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Summary

Incorporating promising biomarkers into cancer screening practices for early-detection is 

increasingly appealing because of the unsatisfactory performance of current cancer screening 

strategies. The matched case-control design is commonly adopted in biomarker development 

studies to evaluate the discriminative power of biomarker candidates, with an intention to 

eliminate confounding effects. Data from matched case-control studies have been routinely 

analyzed by the conditional logistic regression, although the assumed logit link between biomarker 

combinations and disease risk may not always hold. We propose a conditional concordance-

assisted learning method, which is distribution-free, for identifying an optimal combination of 

biomarkers to discriminate cases and controls. We are particularly interested in combinations 

with a clinically and practically meaningful specificity to prevent disease-free subjects from 

unnecessary and possibly intrusive diagnostic procedures, which is a top priority for cancer 

population screening. We establish asymptotic properties for the derived combination and confirm 

its favorable finite sample performance in simulations. We apply the proposed method to the 

prostate cancer data from the Carotene and Retinol Efficacy Trial (CARET).

Correspondence: Ruosha Li, Department of Biostatistics and Data Science, The University of Texas School of Public Health, 
Houston, TX 77030, USA; Jing Ning, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 
TX 77030, USA. ruosha.li@uth.tmc.edu; jning@mdanderson.org. 

Conflict of interest
None declared.

SUPPORTING INFORMATION
Additional supporting information could be found online in the Supporting Information section.

SOFTWARE
Software in the form of R and CPP codes that implement the proposed method are available online athttps://github.com/liwenmoi/
Conditional-Concordance-assisted-Learning.

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2024 April 30.

Published in final edited form as:
Stat Med. 2023 April 30; 42(9): 1398–1411. doi:10.1002/sim.9677.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/liwenmoi/Conditional-Concordance-assisted-Learning
https://github.com/liwenmoi/Conditional-Concordance-assisted-Learning


Keywords

Conditional Concordance-assisted Learning; Conditional Logistic Regression; Matched Case-
control Studies; Sensitivity; Specificity

1 | INTRODUCTION

Effective population screening can reduce the burden of cancer by detecting it at an early 

stage. However, the performance of current cancer screening strategies is still far from 

satisfactory for many types of cancer. For example, the sensitivity of the surveillance 

for hepatocellular carcinoma (i.e., an ultrasound every six months in cirrhosis patients) 

ranges from 32% to 65%,1 and tumors diagnosed often have reached an advanced stage 

without curative treatment options. Biomarkers and their combinations are promising tools 

to complement current cancer screenings.2 For biomarker development in early detection 

of cancer, Pepe et al.3 has provided a comprehensive set of guidelines and recommended 

five phases from preclinical exploratory studies to cancer control studies. Case-control 

studies are commonly used in Phase 2 studies (clinical assay and validation) to assess the 

discriminative performance of biomarker candidates or their combinations to distinguish 

between cases and controls. Particularly, a matched case-control study is a popular design 

to reduce the confounding issue, in which each of cases is matched to one or more controls 

based on variables believed to be confounders. There are several advantages of matching. 

First, it allows one to assess the discriminative accuracy of the biomarkers beyond the 

contribution of the matching variables.4 Second, a balanced number of cases and controls 

across the levels of the matching variables can reduce the variance for parameter estimation 

compared to an unmatched study with the same sample size.5

Matched case-control data have been routinely analyzed by the conditional logistic 

regression in literature. The combination of biomarkers for case-control discrimination, 

termed as composite score, is often derived by maximizing the conditional likelihood, a 

global fit criterion, under the logistic regression model. To quantify the discriminative ability 

of the derived composite score, sensitivity and specificity are two commonly used measures. 

They are associated with a specific cutoff and can be estimated by the percentage of positive 

results (e.g., composite score > the cutoff) among cases, and the percentage of negative 

results (e.g., composite score ≤ the cutoff) among controls, respectively. The cutoff can be 

determined by certain criterion such as the Youden’s index.6

Maintaining a high specificity has been noted as a top priority for cancer population 

screening. Considering the low incidence rates of cancer in the general population, only 

screening tools with high specificity can prevent a large number of subjects from undergoing 

unnecessary and costly medical procedures and experiencing substantial psychological 

stress.7 Taking ovarian cancer screening as an example, a clinically acceptable specificity 

should exceed 98%.8 However, the commonly used statistical methods for combining 

biomarkers are often not tailored to this priority in cancer population screening. For 

example, the derived composite score by the conditional logistic regression often does not 

have optimal discriminative performance within the aforementioned clinically meaningful 
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region of specificity. Several methods that target a global criterion other than the logistic 

regression likelihood were proposed for unmatched data.9,10,11 Another limitation of the 

conditional logistic regression is the parametric link function that associates the composite 

score and the risk of developing cancer. In practice, researchers often have limited 

information regarding the mathematical form of the true link function. A misspecified 

parametric link function may lead to a biased estimation and a suboptimal composite 

score.12 It is desirable to leave the link function unspecified in the pursuit of the optimal 

biomarker combination.

