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Objectives. To develop an imputation method to produce estimates for suppressed values within a

shared government administrative data set to facilitate accurate data sharing and statistical and spatial

analyses.

Methods.We developed an imputation approach that incorporated known features of suppressed

Massachusetts surveillance data from 2011 to 2017 to predict missing values more precisely. Our

methods for 35 de-identified opioid prescription data sets combined modified previous or next

substitution followed by mean imputation and a count adjustment to estimate suppressed values before

sharing. We modeled 4 methods and compared the results to baseline mean imputation.

Results.We assessed performance by comparing root mean squared error (RMSE), mean absolute

error (MAE), and proportional variance between imputed and suppressed values. Our method

outperformed mean imputation; we retained 46% of the suppressed value’s proportional variance with

better precision (22% lower RMSE and 26% lower MAE) than simple mean imputation.

Conclusions. Our easy-to-implement imputation technique largely overcomes the adverse effects of low

count value suppression with superior results to simple mean imputation. This novel method is

generalizable to researchers sharing protected public health surveillance data. (Am J Public Health. 2021;

111(10):1830–1838. https://doi.org/10.2105/AJPH.2021.306432)

In this information age, increasing

availability of public health surveil-

lance data is catalyzing groundbreaking

research while presenting new chal-

lenges related to data privacy and

completeness. For example, protected

government surveillance data cannot

be shared without suppressing small

values to protect the confidentiality of

individuals,1 which may adversely affect

the subsequent analyses. Inference

from the analytical results using sup-

pressed data may be subject to bias

because of the removal of small count

values, yielding potential loss of statisti-

cal power because of the reduced

sample size. Analyses using data with

suppressed values may not produce

reliable results for areas with low popu-

lation counts, for minority population

groups, or for rare outcomes.2 Sup-

pression is particularly troublesome for

geomapping and spatial analytic meth-

ods that rely upon joined data across

multiple data sets. Suppressed small

cell data disproportionately affect rural

and small population areas, may dis-

courage research comparing smaller

subsets of the population, and leave

large spatial areas with unknown or

unreportable risk.2 We describe a novel

and practical method that can provide

imputed values for protected govern-

ment data that would otherwise have

limited analytic utility because of cell

suppression.

Our imputation approach was moti-

vated by a public health study using

administrative surveillance data that

employed geographic information sys-

tems and spatial epidemiological analy-

ses to investigate spatial and temporal

patterns of opioid overdoses in Massa-

chusetts. For this purpose, surveillance

data provided researchers the

opportunity to evaluate unknown or

lesser-known determinants of opioid

overdose, misuse, and other adverse

outcomes of inappropriate opioid pre-

scribing.3 However, because of

required data suppression, as much as

39% of our zip code–level data were

missing for some measures, which had

the potential to hamper a precise
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characterization of the breadth and

complexity of these data.2 In Massachu-

setts, the recent availability of

enhanced administrative public health

data has spurred innovative analysis

techniques,3,4 which have highlighted

the need to incorporate small cell val-

ues. To overcome this issue, we devel-

oped an approach to create a

“complete” data set by imputing the

missing cells before sharing, so that the

subsequent spatial analysis could use

an imputed but complete data set.

