
Biometrics , 2024, 80(2), ujae019 
https://do i.org/10.1093/b iomtc/ujae019 
B iometric Pra ctice 

Case wei gh ted powe r priors for hybrid control analyses with 

time-to-eve n t data 

Ev an Kwi atkow sk i 1 , * , Jiawe n Zh u 

2 , X iao L i 2 , He rbe rt Pa n g 

2 , Grazyna Lie be rma n 

2 , Ma t thew 

A. Psioda 

3 

1 Depa rtme n t of B ios tatis tics a nd Data Scie nc e, The Univ e rsity of Texas Health Scie nce Ce n te r at Hous ton, 1200 Pressle r St, Hous ton, TX 77030, USA, 
2 Depa rtme n t of B ios tatis tics, Ge ne n tech, South Sa n Fra ncisc o, CA 94080, U SA, 3 D epa rtme n t of B ios tatis tics, Unive rsity of North Ca rolin a, Ch apel 

Hi l l, NC 27599, USA 

* Corresponding author: Evan Kwiatkow sk i, Depa rtme n t of B ios tatis tics a nd Data Scie nc e, The Univ e rsity of Texas Health Scie nce Ce n te r at Hous ton,1200 Pressle r St, 
Houston, Texas 77030, USA ( ev an .k.kwi atkow sk i@uth.tmc.edu ) 

A B S T R A C T  

We develop a method for hybrid analyses that uses external controls to augment internal control arms in r andomiz e d c ontrolle d trials ( RCTs ) 
wher e the degr ee of borr owing is de termined bas ed on simil arity be twee n RCT a nd exte rn al c ontr ol pa tie n ts to ac c oun t for sys te matic diffe re nces 
( e.g., unmeas ure d c onfounders ) . The method r epr ese n ts a novel extension of the power prior where discounting weights are c ompute d se parate ly 
for each external control based on compatibility with the r andomiz e d c ontro l d ata. The dis c ounting w ei gh ts a re dete rmine d using the pre dictiv e 
distribution for the extern al c ontrols deriv e d via the posterior distribution for time-to-eve n t pa ra mete rs es tim ate d from the RCT. This method 

is applied using a proportional hazards regre ssion mode l with pie c ewise c ons ta n t b aseline ha za rd. A sim ulation s tudy a nd a real -data exa mple 
ar e pr es ented bas ed on a comp le ted tri al in non-sm all c ell lung canc er. It is shown that the case wei gh ted powe r prior provides robust inference 
unde r va rious form s of incompatibility be tw e e n the exte rn al c on trols a nd RCT popul ation . 

KEY W OR DS : Box’s p -value; historical control; power prior; prior-data conflict; real-world data. 
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1 I N T R O D U C T I O N 

andomize d c ontrolle d trials ( RCTs ) are the gold s ta nda rd for
e ne rating evide nc e in the c onfirm atory tri al s e t ting. If ther e is
xisting data on the s ta nda rd of ca re used in the control group,
hen a hybrid control design that makes use of this data can gen-
ra te mor e evidenc e th an a RCT alone, or a similar amount of
videnc e in c onjunction w ith a RCT w ith few er s ubje cts . Exter-
al data on the control group could be av ail ab le from real-world
ata ( RWD ) , which could introduc e c onfounding due to se lec -

ion bias and m ay h av e a hi ghe r incide nc e of meas ure me n t e rror
 ompare d t o hist or ical tr ials due to v ari ability in d ata co llection
roc e dures outside of the trial set ting. Ther efor e, it is ne c essary

or a hybrid control design to balance the risks and r ewar ds in
sing external informat ion, part icularly with r egar d to pos sib le
ys te matic diffe re nc es betw e en d ata s ourc es . 

RWD a re ofte n use d to c ons truct a n inform ativ e pr ior distr i-
ution for pa ra mete rs common with the RCT data model, such
s pro gnostic cov ari ates s epara te fr om the tr ea tment effect. An
ssue with using an informative prior is the possibility of incom-
atibility betw e e n the prior a nd the o bs erv e d da ta, r eferr ed to
s prior-data conflict. The prior pre dictiv e distribution informs
hich o bs erv ab le d a ta ar e p l ausib le bas ed on the pr ior distr ibu-

ion a nd ca n be us ed to as s es s the compatibility of a prior and
he data. When RWD are surprising ( i.e., unlikely in a proba-
ilis tic se nse ) based on a prior pred ictive d is tribution de riv e d
e c eiv e d: July 6, 2022; Revised: Dece mbe r 31, 2023; Accepted: February 27, 2024 
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ommon s A t tribution-NonCommer c ial L icen s e ( https://creativ ec ommons .org/lic enses/by-
e dium, provide d the origin al w ork is properly cite d. For c ommer cial r e-us e, p leas e contact j o
r om the RCT da ta, thi s signal s that s ome thing may be sys te mat-
cally diffe re n t betw e e n the ge ne ra tive pr ocess for the RWD and
he RCT dat a ( Le k a nd Va n De Schoot, 2019 ) . Box ( 1980 ) de-
cribes how the prior pre dictiv e dis tribution ca n be used to as-
 es s the compatibility of a prior and the data ( i.e., Box’s p -value ) .
his can be used to identify priors that conflict with the o bs erved
 ata ( Ev an s and Moshonov, 2006 ) , a c onc ept th at h as be en use d
e c e n tly in ada ptive trial desi gn ( e.g., Psioda a nd Xue ( 2020 ) ;
wiatkow sk i et al. ( 2022 ) ) . 
Bayesia n dyna mic borrowing a pproaches pe rmit the de gre e

f borrowing to depend on the he tero geneity be tw e en the cur-
e n t a nd exte rnal dat a ( Vie le et al. 2014 ) . The power prior
 Ibrahim a nd Che n, 2000 ) ass umes th at the tw o sourc e s of dat a
 re excha ng e able, a nd that diffe re nc es betw e en o bs erv e d exter-
al and r andomiz e d c ontr ol r esponse ra tes ar e s o lely a t tributable

o known cov ari ate effects and s amp ling v ari ation ( als o known as
c ondition al exch ang e ability of controls” ( Psioda and Ibrahim,
018 ) ) . The c ommens urate prior ( Hobbs et al. 2011 ) assumes
ha t differ enc es betw e en respon s e rates are attributable to differ-
 n t pa ra mete rs for the cova riate effects in each data source. The
et a -an alytic pre dictiv e ( MAP ) approach ( Neuen s chw ander

 t al. 2010 ) as s umes th a t differ ences in r espon s e ra tes ar e a t-
ributab le to be tw e en-tri al he tero geneity and is bett er suit ed for
onside ring m ultiple sources of external data ( Dej a rdin et al.
018 ) . These existing approaches pro vide discountin g based on
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the RCT data to dete rmine whethe r the value is extreme relative 
a c olle ctiv e as s es sme n t of the e n tire exte rnal d atas e t. Con sider-
ing the information bias ( e.g., measure me n t e rr or ) tha t may be
prese n t in RWD, the ability to individually disc ount spe c i fic ob-
s erv ation s may be a more appropriate approach for incorporat-
ing external evidence. 