Some recent works constructed composite scores by maximizing a local criterion13,14,15,16. 

For data from case-control studies, Meisner et al.17, Zhang et al.18, and Wang et al.19 

proposed to directly maximize the sensitivity under the constraint that the specificity is 

greater than a pre-specified threshold. The methods perform well and produce higher 

sensitivity than conditional logistic regression for general classification tasks. Nonetheless, 

these methods are designed for non-matched data, and they cannot be directly applied to 

individually matched data. When adapted to the analysis of matched case-control studies, 

their corresponding objective functions only include information from cases and ignore 

the information from controls. For the range of specificity of interest in cancer population 

screening, the resulting score often could not precisely maintain the pre-specified specificity 

when applied to external validation data. Yan et al.20 alternatively derived the optimal score 

by maximizing the partial area under the receiver operating characteristic (ROC) curve, 

which is a trade-off between the local and global criteria. In this work, we aim to develop 

an optimal biomarker combination and the associated decision rule, which simultaneously 

maximizes the discriminative power and maintains the specificity at a level that is practically 

acceptable for cancer population screening. We leave the link function un-specified and 

propose a conditional concordance-assisted objective function based on the discriminative 

power of the composite score.

The remainder of the article is organized as follows: in Section 2, we first review 

existing methods and then introduce the proposed method and the corresponding estimation 

procedure. In Section 3, we conduct extensive simulation studies to assess finite sample 

performance of the proposed method and compare it with the existing methods. In Section 

4, we apply the proposed method to the Carotene and Retinol Efficacy Trial (CARET), 

a matched case-control study at the Fred Hutchinson Cancer Research Center. A brief 

discussion is provided in Section 5.

2 | METHOD

2.1 | Notation

Consider a matched case-control study that allows multiple cases or controls in each stratum. 

Denote Yki as the disease status for the ith subject in the kth stratum, k = 1,…, K, where Yki 

= 1 means diseased (i.e., case) and Yki = 0 means non-diseased (i.e., control). Let nkD and 

nkD

be the number of cases and matched controls in stratum k, and denote 

nk = nkD + nkD

as the stratum total. Then 
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nD = ∑k = 1
K nkD

and 

nD = ∑k = 1
K nkD

are, respectively, the total numbers of cases and controls. For notational simplicity, we 

arrange the subjects in each stratum such that the first nkD subjects are cases. Let Xki be 

the p-dimensional vector of biomarkers for the ith subject in the kth stratum. We define the 

composite score as a linear combination βTXki, where β is a vector of coefficients with the 

same dimension of Xki.

For given β and cutoff c, the sensitivity and study-specific specificity of the composite score 

can be estimated as

Se(β, c) = ∑k = 1
K ∑i = 1

nkD I βTXki > c
∑k = 1

K nkD
, (1)

and

Sps(β, c) = ∑k = 1
K ∑i = nkD + 1

K I βTXki ≤ c
∑k = 1

K nkD
. (2)

The controls are typically sampled based on the matching variables of their associated 

cases instead of a random sampling, and thus they may not represent the general control 

population. Denote the sampling probability as pki, i ∈ {nkD + 1, …, nk}, which is the 

probability of being included in the matched study given the disease status and the matching 

variables in the source population.21 The sampling probability can be estimated empirically 

or via a logistic regression model. Given the estimated sampling probability of controls, the 

population-level specificity can be estimated as follows:22,23

Sp(β, c) = ∑k = 1
K ∑i = nkD + 1

nk pki
−1I βTXki ≤ c

∑k = 1
K ∑i = nkD + 1

nk pki
−1 . (3)

2.2 | Existing Methods and their Extensions to Matched Data

Data from matched case-control studies are routinely analyzed using the conditional logistic 

regression. The associated conditional likelihood is conditional on 

nkD, nkD k = 1
K

, the total number of cases and the total number of subjects within each stratum,

LCL(β) = ∏
k = 1

K ∏i = 1
nkD exp βTXki

∑J ∈ Ck
D ∏j ∈ J exp βTXkj

, (4)

where 

ck
D

are all subsets of size nkD from Ck = {1, …, nk}. One advantage of the conditional 

likelihood is that it avoids the estimation of stratum-specific nuisance parameters due to 
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matching. Denote 

βCL

as the estimator of β, which maximizes the conditional likelihood in (4). Since a high 

population-level specificity is a top priority in cancer population screening, the cutoff value 

is usually determined by 

c CL = inf c:Sp βCL, c ≥ τ
, where τ denotes the pre-specified level of specificity. Then the corresponding sensitivity is 

SeCL = Se βCL, c CL

.

