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ABSTRACT

We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs)
where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences
(e.g,, unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately
for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive
distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method
is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example
are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference

under various forms of incompatibility between the external controls and RCT population.

KEYWORDS: Box’s p-value; historical control; power prior; prior-data conflict; real-world data.

1 INTRODUCTION

Randomized controlled trials (RCTs) are the gold standard for
generating evidence in the confirmatory trial setting. If there is
existing data on the standard of care used in the control group,
then a hybrid control design that makes use of this data can gen-
erate more evidence than a RCT alone, or a similar amount of
evidence in conjunction with a RCT with fewer subjects. Exter-
nal data on the control group could be available from real-world
data (RWD), which could introduce confounding due to selec-
tion bias and may have a higher incidence of measurement error
compared to historical trials due to variability in data collection
procedures outside of the trial setting. Therefore, it is necessary
for a hybrid control design to balance the risks and rewards in
using external information, particularly with regard to possible
systematic differences between data sources.

RWD are often used to construct an informative prior distri-
bution for parameters common with the RCT data model, such
as prognostic covariates separate from the treatment effect. An
issue with using an informative prior is the possibility of incom-
patibility between the prior and the observed data, referred to
as prior-data conflict. The prior predictive distribution informs
which observable data are plausible based on the prior distribu-
tion and can be used to assess the compatibility of a prior and
the data. When RWD are surprising (i.e., unlikely in a proba-
bilistic sense) based on a prior predictive distribution derived

from the RCT data, this signals that something may be systemat-
ically different between the generative process for the RWD and
the RCT data (Lek and Van De Schoot, 2019). Box (1980) de-
scribes how the prior predictive distribution can be used to as-
sess the compatibility of a prior and the data (i.e., Box’s p-value).
This can be used to identify priors that conflict with the observed
data (Evans and Moshonov, 2006), a concept that has been used
recently in adaptive trial design (e.g., Psioda and Xue (2020);
Kwiatkowski et al. (2022)).

Bayesian dynamic borrowing approaches permit the degree
of borrowing to depend on the heterogeneity between the cur-
rent and external data (Viele et al. 2014). The power prior
(Ibrahim and Chen, 2000) assumes that the two sources of data
are exchangeable, and that differences between observed exter-
nal and randomized control response rates are solely attributable
to known covariate effects and sampling variation (also known as
“conditional exchangeability of controls” (Psioda and Ibrahim,
2018)). The commensurate prior (Hobbs et al. 2011) assumes
that differences between response rates are attributable to differ-
ent parameters for the covariate effects in each data source. The
meta-analytic predictive (MAP) approach (Neuenschwander
et al. 2010) assumes that differences in response rates are at-
tributable to between-trial heterogeneity and is better suited for
considering multiple sources of external data (Dejardin et al.
2018). These existing approaches provide discounting based on
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a collective assessment of the entire external dataset. Consider-
ing the information bias (e.g.,, measurement error) that may be
present in RWD, the ability to individually discount specific ob-
servations may be a more appropriate approach for incorporat-
ing external evidence.

Propensity score methods have been used in conjunction with
Bayesian dynamic borrowing to account for imbalance in base-
line covariate distributions (Wang et al. 2019; 2022; Chen et al.
2022), although the same benefits are often present with conven-
tional covariate adjustment (Fu et al. 2023). Therefore, an anal-
ysis method that permits discounting individual observations
should use individual-level covariates in assessing compatibility.

In this paper, we develop a method for case-specific weighting
of external controls. We assess the compatibility of each exter-
nal control individually based on assessments of prior-data con-
flict using Box’s p-value. This case-specific weighting can cap-
ture varying amounts of incompatibility among the external con-
trols. We aim to have this method maintain traditional type I
error control and to perform well in scenarios where the RWD
is biased due to confounding which effects all the external con-
trols equally. We use the commensurate prior for comparison
since it explicitly includes a commensurability parameter that
can represent drift in baseline hazard in the setting of survival
analysis.

