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Objectives. To propose a novel Bayesian spatial–temporal approach to identify and quantify severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing disparities for small area estimation.

Methods. In step 1, we used a Bayesian inseparable space–time model framework to estimate the

testing positivity rate (TPR) at geographically granular areas of the census block groups (CBGs). In step 2,

we adopted a rank-based approach to compare the estimated TPR and the testing rate to identify areas

with testing deficiency and quantify the number of needed tests. We used weekly SARS-CoV-2 infection

and testing surveillance data from Cameron County, Texas, between March 2020 and February 2022 to

demonstrate the usefulness of our proposed approach.

Results.We identified the CBGs that had experienced substantial testing deficiency, quantified the

number of tests that should have been conducted in these areas, and evaluated the short- and long-

term testing disparities.

Conclusions. Our proposed analytical framework offers policymakers and public health practitioners a

tool for understanding SARS-CoV-2 testing disparities in geographically small communities. It could also

aid COVID-19 response planning and inform intervention programs to improve goal setting and strategy

implementation in SARS-CoV-2 testing uptake. (Am J Public Health. 2023;113(1):40–48. https://doi.org/

10.2105/AJPH.2022.307127)

S ince the COVID-19 pandemic

started, a growing body of literature

has revealed disparities in severe acute

respiratory syndrome coronavirus 2

(SARS-CoV-2) testing. For example, minor-

ity communities of Blacks and Hispanics

had lower testing rates.1 Language bar-

riers and lack of health insurance have

also been identified as barriers to SARS-

CoV-2 testing.2,3 Geographical disparities

in SARS-CoV-2 testing have been recog-

nized in many studies.4,5 SARS-CoV-2

testing rates were lower in rural states

and higher in well-off suburbs with

predominantly White populations.6,7

Most studies have adopted an ecologi-

cal analysis of SARS-CoV-2 testing in US

counties to examine testing disparities

geographically and the association be-

tween testing and various area-level

contextual factors. Although many

found evidence of testing disparities,

they rarely quantified the testing gap;

in other words, they rarely answered

the question: How many tests should

be done to remove the disparity?

One exception is Dryden-Peterson

et al.,8 who proposed a rank-based

approach to quantify the number of tests

needed by zip code tabulation areas in

Massachusetts to bridge the disparities

in SARS-CoV-2 testing. This approach

makes minimal assumptions about data

distribution and other factors contribut-

ing to testing and infection patterns (e.g.,

vaccination and nonpharmaceutical

interventions). Moreover, ranks are per-

formed to compare areas relative to

each other in the study region, so this

approach could be more informative

to local public health departments for

planning and resource allocation.
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Although such a rank-based approach

is appealing, some issues are also noted,

particularly in the context of small area

estimation.9 First, when the geographic

areas are small or the relevant popula-

tion is small, the observed test positivity

rate (TPR)—usually calculated as the ratio

of the number of positive cases to the

number of tests conducted on a daily or

weekly basis—would be highly variable

and often as extreme as 0% or 100%. In

some situations, such as when there are

zero tests performed in a specific area

or time frame, it is impossible to accu-

rately estimate the number of positive

infections (e.g., TPR would be 0/0 mathe-

matically). Second, from a practical per-

spective, the rank-based approach to

examining testing disparity would be

more useful if the assessment could be

made prospectively, as opposed to ret-

rospectively. For example, if the testing

gap (by rate or by number) could be

quantified for the weeks ahead, it could

greatly support local health departments

and health practitioners in setting goals

for resource allocation, community out-

reach and engagement, and educational

programs.

The National Institutes of Health–

funded Rapid Acceleration of

Diagnostics–Underserved Populations

(RADx–UP) projects, which focus on

enhancing SARS-CoV-2 testing among

health disparate populations, could

also benefit from the quantification of

testing gaps. Indeed, our motivation

for developing the proposed 2-step

Bayesian spatial–temporal approach

arose from the gaps and limitations re-

lated to small geographical areas expe-

rienced by authors and key community

stakeholders in their practice and re-

search responses to the COVID-19

pandemic.

We illustrate the rank-based algorithm

proposed by Dryden-Peterson et al.8 in

detail and demonstrate the issues of

directly applying this approach for small

area estimation. We apply our approach

to SARS-CoV-2 testing and infection sur-

veillance data from Cameron County,

Texas, where over 90% of the population

is Mexican American.10 Cameron County

is also one of the study sites of an ongo-

ing RADx–UP project.11

METHODS

We illustrate the issues of the existing

rank-based algorithm in small area

estimation and describe our proposed

Bayesian spatial–temporal approach.

