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Research and Applications

Revealing chronic disease progression patterns using 
Gaussian process for stage inference
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Houston, TX 77030, United States, 3Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX 77030, 
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Abstract 
Objective: The early stages of chronic disease typically progress slowly, so symptoms are usually only noticed until the disease is advanced. 
Slow progression and heterogeneous manifestations make it challenging to model the transition from normal to disease status. As patient 
conditions are only observed at discrete timestamps with varying intervals, an incomplete understanding of disease progression and 
heterogeneity affects clinical practice and drug development.
Materials and Methods: We developed the Gaussian Process for Stage Inference (GPSI) approach to uncover chronic disease progression 
patterns and assess the dynamic contribution of clinical features. We tested the ability of the GPSI to reliably stratify synthetic and real-world 
data for osteoarthritis (OA) in the Osteoarthritis Initiative (OAI), bipolar disorder (BP) in the Adolescent Brain Cognitive Development Study 
(ABCD), and hepatocellular carcinoma (HCC) in the UTHealth and The Cancer Genome Atlas (TCGA).
Results: First, GPSI identified two subgroups of OA based on image features, where these subgroups corresponded to different genotypes, 
indicating the bone-remodeling and overweight-related pathways. Second, GPSI differentiated BP into two distinct developmental patterns and 
defined the contribution of specific brain region atrophy from early to advanced disease stages, demonstrating the ability of the GPSI to identify 
diagnostic subgroups. Third, HCC progression patterns were well reproduced in the two independent UTHealth and TCGA datasets.
Conclusion: Our study demonstrated that an unsupervised approach can disentangle temporal and phenotypic heterogeneity and identify 
population subgroups with common patterns of disease progression. Based on the differences in these features across stages, physicians can 
better tailor treatment plans and medications to individual patients.
Key words: disease progression; Gaussian process; unsupervised learning. 

Background and significance
As electronic health records (EHRs) have become more 
widely adopted, many disease progression models have been 
developed to understand disease progression. These models 
serve to stage disease severity, guide management, predict 
outcomes, and gauge treatment impact, offering early warn-
ings of potential decline. Young et al's “Subtype and Stage 
Inference”1 (SuStaIn) algorithm exemplifies this by identify-
ing specific patterns for a disease. However, such disease pro-
gression models often rely on linear approaches, which, 
despite their simplicity, may not fully capture the complex 
real-world disease progression.

Gaussian processes (GPs) have proven effective in revealing 
complex, non-linear patterns within medical data over 
time.2,3 Numerous studies have employed GPs to predict crit-
ical events like readmission and mortality.4,5 For instance, 
Cheng et al developed a Bayesian nonparametric model based 
on multi-output GP regression for hospitalized patient moni-
toring.6 Meng et al advanced this work with a multivariate 
GP model that captures dynamic interrelations among 

clinical variables.7 While the above supervised learning meth-
ods could learn a correlation structure within and between 
time series, they were not devised to infer disease stage infor-
mation from cross-sectional data.

Significance
Chronic diseases progress continuously from health to dis-
ease rather than through sudden shifts. However, defining 
this progression is difficult because staging information is 
often lacking or not precise. For instance, the Kellgren–Law-
rence (KL)8 grading system, while prevalent in osteoarthritis 
(OA) research, focuses on structural changes9 and may miss 
early-stage symptoms and functional decline in early stages.10

Similarly, the Liver Imaging Reporting and Data System (LI- 
RADS)11 encounters challenges in precise staging, which 
impacts the assessment of hepatocellular carcinoma (HCC) 
progression.12,13 These cases underscore the need for refining 
disease staging to improve treatment.14,15 To address these 
limitations, we present the Gaussian Process for Stage Infer-
ence (GPSI), an advanced method capable of inferring the 
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ordered sequence of pseudo-stages from unordered, high- 
dimensional data. Traditional models often fail to capture the 
complex progression of chronic diseases due to missing or 
inaccurate staging information. However, GPSI addresses 
this by constructing a latent space that reflects the inherent 
continuity of the data, preserving the proximity of related 
data points, and inferring a sequential order where none was 
previously apparent.