The motivating example for the simulation studies and real
data analysis is a completed trial in non-small cell lung cancer
(Rittmeyer et al. 2017) for which there are relevant potential ex-
ternal controls, which is reimagined as if a hybrid control arm
were included as a part of the trial’s design. The reimagined de-
sign uses external controls from RWD, which may have the con-
founding due to selection bias and measurement error for which
individual-level discounting would be appropriate. It is instruc-
tive to consider a well-powered RCT with a large amount of ex-
ternal controls available for hybrid analyses since this enables
simulation studies using random subsets of trial and external
subjects to be compared to the known result from the RCT. The
possible improvements in trial efficiency can then be measured
through the operating characteristics of a design with fewer ran-
domized subjects than were used in the actual trial, wherein we
demonstrate the advantages of our method over existing borrow-
ing approaches (e.g., higher power, lower mean squared error).

The rest of this paper is organized as follows: in Section 2, we
define a compatibility function for the external controls that is
used to determine the case-specific weights and construct the
case weighted power prior. In Section 3, we provide a simula-
tion study demonstrating the case weighted power prior under
different types of confounding in the external data. In Section 4,
we provide an analysis using the case weighted power prior on
a real data set. We close the paper with some discussion in
Section S.

2 METHODS
2.1 External likelihood

For RCT subject i, yy; is the observation time, v; is the event in-
dicator, xy; is the covariate vector, and zy; is the binary treatment
indicator. The observation time yy; is given as y;; = min{ty;, c1;},
where t; is the event time and cy; is the censoring time. Denote

the RCT databy Dy = {(y1;, v1;, X35y 21): i = 1,...n; }, where 1y is
the number of RCT subjects.

We consider a proportional hazards model with baseline haz-
ard parameters A, covariate effect regression parameters 8, and
treatment effect 7, with allunknown parameters denoted by § =
{A, B, y}. Let x; and z; denote the covariate vector and binary
treatment indicator for RCT subject i, respectively. The hazard
for RCT subject iis represented as h; (t|0) = ho(t|A )exp(x/B +
z;y ), and the hazard for external control j is represented as
hi(tIA, B) = ho(t|)~)exp(x?ﬂ). The same proportional haz-
ards model (i.e., baseline hazard and covariate effect) for the out-
come is used for the RCT and external control data to allow com-
patibility assessments to be made based on these shared param-
eters. Partition the time axis into K intervals using 0 = 79 < 7,
< Ty <..<Tg=o00,andlet T = (19, ..., 7). The partition
of the time axis is chosen to capture important changes in the
hazard rate while not introducing too many parameters. While
there are formal regularization approaches for determining the
partition (e.g., Bouaziz and Nuel (2016) ), henceforth we suggest
the partition induced by a prespecified number of quantiles for
the events, which is the most commonly used method in prac-
tice. Let Zp = (71, 7). Let A = (Ay, ..., Ax)T. The baseline
hazard hy (t{k) is taken as piecewise constant with hg (t|l) =
Ar fort € Zj. This form of the baseline hazard is chosen to pro-
vide additional flexibility over parametric models, such as the ex-
ponential or Weibull model, which makes it more attractive for
practical use. There is also justification for the piecewise con-
stant baseline hazard based on the theoretical connection to the
Cox partial likelihood when each interval contains a single event
(Ibrahim et al. 2001).

Denote the external control data by Dy = {(yo}, voj, Xo;): j
= 1,..,, ng}, with all quantities analogous to the RCT data. De-
fine the weighted likelihood for the external controls with both
subject- and interval-specific weights by

nﬁ(ﬂ’ A|Dyj, a;) =

j=1

no

[T} G exp(a? By

j=1
K

X exp{—aj!k)»kijkexp(ijﬂ)} (1)

k=1
where Do; = {(y0j, Voj, X¢j)} is the data for external control j,
aj={aj, .., aij)} is a vector of interval-specific weights for
external control j, K; € {1,..,, K} is the index for the interval such
that y; € 7k, and Hj represents at-risk time during interval Z;
for external control j for k = 1,..., K. Throughout we assume that,
conditional on covariates, the censorship times are independent
of the event times for both the RCT and external data.