Rank-Based Approach

To illustrate the algorithm proposed

by Dryden-Peterson et al.,8 we used

mock data from Table 1 and adapted

values from the actual Cameron County

COVID-19 surveillance database be-

tween March 2020 and February 2022.

Letmit denote the number of SARS-

CoV-2 tests reported in area (e.g., zip

code tabulation areas) i (i51, � � � , I) at
time point t ðt51, � � � ,TÞ, and yit denote

the number of detected positive cases.

To assess the testing disparity, we need-

ed measures of the testing intensity rit
(representing the supply aspect) and the

epidemic intensity pit (representing the

demand aspect). The observed testing

intensity was quantified as the testing

rate per 10000 population, calculated as

r
_

it5
mit
Nit

� �
310000, with Nit being the

population size.

The epidemic intensity is measured by

the TPR, calculated as p̂it 5yit=mit using

the observed testing and case numbers.

For a given time point t, we ranked areas

in the study region by the testing intensity

r
_

it (e.g., from the lowest to the highest)

TABLE 1— Mock Data Illustrating the Rank-Based Approach to Assessing the Testing Gap Proposed in
Dryden-Peterson et al.8

GEOID
Population,

No.
Testing

Frequency
Testing Rate
per 10000

Rank of
Testing Rate

Positive
Frequency TPR

Rank
of TPR

Gap
Exists?

Testing
Gaps, No.

GEO1 1190 20 168.1 5 2 0.10 1 No 0

GEO2 1095 10 91.3 2 2 0.20 2 No 0

GEO3 1000 10 100.0 3 5 0.50 4 Yes 4

GEO4 1200 16 133.3 4 4 0.25 3 No 0

GEO5 880 1 11.4 1 1 1.00 5 Yes 14

GEO6 1790 0 0.0 . . . 0 0 . . . . . . . . .

Note. GEOID5 geographic ID; TPR5 test positivity rate. Testing frequency was the number of tests performed for a given area and time. We calculated
TPR as the ratio of the number of cases to the number of tests performed. Positive frequency was the number of tested positive cases for a given area
and time. We adopted values in the table from the Cameron County COVID-19 surveillance data between March 2020 and February 2022, with the actual
GEOID masked and population size slightly adjusted for privacy purposes. GEO6 presented the case this algorithm could not handle and motivated the
Bayesian 2-step approach we propose.
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and by the epidemic intensity p̂it .Our

rationale for the rank-based comparison

was that if the supply met the demand,

the rank of the supply would match the

rank of the demand; otherwise, the rank

of the supply would be lower than the

rank of the demand. In the context of

SARS-CoV-2 testing disparities, an area

would be considered to have a testing

deficiency if its rank of epidemic intensity

(i.e., p̂itÞ was higher than its rank of test

intensity (i.e., r
_

it). We calculated the num-

ber of tests needed to remove the defi-

ciency as the additional number of tests

required to achieve the matching ranks

after accounting for the different popula-

tion sizes by area.

The algorithm can be seen more clear-

ly using the data in Table 1. We present

SARS-CoV-2 testing and case data from

6censusblockgroups (CBGs) inCameron

County. The observed testing frequency

ranged from0 to 20, and the number of

positive cases ranged from0 to 5.We

first calculated the test intensity rates (we

used per 10000 population because the

CBG-level population size was small) and

the TPRs. For example, for area GEO1,

the test intensity ratewas 168.1 (calculat-

ed as [20/1190]3 10000), and TPRwas

0.1 (2/20). At first, we considered only

the areas GEO1–GEO5becauseGEO6

presented a special issue that wewill

describe later.

We ranked the 5 areas respective to

the testing rate and TPR from lowest to

highest. For area GEO1, because its

rank of testing rate (i.e., fifth) was higher

than its rank of TPR (i.e., first), there was

no testing deficiency. For area GEO5, its

rank of testing rate (i.e., first) was lower

than that of its TPR (i.e., fifth), and hence

there was a testing deficiency. To calcu-

late the needed tests, one would first lo-

cate the area with the testing rate rank

matching the corresponding TPR. For

GEO5 with TPR ranking fifth, we located

the area with the testing rate ranking

fifth—GEO1—because the testing rate

for GEO1 was 168.1 per 10000 popula-

tion and so should be the expected

testing rate for GEO5. After accounting

for the population size in GEO5, the

expected test frequency was 168.13

880/10000514.8. The difference be-

tween the expected and the observed

test frequency was then 14.82 1513.8,

or 14 tests, rounding up. Therefore, there

were testing disparities in GEO5, and 14

additional tests should have been per-

formed to address the deficiency.

