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a b s t r a c t

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression 
is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been 
identified for treating Alzheimer’s disease (AD), especially for impacting the causes of cell death in AD. Although 
drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common 
cancer, the complications behind AD require further study. Here, we developed a novel prediction framework 
based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our fra-
mework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our 
prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features 
and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and 
the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we 
incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, 
target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet 
to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI- 
DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify 
potential repurposed and combination drug options that may serve to treat AD and other diseases.
© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder and patients suffer from extensive neuropathological 
symptoms such as intracellular neurofibrillary tangles [1,2]. Cur-
rently, AD is rising to be the sixth leading cause of death in the 
United States, and the number of AD dementia cases will grow to 
more than 100 million cases in 2050 if effective treatment is not 
found [3].

The biological mechanism of AD is complicated, and the devel-
opment of AD is associated with a plethora of complex, progressive, 
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interactive, and destructive processes that result in brain cell dys-
function and death [4–8]. Therefore, developing promising drugs for 
AD treatment is difficult to achieve [9–12]. Over the past few dec-
ades, there have been only several drugs approved for the treatment 
of AD by the US Food and Drug Administration (FDA). For example, 
Tacrine was approved by the FDA in 1993, and Rivastigmine was 
identified in 1998 [13–17]. However, most of these potential drugs 
approved are intended for reducing AD-associated symptoms rather 
than leveraging the biological and functional networks in AD to cure 
the disease itself [18,19]. In 2021, the first disease-modifying therapy 
(DMT) aducanumab was approved and became available for those 
with AD-associated mild cognitive impairment. As of January 2022, 
there were only 143 agents in clinical trials for AD therapeutics ac-
cording to Clinicaltrials.gov [20].

There is an extremely high failure rate in AD drug discovery and 
effective therapy treatments are needed urgently given the fact that 
there are existing off-target side effects and suboptimal efficacy 
because of the complex disease pathobiology of AD development 
[9–12]. Exerting effects on several pathogenic pathways associated 
with the disease is an effective strategy to combat drug resistance 
and disease heterogeneity, and more evidence proves that combi-
nation therapy, the use of multiple drugs to treat a disease, is a 
promising method to treat diseases, especially for complex disorders 
[21–24]. Finding and identifying repurposed or combination thera-
pies have made great progress in multiple complex diseases varying 
from cancer to infectious diseases [22,23]. However, the discovery of 
effective therapies in AD is still limited in that there are few known 
therapies developed for AD treatment. As artificial intelligence ad-
vances, deep learning technologies have been successfully used to 
resolve various biomedicine questions, including regulatory geno-
mics, epigenetics, cancer subtyping, therapeutic target identifica-
tion, drug target interaction prediction and image analysis [25–32]. 
Increasing evidence shows that deep learning, especially a graph 
neural network, is a suitable and promising modeling framework for 
drug repurpose and discovery [30,31,33].

To resolve the problem, we constructed an AD-specific re-
purposed drug network and target network and incorporated the 
association between drugs and targets, generating an AD-specific 
drug-target pair (DTP) network. Based on the reconstructed DTP 
network, we represented all drug-target pairs comprehensively by 

taking the advantage of the relationships between drug-drug, drug- 
target, and target-target. Furthermore, we characterized all potential 
drug combination therapies as quartets where each quartet consists 
of drug A, target A, drug B, and target B and meanwhile took account 
into the interactions between drug-drug, target-target, and drug- 
target between or outside of the drug-target pairs. Thereafter, we 
developed a deep learning-based model that could take quartet 
features as input and distinguish the true quartet from the false 
quartet. Here is our framework: the model first adopted a graph 
convolutional network to learn the features for each target-drug 
pair; using the feature representation of each quartet as an input, the 
architecture integrated with fully connected network worked on 
identifying promising quartets to treat AD [34,35]. To validate our 
framework, despite the limited knowledge on existing AD drugs and 
combinations, we further extended and carried out drug re-
purposing predictions for additional biological contexts, specifically 
in three different cell lines (brain-related and brain-independent): 
DIPG25, U251 and A549. The results based on our data showed that 
the proposed framework achieved a robust performance when 
finding prospective repurposed drugs and potential combination 
drug pairs that may both serve as candidates for treating AD.