Our goal was to develop an imputa-

tion approach that produced unbiased,

reliable, and replicable estimates for

suppressed values within an aggre-

gated de-identified opioid prescription

data set from the Massachusetts Pre-

scription Monitoring Program. The

standard in public health research has

been complete case deletion,5 or use

of basic single imputation methods

such as mean imputation (i.e.,

substituting the suppressed observa-

tions with the mean value of the non-

suppressed observations) and last

value carried forward (i.e., substituting

the suppressed observations with the

value from last time point when unsup-

pressed value was available),5–8 which

have been found to introduce bias and

reduce statistical power. More sophisti-

cated imputation methods, including

Bayesian spatiotemporal modeling8

and multiple imputation,9–12 are known

to produce superior results to simple

methods but are not routinely used in

epidemiological research, in part

because of their steep learning curve

and lack of tools and expertise required

to conduct them.8,13 In addition, left-

censored data like ours are the most

difficult to model5,7 because assump-

tions are made on unverifiable obser-

vations. Most multiple imputation

methods assume missingness is not

related to the observed values and

incorporate characteristics of the full

data set. For our data, the imputation

method must include assumptions and

adjustments for the suppressed value

range to allow precision and minimize

bias.5,7

We tested and compared combina-

tions of several strategies developed

from simple imputation methods8,9,14

and a modified multiple imputation. We

developed an imputation method that

gleaned information from the zip code

of residence, including previous- and

future-year values in the zip code as

well as the population size, to predict

missing values more precisely. A unique

attribute of this imputation process is

that, as the owner of the data, we knew

the characteristics of the suppressed

values and we were able to accurately

assess the performance of our model-

ing methods. We incorporated the sum

and mean of the suppressed values in

our process to improve imputation pre-

cision. The method does not require

advanced statistical knowledge or pro-

gramming skills, paving the way for our

approach to be applied with protected

public health data in various settings,

including those with limited resources.

Our analysis enables innovative and

insightful approaches to better under-

stand key components of prescription

opioid misuse in Massachusetts.

METHODS

We employed 35 statewide data sets in

the Massachusetts Prescription Moni-

toring Program that identify individuals

with possible opioid prescription mis-

use through records of all controlled

substances dispensed by Massachu-

setts pharmacies or delivered to a

Massachusetts resident by mail to indi-

viduals aged 18 years or older.

We evaluated these data within a larger

analysis that required all nonzero val-

ues less than 11 to be suppressed

when the data were shared. The data

sets included 5 categories of prescrip-

tions that identified individuals with

potential opioid prescription misuse,

aggregated by year and by zip code.

The 35 data sets included variables rep-

resenting 5 types of potential opioid

misuse with 1 annual summary count

per 538 zip codes, across 7 years, 2011

to 2017. These 5 types, defined in pre-

vious analyses as potentially inappro-

priate prescribing (PIP),3 were

PIP1: high-dose opioid prescrip-

tions—receipt of opioid prescrip-

tions greater than 100 morphine

milligram equivalents per day in 3

separate months;

PIP2: receipt of opioid and benzodi-

azepine prescriptions that over-

lapped by at least 1 day in at least 3

months;

PIP3: receipt of opioid prescriptions

from 4 or more prescribers in any

quarter;

PIP4: receipt of opioid prescriptions

from 4 or more pharmacies in any

quarter; and

PIP5: cash payments for opioid pre-

scriptions on 3 or more separate

occasions in any quarter.

Imputation Process

For these protected government data,

observed counts from zip codes with

values between 1 and 10 must be sup-

pressed before sharing. We incorpo-

rated the mean, sum, and the standard

deviation of the redacted values in our

imputation technique to more precisely

estimate values to use in the sup-

pressed cells. In addition, we capital-

ized upon the longitudinal structure of
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our data to compare previous and

future-year results in the same zip

codes as the missing values. We consid-

ered that social, demographic, and

physical characteristics within commu-

nities that are likely to contribute to

prescription opioid misuse among resi-

dents remain similar from year to year

during the study period. We inferred

that we could more accurately predict

the missing values by using values from

the previous and next year in the same

zip code and by incorporating the zip

code population size in the method.

We developed and tested a 3-step

imputation process for longitudinal var-

iables (Figure 1). We used SAS version

9.3 (SAS Institute, Cary, NC) to conduct

the statistical analyses, model the pro-

cess, and produce the final imputed

results. The steps included a modified

previous or next substitution using the

suppressed data, followed by mean

imputation, and finally a count adjust-

ment based on the actual values. The

input was a suppressed data table with

each row i representing zip code

(i5538) and column t consecutive

years of data (t57).