Propen sity s core me thods h av e be en use d in c onjunction with
Bayesia n dyna mic borrowing to ac c oun t for imbala nce in base-
line cov ari ate distribution s ( Wang e t al. 2019 ; 2022 ; Chen et al.
2022 ) , although the same benefits are often present with c onv en-
tion al c ov ari ate adjus tme n t ( Fu et al. 2023 ) . The r efor e, a n a nal -
ysis method that pe rmits discoun ting individual o bs erv ation s
should use individual-level cov ari ates in as s es sing compatibility.

In this pa pe r, w e dev elop a me thod for cas e-spec i fic wei gh ting
of external controls. We as s es s the compatibility of each exter-
n al c ontro l individually bas ed on as s es sme n ts of prior-data con-
flict using Box’s p -v alue. This cas e-spec i fic wei gh ting ca n ca p-
ture va rying a moun ts of incompatibility a mong the exte rn al c on-
trols. We aim to have this method maintain traditional type I
e rror con trol a nd to pe rform w ell in sc en arios where the RWD
is bi as ed due to confounding which effects all the external con-
trols equally. We use the c ommens urate prior for comparison
since it explicitly includes a commensurability pa ra mete r that
can r epr ese n t drift in baseline hazard in the setting of survival
an alysis . 

The mot ivat ing example for the simulation studies and real
data analysis is a comp le ted tri al in non-sm all c ell lung ca nce r
( Rittmeyer et al. 2017 ) for which there are releva n t pote n tial ex-
tern al c ontrol s, which i s reimag ined as if a hybrid control arm
w ere include d as a part of the tri al’s design . The reim agine d de-
si gn uses exte rn al c ontr ols fr om RWD, which m ay h av e the c on-
founding due to selection bias and measurement error for which
ind ividual-level d iscounting would be appr opria te. It is instruc-
tiv e to c onsider a w ell-pow ere d RCT with a large amount of ex-
tern al c ontro ls av ail ab le for hybrid an alyses sinc e this enables
sim ulation s tudies using ra ndom subs e ts of tri al a nd exte rnal
s ubje cts to be c ompare d to the known r esult fr om the RCT. The
pos sib le improve me n ts in trial efficie ncy ca n the n be meas ure d
thr ough the opera tin g chara cteristics of a design with fewer ran-
domize d s ubje cts th an w ere use d in the actual trial, wherein we
de mons trate the adva n t age s of our method ove r exis ting borro w -
in g approa ches ( e.g., hi ghe r powe r, lowe r mea n squa red e rror ) . 

The rest of this paper is organized as follows: in Section 2 , we
define a compatibility function for the external contr ols tha t is
used to determine the case-spec i fic wei gh ts a nd cons truct the
case wei gh ted powe r prior. In Section 3 , we provide a simula-
tion study demonstrating the case w eighte d pow er prior under
diffe re n t types of confounding in the external data. In Section 4 ,
we provide an analysis using the case wei gh ted powe r prior on
a real d ata s e t. We clos e the pa pe r with s ome dis cus sion in
Section 5 . 

2 M ET H O D S  

2.1 Ext ernal lik eli ho o d 

For RCT s ubje ct i , y 1 i is the o bs erv at ion t ime, ν1 i is the eve n t in-
dicator, x 1 i is the cov ari ate v e ctor, and z 1 i is the binary tr ea tment
indicator. The o bs erv at ion t ime y 1 i i s g iven as y 1 i = min{ t 1 i , c 1 i },
where t 1 i is the event time and c 1 i is the cen s oring time. Denote
the RCT data by D 1 = { ( y 1 i , ν1 i , x 1 i , z 1 i ) : i = 1,... n 1 }, where n 1 is
the n umbe r of RCT s ubje cts . 

We consider a proportional hazards model with baseline haz- 
a rd pa ra mete rs λ, cova riate effect regression pa ra mete rs β, a nd 

tr ea tme n t effect γ , with all unknown pa ra mete rs de noted b y θ =
{ λ, β, γ } . Let x i and z i denote the cov ari ate v e ctor and binary
tr ea tme n t indicator for RCT s ubje ct i , respe ctiv ely. The h azard
for RCT s ubje ct i is r epr ese n ted as h i (t| θ) = h 0 (t| λ) exp (x ′ i β +
z i γ ) , and the hazard for extern al c ontrol j is re pre se n ted as
h j (t| λ, β) = h 0 (t| λ) exp (x ′ j β) . The same proportion al h az- 
ards model ( i.e., b aseline ha za rd a nd cova riate effect ) for the out- 
c ome is use d for the RCT a nd exte rn al c ontro l d ata to allow com- 
patibility as s es sme n ts to be m ade base d on these sh are d param-
ete rs. Pa rt it ion the time axis into K in te rvals using 0 = τ 0 < τ 1 
< τ 2 < ... < τ K = ∞ , and let τ = (τ0 , . . . , τK ) . The part it ion 

of the time axis is chosen to capture import ant change s in the 
hazar d ra te while not intr oducing too ma ny pa ra mete rs. While 
the re a re formal regularization approaches for determining the 
part it ion ( e.g., Bouaz iz and Nuel ( 2016 ) ) , henceforth we su gge st 
the part it ion induc e d by a prespe c i fied n umbe r of qua n tiles for
the eve n ts, which is the most commonly us ed me thod in prac- 
tice. Let I k = (τk−1 , τk ] . Let λ = (λ1 , ..., λK ) T . The baseline 
hazard h 0 (t 

∣∣λ) is taken as pie c ewise c ons ta n t with h 0 (t 
∣∣λ) =

λk for t ∈ I k . This form of the baseline hazard is chosen to pro- 
vide add itional flexibil ity ove r pa ra metric models, such as the ex- 
pone n tial or Weibull mode l, which make s it more attractive for 
practical use. There i s al so just ificat ion for the pie c ewise c on- 
s ta n t b aseline ha zard b ased on the theoret ical connect ion to the 
Co x partial lik elihood when each interv al contain s a single event 
( Ibrahim et al. 2001 ) . 