2. Materials and Methods

2.1. De novo repurposed drug discovery in AD

As shown in our workflow (Fig. 1), accessing known disease- 
specific synergistic information is the first step. Considering the 
absence of known synergistic gene pairs in AD development and 
progression, we first adopted OptiCon to identify synergistic reg-
ulators for combination therapy in AD [36]. OptiCon has been shown 
as an effective and robust tool for de novo identification of sy-
nergistic genes as candidates in a gene regulatory network based on 
network controllability theory. This algorithm first identifies a set of 
optimal control nodes (OCNs) that can maintain maximal control 
over deregulated pathways but minimal control over those disease- 
free pathways by using gene expression constraints in the network 
controllability framework and then identifies synergistic OCNs as 
key regulators and candidate targets for combination therapy in the 
disease-perturbed network based on synergy score taking into 

Fig. 1. The workflow of the Deep-DTQ prediction framework. 
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account disease-specific genetic mutation and gene functional in-
teraction information.

To this end, we accessed gene expression data in AD patients and 
non-AD patients as the control where there are a high-quality set of 
Illumina RNA sequencing data for patients with sporadic AD (n = 12; 
mean age=68) and cognitively healthy individuals (n = 10; mean 
age=68) from the temporal lobe of frozen postmortem brain tissues 
as previously described [37]. Besides, to evaluate the robustness of 
the AD-specific synergistic gene pairs discovered by OptiCon, we 
also accessed Illumina RNA sequencing data, derived from patients 
with sporadic AD (n = 8; mean age=91) and cognitively healthy in-
dividuals (n = 10; mean age=77) from the temporal lobe of frozen 
postmortem brain tissues as previously described [38]. For RNA 
expression datasets, we adopted stringtie to access fragments per 
kilobase of transcript per million mapped reads (FPKM) for each 
gene based on GRCh38, and used ballgown to perform differential 
expression based on adjusted p-value cutoff <  = 0.05, and finally 
made gene expression file and gene deregulation score file ready for 
OptiCon inputs [39]. For a gene regulatory network for OptiCon, we 
adopted the comprehensive human gene regulatory network by in-
tegrating annotations from Reactome, KEGG and NCI-Nature 
pathway interaction database [40–42]. For AD-specific genes har-
boring somatic mutations, we accessed the AD-associated mutated 
gene sets where single nucleotide variations of these genes are 
found in AD brain and blood against non-AD counters as previously 
described [43]. Based on these data, we derived potential synergistic 
gene pairs for potential AD therapy.

3. DTDT quartet feature extraction

The features of each drug-target-drug-target (DTDT) quartet 
consist of combined features of two drug-target pairs and the in-
teractions between and outside of these two drug-target pairs, in-
cluding the interactions between drug A-drug B, drug A-target A, 
drug A-target B, drug B-target A, drug B-target B, and target A-target 
B. As for the features of each drug-target pair, it consists of drug 
feature, target feature, drug-target interaction and the direct re-
lationships between the drug-target pair and other drug-target pairs 
in the AD-specific DTP network.

Drug features are defined by their chemical structures. Simplified 
molecular input line entry specification (SMILES) takes into account 
the chemical structures of drugs and could explicitly characterize 
the molecular structure of each drug and therefore classify these 
drugs into corresponding categories. We, here, took advantage of 
SMILES categorizing system to characterize the chemical properties 
of drugs, and the categories of each drug were chosen as features 
[44,45]. If a drug was attributed to one group, then the group feature 
was set as 1, otherwise 0. To avoid the oversize of dimensionality in 
categories, we only chose the major categories to represent these 
drugs.