2.2 Case weights

To determine the value of weights a; = {a; 1, ..., a}-J(}} for ex-
ternal control j, we assess the compatibility of the time at risk in
interval k, Hj, relative to its predictive distribution derived from
the RCT data to determine whether the value is extreme relative



to what would be expected. The computation of the weights a; is
related to the memoryless property of the exponential distribu-
tion, which states that the probability a subject experiences an
event after time ¢ (given they do not have an event before that
point) does not depend on the probability that they experience
an event prior to time t. This property also applies to the piece-
wise exponential distribution and can be used for straightfor-
ward simulation of event times by simulating data for each time
interval between cutpoints in T from independent exponential
distributions. This affords us the ability to create a separate case
weight for each interval for each external control by assessing the
compatibility of the time at risk in the interval relative to its pre-
dictive distribution.

To compute this predictive distribution, it is necessary to spec-
ify and estimate a model for random censoring as it occurs
in the RWD because the time at risk in an interval is a func-
tion of both the event and censorship distribution. This model
for censoring does not need to be specified for the RCT data
(assuming event and censoring times are independent), since
the compatibility of external control observation times will be
assessed with respect to parameters in the distribution for event
times. The hazard for censorship for external control j may be
represented as h;.(c|)f, B°) = hy (c|k”)exp(x;ﬂc), where A =
{A{, ..., A%} are the baseline hazard parameters, and f° are co-
variate effect regression parameters. As was done with the event-
driven partition for the piecewise hazard in the time-to-event
model, the time axis for instances of censoring is induced by a
pre-specified number of quantiles. Therefore, the baseline haz-
ard for occurrences of censoring is flexible to reflect censoring
patterns likely to be seen in practice, such as infrequent censoring
at the start of follow-up and substantial censoring after a certain
amount of time.

Let y;eP be defined as replicated data (Gelman et al. 2013 ) that
could have been observed using the same model and value for &
that produced the randomized control data, the same censoring
model that produced stochastic censoring in the external con-
trols, and the same covariate vector x; as external control j. The
predictive distribution for y;ep is given by

(D1, D) = /P(yﬂ-ep}xj, A A5 B)m (. B|Dy)

x 7 (A°|Dg)dAdA dp, (2)
where p(y?ep |x i Ay A%, B) is the density of the observation time
for the jth external control, 77 (A, ﬂ‘Dl) is the posterior distri-
bution for A and B based on the randomized control data, and
7 (A°|Dy) is the posterior distribution for A° based on the RWD.
For a particular interval 7 (assuming external control j is at risk

in interval k), the predictive distribution from equation (2) be-
comes

p(yl;e,i|DlvD0):\/\p(yi:i|x]3)"ka)“ia B)ﬂ<xv B‘Dl)

x 71 (A| Do) didASdP. (3)

Itis our objective to use the value of the predictive density from
equation (3) to assess compatibility of the observed RWD, such
that observation times that are extreme relative to their predic-
tive distribution will have comparatively lower predictive den-
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sity values. Using a proportional hazards model with piecewise
constant baseline hazard, it is necessary to transform the pre-
dictive distribution from equation (3) so that the mode does
not occur at time zero. Using the predictive density from equa-
tion (3) would only allow observations that are higher than an-
ticipated to be determined as incompatible based on their pre-
dictive density value. This transformation will use a function t
such that w;fi = t(yrii |Dy, Dy) is approximately normally dis-
tributed. The function #(x) = log(x) is used so that the mode
of the transformed density occurs near the expected value of the
observation time, allowing for observation times that are either
lower or higher than anticipated to be evaluated as more extreme.
The weight a; is assigned as the probability of observing data as
or more extreme (i.e,, less likely) than the observed external con-
trol value w;; = t(yj,k) , and is an implementation of Box’s p-value
(Box, 1980). Formally, this is given by

ajr=Pr [p(wjei) < p(wj,k)] , 4)

where the probability (i.e., expectation) is taken with respect to
the density p(w;ei) If there is perfect compatibility of the RCT
controls and external controls, then the weights a;; will be uni-
formly distributed since the shared parameters are equivalent
and the posterior predictive distribution is continuous (Gelman
et al. 2013). Further details on the computational implementa-
tion are in Web Appendix A.