1. Compare previous and next values

(modified previous or next substi-

tution). Let xi,t denote a sup-

pressed value x for year t at zip

code i. We assumed that previous

(xi,t–1) and future (xi,t11) values in

zip code i would be related to the

missing suppressed value and

could be used to predict the range

of the imputed value. When both

xi,t–1 and xi,t11 were available (not

suppressed), we assumed the sup-

pressed value (xi,t) would be close

to the suppression limit, and we

assigned it a value of 10; where

either xi,t–1 or xi,t11 was present

but the other suppressed or a
zero, we assigned xi,t51/2(xi,t–1 1

xi,t11; i.e., half of the available
value); and when the previous and
next values were missing or zero
(i.e., [xi,t–1] and [xi,t11]50), we
would assume the missing value
close to zero and hence assigned
xi,t51. This imputation procedure
aims to simulate the dispersion of
the suppressed values. The down-
side with this method is errors up
to a value of 9 can result (i.e., a 1 is
used as the imputed value when
the true value was 10).

2. Mean imputation. Following step 1,

for the remaining missing values,

we took advantage of the longitudi-

nal structure of the data and

substituted the mean of the sup-

pressed values by year. In this

case, we assigned all missing xi,t

with value �x t where �x t was the

average for all n zip codes of the

suppressed values for year t.

½ value

Sum imputed values and calculate difference between sum of suppressed values

Adjust imputed
 values to match

sum of
suppressed

 values 

mean

yes yes yes

Is one value
>10 and the
other zero or

missing? 

Is
previous
or next

value zero? 

1. Compare previous year and next year values 
2. Mean

imputation 
3. Population-

based adjustment 

1

no no

Are
previous
 and next

n value both
>10?

Impute
mean of

suppressed
values

(by year) 

10

Missing value
no

Imputed
value

FIGURE 1— Three-Step Imputation Method Decision Process

Note. The decision process was as follows: (1) data were compared with previous and next year’s value in the same zip code and an imputed value was
assigned; (2) if cell value was still missing, the mean of the suppressed values for that year was imputed; and (3) the difference between the sum of the
imputed values and the suppressed values was computed; each imputed value was then modified using a population-based modifier to match the sums of
suppressed values. The result is the final imputed value.
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3. Population-based adjustment to

refine impute values. Following

step 2, the sum of the imputed val-

ues did not match the original

suppressed values. We then devel-

oped a zip code–level population-

based modifier using American

Community Survey15 population

counts to adjust all the imputed

values, so the sum matched the

sum of the suppressed values. To

adjust the sum, we chose an auxil-

iary variable, the population count

per zip code. The correlation

between the population counts by

zip code and the test data set val-

ues by zip code was 0.75, indicat-

ing a strong relationship between

zip code population size and the

test data values.

We calculated the population modifier

for each zip code as the ratio of the total

population (on log scale) and the aver-

age of the statewide zip code log popula-

tion, shown in formula 1. The resulting

population modifier summed to 1 across

the 538 zip codes and ranged from 0.26

for the lowest zip code population count

of 10 to 1.27 for the largest zip code

population of 60725.

ð1Þ Population modifier½t�

5
log zip code population count½t�� �

meanðlog ðP zip code population count t�½ ÞÞ
Count adjustment½t�

5 population modifier½t�� �� count difference ½t�
n imputed values ½t�

Modeling

To assess the performance of our

approach, we implemented 4 imputa-

tion methods using a single year, 2016,

within a longitudinal data set of high-

dose opioid prescriptions, of which

19% of 538 zip codes were suppressed

values. We chose this test variable

because it represented the average

missing amount (19%) for these data.

We created 5 models to compare com-

binations of the imputation methods.

Examples are provided in Table A

(available as supplement to the online

version of this article at http://www.

ajph.org).

Model 0 – baseline: mean imputation

(M0). The mean of each year’s sup-

pressed values was imputed where

missing values existed. This method

was intended to create an analysis

baseline employing a frequently

used and simple imputation method.

Model 1 – mean minus 1 standard

deviation imputation (M1). The mean

of each year’s suppressed value

minus 1 standard deviation of the

mean was imputed where missing

values existed.

Model 2 – 2-step imputation (M2).

A 2-step imputation approach was

employed. A longitudinal previous

and next comparison was used to

substitute either a 10, half of the

existing value, or a 1 in the missing

cell. For the remaining missing val-

ues, we imputed the mean of the

suppressed values for that year.

Model 3 – 3-step imputation (M3).