Although easily implemented by soft-

ware such as Excel, this algorithm fails

to accommodate the case of GEO6, as it

has zero tests and zero cases. On one

hand, one may argue that zero cases

suggest no expected infection, and

hence there was no testing deficiency

for this area. On the other hand, one

could argue that areas with zero tests in-

dicate the highest testing deficiency and

hence should be prioritized for testing.

Moreover, for area GEO5, the observed

TPR of 100% lacks accuracy because of

the small number of tests performed

(i.e., 1). These issues motivated our pro-

posed Bayesian 2-step approach.

Proposed Bayesian 2-Step
Approach

The 2-step approach we propose

addressed the estimation and predic-

tion of testing disparity in the context

of small area estimation. It has broader

applications beyond COVID-19 testing

and could be used as a routine analy-

tical framework for infectious disease

surveillance systems.

Proposed 2-step approach. In step 1,

we employed the Bayesian inseparable

space–time models originally proposed

in Knorr-Held,12 which has been popular

in disease-mapping models,13 including

models of COVID-19 outcomes.14 These

models provided the estimated TPR,

denoted by pit for area i and time t, with

accuracy for small area estimation im-

proved by borrowing information across

time and space.15,16 We assumed the

observed number of positive cases Yit
to follow a binomial distribution with the

parameter pit :

Yit � Binomðmit , pitÞ,(1)

wheremit denoted the total tests per-

formed in area i and time t. On the logit

scale, we decomposed the positive rate

pit additively as

ð2Þ
logitðpitÞ5l1Xitb1ui1vi1ct1gt1dit:

Here, Xit denotes a vector of potential

risk factors or barriers for area i at time

t, which could include area-level charac-

teristics, such as the percentage of the

population without health insurance, or

the percentage of the population vacci-

nated—if such data were available. The

parameter vector expðbÞ estimated the

odds ratio of infection associated with

those risk factors. The main spatial effect

was modeled as the Besag-York-Molli�e

model,17 with a structured spatial com-

ponent u and an unstructured spatial

component v. We assumed the struc-

tured component to have an intrinsic

conditional autoregressive model and

the unstructured component to have a

normal distribution NIð0,s2
v IÞ, where I

indicates the identity matrix, and s2
v the

corresponding variance parameter.

We modeled the main temporal effect

additively with a structured temporal

effect w and an unstructured temporal

effect c, assuming w to have a second-

order random walk (to impose temporal

smoothing) and c to have a normal

distribution: NTð0,s2
gIÞ: The space–time

interaction term d can take 4 different
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forms as the product of 1 of the spatial

main effects (i.e., u and v) and 1 of the

temporal main effects (i.e., w and c).

More details of the model specification

can be found in the supplementary

materials (available as a supplement to

the online version of this article at

http://www.ajph.org). We used a condi-

tional predictive ordinate for model

selection.18 Our main interest was the

estimated pit but not the individual spa-

tial or temporal component. The insep-

arable model provided the smoothing

needed for the observed TPR with an

extreme value (e.g., 100%); moreover,

it allowed our imputation of the TPR

for areas with 0 tests performed (i.e.,

mit50Þ. This can be done by setting the

observed Yit to NA and the correspond-

ingmit to 1 when fitting the model. We

chose the noninformative priors used

previously.12 We used the posterior

mean and the 95% credible intervals

(95% CrI) when making our inference

of the estimated TPR.

In step 2, we ranked the areas using

the estimated TPRs from step 1 and

then assessed the testing deficiency

and calculated the additionally needed

tests in the same way as the rank-based

approach.

Prospectively predicting the testing gap

using the proposed 2-step approach for

testing planning. The Bayesian insepa-

rable space–time models allow short-

term prediction of the TPR for future

events. We emphasize that the predic-

tion is regarding future events and

should not be confused with the fitted

values from statistical modeling, which

are often called the “predicted values.”

For example, Lieberman-Cribbin et al.19

used “prediction” to present the esti-

mated positivity rate from fitting a Pois-

son regression model, which differed

from the prediction we are proposing.