2.3 Case weighted power priors

We use the weights a;; defined using equation (4) to create
a case weighted power prior as a generalization of the fixed-
weight power prior 77 (8|Dy, ag) o< [L(0|Dg)]%7,(8). We re-
place [L£(0|Dy)]® in the fixed-weight power prior with the
weighted likelihood for the external controls with both subject-
and interval-specific weights from equation (1) with the ad-
dition of a calibration function which influences the operat-
ing characteristics of the analysis. This calibration function
h(aj, A) is applied to each weight a; individually, and also is
based on the average case weight for all external controls A =
Z;"J:l Zil aj,k/z;"’:l K. The average case weight A is used to
detect dataset-level incompatibility among the external controls.
Other functions of the weights could be used instead of the av-
erage (e.g., quantiles), which would then be compared to their
expected values under perfect compatibility for calibration. The
calibrated weighted likelihood becomes

l_[ﬁ(ﬂ’ )"|D0], h(a],Z)) =

=1
[T} G exp (] B e
j=1
Kj
X l_[ exp{ —h(aj,k, Z))\kHj,keXp(xlrﬁ) }
k=1

(5)

The resulting power prior using the likelihood in equation (s)
with h(a;k, A) = f,(a;i) defines the case weighted power
prior, where the function f, is referred to as the case weight


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae019#supplementary-data

4 e Biometrics, 2024, Vol. 80, No. 2

shrinkage function. The parameter p controls the degree to
which the case weights are tempered toward the constant 0.5
(their expected value under perfect compatibility) to counter-
balance the modest type I error rate inflation which would arise
from using a; directly in equation (5) (i.e., using untransformed
case weights) with the conservative type I error rate of the fixed
weight power prior, in order to produce an analysis with con-
trolled type I error rate at the nominal level. See Web Appendix B
and C for additional explanation.

The resulting power prior using the the likelihood in equa-
tion (S) with h(ajx A) = fy(a;r)g(A) defines the dis-
counted case weighted power prior, where the function g, is re-
terred to as the uniform discounting function. The function g,
is based on a predetermined level of maximum tolerated type I
error rate (e.g., 0.15 is used henceforth) in the event that there is
a shift in baseline hazard for all external controls. A similar pro-
cess was implemented by Psioda et al. (2018), and also could be
framed as a predetermined maximum level of power reduction
for a shift in baseline hazard for all external controls. The param-
eter ¢ controls the degree to which all case weights are reduced
in value, which would tend toward a no-borrowing design based
on the difference of A with 0.5 (its expected value under perfect
compatibility).

The calibration procedure considers the given model (e.g,,
proportional hazards model with specific set of covariates) and
given sample sizes for RWD and RCT data under the assumption
of compatible external controls, and is therefore separate from
the actual RWD outcomes (see details in Web Appendix D). The
calibrated weights are also used to derive the case weighted com-
mensurate prior which serves as a comparison method (see de-
tails in Web Appendix E).

3 SIMULATION STUDIES

3.1 Simulation setup

As a motivating example, we consider NCT02008227 (OAK
study) Rittmeyer et al. (2017), a global, multicenter, open-
label, randomized and controlled study, which evaluated the ef-
ficacy and safety of atezolizumab compared with docetaxel in
participants with locally advanced or metastatic non-small cell
lung cancer (NSCLC) after failure with platinum-containing
chemotherapy. Among 850 participants randomized 1:1, an
analysis of overall survival using Cox partial likelihood yields an
estimated hazard ratio of 0.73 with 95% CI (0.62-0.86) in favor
of atezolizumab.

We consider RWD from the nationwide (EHR)-derived lon-
gitudinal Flatiron Health database, comprised of de-identified
patient-level structured and unstructured data curated via
technology-enabled abstraction originating from ~280 US can-
cer clinics (~800 sites of care) (Ma et al. 2020; Birnbaum et al.
2020). Existing research has used Flatiron Health databases for
external control analyses in oncology studies (Ventz et al. 2019;
Lewis et al. 2019; Schmidli et al. 2019). We consider 526 exter-
nal controls that meet OAK inclusion/exclusion criteria, hence-
forth referred to as NSCLC RWD.