Model 3 adds a third step to model

2, a population-based count modi-

fier. In this final step, the difference

between the original values and sup-

pressed values was calculated. Then

the imputed values were multiplied

by a ratio of the zip code–based pop-

ulation modifier and the difference

so that the sum of the imputed val-

ues closely matches the sum of the

suppressed data set by year.

Model 4 – modified multiple imputa-

tion (M4). This was a 3-step process

using multiple imputation instead of

the longitudinal previous and next

approach. We started with the

multiple imputation model using SAS

statistical software and the previous

and next year’s data as parameters

and a minimum of 1 and maximum

output of 10 to create 5 imputed

data sets. For the remaining missing

cells, we imputed the mean of the

suppressed values for the year and

added the population modifier to

adjust the imputed sum to closely

match the actual suppressed values.

We compared the modeling results

to the original unsuppressed values,

which are available within the Massa-

chusetts Department of Public Health

but cannot be shared externally

because of legal suppression require-

ments. To evaluate the performance of

the imputation models, we calculated

the root mean squared error (RMSE),

the mean absolute error (MAE), and the

proportional variance (PV) where

ð2ÞRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðimputed � actualÞ2

q

n imputed

MAE5
X j imputed � actual j

n imputed

PV5
variance imputed

variance suppressed

RMSE and MAE summarize the differ-

ences between the imputed and actual

values and provide measures of the

precision of the imputation; MAE gives

equal weight to all errors while RMSE

gives extra weight to large errors. For

MAE and RMSE, a smaller value indi-

cates smaller errors and, hence, better

imputation performance. PV compares

the variance between the imputed and

suppressed values and is a measure of

how well the variance is preserved. A

PV of 1 is the goal, less than 1 implies

the imputed values are underdis-

persed, and greater than 1 implies that

they are overdispersed.
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To further analyze the model result

and suitability for spatial analysis, we

created maps visualizing the original

data including suppressed cells, the

imputed values for each model’s

suppressed cells, and the final

“complete” data set showing the origi-

nal data with the imputed values. We

subjectively evaluated whether the

maps incorporating the imputed

values preserved the spatial patterns

and range in the actual suppressed

values.

RESULTS

We compared results for the 4 models,

M1 through M4, with the baseline M0,

and present them in Table B (available

as a supplement to the online version

of this article at http://www.ajph.org).

We observed that the PV differed con-

siderably among the 4 models. M0 and

M1 modeled results were underdis-

persed with a PV near zero; while they

provide a “complete” data set, the

imputed values tell us little about the

nuances between the zip codes they

represent. M2, the 2-step method, had

lower RMSE and MAE than M0 and

retained 29% of the variance of the

data, yet the sum of the opioid pre-

scription imputed values in model M2

was 18.26 lower than the actual sup-

pressed values. M3, the 3-step method,

had the best results, with 22% lower

RMSE (2.27 vs 2.92) and 27% lower

MAE (1.88 vs 2.56) than the baseline

M0. Model M3 nearly matched the sum

of the actual suppressed values (–1.44

less) and retained 34% of the variance

of the suppressed values. Of the 5 mul-

tiple imputation–based results, we

selected multiple imputation 1, which

had the lowest errors and highest pro-

portional variance as the values to be

used in M4. The results showed model

M4 was less dispersed than M2 and

M3, retaining only 17% of the variance,

and had slightly higher errors than M3

(2.65 RMSE vs 2.27 and 2.26 MAE vs 1.

88). Ultimately, we used M3, the 3-step

method, to impute values for all our

study variables.

After choosing the 3-step imputation

approach as our final imputationmodel,

we performed it on all 35 variables (i.e.,

5 opioid prescriptionmisuse variables

across 7 years). Themethod produced

similar errors as themodeled result

(RMSE of 2.34; 95% confidence interval

[CI]52.28, 2.40 vs 2.27 andMAE of

1.91; 95%CI51.85, 1.97 vs 1.88) with

slightly improved PV over the test

results (0.46 [95%CI50.37, 0.55]) vs

0.34 PV). The stratified results summa-

rized in Table 1 show that as the per-

centage of imputed values increased,

the errors decreased (from2.37 [95%

CI52.26, 2.48] to 2.20 [95%CI52.13,

2.27] RMSE and 1.95 [95%CI51.83,

2.07] to 1.76 [95%CI51.70, 1.64] MAE),

while the PV increased (from 0.46 [95%

CI50.36, 0.56] to 0.52 [95%CI50.43,

0.61]). The variables with 30% to 39%of

values imputed had the best results.