Denote the extern al c ontro l d ata by D 0 = { ( y 0 j , ν0 j , x 0 j ) : j
= 1,..., n 0 }, with all qua n t it ies analo gous to the RCT d ata. De-
fine the wei gh ted l ikel ihood for the extern al c ontrols with both 

s ubje ct- and interval-spec i fic wei gh ts b y 
n 0 ∏ 

j=1 

L ( β, λ| D 0 j , a j ) = 

n 0 ∏ 

j=1 

{ 

( λK j exp ( x T j β)) a j,K j ν j 

×
K j ∏ 

k=1 

exp 

{ 

−a j,k λk H j,k exp (x T j β) 
} 

} 

, 

( 1 ) 

where D 0 j = { ( y 0 j , ν0 j , x 0 j ) } is the data for extern al c ontrol j ,
a j = { a j, 1 , ..., a j,K j } is a v e ct or of int erval-spec i fic wei gh ts for
extern al c ontrol j , K j ∈ {1,..., K } is the index for the in te rval such
that y j ∈ I K j , and H j , k re pre se n ts at-risk time during in te rval I j 
for external control j for k = 1,..., K j . Throughout we assume that, 
c ondition al on cov ari ates, the cen s orship times are independent 
of the eve n t times for both the RCT and external data. 

2.2 Ca se wei ghts 
To determine the value of wei gh ts a j = { a j, 1 , ..., a j,K j } for ex- 
tern al c ontrol j , w e as s es s the compatibility of the time at risk in
in te rval k , H j , k , r ela tive to its predictive dis tribution de riv e d from 
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p  
o wh at w ould be expe cte d. The c omputation of the wei gh ts a j is
 ela t ed t o the memoryless property of the exponential distribu-
ion, which st ate s tha t the pr o bability a subj ect expe rie nces a n
ve n t afte r time t ( give n they do not h av e an ev ent before that
oint ) doe s not de pend on the probability that they expe rie nce
 n eve n t prior to time t . This property also applies to the pie c e-
ise expone n tial dis tribution a nd ca n be used for s trai gh tfor-
a rd sim ulation of eve n t times b y sim ul ating d ata for each time

n te rv al be tw e e n cutpoin ts in τ from indepe nde n t expone n tial
i stributions. Thi s afford s us the ability to cr ea te a separa te case
ei gh t for each in te rval for each external control by as s es sing the

ompatibility of the time at risk in the in te rv al rel ative to its pre-
 ictive d istribution. 
To compute this predictive distribution, it is ne c es s ary to spec-

fy and estimate a model for random cen s oring as it occ ur s
n the RWD because the time at risk in a n in te rval is a func-
ion of both the eve n t a nd ce n s or ship d i stribution. Thi s model
or cen s oring does not ne e d to be spe c i fied for the RCT data
 ass uming ev e n t a nd ce n s oring time s are inde pendent ) , since
he compatibility of external contro l o bs erv at ion t imes wi l l be
s s es s e d with respe ct to pa ra mete rs in the distribution for event
imes . The h azard for c en s orship for external control j may be
 epr ese n ted as h 

c 
j (c | λc , βc ) = h 0 (c | λc ) exp (x ′ j β

c ) , where λc =
 λc 

1 , . . . , λ
c 
K } are the baseline hazard pa ra mete rs, a nd βc are co-

 ari ate effect regression pa ra mete rs. As was done with the eve n t-
rive n pa rt it ion for the pie c ewise h azard in the time-to-ev e n t
odel , the t ime axis for ins ta nces of cen s oring is induced by a

re-spec i fied n umbe r of qua n tiles. The r efor e, the b aseline ha z-
rd for oc currenc es of cen s oring is flexible to reflect cen s oring
a t t erns likely t o be se en in practic e, s uch as infre que n t ce n s oring
t the s ta rt of follo w -up a nd subs ta n tial ce n s oring afte r a ce rtain
 moun t of time. 
Let y rep 

j be defined as r eplica ted da t a ( Ge lman et al. 2013 ) that
 ould h av e be en o bs erv e d using the sa me model a nd value for θ
ha t pr oduced the r andomiz ed control data, the same cen s oring

odel tha t pr oduced s tochas tic ce n s oring in the external con-
rols, and the sa me cova riate v e ctor x j as external control j . The
re dictiv e distribution for y rep 

j is given by 

p(y rep 
j 

∣∣D 1 , D 0 ) = 

∫ 

p(y rep 
j 

∣∣x j , λ, λc , β) π ( λ, β
∣∣D 1 ) 

× π ( λc | D 0 ) d λd λc d β, ( 2 ) 

here p(y rep 
j 

∣∣x j , λ, λc , β) is the density of the o bs erv at ion t ime
or the j th extern al c on trol, π ( λ, β

∣∣D 1 ) is the pos te rior dis tri -
ution for λ and β based on the r andomiz e d c ontro l d ata, and
( λc | D 0 ) is the pos te rior dis tribution for λc based on the RWD.

or a pa rticula r in te rv al I k ( as s uming extern al c ontrol j is at risk
n in te rval k ) , the pre dictiv e distribution from e quation ( 2 ) be-
omes 

p(y rep 
j,k 

∣∣D 1 , D 0 ) = 

∫ 

p(y rep 
j,k 

∣∣x j , λk , λ
c 
k , β) π ( λ, β

∣∣D 1 ) 

× π ( λc | D 0 ) d λk d λc 
k d β. ( 3 ) 

It is our o bj e ctiv e to use the value of the pre dictiv e density from
quation ( 3 ) to as s es s compatibility of the o bs erv e d RWD, s uch
hat o bs erv at ion t imes that are extreme relative to their predic-
 ive distribut ion wi l l h av e c omparativ ely low er pre dictiv e den-
ity values. Using a proportional hazards model with piecewise
ons ta n t baseline hazard, it is neces s ary to transform the pre-
 ictive d istribution fr om equa tion ( 3 ) so tha t the mode does
ot occur at time zero. Using the pre dictiv e density from equa-

ion ( 3 ) would only allow o bs erv ation s tha t ar e hi ghe r tha n a n-
icipat ed t o be det ermine d as inc omp atible b ased on their pre-
ictive den sity v alue. This tran sformation wi l l use a function t
 uch th at w 

rep 
j,k = t (y rep 

j,k 

∣∣D 1 , D 0 ) is appr oxima tely normally dis-
ributed . The funct ion t ( x ) = log ( x ) is us ed s o that the mode
f the transformed density occ ur s near the expe cte d value of the
 bs erv at ion t ime, allowing for o bs erv at ion t imes tha t ar e either

ower or higher than anticipated to be evaluated as more extreme.
he wei gh t a j , k is assi gned as the pro bability of o bs erving d ata as
r more extreme ( i.e., less likely ) than the o bs erv e d extern al c on-

ro l v alue w j , k = t ( y j , k ) , and is an implementation of Box’s p -value
 Box, 1980 ) . Formally, thi s i s g ive n b y 

a j,k = Pr 
[ 

p(w 

rep 
j,k ) ≤ p(w j,k ) 