The predicted TPRs, denoted by ~pi,t11

or ~pi,t12, would be obtained from the

Bayesian model in step 1. The testing

deficiency would be performed by com-

paring the ranks using predicted TPRs

to the ranks of testing intensity at cur-

rent time t. Other ways to quantify the

infection intensity instead of the TPR,

such as case acceleration rates or the

“doubling rate” of cases for the past

weeks, can also be used in ranking.

We assessed the testing gap in 3 ways,

reflecting the immediate, short-term,

and long-term disparities. We tested the

immediate testing disparity by compar-

ing the predicted TPR ~pi,t11 at week t11

to the current testing rate r
_

it at week t.

The rank difference between these 2

rates would give the expected tests and

hence the testing deficiency. Because

the testing rate often fluctuated every

week, we compared the predicted TPR

to the average testing rate from the pre-

vious month for the short-term testing

disparity. Finally, we compared the pre-

dicted TPR to the average testing rate

across the entire study window (i.e.,

from the time the pandemic started to

the time of analysis) for ranking to obtain

the long-term testing disparity.

We implemented the proposed

method in R version 3.6.3 and R pack-

age INLA (R Foundation for Statistical

Computing, Vienna, Austria).20 R code

to implement the proposed approach

is available at http://bit.ly/3UPLmLI,

along with a simulated data set.

RESULTS

We have demonstrated our proposed

2-step approach to SARS-CoV-2 testing

disparities in Cameron County, Texas.

Cameron County is located in the Lower

Rio Grande Valley in south Texas on the

US–Mexico border and is among the

poorest of US counties, with more than

30% of its residents living in poverty.10

The prevalence of several chronic dis-

ease conditions that have been identi-

fied as comorbidities that increase the

risk of COVID-19 infection and severity

is also exceptionally high, with type 2

diabetes more than 27% and obesity

more than 50%.21–23 More than 90% of

the population is Mexican American,10

and similar to other minority groups,

this population has seen disproportion-

ately high infection and fatality rates

since the first local reported cases of

COVID-19 on March 18, 2020.

Several COVID-19 mitigation responses

led by local public health departments

and government–academic partnerships

for community-based intervention

programs have focused on improving

SARS-CoV-2 testing and vaccination in

Cameron County. The mitigation strate-

gies targeted small, defined areas of the

county where populations with health

disparities (e.g., low income, low educa-

tional attainment, crowding) reside.

When conducting education and out-

reach (particularly door-to-door) efforts,

information about the testing pattern at

granular spatial levels such as the CBGs

is more desirable. The CBG-level popu-

lation size was approximately 1900 on

average and ranged from 208 to 14481;

the small population size posed special

challenges to providing accurate esti-

mates of infection and testing.

A total of 667052 SARS-CoV-2 testing

records were reported in Cameron

County between March 18, 2020 and

February 10, 2022. Of these, 70795

(10.6%) were positive. We were able to

geocode the majority (89.9%) of the

testing records to obtain the corre-

sponding CBG. We included only the

polymerase chain reaction (PCR) tests

(71.7% of all reported tests) in quantify-

ing the testing gap because SAR-CoV-2

infection was confirmed only by the
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PCR test. We included 222 CBGs in our

analysis (shown in Section A, available

as a supplement to the online version

of this article at http://www.ajph.org, for

the geography). The data-processing

flowchart is presented in Section B

(available as a supplement to the online

version of this article at http://www.

ajph.org). The weekly trend of SARS-

CoV-2 infection and testing patterns

for Cameron County as a whole had 4

distinctive peaks (shown in Section C,

available as a supplement to the online

version of this article at http://www.

ajph.org). However, we observed sub-

stantial variation in both infection and

testing rates at the CBG level.

We applied our proposed approach

to weekly CBG-level testing data. Based

on the conditional predictive ordinate,

we considered the Bayesian insepara-

ble model with type II interaction the

best, so we used it for inference. De-

tailed results from all models can be

found in Sections E through G (available

as a supplement to the online version

of this article at http://www.ajph.org).