Compatibility is assessed based on models which adjust for co-
variate effects; therefore, the methods considered take into ac-

count differences in measured characteristics. In fact, the data
sources have different distributions of observed covariates (i.e.,
external controls average age 67.1 vs. RCT 63.2, external con-
trols male 55.6% vs. RCT 66.2%), and the covariate effects are
independently estimated from the fitted model parameters from
the respective data source and therefore are distinct. We ad-
just for sex and age as measured covariates thought to be of
prognostic value, and introduce confounding through a covari-
ate (i.e,, unobserved confounder), which represents systematic
differences in the two hazards that are not explainable by mea-
sured covariates. We considered a hazard model for RCT subject
i given by h;(¢|0) = ho(t|X)exp(age;B; + I(sex =male); 8, +
2y ), and let the hazard for external control j be h;(t|A, B) =
ho(t|\)exp(age;By + I(sex=male); B, + x3;B3), where x3; is
the confounding covariate for external control j.

We consider three types of confounding based on the con-
founding covariate x3;. “Partial contamination” occurs when the
unobserved confounder affects a subset of the external controls,
indicating nonexchangeability of a latent subpopulation, which
could arise from a data quality issue (e.g,, site-specific measure-
ment error) in a clinical trial or incorrect information in an ex-
ternal control’s electronic health record, which provides crucial
data in a RWD cohort. This type of measurement error is likely
common, but few methods are available to explicitly account for
it. In particular, x; = log(2™), with Pr(m = 0) = 0.68 indicat-
ing no confounding and Pr(m = 2k) = Pr(m = —2k) = 0.02 for
k=1, ..., 8indicating varying degrees of confounding among
the subpopulation. “Shift confounding” represents a shift in the
baseline hazard for all external controls. In particular, x; = 1.
“Partial shift confounding” represents a shift in baseline hazard
for the latter interval of survival time (i.e, t > 7). In particular,
x3 =I[t > 7] is the indicator that ¢ falls in the second of the two
intervals which will be used in this illustration.

The values of 83 used in the covariate effect x3;83 range from
—log(3) to log(3) representing hazard ratios between —3 and
3. The baseline hazard hg (t}k) and the censoring distribution
represented by the hazard h(c|A°) are taken as piecewise con-
stant with 0 = 79 < T; < T, = 00. To analyze properties of
the case weights under specific intervals, the cutpoints used in
the analysis were pre-specified. Similar operating characteristics
were observed using our default suggestion of cutpoints induced
by quantiles.

We consider an analysis which incorporates data from 200 sub-
sampled RCT treated subjects, 100 subsampled RCT controls,
and 100 subsampled external controls in an augmented analysis
under different assumptions for the covariate x; and the magni-
tude of 5. For the simulation studies, we find estimated values
of A, A%, v, B1, and B, from an analysis of the RCT subjects, us-
ing cutpoints T chosen to have an equal number of events in each
interval.

We consider two scenarios for the prevalence of censoring in
the external control population, both of which are based on mod-
ifications of the fitted value A° from the actual RCT data. “Low
Censoring” will consider the baseline hazard for censoring to
be 1.4 - 1%, and “High Censoring” will consider 0.9 - A°. Note
that the censoring distribution in the RCT and external con-
trols are not assumed to be equivalent; the RCT data are used to
provide an initial estimate A*, which is further perturbed by the
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multiplicative factors of {0.9, 1.4}. Since the number of exter-
nal controls are fixed, the “Low Censoring” scenario is associ-
ated with more events and thus more information contained in
the external control data, and the “High Censoring” scenario is
associated with fewer events and less information.

The hypothesis under consideration is the one-sided hypoth-
esis Hy: y > 0 vs. Hy: y < 0. This hypothesis was evaluated
by computing the posterior probability of y < 0 being less
than 0.025. The true parameter values considered are y = 0
(for the null hypothesis) and ¥ = log(0.73) (for the alterna-
tive hypothesis). The simulation study summarizes 10 000 rep-
etitions per value of B3 used to produce confounding. All sim-
ulations were performed using R version 4.1.2 (R Core Team,
2017). The case weighted power prior and the discounted case
weighted power prior are compared to fixed weight power pri-
ors with weights ao € {0, 0.5, 1}, which includes no borrowing
(ao = 0) and full-borrowing (ag = 1), as well as the commen-
surate prior and the case weighted commensurate prior. Analy-
ses using the commensurate prior are fit using the Hamiltonian
Monte Carlo algorithm using STAN version 2.27.0 and cmd -
stanr version 0.4.0.