] 
, ( 4 )

her e the pr obability ( i.e., expecta tion ) is taken with respect to
he density p(w 

rep 
j,k ) . If there is perfe ct c ompatibility of the RCT

on trols a nd exte rnal con trols, the n the wei gh ts a j , k wi l l be uni-
ormly distribute d sinc e the sh are d pa ra mete rs a re equivale n t
nd the posterior pre dictiv e di stribution i s con tin uous ( Gelma n
t al. 2013 ) . Further details on the c omputation al imple me n ta-
ion are in Web A ppendix A . 

2.3 Ca se wei ghted powe r p rio rs 
e use the wei gh ts a j , k defined using equation ( 4 ) t o creat e

 case wei gh ted powe r prior as a ge ne ralization of the fixed-
ei gh t powe r prior π0 ( θ| D 0 , a 0 ) ∝ [ L ( θ| D 0 )] a 0 π0 ( θ) . We re-
 l ace [ L ( θ| D 0 )] a 0 in the fixed -wei gh t powe r prior with the
ei gh ted l ikel ihood for the extern al c ontrols with both s ubje ct-
 nd in te rval -spec i fic wei gh ts fr om equa tion ( 1 ) with the ad-
ition of a calibration function which influences the operat-

n g chara cteristics of the an alysis . This calibration function
 (a j,k , A ) is applied to each wei gh t a j , k individually, a nd al so i s
ased on the average case wei gh t for all external controls A =
 n 0 
j=1 

∑ K j 
k=1 a j,k / 

∑ n 0 
j=1 K j . The average case wei gh t A is used to

e tect d atas e t -level incomp atibility among the external controls.
ther functions of the weights could be used instead of the av-

r age ( e. g., quantiles ) , which would then be c ompare d to their
xpe cte d values under perfe ct c ompatibil ity for cal ibration. The
alibrate d w ei gh ted l ikel ihood be c omes 

n 0 ∏ 

j=1 

L ( β, λ| D 0 j , h (a j , A )) = 

n 0 ∏ 

j=1 

{ 

( λK j exp ( x T j β)) h (a j,K j , A ) ν j 

×
K j ∏ 

k=1 

exp 

{ 

−h (a j,k , A ) λk H j,k exp (x T j β) 
} 

} 

. 

( 5 )

The resulting power prior using the l ikel ihood in equation ( 5 )
ith h (a j,k , A ) = f p (a j,k ) defines the case wei gh ted powe r
rior, where the function f p is referred to as the case wei gh t

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
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shrinkage function. The pa ra mete r p con tr ols the degr ee to
which the case wei gh ts a re te mpe red towa rd the cons ta n t 0.5
( their expe cte d value unde r pe rfe ct c ompatibility ) to c oun te r-
balance the modest type I error rate inflation which would arise
from using a j , k directly in equation ( 5 ) ( i.e., using un tra nsformed
case wei gh ts ) with the con s erv a tive type I err or ra te of the fixed
wei gh t powe r prior, in orde r to produce a n a n alysis with c on-
trolled type I error rate at the nominal le vel. S ee Web Appendix B
and C for additional exp l anation . 

The res ulting pow er prior using the the l ikel ihood in equa-
tion ( 5 ) with h (a j,k , A ) = f p (a j,k ) g c ( A ) defines the dis-
c ounte d case w eighte d pow er prior, where the function g c is re-
ferred to as the uniform discounting function. The function g c
is based on a predetermined level of maximum t olerat ed type I
err or ra te ( e.g., 0.15 is use d henc eforth ) in the ev e n t that the re is
a shift in b aseline ha zard for all external contro ls. A simil ar pro-
ces s w as imp le me n ted b y Psiod a e t al. ( 2018 ) , and als o could be
framed as a predete rmined maxim um level of power reduction
for a shift in baseline hazard for all extern al c ontrols . The param-
eter c controls the de gre e to which all case wei gh ts a re re duc e d
in value, which would tend toward a no-borrowing design based
on the diffe re nce of A with 0.5 ( its expected value under perfect
compatibility ) . 

The calibra tion pr oc e dure c onsiders the giv en model ( e.g.,
proportion al h azards model with spec i fic s e t of cov ari ates ) and
give n sa mple sizes for RWD and RCT data under the assumption
of c ompatible extern al c on trols, a nd is the r efor e separa te fr om
the actual RWD outcomes ( see details in Web Appendix D ) . The
calibrate d w ei gh ts a re also used to derive the case wei gh ted com-
mensurate prior which serves as a comparison method ( see de-
tails in Web Appendix E ) . 

3 S I M U L AT I O N  ST U D I E S  

3.1 S imulat ion setup 

As a mot ivat ing example, w e c onsider NCT02008227 ( OAK
s tudy ) Rittmeye r et al. ( 2017 ) , a global , mult icenter, open-
label, r andomiz ed and c ontrolle d study, which evaluate d the ef-
ficacy and s afe ty of atezo liz um ab c ompare d with doc et axe l in
p articip ants with locally advanc e d or met ast atic non-s m all c ell
lung ca nce r ( NS CL C ) after failure with p l atin um-con taining
che mothe ra p y. Among 850 pa rticipa n ts ra ndomized 1:1, a n
an alysis of ov erall s urvival using Cox partial l ikel ihood yields an
estim ate d h azar d ra tio of 0.73 with 95% CI ( 0.62-0.86 ) in favor
of atezo liz umab. 

We consider RWD from the na tion wide ( EHR ) -deriv e d lon-
gitudinal Fla tir on Health da tabase, c omprise d of de-ide n tified
patie n t-level s tructured a nd uns tructur ed da ta cura ted via
techno lo gy-enab led abs traction ori gina ting fr om ∼280 US can-
cer clinics ( ∼800 sites of care ) ( Ma et al. 2020 ; Birnb a um et al.
2020 ) . Exis ting resea rch has used Fla tir on Health da t abase s for
extern al c ontrol an alyses in oncology studies ( Ventz et al. 2019 ;
L ewi s et al. 2019 ; Schmidli et al. 2019 ) . We consider 526 exter-
n al c ontrols th at me et O AK inclusion/exclusion crit e ria, he nce-
forth r eferr ed to as NS CL C RWD. 