Protein features are defined by their compositional information, 
including both the chemical properties of amino acids and sequence 
information. We hypothesized that the interaction between a drug 
and its target protein is influenced by the hydrophobicity, polarity, 
and tertiary structure of the target protein [46]. Therefore, each 
amino acid in a protein sequence can be extracted as a chemical 
feature for this target protein. Based on previous research, common 
amino acids can be divided into six groups according to their che-
mical characteristics: strongly hydrophilic or polar acids (D, E, H, K, 
N, Q, R), strongly hydrophobic acids (A, F, I, L, M, V), weakly hydro-
philic or hydrophobic acids (S, T, W, Y), cysteine (C), glycine (G), and 
proline (P) [47,48]. We took into account the relative proportion of 
each amino acid as target protein sequence information and ex-
tracted the information as extra features. Finally, each target protein 
contains 26-dimensional features, including the relative proportion 

of each of the 20 amino acids in the protein and 6 classes of chemical 
characteristics.

To integrate the interaction information between drugs and tar-
gets, we first constructed a DTP network based on a known drug- 
drug network, drug-target network, and target-target network. In 
this DTP network, each DTP node represents a drug and a target, and 
each edge represents one association between DTP nodes (Fig. 2A). 
These associations include strong association, weak association, and 
non-association. These relationships are defined as follows: strong 
association refers to two DTPs that share a common drug or target; 
weak association refers to two DTPs that don’t share any drug or 
target but there is an interaction between the drugs or the targets in 
these two DTPs; non-association refers to two DTPs that don’t share 
any drug or target and there isn’t direct interaction between the 
drugs or the targets in these two DTPs (Fig. 2A).

The complete DTP network was formulated by adjacency ma-
trix M:

=
…

M
D T D T D T D T D T D T

D T D T D T D T D T D T

( , ) ( , ) ( , )

( , ) ( , ) ( , )

m n

m n m n m n m n

1 1 1 1 1 1 1 2 1 1

1 1 1 2

whereD Ta brepresents each DTP, M represents the edges between 
DTPs and D T D T( , )a b c d represents the associations between D Ta b and 
D Tc ddepending on strong association, weak association, or non-as-
sociation. Here, D Ta b and D Tc drepresent two pair nodes: D Ta b consists 
of drug a and target b, and D Tc d consists of drug c and target d.

3.1. DTP feature representation based on graph convolutional neural 
networks

For a given constructed DTP network, it can be represented 
as =G V E( , )where = …V v v v v v{ , , , , }n n1 2 3 1 represents DTP nodes, 

×E V V represents the set of edges (associations between DTP 
nodes). Meanwhile, each node in the graph convolutional neural 
networks (GCN) contains its features [49], so the weighted adjacency 
matrix is:

= +M M Iˆ

where M is the network’s adjacency matrix and I is the identity 
matrix.

The inverse degree matrix can be calculated as follows:

=D Mˆ ˆii j ij

Finally, the features of each DTP in the network can be calculated 
as follows:

=X Lu D MD XRe ˆ ˆ ˆ
1
2

1
2

where luRe is the rectified linear unit function and X is the feature 
vector of each DTP node, that is the combination of the features of a 
drug and a target for each DTP node.

4. Performance evaluation and cross validation

Here, if there were associations between the two drug-target 
pairs, we defined these two drug-target pairs as a positive quartet. 
Otherwise, we defined the two drug-target pairs as a negative 
quartet. More specifically, if one drug interacted with one synergistic 
target pair, and another drug interacted with another synergistic 
target pair, then we considered these drug target pairs as a potential 
drug-target quartet for AD.