3.2 Distribution of case weights

Figure 1 shows the distribution of the case weights for the partial
contamination and shift confounding scenarios averaged across
simulated trials. For the untransformed weights, when 83 = 0,
the external controls are exchangeable with the RCT controls
and the weights a; are uniformly distributed on the unit interval
with a mean value of 0.5. As the magnitude of 85 increases, the
distribution of the case weights begins to differ from a uniform
distribution.

The case weights transformed by the case weight shrinkage
function f, aj,k) are similar to the untransformed weights in their
average, however there is less overall dispersion. Notice that
while the magnitude of B3 increases, the average case weight de-
creases, and the range of the 75th to the 90th percentile length-
ens considerably. This is because the effect of the confounding
on survival time increases as the magnitude of B3 increases, caus-
ing lower case weights to be assigned to those observations most
impacted. The transformed weights f, (a;) approach zero as a;
approaches zero, so those observations most impacted by the
confounding could be assigned an arbitrarily low case weight. It
is this shrinking of the case weights around 0.5 that enables the
case weighted power prior to have a controlled type I error rate;
the transformed weights are closer to the fixed value of 0.5, which
mimics a power prior with a fixed weight and a conservative type
L error rate (see also Web Appendix D).

The case weights transformed by both the case weight
shrinkage function and the uniform discounting function
fo(a;x)g:(A) are similar to the transformed case weightsf, (a;)
for values of | 83| near 0, and are nearly equivalent when 3 =
0. This is because there is little dataset-level incompatibility de-
tected in the external controls. However, as 83 increases, the av-
erage case weight drops substantially, as the difference between A
from 0.5 increases. It is this drop in case weights that enables the
discounted case weighted power prior to have a calibrated max-
imum type I error rate under shift confounding; for large levels
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of incompatibility in the external data, the amount of borrowing
decreases substantially (see also Web Appendix D). Additional
analysis of the case weights by amount of censoring and interval
of time at risk is provided in Web Appendix F.

3.3 Operating characteristics
3.3.1 Partial contamination

Figure 2 shows the operating characteristics of type I error,
power, and mean squared error for the case weighted power prior
for the partial contamination scenario. The power at the null
value of 83 = 0 is the highest for full-borrowing, followed by the
fixed weight power prior with ag = 0.5. However, all fixed weight
power priors suffer precipitous drops in power as as |B3] in-
creases, since incompatible external control information is incor-
porated to a fixed (i.e, static) degree. The case weighted power
priors maintain a high level of power for all values of 83 con-
sidered since external controls with observed incompatibility
are dynamically down-weighted. All the fixed weight power pri-
ors explored are shown to have relatively lower MSE compared
to the case weighted approaches for an interval of 83 around
0, then sharply increase to levels higher than no borrowing as
B3 increases. Case weighting maintains a relatively low MSE for
all values of B; considered. Among the dynamic borrowing ap-
proaches considered, the commensurate prior has the greatest
reduction in power as | B3| increases, since the commensurate
prior has no mechanism to dynamically weight individual out-
lying observations.

3.3.2 Shift confounding

Figure 3 shows the operating characteristics of the case weighted
power prior for the shift confounding scenario. Case weighting
maintains higher power than fixed weight power priors for 83
< 0 by dynamically down-weighting the external controls with
observation times that are observed to be incompatible with
the RCT data. All fixed weight power priors are shown to have
very high power for 83 > 0, since this results in a downward
bias in the estimated hazards for controls resulting in a upward
bias in the estimated treatment effect. The case weighted power
prior has lower power in this case due to the down-weighting of
the incompatible external controls, demonstrating that the case
weighted power prior does not uniformly increase power in all
scenarios. Asin the case of partial contamination, all fixed weight
power priors have relatively low MSE for an interval of 85 around
zero, while the case weighted power prior has relatively low MSE
for all values of B3 considered.

The commensurate prior and case weighted commensurate
prior behave similarly in terms of the type I error rate and power,
while the commensurate prior has relatively lower MSE as | B3|
increases. The commensurate priors with the chosen specifica-
tion of hyperprior on the variance for the drift parameter have
less spread around no borrowing for type I error and power.