Compatibility is as s es s ed bas ed on models which adjust for co-
v ari a te effects; ther efor e, the methods c onsidere d take into ac-
coun t diffe re nces in measured cha racte ris tics. In fact, the data 
sourc es h av e diffe re n t dis tribution s of o bs erv e d c ov ari ates ( i.e.,
extern al c ontrols av era ge a ge 67.1 vs . RCT 63.2, extern al c on- 
trols male 55.6% vs. RCT 66.2% ) , and the cov ari a te effects ar e 
indepe nde n tly es tim ate d from the fitted model pa ra mete rs from 

the respe ctiv e d ata s ource a nd the refore a re dis tinct. We ad -
just for sex and age as meas ure d c ov ari ate s thou ght to be of
pro gnostic v alue, and introduce confounding through a cova ri - 
ate ( i.e., uno bs erv e d c onfounder ) , which r epr ese n ts sys te matic
diffe re nces in the two hazards that are not exp l ainab le by mea- 
s ure d c ov ari ates . We c onsidere d a hazard model for RCT s ubje ct 
i give n b y h i (t| θ) = h 0 (t| λ) exp ( age i β1 + I( sex = male ) i β2 + 

z i γ ) , and let the hazard for external control j be h j (t| λ, β) = 

h 0 ( t| λ) exp ( age j β1 + I( sex = male ) j β2 + x 3 j β3 ) , where x 3 j is 
the confounding cov ari ate for external control j . 

We consider three types of confounding based on the con- 
foundin g co v ari ate x 3 j . “Parti al c ontamin ation” oc c ur s when the 
uno bs erv e d c onfounder affe cts a subs e t of the external controls, 
indicatin g nonexchan g e ability of a late n t subpopulation, which 

could arise from a data quality issue ( e.g., site-spec i fic measure- 
me n t e r ror ) in a clinical trial or incor rect infor mation in an ex- 
tern al c ontrol’s ele ctronic health re c ord, which provides crucial 
data in a RWD cohort. This type of measure me n t e rror is likely 
common, but few methods are av ail ab le to exp licitly ac c ount for 
it. In pa rticula r, x 3 = log ( 2 

m ) , with Pr ( m = 0 ) = 0.68 indicat- 
ing no confounding and Pr ( m = 2 k ) = Pr ( m = −2 k ) = 0.02 for 
k = 1 , . . . , 8 indicatin g varyin g de gre es of confounding among 
the subpopul ation . “Shift confounding” r epr ese n ts a shift in the 
b aseline ha za rd for all exte rn al c ontrols . In pa rticula r, x 3 = 1.
“Partial shift confounding” r epr ese n ts a shift in baseline hazard 

for the la t te r in te r val of sur vival time ( i.e., t > τ 1 ) . In pa rticula r,
x 3 = I [ t > τ 1 ] is the indicator that t falls in the se c ond of the two 

in te rvals which wi l l be used in this i l lustration. 
The values of β3 used in the cov ari ate effect x 3 j β3 range from 

−lo g ( 3 ) to lo g ( 3 ) r epr ese n ting haza r d ra tios betw e e n −3 a nd
3. The baseline hazard h 0 

(
t 
∣∣λ)

and the cen s or ing distr ibution 

r epr ese n ted b y the haza rd h 0 (c | λc ) a re take n as pie c ewise c on-
s ta n t with 0 = τ 0 < τ 1 < τ 2 = ∞ . To analyze properties of 
the case wei gh ts unde r spec i fic in te rval s, the cut points used in
the an alysis w er e pr e-spec i fied. Simila r ope rating cha racte ris tics 
were o bs erv e d using our default su gge stion of cutpoints induc e d 

b y qua n tiles. 
We consider an analysis which incorporates data from 200 sub- 

s amp led RCT tr ea ted subjects, 100 subs amp led RCT contro ls, 
a nd 100 subsa mpled exte rnal con trols in a n augme n ted a nalysis 
unde r diffe re n t as sumption s for the cov ari ate x 3 and the magni- 
tude of β3 . For the simulation studies, we find estim ate d values 
of λ, λc , γ , β1 , a nd β2 from a n a nalysis of the RCT s ubje cts, us-
ing cutpoints τ chosen to h av e an e qual n umbe r of eve n ts in each 

in te rval. 
We consider two sce na rios for the prevalence of cen s oring in 

the extern al c ontro l popul ation, both of which are based on mod- 
ifications of the fitted value λc from the actual RCT data. “Low 

Cen s oring” wi l l consider the b aseline ha zard for cen s oring to 

be 1 . 4 · λc , a nd “Hi gh Ce n s oring” wi l l consider 0 . 9 · λc . Note
th at the c en s or ing distr ibution in the RCT and extern al c on- 
tr ols ar e not ass ume d to be e quivale n t; the RCT data a re used to
provide an initial estimate λc , which is further perturbed by the 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data


Biometrics , 2024, Vol. 80, No. 2 � 5 

m  

n  

a  

t  

a
 

e  

b  

t  

(  

t  

e  

u  

2  

w  

o  

(  

s  

s  

M  

s

F  

c  

s  

t  

a  

w  

d  

d
 

f  

a  

w  

c  

e  

o  

i  

i
a  

c  

i  

c  

t  

m  

I
 

s  

 

f  

0  

t  

e  

f  

d  

i  

o  

d  

a  

o

F  

p  

f  

v  

fi  

p  

c  

p  

p  

s  

a  

o  

t  

0  

β  

a  

p  

r  

p  

l

F  

p  

m
<  

o  

t  

v  

b  

b  

p  

t  

w  

s  

p  

z  

f
 

p  

w  

i  

t  

l

T  

s  

s  

n  
ult iplicat ive factors of {0.9, 1.4}. Since the n umbe r of exte r-
 al c on trols a re fixed, the “Low Ce n s oring” s c en ario is as s oci-
ted with more eve n ts a nd th us mor e informa tion c ontaine d in
he extern al c ontro l d ata, a nd the “Hi gh Ce n s oring” s c en ario is
s s oci ated with fewer eve n ts a nd les s information . 
The hypothesis under consideration is the one-sided hypoth-