Considering there could be many more potential negative quar-
tets for AD compared to positive quartets, we adopted stratified 5- 
Fold cross-validation to evaluate the value of representation features 
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that consist of DTP network features and interaction features be-
tween drugs and targets compared to original features that consist of 
drug features, target features, and interaction features between 
drugs and targets in multiple research objects, including AD and 
other contexts (such as cell lines DIPG25, U251 and A549). To 
guarantee a reliable performance evaluation, we devised multiple 
common machine learning models as benchmarks, including deci-
sion tree (DT), Gaussian Naive Bayes (GaussianNB), and Multi-layer 
Perceptron (MLP). We ran a grid search scheme and evaluated the 
efficacy of representation and original features based on parameter 
space in the aspect of F1 score, ROC AUC, and balanced accuracy.

After feature comparative analysis, the suitable configuration of 
DT, GaussianNB, and MLP models were found when identifying 
prospective drug-target quartets from false drug-target quartets in 
multiple biological objects. Furthermore, we compared our opti-
mized Deep-DTQ to the optimized DT, GaussianNB, and MLP in the 

aspect of F1 score and ROC AUC in the same stratified 5-Fold cross- 
validation strategy.

5. Results

5.1. Construction of a deep learning model for AD drug repurposing

We first generated the feature vector of each DTDT node in the 
DTP network, and then developed a deep learning framework. As 
shown in Fig. 2B, the framework contained multiple layers. The 
input for this model is the features of DTDTs, which are represented 
by the combined features of two DTPs and the interactions of drugs 
and targets of these two DTPs.

Basically, the input was fed into fully connected network. 
Between the fully connected (FC) layers, we placed a group nor-
malization layer, which divided the channels into multiple groups 

Fig. 2. The deep learning model for candidate drug combination discovery in AD. (A) Disease-specific DTP network representation for drug-target pairs (DTP).(B) The architecture 
of the drug combinations prediction model.
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and then obtained the means and variance within each group for 
normalization. This strategy improved detection accuracy and made 
the model more transferrable to novel datasets, compared with 
other normalization methods like batch normalization and layer 
normalization [50]. After being transformed multiple times, the in-
formation was fed into the output layer consisting of one unit to 
make a final decision on whether the input DTDT is a qualified drug 
combination pair or not. It is worth noting the sigmoid activation 
function was applied in the output layer to achieve the classification 
task appropriately.

Here, multiple learning techniques were adopted to facilitate 
model training and to make the prediction model more accurate and 
robust. Dropout was the most common regularization method and a 
key component to training complicated deep neural network 
models, and it could set some neurons in the network to a ”dropped 
out” state during training in each iteration, which could average 
multiple networks during training and make the final trained model 
more generalized in essence [51]. We applied dropout to all the in-
termediates between FC layers in the model. As an effective reg-
ularization method, early stopping was also adopted to stop training 
with specific epoch patience once the model performance was no 
longer improved on the validation dataset to avoid overfitting. In 
addition, L1 norm and L2 norm were also combined for regularizing 
the parameter values in all FC layers. Lastly, for obtaining better local 
minima of parameters, adadelta learning rate method was adopted 
for gradient descent, which was proved to be robust to noisy gra-
dient information, different model architecture, and diverse data 
modalities [52].

To access the configurations of Deep-DTQ managing to achieve 
robust predictive performance in multiple cell lines (disease), we 
constructed a huge hyperparameter space: the number of FC layers 
ranged from 2 to 8 with a step size was 1; a set of dropout rates 
between the dense layers were tested, ranging from 0 to 0.5, with a 
step size of 0.1; the batch size varied from 16 to 256, with a double 
fold way; L1 and L2 regularization penalty ranged from 1e‐5 to 1e‐1, 
with a ten-fold way; the initialized value of each parameter was 
sampled from a random uniform, random normal or ones distribu-
tion in the FC layers; The exponential linear unit (ELU), rectified 
linear activation (ReLU), hyperbolic tangent (Tanh) were applied to 
the FC layers randomly.

To get the best combination of hyperparameters in the high-di-
mensional space effectively, Bayesian optimization was adopted in 
the training process [53]. During the training process, as iteration 
grew, and the posterior distribution of the model’s cost function 
improved, the Bayesian optimization algorithm could further ex-
plore hyperparameter space which was worth exploring auto-
matically, and seeking the best hyperparameter combination at a 
lower computation cost.