The direct method17 can be extended to the matched data by 

controlling the population-level specificity instead of the study-specific 

one. In particular, we can obtain the estimators denoted as 

βD, c D

by

arg max
β, c

Se(β, c), (5)

subject to 

Sp(β, c) ≥ τ
. The corresponding sensitivity can be subsequently calculated by 

SeD = Se βD, c D

. As expected, the derived composite score by the direct method often facilitates a higher 

sensitivity than that by the conditional logistic regression, since the sensitivity itself is the 

objective function to be maximized in the direct method. On the other hand, the objective 

function of the direct method only includes information from the cases and ignores 

information from the controls.

Yan et al.20 developed a composite score by maximizing the partial area under the ROC 

curve, termed the pAUC method. The method was originally designed for non-matched 

case-control studies. For fair comparisons in simulation studies, we generalize this method 

to accommodate the data from the matched case-control studies as follows. Given the 

individually matched data, the density function of the control group can be estimated by 

incorporating the sampling probabilities,

f D(s) = 1
∑k = 1

K ∑i = nkD + 1
nk ℎD/pki

∑
k = 1

K
∑

i = nkD + 1

nk

pki
−1K s − βTXki

ℎD
, (6)

where K(.) is a kernel function, and 

ℎD

is a pre-specified bandwidth. The density function of the case group can be estimated in a 

similar fashion but without the sampling probability, denoted as 

fD( ⋅ )
. Then the estimated survival functions of the two groups are 
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SD(s) = ∫s
∞fD(t)dt

and 

SD(s) = ∫s
∞fD(t)dt

. The kernel smoothed ROC and pAUC are then given by 

ROCK(t) = SD SD
−1(t)

and 

pAUCK t0 = ∫0
1 − t0ROCK(t)dt

, respectively, where (t0, 1) is the pre-specified range of interest for specificity. By 

maximizing 

pAUCK t0

, we can derive the coefficient estimates, 

β pauc

, and the composite score.

2. 3 | Proposed Conditional Concordance-Assisted Learning

To ensure the robustness of the optimal composite score, we minimize model assumptions 

and leave the link function unspecified. We propose a conditional concordance-assisted 

learning (CCAL) method for combining biomarkers. Based on the discriminative ability 

of the composite score within each stratum, we construct the following conditional 

concordance-assisted function (CCAF) tailored to the unique structure of matched case-

control studies:

L(β, c) = ∏
k = 1

K ∏i = 1
nkD I βTXki > c ∏i = nkD + 1

nk 1 − I βTXki > c
∑J ∈ Ck

D ∏j ∈ J I βTXkj > c ∏j ∈ Ck ∖ J 1 − I βTXkj > c . (7)

Here, the concordance means that cases are more likely than controls to be classified as 

being screening positive by the score in a matched stratum. Given 

nkD, nkD k = 1
K

, the denominator of (7) describes all possible classifications that render nkD positives and 

nkD

negatives, and the numerator is the correct classification, namely whether the classification 

at threshold c is concordant with the true case-control status. This CCAF has a close 

connection with the decision rule to determine screening positive or negative subjects, and to 

calculate the sensitivity and specificity, while avoiding the need to specify a parametric link 

function. For a case-control pair in stratum k, the numerator is maximized when βTXk1 > c 
and βTXk2 ≤ c, where subscripts 1 and 2 denote case and control, respectively. Thus, CCAF 

is likely maximized at a (β, c) that renders βTXk1 > c and βTXk2 ≤ c. Note that sensitivity is 

defined as the proportion of cases with βTXki > c, and it is naturally closely related to the 

CCAF. The connection between CCAF and specificity can be similarly assessed.

Similar to the conditional likelihood, the CCAF characterizes the discriminative ability 

of the composite score within each case-control stratum, while eliminating the need to 

estimate stratum-specific nuisance parameters. The objective function of the direct method 
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in (5) often produces a higher sensitivity given a prespecified specificity in the training 

data compared to other methods, since the sensitivity itself is the objective function to 

be maximized. However, its objective functions only include information from cases and 

ignore the information from controls, and therefore its optimal performance may not be 

stable and often cannot be transferred to the validation data. Different from the direct 

method, CCAF unitizes the information from both cases and controls and targets to 

optimize the discrimination power of the resulting biomarker combination. The optimal 

discrimination performance by the fuller use of information from both cases and controls 

can better control for the specificity and sensitivity on the validation data, which are 

confirmed through simulation studies. To ensure identifiability, we set the Euclidean norm 

β 2 = ∑i = 1
p βi

2

to be one. When maximizing this objective function, we add a tiny constant ϵ to the 

product in the numerator and denominator to avoid zeros. The preliminary simulation 

studies (unreported) confirm that the estimation is insensitive to the value of ϵ.