sis H 0 : γ ≥ 0 vs. H 1 : γ < 0. This hypothesis was evaluated
y computing the posterior probability of γ < 0 being less
han 0.025. The true parameter v alues con sider ed ar e γ = 0
 for the null hypothesis ) and γ = log ( 0.73 ) ( for the alterna-
ive hypothesis ) . The simulation study s umm arizes 10 000 rep-
t it ions per value of β3 used to produce confounding. All sim-
l ation s we re pe rforme d using R v e rsion 4.1.2 ( R Core Tea m,
017 ) . The case wei gh ted powe r prior a nd the discoun ted case
ei gh ted powe r prior a re compa red to fixed wei gh t powe r pri -
rs with wei gh ts a 0 ∈ {0, 0.5, 1}, which includes no borrowing
 a 0 = 0 ) and full-borrowing ( a 0 = 1 ) , as well as the commen-
urate prior and the case wei gh ted comme nsurate prior. Analy-
es using the c ommens ura te prior ar e fit using the Ha miltonia n

on te Ca rlo al gorithm using STAN ve rsion 2.27.0 a nd cmd-
tanr version 0.4.0. 

3.2 Distr i bution of case weights 
igure 1 shows the distribution of the case weights for the partial
on ta mination a nd shift c onfounding sc en arios av erage d across
imul ated tri als. For the un tra nsformed wei gh ts, whe n β3 = 0,
he external con trols a re excha ng e ab le with the RCT contro ls
 nd the wei gh ts a j , k a re uni for mly distributed on the unit in te rval
ith a mean value of 0.5. As the magnitude of β3 increases, the
istribution of the case wei gh ts begins to differ from a uni for m
istribution. 
The case wei gh ts tra nsformed b y the case wei gh t shrinkage

unction f p ( a j , k ) are similar to the untransformed wei gh ts in their
verag e, ho weve r the re is less ove rall dispe rsion. Notic e th at
hile the magnitude of β3 increases, the average case wei gh t de-

reases, a nd the ra nge of the 75th to the 90th pe rce n tile le ngth-
n s con siderab ly. Thi s i s be cause the effe ct of the c onfounding
n survival time increases as the magnitude of β3 increases, caus-

ng lower case wei gh ts to be assigned to thos e o bs erv ation s most
mpacte d. The transforme d w ei gh ts f p ( a j , k ) a pproach ze ro as a j , k 
 pproaches ze ro, s o thos e o bs erv ation s most impacted by the
 onfounding c ould be assigne d a n a rbitra rily low case wei gh t. It
 s thi s shrink ing of the case wei gh ts a r ound 0.5 tha t enables the
ase wei gh ted powe r prior to have a controlled type I error rate;
he transformed wei gh ts a re close r to the fixed value of 0.5, which

imics a power prior with a fixed wei gh t a nd a con s erv ative type
 error rate ( see also Web Appendix D ) . 

The case wei gh ts tra nsformed b y both the case wei gh t
hrinkage function and the uni for m discount ing funct ion
f p ( a j,k ) g c ( A ) a re simila r to the tra n sformed cas e wei gh ts f p ( a j , k )
or values of | β3 | near 0, and are nearly equivalent when β3 =
. Thi s i s because there i s lit tle da t aset-leve l incompatibility de-
 ect ed in the external con trols. Howeve r, as β3 increases, the av-
rage case weight drops substantially, as the difference between A
r om 0.5 incr eases. It i s thi s drop in case wei gh ts that e nables the
isc ounte d case wei gh ted powe r prior to have a calibrated max-

mum type I err or ra te under shift confounding; for large levels
f incompatibility in the external data, the a moun t of borrowing
e creases s ubs ta n ti ally ( s ee als o Web Append ix D ) . Add itional
nalysis of the case wei gh ts b y a moun t of ce n s oring a nd in te rval
f time at risk is provided in Web Appendix F . 

3.3 Operat ing c haracterist ics 
3.3.1 Partial con t aminati o n 

igure 2 shows the oper ating char acteristics of type I error,
owe r, a nd mea n squa red e rror for the case wei gh ted powe r prior

or the partial c ontamin ation sc en ario. The pow er at the null
alue of β3 = 0 is the hi ghes t for ful l-borrowing, fol low e d by the
xe d w ei gh t powe r prior with a 0 = 0.5. How ev er, all fixe d w ei gh t
ower priors suffer precipitous drops in power as as | β3 | in-
reases, sinc e inc ompatible extern al c ontrol inform ation is inc or-
orat ed t o a fixed ( i .e., stat ic ) de gre e. The case w ei gh te d pow er
riors maintain a high level of power for all values of β3 con-
idere d sinc e extern al c ontrols with observ e d inc ompatibility
 re dyna mically down-wei gh ted. All the fixed wei gh t powe r pri -
rs explored are shown to h av e relativ ely low er MS E c ompare d

o the case wei gh ted a pproaches for a n in te rval of β3 a round
, the n sha rp ly increas e to levels hi ghe r tha n no borrowing as
3 increas es. Cas e wei gh ting main tains a r ela tively low MSE for

ll values of β3 c onsidere d. Among the dynamic borrowing ap-
r oaches consider ed, the commensura te prior has the gr ea test
e duction in pow er as | β3 | increases, sinc e the c ommens urate
rior has no mechanism to dynamically wei gh t individual out-

ying o bs erv ation s. 

3.3.2 Shi ft co nf ou nd ing 
igure 3 shows the oper ating char acteristics of the case w eighte d
ower prior for the shift confounding sce na rio. Case wei gh ting
ain tains hi ghe r powe r tha n fixed wei gh t powe r priors for β3 
 0 by dynamically down-weighting the external controls with
 bs erv at ion t imes tha t ar e o bs erv e d to be incompatible with

he RCT data . A ll fixe d w ei gh t powe r priors a re shown to h av e
e ry hi gh powe r for β3 > 0, since this results in a down war d
ias in the estim ate d h azards for c ontr ols r esulting in a upwar d
ias in the estim ate d treatme n t effect. The case wei gh ted powe r
rior h as low er pow er in this case due to the down-wei gh ting of

he inc ompatible extern al c on trols, de mons tra ting tha t the case
ei gh ted powe r prior does not uni for mly increase power in all

c en arios . As in the case of pa rtial con ta mination, all fixed wei gh t
ow er priors h av e r ela tiv ely low MS E for a n in te rval of β3 a round
ero, while the case w eighte d pow er prior h as r ela tiv ely low MS E
or all values of β3 c onsidere d. 