By taking advantage of Bayesian global optimization with gaus-
sian processes, we set 200 init points in the hyperparameters space 
and allowed the training to continue at a maximum of 10 iterations. 
Based on our datasets, we finally got the best configurations of Deep- 
DTQ in the three cell lines or AD. The detailed hyperparameter 
configurations is shown in Supplementary Table 1.

6. Identification of AD-associated target gene pairs

We identified 171 synergistic gene pairs for AD (BH-adjusted 
empirical p-value < 0.05), including MAML2-AGTR1 (p- 
value=0.000511), PSMC1-MAML2 (p-value=0.00155), MAML2- 
MTMR6 (p-value=0.001633), TOMM22-DOLPP1 (p-value=0.002193) 
and so on based on datasets as previously described [37]. Con-
sistently, quite a few of these genes were previously found to be 
involved in AD development and progression. For example, the gene 
AGTR1 encodes type-1 angiotensin II receptor (AT1 receptor), which 
interacts with angiotensin II generated by angiotensin-converting 

enzyme, ACE. ACE-generated angiotensin II was reported to promote 
neurodegeneration and brain aging in AD patients [54,55]. PSMC1 
serves as a proteasome complex component and the over-
representation of the component is associated with dysregulated 
proteostasis in AD pathophysiology [56]. Together, all these ex-
amples support the quality of our predictive framework. For a de-
tailed list of the predicted synergistic gene pairs, please refer to 
Supplemental Table 2. To furthermore evaluate the robustness of the 
above identified synergistic gene pairs, we applied the OptiCon al-
gorithm to the gene expression datasets as previously described 
[38], we found all those 171 synergistic gene pairs are shared out of 
190 synergistic gene pairs identified by this dataset in Supplemental 
Table 3.

Considering there is little available information about AD treat-
ment targets, not to mention synergistic gene pairs for AD, these 
identified synergistic gene pairs will be valuable candidates and 
resources for potential AD treatment.

6.1. Integration of drug-drug interactions and protein-protein 
interactions in AD networks

Based on the synergistic gene pairs we identified above, we 
collected drug-drug and drug-target interactions from DrugBank 
[57]. In addition, we obtained information on protein-protein in-
teractions from HIPPIE database, and protein-protein interactions 
(PPIs) with scores greater than 0.5 were chosen to build a target- 
target network [58]. Based on available feature information of drugs 
and proteins, we filtered and finally got 38,288,600 drug-target in-
teraction entries that cover 12,111 drugs and 4,975 proteins. Of 
38,288,600 interaction entries, there are 29,382 real interactions 
between those drugs and proteins.

Limited to availability on the abovementioned database, we re-
trieved and accessed 10 available synergistic target pairs in AD. It 
was worth noting that five unique targets comprised these 10 sy-
nergistic target pairs, suggesting these five genes could be promising 
therapeutic targets for AD, and these genes included AGTR1 
(P30556), FEN1 (P39748), PSMB2 (P49721), PDHB (P11177), and 
NADSYN1 (Q6IA69). We also took into account 125 targets that di-
rectly interacted with these 5 targets, resulting in a total of 130 
AD‐associated targets in the AD-specific network. Next, we extracted 
911 drugs that directly interacted with these targets. Furthermore, 
we considered another 461 drugs that interacted with more than 
500 out of those 911 drugs in the drug-drug interaction network as 
potential drugs. These 461 potential drugs were those that did not 
have any known interactions with those AD-specific targets but they 
could be promising drugs for AD considering they frequently inter-
acted with those drugs that were associated with AD-specific tar-
gets. Together, our analyses resulted in a total of 1,372 drugs in the 
AD network.

