in all sub-
sequent analyses: for a given PRS in any dataset, we subtracted its pre-computed
mean and divided it by its pre-computed SD. This standardization approach
allowed for obtaining comparable effect sizes across stage 1, 2, 3, and 4 datasets, as
well as across background-specific and multi-ethnic analyses. Standardization does
not influence p values or prediction measures.

Using stage 1 dataset to select of tuning parameters for PRS construction. To
select tuning parameters for a PRS based on a given GWAS from Table 1 (or based
on meta-analysis of multiple GWAS), we examined the association of various
constructed PRS with prevalent hypertension in the stage 1 dataset. We developed
the selected CV-PRS approach, which we describe below, and compare it to two
additional widely-used approaches: genome-wide significance PRS, selected PVAL-
PRS. Both the selected CV-PRS and the selected PVAL-PRS approaches attempt to
select one set of tuning parameters (p value threshold and LD clumping para-
meters) to construct PRS out of all tuning parameter combination used. The
selected CV-PRS approach aims to identify the tuning parameters that yield
consistently high PRS effect size in new, independent, datasets. To do this, it
minimized the coefficient of variation (CV) computed on the PRS effect size
estimates obtained from 5 equal-sized independent subsets of BioMe (this is
conceptually visualized in Fig. 7). Specifically, the CV was estimated as the standard
deviation of the five effect (log odds ratio) estimates, divided by the mean of these
effect estimates. The selected PVAL-PRS is the PRS with the lowest association p
value in the stage 1 dataset. The genome-wide significance PRS was constructed
using SNPs with p value < 5 × 10−8, and fixed clumping parameters: R2= 0.1 and
distance of 1000 kb, and otherwise no selection of other parameters.

PRS construction based on multiple GWAS. We constructed a PRS called
“PRSsum” by summing PRS constructed based on the three BP phenotypes (SBP,
DBP, hypertension). The three PRS were summed after each was scaled using the
mean and SD computed using the entire TOPMed dataset. We summed non-
adaptively, i.e., unweighted sum with PRSsum= PRS1+ PRS2+ PRS3. We gen-
erated three PRSsum, based on the three potential strategies to construct PRS: 1)
PRSsum based on genome-wide significance (which summed genome-wide sig-
nificant PRS); 2) PRSsum based on PVAL-PRS (which summed the selected PVAL-
PRS across the three phenotypes), and 3) PRSsum based on selected CV-PRS
(which summed the CV-PRS from the three phenotypes). The final multi-ethnic
HTN-PRS was the one based on the approach that consistently performs better on

Table 1 External GWAS used for hypertension PRS construction.

GWAS name Reference Trait Sample size Population

MVP PMID:3057841810 SBP; DBP 318,492 (SBP);
318,891 (DBP)

Multi-ethnic (69.1% non-Hispanic White, 18.8% non-
Hispanic Black, 6.7% Hispanic, 0.77% non-Hispanic
Asian and 0.85% non-Hispanic Native American
individuals)

Pan UKBB No manuscript, downloaded from
https://pan.ukbb.broadinstitute.org

HTN 451,894 (126,196 cases,
325,698 controls)

African (1.46%), Admix American (0.21%), European
(93.05%), Central/South Asian (1.96%), Middle
Eastern (0.35%), and East Asian (0.60%) individuals

The table provides GWAS source, study population as reported by the manuscript or repository reporting the GWAS, and number of participants used to generate summary statistics.
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Fig. 7 PRS selection using coefficient of variation workflow. Flowchart describing the selection of PRS according to the coefficient of variation (CV)
criterion. The data set is split into five independent sub-datasets (without related individuals between the subsets). An association model is fit on each sub-
dataset for each PRS. Each PRS, defined by a unique combination of tuning parameter, has 5 independent effect size estimates. We compute the CV for
each such PRS, and select the PRS that minimizes the CV.
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the test dataset with prevalent hypertension. We used it for follow up analysis of
longitudinal measures of hypertension, and in stage 3 and 4 analyses (Fig. 1).