The c ommens urate prior and case w ei gh te d c ommens urate
rior beh av e simila rly in te rms of the type I e rr or ra te a nd powe r,
hile the c ommens urate prior h as r ela tiv ely low er MS E as | β3 |

ncreases . The c ommens urate priors with the chosen spec i fica-
ion of hyperprior on the v ari ance for the drift parameter h av e
ess spread around no borrowing for type I error and power. 

3.3.3 Partia l sh i ft co nf ou nd ing 
he operating characteristics from the partial shift confounding

c en ario are generally similar to those of the shift confounding
c en ario disp l ayed in Figure 3 ( s e e Web Appendix F ) . The m ag -
itude of the type I error rate and pow er differenc es from the no

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
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FIG URE 1 Cas e wei gh t dis tributions b y data ge ne ration sce na rio a nd a nalysis method. Un tra nsformed = un tra n sformed cas e wei gh ted powe r 
prior, transformed = case wei gh ted powe r prior; discounted = discounted case wei gh ted powe r prior with maximum type I error rate under 
shift confounding calibrated at 0.15. Boxplot with mean, inter-quartile range, and 10th/90th percentiles of case w eights . 
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FIG URE 2 Parti al con ta mination sce na rio; selected operating cha racte ris tics b y a nalysis method. Tra n sformed = cas e wei gh ted powe r prior; 
disc ounte d = disc ounte d case wei gh ted powe r prior with maximum type I error rate under shift confounding calibrated at 0.15. 
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FIGURE 3 Shift confounding sc en ario; sele cte d operating ch a racte ris tics b y a nalysis method. Tra n sformed = cas e wei gh ted powe r prior; 
disc ounte d = disc ounte d case wei gh ted powe r prior with maximum type I error rate under shift confounding calibrated at 0.15. 
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orr owing case ar e shown to be less than those from the shift
 onfounding sc en ario for all the power priors. Thi s i s to be ex-
e cte d sinc e the partial shift confounding sce na rio corresponds

o a les s er de gre e of inc ompatibility th an the shift c onfounding
c en ario. 

3.4 Ch oos ing nu mber of segments for baseline h azar d 

t is ne c es s a ry to give though tful conside ration to the n umbe r
f segme n ts us ed for the bas eline haza rd in the a nalysis model.
eb Table 5 shows that the lowest BIC occ ur s when the num-

e r of segme n ts for the b aseline ha zards in the ge ne rating model
atches the n umbe r of segme n ts used in the a nalysis model.
on s eque n tly, thes e situation s pr oduce the mor e accura te r e-

ults for the tr ea tme n t effect est imat ion . For examp le, when β3 
 0 ( i .e., compat ible extern al c on trols ) a nd K G 

= 3 segme n ts
re used in the genera ting hazar d, the close st e stim ate d h azard
atio to the ge ne rating value of 0.73 is o bs erv e d when K M 

= 3
egme n ts a re used in the a nalysis model. 

3.4.1 Vary propo rti o n of e xternal c on tr ols 
e explore the impact of modifying the n umbe r of external

ontr ols fr om 100 to either 200 or 50 while keeping the same
 moun t of 200 s ubje cts r andomiz ed to tr ea tme n t a nd 100 ra n-
omize d c ontrols . Modifying the n umbe r of exte rn al c ontrols

unda me n tally alte rs the s tudy’s ope rating cha racte ris tics ( see
eb Appendix F ) . For example, the maximum power in the ho-
o geneous cas e with 100 extern al c ontrol s i s 0.86, which in-

reases to 0.92 with 200 external controls and decreases to 0.82
ith 50 extern al c ontrols . Relate dly, the type I error is much
ore s en sitiv e to c onfounding with more extern al c on trols, a nd

es s s en sitiv e to c onfounding with few e r exte rn al c ontrols . These
re un av oid ab le con s equences of having va rying a moun ts of in-
or mation infor ming the contr ol gr oup ra the r tha n dis t inct ive
hortcomings of the proposed methods. 

Although the operating characteristics of the designs are al-
er ed, the pr opos ed me thods m aintain their c omparativ e advan-
 age s to the be nchma rk methods of no borrowing and pooling.

he n the n umbe r of exte rn al c ontrol s i s modified, the type I er-
 or ra te is sti l l preserv e d . For the part ial c ontamin ation sc en ario,
he propos ed me thods sti l l maintain higher power and lower

S E across the m agnitude of the c onfounding v ari ab le β3 . For
he shift confounding sce na rio, the proposed methods are more
obust to confounding than the pooling method, and provide in-
reases in power and decreases in MSE r ela tive to no borrowing
hen the uno bs erv e d c onfounding is minim al. 

3.4.2 Stud y i m pa ct of m o del m isspe ci ficati o n 

o study the impact of model misspec i fication, we consider de-
 ayed s epara tion situa tions wher e the tr ea tme n t effect is only
rese n t afte r a delay of 50 or 100 days. These modifications al-

e r the ope rating cha racte ris tics of the s tudy: for exa mple, max-
m um powe r is de crease d from 0.86 to 0.82 with a 50-day de-
ay and 0.77 with a 100-day delay ( see Web Appendix F ) . Sti l l,
he propos ed me thods m aintain their c omparativ e advant age s to
he be nchma rk methods of no borrowing a nd pooling, such as
i ghe r powe r a nd lowe r MSE in the pa rtial con ta mination sce-
a rio, a nd bette r robus tness to shift confounding than pooling
ith increases in power and decreases in MSE r ela tive to no bor-

owing when the uno bs erv e d c onfounding is minim al. 

4 R E A L  DATA  E X A M P L E  

e conside r tes tin g the a daptive borrowin g method usin g all
 ubje cts from the real d atas e ts, which s erv e d as mot ivat ion for
he sim ulation s tudies ( i.e., 850 ra ndomize d s ubje cts and 526 ex-
ern al c ontr ols ) . Figur e 4 a shows o bs erv e d differenc es across the
CT a nd exte rnal d atas e ts. The Kap l an- Meier curve s show that

he tr ea tme n t a rm h as improv e d s urviv al rel ative to the random-
ze d c on trol a r m, which in tur n h as improv e d s urviv al rel ative
o the extern al c ontro l arm . Figure 4 b shows fitted model coef-
cie n ts for the RCT and external data, which implies compati-
ility in that the cov ari ate effects of age and sex are highly similar
etw e en the datasets, and also implies incompatibility in that the
 aseline ha za rd compone n ts a re lowe r for the RCT indicating

mprov e d s urvival ( althou gh the e stim ate d c officie n ts h av e ov er-
a pping 95% confide nce in te rvals ) . An exa min ation of the c om-
atibility wei gh ts for the exte rn al c on trols in Fi gure 4 c de mon-
trat es limit ed devia tion fr om the a n tic ipated uni for m distribu-
ion . Tab le 1 shows the estimate for the treatme n t effect and

odel fit diagnostics using the case wei gh ted powe r prior. It is
how n that w he n τ has 3 cutpoin ts, the BIC is the lowes t, a nd
he estim ate d h azar d ra tio as s oci a ted with the tr ea tme n t effect
 s 0.650. Thi s estim ate d h azar d ra tio is equivale n t to the es ti -
 ate d h azard ratio for the poo ling me thod, although the poo ling
ethod has a sli gh tly na rrowe r credible in te rval. 