Figure 1 presents the temporal trends

of the observed TPRs (black dots) and

model-based TPRs (blue line, with 95%

CrIs in a lighter shade) from 6 selected

CBGs. Areas 1 and 2 represent CBGs

with relatively large population sizes

(�14000 and �13000, respectively; we

do not include the exact population

size to avoid identification of specific

areas), and the TPRs were fairly stable

and followed the overall pattern at the

county level. Areas 3 through 6 repre-

sented CBGs with much smaller popu-

lation sizes: from approximately 300 to

approximately 1000 individuals. Given

the sparse testing data, the observed

TPRs fluctuated substantially from

week to week, with many extreme

values of 0% and 100%. Moreover,

these areas also had weeks when no

tests were conducted; hence there is

no observed TPR (dots not shown).

Our model fitted the observed data

very well: for areas with sufficient tests

(areas 1 and 2), the fitted lines followed

the observed points very closely. For

areas with sparse tests (areas 4–6),

model-based estimates provided the

needed shrinkage on extreme values of

the observed TPR, which better

reflected the underlying infection trend.

Meanwhile, although the model bor-

rowed information across CBGs, it also

preserved any local pattern that deviat-

ed from the overall county trend (e.g.,

in area 3). After we obtained the

model-based TPR, we calculated the

testing deficiency by week for each CBG.

Figure 2 presents the number of addi-

tional tests needed during the study

time frame, in which the county-level

TPR was overlaid (red line) with the

y-axis scale on the right. Figure 2, panel

a, displays the number of CBGs (of the

total 222) that we identified as having a

testing gap, and panel b presents the

variation of additional tests from these

CBGs. Throughout the period, 217 of

the 222 CBGs experienced testing defi-

ciency at some point. The testing defi-

ciency ranged substantially and differed

by waves. Our analysis also suggested

that substantial tests should have been

performed even during the low infec-

tion period (e.g., February–May 2021).

Figure 3 presents the predicted test-

ing disparity by CBG based on the pre-

dicted TPR for the week of February 7,

2022, using all observed data from

March 18, 2020 through February 7,

2022. For the immediate testing disparity,

we used the testing rate from the pre-

ceding week (i.e., January 31–February 6,

2022) for testing ranks. For short- and

long-term disparities, we used the testing

rate from the preceding month (i.e.,

January 10–February 6, 2022) and the

average testing rate across the entire

study period (i.e., March 18, 2020–

February 6, 2022), respectively. Although

the areas with immediate or short-term

testing deficiencies tended to have in-

creased infection rates, the areas pre-

dicted to have long-term testing disparity

tended to be more rural and experi-

enced limited access to care (including

COVID-19 testing) even before the

COVID-19 pandemic.

DISCUSSION

We have demonstrated our proposed

novel Bayesian 2-step approach to

identifying SARS-CoV-2 testing dispari-

ties and quantifying testing deficiencies

in the context of small area estimation.

Our analytical framework can provide

key information to aid local public health

departments in COVID-19 response

planning and inform intervention pro-

grams, such as RADx–UP, to improve

goal setting and strategic implementa-

tion of interventions to increase SARS-

CoV-2 testing uptake.

Strengths

Our proposed analysis has several

advantages over those proposed in other

studies for identifying SARS-CoV-2 testing

disparities. First, we developed a novel

statistical framework and a data-driven

approach to understanding testing dis-

parity in the context of small area estima-

tion. To our knowledge, this is the first

study to evaluate population-level SARS-

CoV-2 testing deficiencies with the spatial

granularity of CBGs. Second, we provided

a sophisticated spatial–temporal ap-

proach to better estimate infection inten-

sity (e.g., TPRs) with sparse or no testing

data, so that one can assess testing dis-

parities more accurately. Third, we went

beyond the qualitative assessment of
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whether there are testing gaps. We

provided valuable quantification of the

additional tests needed. Fourth, our

proposed spatial–temporal framework

has the flexibility to accommodate the

ever-changing dynamics related to

COVID-19 when assessing testing dis-

parity, which is particularly important.

The World Health Organization sug-

gests that 10 to 30 tests should be per-

formed for every positive case to control

the spread of disease.24,25 Such simple
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FIGURE 1— Selected AreasWith Observed COVID-19 Test Positivity Rate and Model-Based Estimates for (a) Area 1,
(b) Area 2, (c) Area 3, (d) Area 4, (e) Area 5, and (f) Area 6: Cameron County, TX, March 2020–February 2022