3.3.3 Partial shift confounding

The operating characteristics from the partial shift confounding
scenario are generally similar to those of the shift confounding
scenario displayed in Figure 3 (see Web Appendix F). The mag-
nitude of the type I error rate and power differences from the no
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borrowing case are shown to be less than those from the shift
confounding scenario for all the power priors. This is to be ex-
pected since the partial shift confounding scenario corresponds
to a lesser degree of incompatibility than the shift confounding
scenario.

3.4 Choosing number of segments for baseline hazard

It is necessary to give thoughtful consideration to the number
of segments used for the baseline hazard in the analysis model.
‘Web Table S shows that the lowest BIC occurs when the num-
ber of segments for the baseline hazards in the generating model
matches the number of segments used in the analysis model.
Consequently, these situations produce the more accurate re-
sults for the treatment effect estimation. For example, when f;
= 0 (ie., compatible external controls) and K = 3 segments
are used in the generating hazard, the closest estimated hazard
ratio to the generating value of 0.73 is observed when Ky = 3
segments are used in the analysis model.

3.4.1 Vary proportion of external controls

We explore the impact of modifying the number of external
controls from 100 to either 200 or 50 while keeping the same
amount of 200 subjects randomized to treatment and 100 ran-
domized controls. Modifying the number of external controls
fundamentally alters the study’s operating characteristics (see
Web Appendix F). For example, the maximum power in the ho-
mogeneous case with 100 external controls is 0.86, which in-
creases to 0.92 with 200 external controls and decreases to 0.82
with SO external controls. Relatedly, the type I error is much
more sensitive to confounding with more external controls, and
less sensitive to confounding with fewer external controls. These
are unavoidable consequences of having varying amounts of in-
formation informing the control group rather than distinctive
shortcomings of the proposed methods.

Although the operating characteristics of the designs are al-
tered, the proposed methods maintain their comparative advan-
tages to the benchmark methods of no borrowing and pooling.
When the number of external controls is modified, the type L er-
ror rate is still preserved. For the partial contamination scenario,
the proposed methods still maintain higher power and lower
MSE across the magnitude of the confounding variable 5. For
the shift confounding scenario, the proposed methods are more
robust to confounding than the pooling method, and provide in-
creases in power and decreases in MSE relative to no borrowing
when the unobserved confounding is minimal.

3.4.2 Study impact of model misspecification
To study the impact of model misspecification, we consider de-
layed separation situations where the treatment effect is only
present after a delay of 50 or 100 days. These modifications al-
ter the operating characteristics of the study: for example, max-
imum power is decreased from 0.86 to 0.82 with a 50-day de-
lay and 0.77 with a 100-day delay (see Web Appendix F). Still,
the proposed methods maintain their comparative advantages to
the benchmark methods of no borrowing and pooling, such as
higher power and lower MSE in the partial contamination sce-

Biometrics, 2024, Vol. 80,No.2 e 9

nario, and better robustness to shift confounding than pooling
with increases in power and decreases in MSE relative to no bor-
rowing when the unobserved confounding is minimal.

4 REAL DATA EXAMPLE

We consider testing the adaptive borrowing method using all
subjects from the real datasets, which served as motivation for
the simulation studies (i.e., 850 randomized subjects and 526 ex-
ternal controls). Figure 4a shows observed differences across the
RCT and external datasets. The Kaplan-Meier curves show that
the treatment arm has improved survival relative to the random-
ized control arm, which in turn has improved survival relative
to the external control arm. Figure 4b shows fitted model coef-
ficients for the RCT and external data, which implies compati-
bility in that the covariate effects of age and sex are highly similar
between the datasets, and also implies incompatibility in that the
baseline hazard components are lower for the RCT indicating
improved survival (although the estimated cofficients have over-
lapping 95% confidence intervals). An examination of the com-
patibility weights for the external controls in Figure 4c demon-
strates limited deviation from the anticipated uniform distribu-
tion. Table 1 shows the estimate for the treatment effect and
model fit diagnostics using the case weighted power prior. It is
shown that when 7 has 3 cutpoints, the BIC is the lowest, and
the estimated hazard ratio associated with the treatment effect
is 0.650. This estimated hazard ratio is equivalent to the esti-
mated hazard ratio for the pooling method, although the pooling
method has a slightly narrower credible interval.