5 D I S  C U S S  I O N 

he case wei gh ted powe r prior provides a novel strategy for the
ncorporation of RWD into an analysis of RCT data. The case

ei gh ts provide a framework for comparatively more robust es-
 imat ion of effects of in te res t compa red to fixed wei gh t powe r
riors in sc en arios wher e ther e is system atic inc ompatibility be-
w e en RCT c ontrols and extern al c ontrols due to unmeas ure d
onfoundin g. Usin g predictive distributions ( e. g., Bo x’s p -value )
rovides a n in tuitiv e metric of c ompatibility for c omparing ex-

ern al c ontro l d ata to RCT data. This method increases power
n the case of compatibility but also s uc c e e ds in re ducing the
nfluenc e of inc ompatible extern al c on trols a nd limiting the in-
rease in the type I err or ra te. S ince ea ch extern al c ontrol s ub-
 ect is as signed their own compatibility wei gh ts, this method ca n
e d irectly appl ied to incorporating diffe re n t sources of external
on trols in to a single hybrid a n alysis . Addressing c ompatibility
or time-to-eve n t outcomes is an involved process, and we are
ware of no other methods which can ac c ount for a partial shift
n baseline haza rd a mong exte rn al c ontrols . A straightforward
pplication of this methodology would be toward non-survival
utc omes ( e.g., norm ally distribute d s tudy e ndpoin ts ) . 
A common model for the o bs erv at ion t imes is ass ume d for

oth the RCT a nd exte rn al c ontro l d a ta. This appr oach is bind-
ng, but es s e n t ial . If we ar e to evalua te how well RCT data pre-
icts the external control data, we m us t have a common model

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data
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FIG URE 4 ( a ) Kap l an- Meier curve s for RCT a nd exte r nal data . ( b ) Fitte d model c oefficie n ts for RCT a nd exte r nal data . ( c ) Compatibility 
wei gh ts for NS CL C RWD. 

 

 

 

 

 

 

to tran sl ate be tw e e n the m. From this pe rspe ctiv e, the pretext for
borr owing fr om extern al c ontrol s i s e st ab lished at the outs e t us-
ing cr iter ia s uch as th at in Poc ock ( 1976 ) , and devi ation s from a
sh are d proportion al h azards model found from diagnostics such
as scaled Schoenfeld residuals would not be used to justify or
nullify the basis for borrowing. These possible deviations from
a sh are d model are implicitly inc orporate d into the case w ei gh ts 
using our compatibility as s es sme n ts. 

The capacity to detect prior-data conflict among external 
control s i s heavily depe nde n t on the total a moun t of infor- 
mation in the RCT, which in this context is determined by 
the n umbe r of eve n ts. Thi s need s to be considered for this 
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TABLE 1 Tr ea tme n t effect es t imat ion and model fit diagnostics for OAK and NS CL C RWD d atas e ts. K M 

: n umbe r of baseline h azard se gments 
used in the analysis model, a 0 : average case wei gh t, HR: hazard ratio, CI W.: credible in te rval width, BIC: Bayesian Information Cr iter ion. 

A d aptive No borrowing Pooling 

K M 

a 0 HR CI W. BIC HR CI W. BIC HR CI W. BIC 

1 0.474 0.670 0.197 14922.8 0.732 0.242 14931.7 0.653 0.182 14921.8 
2 0.536 0.662 0.194 14940.1 0.730 0.242 14933.0 0.657 0.183 14956.6 
3 0.544 0.650 0.190 14916.1 0.728 0.241 14935.7 0.650 0.181 14911.9 
4 0.553 0.652 0.190 14975.2 0.729 0.242 14982.5 0.649 0.181 14992.7 
5 0.556 0.651 0.190 14918.4 0.727 0.241 14942.7 0.643 0.180 14913.3 
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e thodo lo gy to be applied to study designs with interim anal-
ses where l imited number s of events are av ail ab le in the RCT.
pec i fically, there needs to be an adequate n umbe r of eve n ts
v ail ab le to cha racte rize the pre dictiv e distribution which pro-
ides the basis for the compatibility as s es sme n t. In the limit ( i.e.,
o eve n ts in the RCT ) the exte rn al c on trols a r e evalua ted against

he prior pre dictiv e distribution for the RCT data which does
ot reflect dat a -driven e stimate s for parameters r ela t ed t o sur-
iv al. Thus, for this me thod to be us eful, the re m us t be su ffic ie n t
 umbe rs of eve n ts in the RCT for the li keli hood t o dominat e the
nalysis prior. Formalizing this r ecommenda tion for trial design
ontexts is an area of future res earch . 
Future w ork c ould inv olv e tes ting robus tness of the case
ei gh ted powe r priors under additional types of confounding
etw e e n the RWD a nd RCT data, s uch as c ombin ations of par-
ial con ta mination a nd shifts in b aseline ha zar ds. Da ta qual-
ty issue s re la ting to RWD r e main a pe rsis te n t challe nge, in-
lud ing d iffic ulty in defining time zero for a n exte rn al c ontrol,
hich could result in immortal time bias favoring the RCT group
 Burcu et al. 2020 ) . 
While there is interest in obt aining dru g appro vals usin g

ingle-a rm s tudies, our me thod de termines cas e wei gh ts for
he extern al c ontrols by as s es sing how well the pre dictiv e dis-
ribution ( based on the RCT ) for their observation time data
ligns with the actual o bs erv e d data for the external controls,
hich is the uniqueness of hybrid control trials a nd a n alyses . In
rder for the proposed approach to be feasible, one m us t h av e
 ome contro ls in the prospe ctiv e trial. Thus, as c onstructe d, this

ethod would not be directly app licab le to purely externally
 ontrolle d trials . 
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