In addition to the PRSsum approach, we also attempted to construct PRS based
on methods that account for pleiotropy by modeling the genetic association
between traits. Generally, based on the Multi-Trait Analysis of GWAS (MTAG;47)
framework and SMTPred approach36, we computed PRS based on (1)
computations of new estimated SNP effect sizes genome-wide, by accounting for
pleiotropy in each SNP individually, and (2) computations of new PRS as a
weighted sum of the trait-specific PRS, here too by accounting for pleiotropy. More
information is provided in Supplementary Note 1.

Association analysis of PRS with hypertension in stage 1 and 2 datasets. We
used logistic mixed models, as implemented in the GENESIS R package48 version
2.16.1 to estimate the association between the PRS and hypertension, with relat-
edness modeled via a sparse kinship matrix. Association analyses were adjusted for
age, age2, BMI, smoking status (current smoker versus former or never smoker) at
the baseline exam, the first 11 PCs, race/ethnicity when evaluating PRS association
in a multi-ethnic sample, and time between exams when studying incident asso-
ciations. We performed two analyses of incident, new onset hypertension in the
follow-up exam: one based on individuals who had normal BP at baseline, and
second based on individuals who had elevated BP at baseline. We estimated both
multi-ethnic and background-specific PRS associations. For the latter, we tested for
heterogeneity of estimated effects by race/ethnic background using the Cochran Q
test that accounts for covariance between effect estimates across the background
groups49. Our primary analysis scaled the PRS in all background groups using the
same SD, estimated across all TOPMed datasets individuals, for comparability of
effect size estimates. In secondary analysis we report effect size estimates per group-
specific SDs. We evaluated the predictive performance of PRS by calculating the
area under the receiver operating curve (AUC) using the AUC function from the
pROC R package50, version 1.16.2. We used only unrelated individual when cal-
culating AUC. We visualized the unadjusted association of the final HTN-PRS with
longitudinal measure of hypertension via a decile plot, demonstrating proportions
of individuals in categories of longitudinal BP trajectories in each of the PRS
deciles, and assessed the strength of association via linear regression. In secondary
analysis, to benchmark the effect of the HTN-PRS against known hypertension risk
factors, we compared standardized effect size estimates of the HTN-PRS, BMI, and
smoking status, from both the prevalent and incident hypertension analyses.

Development of new onset hypertension in young adulthood by PRS levels.
Stage 3 dataset consisted of n= 1388 self-identified Black and n= 1699 self-
identified White young adults from CARDIA. Follow up started on average at age
25 (minimum age of participants at baseline= 17). We used 15 years of follow up
available on the dbGaP repository51. We generated the HTN-PRS for each of
CARDIA participant, removed related individuals (degree 3 or higher) and
assigned individuals to strata defined by <10 percentile of the PRS, 10–50, 50–90,
and >90 percentiles. We first computed these strata across all CARDIA individuals.
Next, because there was only a single Black individual in the bottom stratum and
only a single White individual in the top stratum, we also defined strata within
Black and White groups separately. Next, we fit generalized linear mixed models
(GLMM) with random intercept for each participant within strata in the combined
and background-specific analyses. The outcome was hypertension, defined as
before, and the exposure variables were sex, 11 PCs, age, and age squared (PRS
values were not included as explanatory variables). We subtracted the minimum
age in the sample, 17, from all age values, for ease of computation of effect later on.
The effect estimates of age and age squared are denoted by β̂age and β̂age2 . We used
the model to estimate the odds ratio (OR) for hypertension by age relative to the
minimum age in the sample, based on the coefficients from the GLMM, i.e.,
½ðage� 17Þ ´ β̂age þ ðage�17Þ2 ´ β̂age2 � and computed a 95% confidence interval
separately for each age, by computing standard errors (SEs) for the above equation
based on the estimated SEs and covariances of β̂age and β̂age2 , and assuming
multivariate normal distribution of the effect estimates.