As for the features, target features were 26-dimension defined by 
their compositional information, including 6 categories of properties 
and the relative proportion of each of the 20 amino acids; Drug 
features were 737-dimension defined by their chemical structures 
based on shared drug categories by drugs in the AD network; Drug- 
target pair features were 763-dimension representation by GCN with 
target features, drug features and drug-drug network, drug-target 
network, target-target network; Drug-target quartet was 1538-di-
mension and its representation was as following: 2 drug-target pair 
features (1526-dimension), 2 drug-target interaction within drug- 
target pair (4-dimension), 1 target-target interaction (2-dimension), 
1 drug-drug interaction (2-dimension), 2 drug-target interaction 
outside drug-target pair (4-dimension).

We constructed our training data set, which included 228 posi-
tive drug-target quartets, and 8,298,982 negative drug-target quar-
tets (10 * 911 * 911–228). In addition, we constructed a potential drug 
combination discovery pool that consisted of 461 potential drugs 
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and 2,125,210 (10 * 461 * 461) drug-target quartets. Afterward, as a 
cross-validation, we retrieved synergistic drug information in in-
dependent biological contexts (using a diverse set of cell lines: 
DIPG25, U251 and A549) in DrugCombDB, and created three cell 
line-specific DTP networks and further constructed corresponding 
drug-target quartets datasets based on the same method as AD [59].

Taking similar approaches, we constructed the following three 
cell line-specific networks. In the DIPG25 specific network, there 
were 1,630 drugs, 45 targets, and 946 potential drugs; target features 
were 26-dimension, drug features were 1,011-dimension, and final 
drug-target quartet was 2,086-dimension. In the U251 specific net-
work, there were 1,968 drugs, 74 targets, and 878 potential drugs; 
target features were 26-dimension, drug features were 1084-di-
mension, and final drug-target quartet was 2,232-dimension. In the 
A549 specific network, there were 1,989 drugs, 80 targets, and 886 
potential drugs; target features are 26-dimension, drug features are 
1093-dimension, and final drug-target quartet is 2250-dimension.

6.2. Representation features based on the DTP network outperformed 
original features

To evaluate the predictive efficacy of the representation features 
extracted from the DTP network, we constructed three sets of DT, 
GaussianNB, MLP models with variable hyperparameter space, and 
compared the predictive performance for each model with the same 
configurations based on representation features and original fea-
tures. In the A549 cell line, the representation features showed 
better predictive performance in the aspect of F1 score, ROC AUC, 
and balanced accuracy while keeping the same model and the same 
configuration (Fig. 3A-C), suggesting the DTP network is able to 
encode the drug-target pair efficiently and comprehensively and 
generate more characteristic features for each drug-target in cell 
line-specific context. For example, for MLP with logistic activation 
and 200 hidden layer size, representation features achieved F1 score 
at 0.725 while original features got 0.400; for DT with entropy cri-
terion and 3 min sample splits, representation features achieved ROC 
AUC at 0.567 while original features got 0.514. As for the DIPG25 cell 
line, representation features outperformed the original again 
(Fig. 3D-E). For example, for GaussianNB with 3e-09 var smoothing, 
representation features achieved balanced accuracy at 0.623 while 
original features only got 0.530.

Besides, similar trends were observed in AD and U251 
(Supplement Fig. 1A-F), suggesting the represented features are 
capable of conserving the intrinsic features in a disease-specific way. 
The detailed configurations and predictive performance are shown 
in Supplementary Table 4.