In current screening practice, the score is usually for the work up for further clinical 

diagnosis and to prevent disease-free subjects from undergoing more expensive/invasive test 

procedures. Maintaining a high specificity is essential in screening for diseases with low 

incidences such as cancer, because a high specificity with a reasonable sensitivity can 

achieve a feasible positive predictive value for population screening.7 Acknowledging this 

top priority in cancer screening, we search for the optimal score within the clinically 

meaningful region of sensitivity, and maximize the CCAF in (7) subject to the constraint of 

Sp(β, c) ≥ τ
. The threshold τ is pre-specified and should be tailored to the disease incidence and the 

target population. For example, a threshold of 80% might be reasonable in a study of high-

risk subjects, but a much higher threshold (e.g., 95%) is usually required for general 

population screening.

We propose a stable and computationally efficient algorithm to maximize (7) under the 

constraint based on the profiling approach. For any given β, we obtain an estimate of c, 

denoted as 

c(β)
, by finding the τth quantile of βTX among controls as inf {c : Wn(β,c) ≥ 0}, where 

W n(β, c) = 1
nD

∑k = 1
nD ∑j = nkD + 1

nk pkj
−1I βTXkj ≤ c − τ

. We then plug 

c(β)
into equation (7) and maximize the profiled conditional concordance function 

L β, c(β)
with respect to β. This approach offers simultaneous estimates for β and the associated 

cutoff 

c(β)
. Given these estimates by the CCAL, the sensitivity and specificity can be calculated by 

equations (1), (2), and (3).
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The proposed objective function (i.e., CCAF) is not continuous with respect to the unknown 

parameters. With a small number of biomarkers, we can implement the Nelder-Mead method 

with multiple starting values to identify the global maximizers. However, this method may 

become computationally burdensome when there are many biomarkers. An alternative 

solution is to use a continuous kernel function, 

∫−∞
βTXki − cK u; ℎn du

, to approximate the indicator function I(βTXki > c), where K(·, hn) is a symmetric kernel 

function and hn is the bandwidth.24,25,12 Accordingly, we have the following kernel-

smoothed CCAF,

LKS(β, c)

= ∏
k = 1

K ∏i = 1
nkD ∫−∞

βTXki − cK u; ℎn du∏i = nkD + 1
nk 1 − ∫−∞

βTXki − cK u; ℎn du

∑J ∈ Ck
D ∏j ∈ J ∫−∞

βTXkj − cK u; ℎn du∏j ∈ Ck ∖ J 1 − ∫−∞
βTXkj − cK u; ℎn du

. (8)

Theoretically, many smooth and symmetric probability density functions can be used as the 

kernel function, and the standard normal distribution is a popular choice in practice. Then 

the estimation can be accomplished by existing programs such as the Rsolnp package in R.

Let 

(β , c) ≡ β , c(β )
denote the estimator by maximizing the CCAF in (7), we establish asymptotic properties of 

(β , c)
, and the plug-in estimator 

Se(β , c)
of the sensitivity. Denote the limiting values of these parameters by 

(β, c)
and 

Se = Se(β, c)
, whose formal definition is provided in Section 1 of Supplementary Materials. The main 

technical challenge is the discontinuity of ℒ(β, c) with respect to 

(β , c)
due to the indicator functions in (7), and therefore standard methods requiring the 

smoothness and differentiability are not applicable. Under the mild regularity conditions 

given in Supplementary Materials, we apply the empirical process techniques to show that 

limn ∞ ∥ (β , c) − (β, c) ∥ p 0
, as well as the consistency of the associated sensitivity estimates.

3 | SIMULATION STUDIES

We conducted simulation studies to evaluate the finite sample performance of the proposed 

CCAL method and compared it to that of three methods reviewed in Section 2.2: the 

conditional logistic regression, the direct method, and the pAUC method.
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3.1 | Simulation Settings

We considered four different scenarios for the performance evaluation, where the parametric 

assumption of conditional logistic regression was satisfied in Scenario 1, but not in other 

scenarios.

Scenario 1. We generated two independent biomarkers, X1 and X2, from the standard 

normal distribution. Two matching variables Z1 and Z2 were generated from the 

Bernoulli(0.3) and Bernoulli(0.1) independently. The matching group membership  was 

based on the values of Z1 and Z2:  = 1 if Z1 = 0 and Z2 = 0;  = 2 if Z1 = 1 and Z2 = 0; 

S = 3 if Z1 = 0 and Z2 = 1; and  = 4 otherwise. The disease status followed a Bernoulli 
distribution with a diseased probability of logit−1{(X1 + 3X2 + 0.5Z1 + 4Z2)/1.5 – 7}, where 

logit(t) = log{t/(1 − t)}.