S DISCUSSION

The case weighted power prior provides a novel strategy for the
incorporation of RWD into an analysis of RCT data. The case
weights provide a framework for comparatively more robust es-
timation of effects of interest compared to fixed weight power
priors in scenarios where there is systematic incompatibility be-
tween RCT controls and external controls due to unmeasured
confounding. Using predictive distributions (e.g., Box’s p-value)
provides an intuitive metric of compatibility for comparing ex-
ternal control data to RCT data. This method increases power
in the case of compatibility but also succeeds in reducing the
influence of incompatible external controls and limiting the in-
crease in the type I error rate. Since each external control sub-
jectis assigned their own compatibility weights, this method can
be directly applied to incorporating different sources of external
controls into a single hybrid analysis. Addressing compatibility
for time-to-event outcomes is an involved process, and we are
aware of no other methods which can account for a partial shift
in baseline hazard among external controls. A straightforward
application of this methodology would be toward non-survival
outcomes (e.g., normally distributed study endpoints).

A common model for the observation times is assumed for
both the RCT and external control data. This approach is bind-
ing, but essential. If we are to evaluate how well RCT data pre-
dicts the external control data, we must have a common model
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FIGURE 4 (a) Kaplan-Meier curves for RCT and external data. (b) Fitted model coefficients for RCT and external data. (c) Compatibility

weights for NSCLC RWD.

to translate between them. From this perspective, the pretext for
borrowing from external controls is established at the outset us-
ing criteria such as that in Pocock (1976), and deviations from a
shared proportional hazards model found from diagnostics such
as scaled Schoenfeld residuals would not be used to justify or
nullify the basis for borrowing. These possible deviations from

a shared model are implicitly incorporated into the case weights
using our compatibility assessments.

The capacity to detect prior-data conflict among external
controls is heavily dependent on the total amount of infor-
mation in the RCT, which in this context is determined by
the number of events. This needs to be considered for this
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TABLE 1 Treatment effect estimation and model fit diagnostics for OAK and NSCLC RWD datasets. Kj: number of baseline hazard segments
used in the analysis model, ay: average case weight, HR: hazard ratio, CI W.: credible interval width, BIC: Bayesian Information Criterion.

Adaptive No borrowing Pooling

Kym ay HR CIw. BIC HR CIW. BIC HR CIw. BIC

1 0.474 0.670 0.197 14922.8 0.732 0.242 14931.7 0.653 0.182 14921.8
2 0.536 0.662 0.194 14940.1 0.730 0.242 14933.0 0.657 0.183 14956.6
3 0.544 0.650 0.190 14916.1 0.728 0.241 14935.7 0.650 0.181 14911.9
4 0.553 0.652 0.190 14975.2 0.729 0.242 14982.5 0.649 0.181 14992.7
S 0.556 0.651 0.190 14918.4 0.727 0.241 14942.7 0.643 0.180 14913.3
methodology to be applied to study designs with interim anal- DATA AVAILABILITY

yses where limited numbers of events are available in the RCT.
Specifically, there needs to be an adequate number of events
available to characterize the predictive distribution which pro-
vides the basis for the compatibility assessment. In the limit (i.e.,
no events in the RCT) the external controls are evaluated against
the prior predictive distribution for the RCT data which does
not reflect data-driven estimates for parameters related to sur-
vival. Thus, for this method to be useful, there must be sufficient
numbers of events in the RCT for the likelihood to dominate the
analysis prior. Formalizing this recommendation for trial design
contexts is an area of future research.

Future work could involve testing robustness of the case
weighted power priors under additional types of confounding
between the RWD and RCT data, such as combinations of par-
tial contamination and shifts in baseline hazards. Data qual-
ity issues relating to RWD remain a persistent challenge, in-
cluding difficulty in defining time zero for an external control,
which could result in immortal time bias favoring the RCT group
(Burcu et al. 2020).

While there is interest in obtaining drug approvals using
single-arm studies, our method determines case weights for
the external controls by assessing how well the predictive dis-
tribution (based on the RCT) for their observation time data
aligns with the actual observed data for the external controls,
which is the uniqueness of hybrid control trials and analyses. In
order for the proposed approach to be feasible, one must have
some controls in the prospective trial. Thus, as constructed, this
method would not be directly applicable to purely externally
controlled trials.
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