Precision, of which dispersion is amea-

sure, is particularly important for spatial

analysis, in which differences between

small cells can be used to identify areas

with emerging and subsiding risks,

known as hot and cold spots.

Table 1 compares the modeled and

the overall imputed values and

TABLE 1— Modeled Results for High-Dose Opioid Prescriptions, 2016, and Imputed Statistical Results
for 35 Suppressed Opioid Prescription Variables: Massachusetts, 2011–2017

% Imputed RMSE MAE PV

Model results

M0: mean imputation 19 2.92 2.56 0.00

M1: mean–1 SD 19 4.06 3.17 0.00

M2: 2-step 19 2.53 2.11 0.29

M3: 3-step 19 2.27 1.88 0.34

M4: mean imputation plus 2-step 19 2.65 2.26 0.17

Imputed resultsa

17 data sets 10–15 2.37 (2.26, 2.48) 1.95 (1.83, 2.07) 0.46 (0.36, 0.56)

11 data sets 16–20 2.37 (2.30, 2.44) 1.93 (1.82, 2.04) 0.43 (0.34, 0.52)

7 data sets 30–39 2.20 (2.13, 2.27) 1.76 (1.70, 1.82) 0.52 (0.43, 0.61)

All 35 data sets, mean 19 2.34 (2.28, 2.40) 1.91 (1.85, 1.97) 0.46 (0.37, 0.55)

Note. MAE5mean absolute error; PV5proportional variance; RMSE5 root mean squared error.

aIncludes 95% confidence interval.
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statistical results. We stratified the

imputed data by the percentage of the

data imputed (10%–15%, 16%–20%,

and 30%–39%) and provided the over-

all results and 95% CIs for the imputed

results. The full results are provided in

Table C (available as a supplement to

the online version of this article at

http://www.ajph.org).

Figures 2a through 2c present the

statistical measures of the imputed val-

ues categorized by percentage of val-

ues imputed. The charts illustrate that

errors (RMSE and MAE) converge at

lower values as the percentage

imputed increases, and as the imputed

proportion increases, the values

become less dispersed (PV). This clus-

tering as the proportion of imputed

values increases results from more

instances in which the mean value is

inserted in the imputation algorithm. As

the percentage missing increased, the

variability in errors and the variance

decreased, showing that, with up to

39% missing values, this method main-

tains similar precision and variance

preservation as data missingness

increases.

DISCUSSION

We developed an imputation approach

for longitudinal data that largely over-

came the adverse effects of the sup-

pression of small cell sizes. The

imputed data set can then improve the

subsequent statistical and spatial analy-

ses conducted with public health sur-

veillance data.

Our imputed variables retained the

mean and sum of the suppressed val-

ues and, on average, preserved nearly

half (46%) of the variance. In addition,

we found that the 3-step imputation

method produced lower errors than

mean imputation (19% lower RMSE and

25% lower MAE). This technique allows

inclusion of variables at lower aggrega-

tion levels enhancing analytic precision

for rare outcomes, particularly in rural

areas, while preserving data

confidentiality. This novel imputation

method is generalizable to public

health practitioners and researchers

using protected data with design

features similar to ours. We also

a

Ro
ot

 M
ea

n 
Sq

ua
re

d 
Er

ro
r

M
ea

n 
A

b
so

lu
te

 E
rr

or
Pr

op
or

tio
na

l V
ar

ia
nc

e

Percentage

Percentage

Percentage
b

c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50

FIGURE 2— Error Results for Imputed Values in 35 Potentially Inappropri-
ate Opioid Prescription Variables for (a) Root Mean Squared Error, (b) Mean
Absolute Error, and (c) Proportional Variance of Imputed Values:
Massachusetts, 2011–2017

RESEARCH & ANALYSIS

Research Peer Reviewed Erdman et al. 1835

A
JP
H

O
ctob

er
2021,Vol

111,N
o
.10

http://www.ajph.org


suggest that researchers can modify

multiple imputation results by adding

mean imputation and a population

modifier to produce useable data.