Scenario 2. We generated two biomarkers (X1 and X2) and the matching variable Z1 from 

a multivariate normal distribution conditional on the disease status. Among controls, X1 

followed N(0, 3), and both X2 and Z1 followed N(0, 1). They were pairwise correlated with 

a correlation coefficient of 0.3. Among cases, X1, X2, and Z1 independently followed N(3, 

3), N(3, 5), and N(3, 5), respectively. Hence, both means and covariance matrices of the 

biomarkers and the matching variable depended on the disease status, and the covariance 

matrices were disproportional for cases and controls. The matching group membership was 

defined as  = I{Z1 ≥ Φ−1(1/4)}+I{Z1 ≥ Φ−1(1/2)}+I{Z1 ≥ Φ−1(3/4)}+1, where Φ is the 

standard normal cumulative distribution function.

Scenario 3. We used the same data generation scheme as that in Scenario 2, except that the 

correlation between biomarkers among cases was set to 0.9.

Scenario 4. We considered different correlation directions between controls and cases. 

Specifically, X1, X2, and Z1 were negatively correlated with a correlation coefficient of −0.3 

among controls, whereas they were positively correlated with a correlation coefficient of 

0.3 among cases. Among controls, X1 followed N(0, 3), and X2 and Z1 followed N(0, 1). 

Among cases, X1 followed N(0, 3), and X2 and Z1 followed N(0, 5).

Under all four scenarios, we used 1:1 matching to construct the matched case-control data. 

To ensure locating of the global maximum of the proposed objective function, we used 20 

sets of starting values around the coefficient estimates by the conditional logistic regression. 

The maximization converged fairly quickly for our method, and therefore the use of multiple 

starting points was not computationally intensive. For fair comparison, the same 20 sets 

of starting values were used for all four methods. We adopted the bootstrap method for 

variance estimation. In particular, we resampled the strata with replacement 200 times and 

calculated the bootstrap standard deviation.

The sample size 

nD = nD

varied from 50 to 400, and the pre-specified threshold of specificity τ varied from 0.70 to 

0.98. When implementing the kernel-smoothing method, we adopted bandwidth hn = Ch(nD)
−1/3, where (nD)−1/3 is the optimal bandwidth recommended by Jones24 and Ch = 0.2, 1, or 
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5. For each setting, we conducted 1000 simulation replicates and summarized the results. We 

calculated the sensitivities and specificities of the composite score by the aforementioned 

four methods using independent external validation data sets with a large sample size 

of 20,000, such that the variability due to the external data sets was negligible.26,20 All 

specificities reported in the simulation studies were in the population-level. The specificity 

range of interest for the pAUC method was set to (0.7, 1), or t0 = 0.7, following the 

simulation settings in Yan et al.20

3.2 | Simulation Results

Figures 1 and 2 show the average values and empirical standard errors (ESE) of estimated 

sensitivities (± ESE) and specificities (± ESE) at various prespecified specificities τ (0.70, 

0.75, 0.85, 0.90, 0.95, and 0.98). Here, the composite scores and the cutoffs were estimated 

using the training data sets and then tested using the large validation data. To better 

differentiate the results of the four different methods, the error bars corresponding to 

different τ’s were shifted slightly along the x-axis. The corresponding summary tables are 

presented in Tables S1–S4 in the Supplementary Materials.

Under Scenario 1, the logistic regression model is the underlying true model. When the 

sample size of the training data was small 

nD = nD = 50
, all composite scores by the four methods could not precisely maintain the pre-specified 

specificity on the validation data sets, as shown in Figure 1(B). The direct method 

consistently resulted in the lowest specificities, and the performance of the remaining three 

methods were similar for most of the τ’s considered. When the sample size increased to 

nD = nD = 100
, all methods except for the direct method were able to well maintain the pre-specified 

specificities, as seen in Figure 2(B). On the other hand, the direct method had slightly higher 

sensitivities compared with the other three methods.

Under Scenarios 2–4, the relationship between biomarkers and disease status cannot be 

captured by a simple parametric model such as the logistic regression model. As expected, 

the composite score by the conditional logistic regression performed poorly and had 

markedly lower sensitivities compared with other three methods. With 

Se
denoting estimates of the sensitivity by the other three methods, the relative percentage 
difference, defined as (mean 

Se
- mean 

SeCL

)/mean 

SeCL × 100%
, ranged from 32% to 124% at τ = 0.98.