7. Our network model outperforms existing methods

After Bayesian optimization, we got customized optimized Deep- 
DTQ for multiple cell lines (disease). To explore the predictive per-
formance of Deep-DTQ, we compared the model to the above-
mentioned optimized DT, GaussianNB, and MLP after grid search 
optimization in the aspect of F1 score and ROC AUC based on stra-
tified 5-Fold cross-validation. As shown in Fig. 4A, Deep-DTQ 
achieved better F1 scores compared with the other three models in 
all cell lines (disease). For example, Deep-DTQ achieved F1 at 1.0  ±  0 
(SD), 0.86  ±  0.129 (SD), 0.91  ±  0.077 (SD), and 0.98  ±  0.025 (SD) 
respectively in DIPG25, U251, A549, and AD; however, DT only got 
0.66  ±  0.027 (SD), 0.67  ±  0.037 (SD), 0.72  ±  0.037 (SD), and 
0.75  ±  0.035 (SD), GaussianNB only got 0.60  ±  0.037 (SD), 
0.43  ±  0.033 (SD), 0.64  ±  0.048 (SD), and 0.70  ±  0.065 (SD), and 
MLP only got 0.66  ±  0.048 (SD), 0.69  ±  0.058 (SD), 0.73  ±  0.061 
(SD), and 0.67  ±  0.080 (SD) in corresponding cell lines (disease). 
Similarly, Deep-DTQ achieved better ROC AUC compared to the other 
models as shown in Fig. 4B.

Furthermore, we explored the precision and recall for Deep-DTQ 
in identifying prospective drug-target quartets from false drug- 
target quartets. As shown in Fig. 4C, Deep-DTQ achieved almost 
perfect precision where A549 got 1.0  ±  0 (SD), AD got 0.98  ±  0.028 
(SD), DIPG25 got 1.0  ±  0 (SD) and U251 got 1.0  ±  0 (SD). More in-
terestingly, Deep-DTQ even achieved an excellent recall score where 
A549 got 0.84  ±  0 (SD), AD got 0.98  ±  0.026 (SD), DIPG25 got 1.0  ±  0 
(SD) and U251 got 0.78  ±  0.195 (SD). Considering Depp-DTQ 
achieved intriguing recall and precision, it’s promising to apply the 
model to discover novel drug combinations for cell lines and AD. The 
detailed predictive performance in this part is shown in Supple-
mentary Table 5.

7.1. Our deep learning model further predicts high-confidence 
candidate drug combinations for AD

Applying our model to the drug combination pool, we identified 
233,269 potential AD drug combinations out of 2,125,210 combina-
tions (Supplemental Table 6). Within 233,269 potential combina-
tions, there were 5 target genes, and these included AGTR1, FEN1, 
NADSYN1, PDHB, and PSMB2. Interestingly, these 5 target genes had 
previously been shown to be associated with brain impairment and 
AD progression via multiple forms, including mutations, RNA ex-
pression, and proteomics, suggesting these genes could be promising 
therapeutic targets for AD treatment [54,55,60–64]. Furthermore, 
we found AGTR1, FEN1, and PSMB2 were druggable genes based on 
genome-wide association analysis as previously reported [65]. There 
were 461 unique drugs in our potential drug combinations, which 
covered most of the potential drugs we identified before. More in-
terestingly, 61 drugs out of these 461 drugs had been tested in AD 
clinical trial studies at various stages according to ClinicalTrials.gov 
[18], including completed, active, and recruiting. After filtering tar-
gets and drugs, we finally got 6067 high-confidence drug combina-
tions and 227,202 potential drug combinations for AD (Supplemental 
Table 6). Clinical trials on these 61 drugs from ClinicalTrails.gov as of 
2022 are available in Supplemental Table 6. In addition, we further 
applied Deep-DTQ to identify novel drug combinations for A549, 
DIPG25, and U251, which are available in GitHub (https://github. 
com/Pan-bio/drug-combination), to facilitate relevant research.

8. Discussion

In this paper, we first built a DTP network where the nodes are 
drug-target pairs and the edges are the associations between drug- 
target pairs. By integrating drug features, target features, and the 
relationship information between drugs and targets, we generated 
representative low-dimensional features for each drug-target pair. 
Further, we constructed a quartet network where a quartet consists 
of two drug-target pairs and the quartet features are characterized 
by combining the features of corresponding drugs and targets, and 
the relationships within and outside of drug-target pairs. After ob-
taining the features for each quartet node in the DTDT network, we 
developed a deep learning-based model to identify true quartets 
from false quartets. Based on performance evaluation, we showed 
the representation features learned from disease specific DTP net-
work behaved better than original features; in addition, our model 
Deep-DTQ achieved a robust predictive performance compared to 
traditional machine learning methods. Finally, we identified mul-
tiple novel drug-target quartets that may serve as drug combination 
therapy for treating AD. Although our research scheme was applied 
to AD, it is broadly applicable to other disease or cell line contexts, 
such as A549, DIPG25 and U251.