Note. CBG5 census block group; CrI5 credible interval; TPR5 test positivity rate. TPR is shown by the black dots; 95% credible intervals is shown in the light
blue shade. The vertical dashed line represents January 1 of years 2021 and 2022. Areas 1–2 represent CBGs with a relatively larger number of tests, and
the fitted lines followed closely with the observed TPRs, with narrow 95% CrIs. For areas with sparse tests (areas 4–6), model-based estimates provided the
needed shrinkage, which we obtained by borrowing information across space and time, where the extreme values in observed TPRs were shrunken to the
overall average and resembled the general trend at the county level.
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calculations using the test and case ratio

do not account for the changing intensity

of the pandemic andmay increase testing

disparity across demographic subgroups

or geographical areas. For example,

CBGs that have not received sufficient

tests would show lower infection rates,

which would suggest even lower testing

needs. More importantly, the ability of

communities to implement the sug-

gested number of tests depends on the

availability of the tests, different tool kits,

testing facility capacities, staffing, and

many other factors. Finally, by using a

Bayesian analytical framework, we were

able to predict testing deficiency based

on the local testing and infection pat-

terns. This fills an important gap in the

current research of SARS-CoV-2 testing

disparities, in which testing gaps have

always been identified retrospectively.
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FIGURE 2— Weekly Number of Tests Deficiency by (a) Number of CBGs, and (b) Testing Gap: Cameron County, TX,
March 2020–February 2022

Note. CBG5 census block group. County-level overall test positivity rate was overlaid as the red line with the y-axis scale on the right. Panel a presents the
number of CBGs that were identified with testing deficiency, by each week. Panel b presents the boxplots of the number of needed tests from these CBGs
with testing deficiency. For example, 111 CBGs (of the total 222) experienced testing deficiency during the week of July 7, 2020 (panel a); among these CBGs,
the additional needed tests had a median value of 410 and ranged from 1 and 548 (panel b).
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FIGURE 3— Predicted Testing Disparity by Census Block Group for (a) Immediate Testing Deficiency, (b) Short-Term
Testing Deficiency, and (c) Long-Term Testing Deficiency: Cameron County, TX, February 7–13, 2022

Note. We used the observations before February 7, 2022, for comparison. Panel a presents the immediate testing deficiency, where testing rate was from
the previous week (i.e., January 31–February 6, 2022) when performing the testing ranks. Panels b and c present the short-term testing deficiency using test-
ing data from the previous month (i.e., January 10–February 6, 2022) and long-term testing deficiency using the average testing rate across the entire study
period, respectively.
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We argue that, in practice, the quantifi-

cation of testing gap and deficiencies

prospectively provides more useful and

needed information for COVID-19

response.

Limitations

Our article has some limitations. First,

we used only PCR-reported positive

tests in our analysis. PCR is the most

accurate SARS-CoV-2 testing method

and, indeed, was used for the majority

of the tests in the SARS-CoV-2 surveil-

lance data used in this analysis. As oth-

er over-the-counter tests and testing

methods become more available, test-

ing results may not be captured in

official epidemiologic surveillance data-

bases, which will affect testing gap as-

sessment. We consider this deficit a

reporting issue commonly seen in sur-

veillance systems. Purportedly, if every

SARS-CoV-2 test result was captured by

a surveillance database, our approach

would be able to estimate the testing

gap. Second, we were not able to incor-

porate the SARS-CoV-2 transmission

modes and contact-tracing information

in quantifying the needed tests, which

would be highly informative in identifying

who should be tested and where testing

might be most convenient. However,

as this pandemic has shown, contact-

tracing data are extremely challenging

to collect26 and generally have been

unavailable for analytical purposes at

the population level. Third, about 10%

of the testing records could not be geo-

coded, as they either had missing

addresses or used a post office box.

Conclusions

From an implementation science per-

spective, we believe that our proposed

analytical framework offers policymakers

and practitioners a tool for understand-

ing SARS-CoV-2 testing disparities in geo-

graphically small communities. Local

public health officials and practitioners

often desire spatial granularity, such as

which street blocks they should go to for

the community educational program or

door-to-door visits to promote COVID-19

testing. Our proposed analytical frame-

work provides a data-driven approach

for this decision-making process. Com-

munity leaders, with this understanding

and the knowledge of which small geo-

graphically bounded areas to prioritize,

can address testing disparities with coor-

dinated multilevel interventions by en-

hancing access to testing, improving

outreach to assist in education and navi-

gation to testing, and implementing ef-

fective large and small media messages

to promote testing tailored to the popu-

lation. Future research on the use of this

approach and the derived data to drive

these decisions should be rigorously

evaluated to determine whether testing

gaps across locations are eliminated in

health disparate populations.
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