We also observed that the CCAL method produced the highest specificities when evaluated 

on the validation data. When the sample size of the training data was moderate or large (e.g., 

Li et al. Page 10

Stat Med. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nD = nD ≥ 100
), the specificities from the CCAL method were close to the pre-specified level of τ, and 

even slightly higher than τ in some settings. Specifically, the difference between the average 

of estimated specificities and the prespecified τ was between −0.02 and 0.01. On the other 

hand, the direct method again failed to preserve the specificity. For example, under Scenario 

3 with nD of 100 and τ of 0.80, the difference between the average of estimated specificities 

and the prespecified level was as large as 0.06; see Figure 2(F). Similar to the direct method, 

the pAUC method could not maintain the specificity for most of the τ considered.

Interestingly, although the estimated specificities by the four methods had similar variance, 

the estimated sensitivities had quite different variation. The estimated sensitivities by the 

conditional logistic regression had the largest standard errors, while those by the pAUC 

method had the smallest standard errors. Such a statistical efficiency difference can be 

partially explained by the fact that the three semiparametric methods were based on the 

local or sub-global performance by focusing on a clinically-relevant region of the specificity; 

while the conditional logistic regression maximized the global performance including those 

clinically-irrelevant specificities, such as τ = 0.3. On the other hand, the pAUC method used 

more data information around the pre-specified specificity and then produced more stable 

estimates.

The estimated sensitivities on the training data are summarized in Table 1 and Table S5 in 

Supplementary Materials. The ESEs and the average of the estimated standard errors (ASEs) 

by the bootstrap method agreed well, indicating the bootstrap method can accurately capture 

the variability of the proposed method.

We also implemented the CCAL method by maximizing the kernel-smoothed CCAF in 

(8), and we summarized the results in Table S6 in Supplementary Materials. The results 

were similar to those by the original CCAF, suggesting the kernel-smoothed method is 

a reasonable alternative. We compared the results by using the three different values of 

Ch, and found that the kernel-smoothed method was quite robust to the choice of the 

bandwidth in the settings considered. Besides the above simulation studies that focused on 

1:1 matching, we also conducted simulations using 1:3 matched under Scenario 2 (see Table 

S7 and Figure S1 in Supplementary Materials). All methods had improvements in preserving 

the specificities compared to results with 1:1 matching, especially under the setting with a 

small sample size (e.g., nD = 50). The performance comparisons among these methods had 

similar patterns to those reported with 1:1 matching.

Additional simulation studies were conducted to compare the performance of the proposed 

CCAF to that of the unconditional methods, including the conventional logistic regression 

with the full likelihood and an unconditional objective function ℒfull(β, c) defined in the 

Supplementary Materials. As seen in Table S8 in the Supplementary Materials, even though 

the data was generated from a logistic regression model, the conventional logistic regression 

with the full likelihood had lower specificities and lower sensitivities compared to other 

methods. The performance of biomarker combinations by ℒfull(β, c) was also worse than 

that of the proposed CCAF, although better than the full likelihood. Detailed simulation 

settings and results are presented in Section 2.1 of the Supplementary Materials.
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Last, we evaluated the Youden Index of the different methods and summarized results in 

Tables S9–S12 of the Supplementary Materials. Under Scenario 1, there was no one method 

that uniformly outperformed others when the evaluation metric puts equal importance to 

the sensitivity and specificity. Under Scenarios 2–4, the proposed method showed a better 

discrimination capacity in terms of Youden Index than the conditional logistic regression.

4 | APPLICATION

We illustrate the proposed CCAL method for disease status discrimination on a prostate 

cancer data set in CARET, a randomized trial that enrolled 18,314 subjects at high risk for 

prostate cancer to evaluate the efficacy of the combination of beta-carotene and retinol on 

reducing prostate cancer risk. During the intervention phase of CARET, blood samples were 

collected and stored, providing invaluable resources for future research.

Within CARET, a matched case-control study was conducted, including 71 prostate cancer 

cases diagnosed between 1988 and 1995, and 71 controls matched by age and number of 

blood samples.27 Two biomarkers for prostate cancer, the total prostate specific antigen 

(tPSA), and the free prostate-specific antigen (fPSA), were measured from the stored blood 

samples of the subjects in the data set. The details of the study are given in Etzioni et al.27 

The analytic data set included 68 matched pairs of cases and controls from this existing 

matched case-control study due to missing information. Our goal was to compose a risk 

score using the biomarkers to distinguish cases from controls under a matched study design. 

We performed bootstrap validation with a bootstrap sample size of 10,000.28 Due to the 

small sample size, we only focused on τ ranging from 0.70 to 0.95. As shown in Figure 3 

(blue squares), the CCAL method steadily kept the specificity at or above the pre-specified 

threshold.

Since the sampling probabilities of the controls in the prostate cancer data were unavailable, 

the estimated cutoff, sensitivity, and specificity are study-specific, and as a result cannot 

be generalized to the general population directly. To control the population-level specificity, 

one solution is to combine the current matched case-control data with the Census data. 