Association of the HTN-PRS with outcomes in the MGB Biobank. We tested the
association of the HTN-PRS with hypertension (another form of replication),
coronary artery disease (CAD), ischemic stroke, type 2 diabetes, and chronic
kidney disease (CKD), in the MGB Biobank (stage 4 dataset). We also tested the
association of the HTN-PRS with obesity because the pan-UKBB GWAS summary
statistics that we used for constructing one of the PRS used by the HTN-PRS was
from an analysis not adjusted to BMI. We used n= 40,201 unrelated individuals
with relevant phenotypes. For all outcomes other than CKD we used “curated
disease populations” defined by a phenotyping algorithm that uses ICD-9 codes
and natural language processing52. For CKD we used a single term referring to
having a health care system encounter due to CKD (“reason to visit” is CKD). We
used logistic regression adjusted for 10 PCs, current age, sex, race/ethnicity. The
main analysis was multi-ethnic, and we also tested race/ethnic background-specific
associations, though sample sizes were small in non-EA groups. Comprehensive
description of the MGB Biobank methods is provided in Supplementary Note 3.

Secondary analysis of the HTN-PRS using genetic ancestry. Given fixed variant
effect sizes, the distributions of PRS are determined by the frequencies of the alleles
used in PRS construction. In admixed populations such as HAs and AAs, and to
lower extent, other self-reported race categories, the proportions of genetic
ancestries across individuals vary, so that estimated allele frequencies, as well as
PRS distributions, may vary depending on the set of individuals used in the ana-
lysis. Therefore, we also described the distributions of the within groups defined by
high proportions (80% or higher) of a specific genetic ancestry, as well as PRS
associations in stage 2 datasets according to these groups. Information about
genetic ancestry inference in TOPMed is provided in Supplementary Note 2.

Throughout, all statistical tests are two-sided and are based on normal
distribution. We used chi-squared test statistics, a sum of squared normally
distributed variables, with one degree of freedom when testing association effect
estimates, and chi-squared test statistics with k-1 degrees of freedom when testing
heterogeneity of estimated association effects across k strata.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TOPMed freeze 8 Whole Genome Sequencing (WGS) data are available under restricted
access by application to dbGaP according to the study specific accessions: ARIC:
“phs001416”, BioMe: “phs001644”, CARDIA: “phs001612”, CHS: “phs001368”, FHS:
“phs000974”, GENOA: “phs001345”, HCHS/SOL: “phs001395”, JHS: “phs000964”,
MESA: “phs001211”, WHI: “phs001237”. Study phenotypes are available from dbGaP
from study accession: ARIC: “phs000090”, BioMe: “phs001644”, CARDIA: “phs000285”,
CHS: “phs000287”, FHS: “phs000007”, GENOA: “phs000379”, HCHS/SOL: “phs000810”,
JHS: “phs000286”, MESA: “phs000209”, WHI: “phs000200”. The Summary statistics
from the MVP BP GWAS are available from dbGaP by application to study accession
“phs001672”. The summary statistics from the PAN-UKBB BP GWAS are available at
https://pan.ukbb.broadinstitute.org. MGB Biobank genotyping and phenotypic data are
available to Mass General Brigham investigators with required approval from the Mass
General Brigham Institutional Review board (IRB). The data to construct the HTN-PRS
generated in this study are available in the GitHub repository https://github.com/
nkurniansyah/Hypertension_PRS. Source Data displayed in Figs. 2–6 are provided with
this paper.

Code availability
We provide developed scripts used to perform analyses described in the paper, code to
construct the HTN-PRS, and code for using the Source Data to generate Figs. 2–6, in the
GitHub repository https://github.com/nkurniansyah/Hypertension_PRS.
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