According to the abovementioned published databases, we 
identified five unique genes that comprised synergistic target pairs 
discovered in AD, including AGTR1 (P30556), FEN1 (P39748), PSMB2 
(P49721), PDHB (P11177), and NADSYN1 (Q6IA69). In fact, previous 
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research reports support that these five genes are linked to cognitive 
impairment in human and may serve as promising therapeutic tar-
gets for AD. The abnormal expression level of AGTR1 is associated 
with increasing protein kinase C that can promote the accumulation 
of amyloid Aβ, leading to AD progression [66,67]. In addition, AGTR1 
participates in the biological process of Aβ-degrading enzyme, and 
bioinformatics analysis such as protein-protein interaction network 
analysis and functional module analysis indicate that AGTR1 plays a 
role in the progression of AD [68–71]. As base excision repair gene, 
FEN1 often harbor variants associated with DNA damage caused by 
oxidative stress in nerve cells that contribute to AD [60,72,73]. In 
addition, abnormal methylation of FEN1, and neutrophil infiltration 
resulting from FEN1 are also significantly associated with AD pro-
gression [74,75]. As a key component of proteasome encoded by 
PSMB2, several studies have suggested that the aberrational ex-
pression of PSMB2 is associated with AD [64,76,77]. Deregulated co- 
regulation of PSMB2 with has-miR-423–5p and RPL30 in brain 

regions is found to be involved in cognitive impairment and PSMB2 
is used as potential preclinical biomarkers for AD identification 
[76–79]. As a part of the PDH complex responsible for mitochondrial 
function, the aberrational expression of PDHB and tau is found in AD 
[62]. In addition, multiple independent bioinformatics analyses such 
as network analysis have indicated PDHB as a potential key gene 
related to AD pathology [62,80–82]. As for NADSYN1, there are 
several pieces of evidence showing that genetic polymorphisms of 
NADSYN1 are associated with cognitive impairment [83–86]. Aber-
rant protein expression of NADSYN1 is also observed in cognitive 
impairment patients [87]. Taken together, these above studies sup-
port the validity of the synergistic gene pairs we identified.

In order to represent the DTP information comprehensively, a 
large, complicated matrix must be constructed. In our case, we took 
into account 125 targets that directly interact with 5 core targets and 
461 drugs that interact with more than 500 out of core 911 drugs, 
and these features amounted to tens of billions. To identify more 

Fig. 3. Evaluation of predictive efficacy for representation.(A) Predictive F1 score comparison between representation features and original features in A549.(B) Predictive ROC 
AUC comparison between representation features and original features in A549.(C) Predictive balanced accuracy comparison between representation features and original 
features in A549.(D) Predictive F1 score comparison between representation features and original features in DIPG25.(E) Predictive ROC AUC comparison between representation 
features and original features in DIPG25.(F) Predictive balanced accuracy comparison between representation features and original features in DIPG25.

X. Pan, J. Yun, Z.H. Coban Akdemir et al. Computational and Structural Biotechnology Journal 21 (2023) 1533–1542

1539



potential drug target quartets for AD treatment, a larger adjacent 
matrix should be constructed after adding more potential targets 
and drugs, which places a high burden on computational needs.

Another limitation is that few drugs have been identified for 
treating AD over the past few years, and there is little known in-
formation regarding combination drugs for AD. Therefore, despite 
our cross-validations using independent methods, quite a few of the 
potential combination drugs we identified from our model cannot 
receive support from the literature or clinical studies. As technology 
advances and more data is accumulated, the situation may be im-
proved in the future.
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