However, the population from the Census data differs systematically from the at-risk 

screening population, and thus it is not an ideal source for this study. Instead, we can 

borrow information from the intervention arm of the Prostate, Lung, Colorectal and Ovarian 

(PLCO) Cancer Screening Trial by comparing the age distribution of the controls in the 

prostate cancer data and the age distribution of the participants in the PLCO trial. Sampling 

probabilities were calculated using an approach similar to the propensity score method. 

The validation results by controlling the population-level specificity are also summarized 

in Figure 3 (red circles). The performance of the different methods on the prostate cancer 

data in CARET is reported in Table S13 in the Supplementary Materials. In general, the 

proposed method outperformed the conditional logistic regression method. For example, 

when controlling the specificity at 95%, the proposed method could identify 72% of cases, 

while only 63% could be identified by the conditional logistic regression method. The 

proposed method also showed advantages over the pAUC method in terms of optimizing 

sensitivity. The proposed and direct methods had almost identical performance for this 

particular data.
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To provide more insight into the performance of the optimal score provided by the proposed 

method on the prostate cancer screening, we further examined the positive predictive value 

(PPV), a key characteristic of a screening test. PPV is defined as the probability that a 

subject has the condition given that the subject’s test is positive subject is test positive, and it 

depends on the characteristics of the test, as well as the population of interest. We calculated 

PPV based on the estimated population-level results and the prevalence of prostate cancer 

among US men aged 50 and up, which is 5.92%.29 When restricting specificity to be at 

least 0.95, the PPV is 51.7%, meaning that around half of the men who had a positive test 

result detected by the proposed optimal score actually had prostate cancer. This is better than 

the PPV of the prostate specific antigen-based screening test used in several cohort studies, 

which is approximately 30%.30

5 | DISCUSSION

In this paper, we proposed an alternative semiparametric method to the conditional logistic 

regression given the data from matched case-control studies. We developed a CCAL method 

to avoid the need to estimate stratum-specific parameters. In the meanwhile, instead of 

using parametric link functions as in the conditional logistic regression, we directly used 

the decision rule on the construction of the CCAF. We maximized the proposed CCAF with 

a constraint of achieving a clinically acceptable specificity, based on the general guidance 

in cancer population screening practice. Different from the objective function of the direct 

method, the CCAF used information from both cases and controls, and it was shown to be 

advantageous to maintain the pre-specified specificity in the independent validation data.

Maintaining specificity is a pre-requisite for a good screening tool, since even tiny loss in 

specificity has severe consequences. For instance, considering the low incidence of liver 

cancer, each 1% drop in specificity of screening results in 1000 more subjects getting 

false positive results, experiencing psychological trauma, and even going through biopsy for 

diagnosis in a population screening program of 100,000 subjects.31 Thus, being able to keep 

specificity on external validation data makes the proposed method more appealing than other 

existing methods in population screening. Although the focus of this paper is individually 

matched data, the proposed method can straightforwardly be extended to studies that use 

frequency matching (e.g., case and control groups have similar proportion of smokers, 

females in a lung cancer study) by post-hoc forming strata.

Of note, we maximized the proposed CCAF by using 20 different sets of initial values to 

minimize the possibility that the algorithm converged to a local maximum of the objective 

function depending on the starting values. Even though we applied multiple starting values, 

the computation burden was not heavy. For example, in a 100-run simulation with a 

sample size of 400 under Scenario 1, the CPU time of a desktop with 3.30GHz CPU 

was 0.86 minutes. In the presence of large number of risk factors, we can then use the 

kernel-smoothed method, which has satisfactory performance as shown in our simulation 

studies.

Although the true optimal score may not be a linear combination of the biomarkers, we only 

consider and identify the optimal score within the class of linear combinations throughout 
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this paper. One advantage of such combinations is the computational simplicity and ease of 

interpretation/communication with clinicians compared to nonlinear functions. The method 

development on how to implicitly detect an optimal combination with a potentially complex 

form and simultaneously maintain a pre-specified specificity is beyond the scope of this 

paper, but it is worthy of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Visualization of simulation results on validation data when the sample size of the training 

data is 

nD = nD = 50
. clogit: conditional logistic regression; τ: the pre-specified threshold of specificity; Gray 

dashed line: y-axis at 0.98.
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FIGURE 2. 
Visualization of simulation results on validation data when the sample size of the training 

data is 

nD = nD = 100
. clogit: conditional logistic regression; τ: the pre-specified threshold of specificity; Gray 

dashed line: y-axis at 0.98.
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FIGURE 3. 
Study-specific and population-level results of the proposed method applied to the prostate 

cancer data. τ: prespecified threshold of specificity.