The value of spatial analyses that

utilize data from an imputed and com-

plete data set, free of suppressed area-

level measures (or “holes” in the map),

cannot be understated. As demon-

strated in Figure 3a (with yellow sup-

pressed polygons), nearly 1 in 5 (19%)

low-count areas (i.e., zip codes) would

be “omitted” from standard maps that

rely on suppressed data, leaving most

of the western part of the state

mapped with a lack of heterogeneity.

Although the data visualized in Figures

3b and 3c allow analysis of the full data

set, they do little to draw out the nuan-

ces between small areas and may not

produce adequate precision for small

cells and areas. Meanwhile, Figure 3d

(with imputed polygons) presents a

more comprehensive range of values,

allowing for a closer approximation of

the spatial distributions of the outcome

in small cells while distinguishing the

imputed values from the true values. As

the data visualized in Figures 3a and 3d

are very different, the imputed values

will allow an examination of the small

cell data, up to 39% of the values in

these data.9,13 Recently, Bayesian spa-

tiotemporal modeling has gained popu-

larity in analyzing synthetic data for

public use.12 However, the complex sta-

tistical expertise8,9 to conduct these

models may exceed the benefit com-

pared with this straightforward

method. Our proposed approach,

admittedly less sophisticated, is easy to

carry out, and can be utilized by a wide

range of researchers with nonstatistical

background and without geospatial

software.

a b

c d

High-risk opioid prescriptions 2016

Suppressed values

11–31

32–63

64–123

124–443

No prescriptions

0

Actual values

11–31

31–63

63–123

123–443

1–2.5

Imputed

2.6–5

5.1–7.5

7.51–10

0
Actual values

11–31

32–63

64–123

124–443

1–2.5

Imputed

2.51–5

5.1–7.5

7.51–10

0 15 30 60 Miles

11–31
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64–123

124–443

Mean, 4.86

0

FIGURE 3— Illustrative Example of Thematic Maps of a Test Data Set “High-Dose Opioid Prescription” Count by
Zip Code for (a) Initial Data With 19% Values Missing Because of Suppression, as Denoted by Yellow Shading; (b) Mean
Imputation ShownWith Original Values; (c) Modified Multiple Imputation Results ShownWith Original Values; and (d)
“Complete” Final Data Showing Original Data With Imputed Results Together: Massachusetts, 2016
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Limitations

Our findings should be considered in

light of several limitations. We con-

ducted our test approaches on a sin-

gle outcome variable, high-dose opi-

oid prescriptions, and our method

might produce different results with

other longitudinal outcomes depend-

ing on the characteristics of the data

set. For example, our imputation

method resulted in an average of

24% of values imputed in the first

step and 76% in the second step,

mean imputation. Another data set

may result in a different proportion of

cells imputed in each step, hypotheti-

cally producing much different vari-

ance and errors in the imputed val-

ues. In addition, our results required

that summary statistics for the com-

plete and unsuppressed data be avail-

able; the method is best performed

by the data sharer, or a researcher

who has access to summary statistics

of the suppressed values. Third, we

used these data for a geospatial anal-

ysis project and had the benefit of

reviewing the results in geographic

information systems maps. Research-

ers should include a method to

assess the imputation results such as

mapping the data or comparing the

unimputed analysis findings to the

imputed analysis results.

Public Health Implications

This novel multistep imputation

approach provides a method to obtain

reliable measures for key opioid pre-

scribing measures, which had up to

39% suppressed cells. Our computa-

tionally efficient approach enhances

precision of small area estimates for

rare events and less populated areas,

facilitating more accurate risk mapping,

spatial epidemiological, and statistical

modeling approaches while preserving

confidentiality. These results warrant

further application of the imputation

method to refine the approach, to

assess whether this approach can func-

tion accurately when used with more

diverse longitudinal data, and to com-

pare the results with more sophisti-

cated modeling methods.
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