Li et al. Page 18

Stat Med. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 19

TABLE 1

Summary statistics of estimated sensitivities on the training data. K: number of strata; τ: prespecified 

specificity; Clogit: conditional logistic regression; Mean: empirical mean sensitivity; ESE: empirical standard 

error; ASE: average of estimated standard errors.

Scenario K τ Proposed Direct pAUC Clogit

Mean ESE ASE Mean ESE Mean ESE Mean ESE

1 50 .70 .911 .061 .067 .925 .052 .901 .064 .898 .066

.75 .885 .073 .079 .900 .065 .873 .074 .867 .080

.80 .848 .087 .094 .867 .075 .838 .086 .829 .093

.85 .794 .107 .113 .820 .093 .789 .102 .773 .110

.90 .717 .130 .132 .752 .111 .709 .131 .692 .133

.95 .597 .158 .140 .636 .146 .582 .171 .555 .166

.98 .476 .172 .130 .506 .174 .435 .205 .413 .187

100 .70 .914 .043 .046 .924 .038 .908 .043 .906 .044

.75 .885 .053 .056 .898 .045 .880 .050 .876 .053

.80 .846 .066 .068 .865 .055 .841 .061 .837 .064

.85 .791 .081 .083 .815 .069 .788 .073 .783 .077

.90 .711 .095 .103 .739 .084 .701 .096 .696 .094

.95 .565 .121 .123 .603 .111 .558 .128 .540 .127

.98 .432 .136 .120 .461 .132 .389 .157 .384 .146

2 50 .70 .767 .091 .090 .797 .077 .747 .078 .753 .095

.75 .743 .092 .092 .774 .078 .736 .079 .725 .105

.80 .720 .086 .092 .751 .077 .725 .078 .693 .108

.85 .691 .091 .092 .725 .075 .707 .078 .653 .113

.90 .668 .090 .093 .699 .075 .682 .078 .604 .122

.95 .640 .093 .093 .665 .076 .641 .081 .533 .130

.98 .615 .092 .091 .632 .080 .597 .087 .452 .137

100 .70 .754 .067 .070 .781 .057 .733 .057 .748 .067

.75 .729 .065 .071 .758 .055 .721 .057 .717 .072

.80 .702 .066 .070 .734 .056 .705 .058 .683 .082

.85 .678 .067 .070 .711 .054 .690 .058 .640 .092

.90 .653 .067 .070 .686 .054 .667 .057 .586 .100

.95 .623 .068 .069 .654 .054 .632 .059 .506 .112

.98 .605 .063 .065 .624 .055 .598 .064 .432 .107

3 50 .70 .746 .105 .108 .770 .094 .709 .072 .714 .111

.75 .714 .105 .109 .741 .091 .701 .071 .680 .124

.80 .685 .103 .109 .713 .088 .690 .072 .643 .129

.85 .659 .101 .108 .688 .085 .675 .074 .596 .138

.90 .633 .106 .107 .660 .087 .657 .078 .540 .149

.95 .609 .103 .107 .629 .092 .630 .080 .468 .154

.98 .588 .109 .108 .598 .104 .601 .083 .385 .163

100 .70 .726 .075 .081 .749 .067 .706 .048 .705 .078
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Scenario K τ Proposed Direct pAUC Clogit

Mean ESE ASE Mean ESE Mean ESE Mean ESE

.75 .697 .069 .078 .723 .061 .697 .049 .671 .085

.80 .674 .067 .077 .702 .056 .685 .051 .634 .093

.85 .655 .066 .077 .682 .053 .671 .051 .587 .102

.90 .632 .068 .078 .661 .053 .653 .050 .528 .112

.95 .607 .071 .078 .637 .055 .627 .054 .448 .125

.98 .594 .068 .077 .612 .058 .598 .055 .373 .127

4 50 .70 .483 .097 .111 .522 .082 .515 .054 .459 .117

.75 .466 .097 .112 .503 .080 .505 .055 .427 .121

.80 .445 .099 .113 .484 .080 .494 .054 .390 .123

.85 .418 .105 .116 .463 .081 .481 .053 .350 .128

.90 .399 .109 .118 .443 .084 .463 .054 .305 .138

.95 .378 .112 .122 .413 .092 .435 .055 .252 .143

.98 .358 .109 .121 .380 .099 .403 .059 .200 .146

100 .70 .465 .065 .081 .499 .052 .496 .036 .431 .087

.75 .447 .071 .084 .484 .052 .486 .036 .396 .095

.80 .429 .076 .088 .470 .050 .476 .037 .355 .104

.85 .411 .079 .092 .455 .051 .460 .040 .316 .113

.90 .389 .087 .096 .438 .049 .439 .042 .271 .123

.95 .364 .088 .097 .413 .053 .417 .042 .219 .130

.98 .351 .082 .094 .384 .059 .384 .045 .177 .130
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