Gaussian Process for Stage Inference begins by hypothesiz-
ing a smooth, latent space where the proximity of points rep-
resents the data's inherent continuity. Starting with randomly 
assigned positions in this latent space, GPSI forms a probabil-
istic link to the observed data, refining each position to reflect 
precise probability distributions of the high-dimensional 
data. Through optimization that maximizes observed data 
likelihood, GPSI adjusts these positions to align with a logical 
sequence of disease progression. The result is a series of 
pseudo-stages, providing a framework for understanding an 
individual's phase in the disease process without relying on 
explicit staging data.

The selection of a covariance function is crucial as it articu-
lates our presumptions about the data's sequential nature. A 
function that ensures high similarity for closely situated data 
points permits the model to support a sequential interpreta-
tion consistent with disease progression.

We apply a multi-faceted validation strategy to validate the 
robustness and clinical applicability of GPSI. We assess the 
model's stability by verifying that the inferred pseudo-stages 
remain consistent across different data perturbations and 
exhibit a high intraclass correlation when applied to various 
data subsets. Furthermore, the clinical relevance of GPSI is 
evaluated by correlating the pseudo-stages with known dis-
ease stages, using Kendall's Tau for ordinal association. 
Meeting these criteria would indicate that the pseudo-stages 
reflect the disease's latent progression pattern, not merely a 
product of algorithmic construction.

Methods
Intuition
Due to their inherent complexity, chronic diseases are charac-
terized by diverse subgroups, each with a distinct progression 
pattern. We developed a two-stage framework for subgroup 
classification and trajectory mapping to address this hetero-
geneity. Initially, we utilized k-means clustering to group 
patients into more uniform subgroups based on inherent sim-
ilarities. K-means is favored for its simplicity and effi-
ciency,16–18 making it an excellent preparatory tool for 
reducing the computational load of the subsequent applica-
tion of complex models.

After identifying these subgroups, we estimated the stages 
of disease progression within each subgroup using GPSI. 
Gaussian Process for Stage Inference, a GP-based unsuper-
vised learning algorithm with an informative prior, enriches 
our understanding of disease progression by capturing the 
variation in data and ensuring stability across different 
observations.

Our two-stage framework was designed to adapt the 
diverse progression patterns—while some subgroups traced 
a simple, linear path, others navigated a more complex, 

non-linear course. The GP, a core component of our frame-
work, offers a dynamic non-linear mapping between latent 
factors and observed data and quantifies the associated 
uncertainty.

In general, our model aimed to deliver a holistic overview 
of disease evolution patterns, bypassing the need for prede-
fined staging. Such a model should facilitate detailed analyses 
of subgroup characteristics and capture a spectrum of disease 
progressions with uncertainty in our understanding of these 
patterns.

Detailed summarization
We developed a model that applies GP for non-linear map-
ping from a latent disease stage to observed EHR data. This 
mapping is typically defined by the mean function of the GP, 
and the covariance function describes the covariance between 
any two points within the latent space. Commonly, a mean 
function of 0 is adopted for simplicity, particularly with 
insufficient prior knowledge about the function to be studied. 
The covariance function then defines the relationship 
between two latent space points shaped by properties like 
smoothness and periodicity.

Figure 1A displays our model's design. We first prepro-
cessed the data, incorporating feature selection, handling 
missing values, and applying z-score normalization based on 
a healthy control mean and variance. This process began 
with univariate analysis to identify disease-linked features, 
employing chi-square tests for categorical and ANOVA for 
numerical features, only considering P-values below .05 sig-
nificant. K-nearest neighbors (KNN) followed for imputa-
tion, and we normalized features against the control group to 
highlight deviations of a disease state from the “normal” 
condition.

Figure 1B outlines the model fitting process. We used k- 
means clustering for subgroup identification and the elbow 
method to pinpoint the optimal number of subgroups. 
Then, we applied GPSI for precise stage estimation within 
each subgroup, catering to their specific progression pro-
files. The kernel function in GPSI is intended to capture 
potential smoothness and correlations between different 
stages by incorporating existing knowledge or beliefs.  
Figure 1C illustrates the basic procedure of stage inference 
with the GPSI, as detailed in the following section. Lastly, 
we used the Shapley Additive Explanations (SHAP) algo-
rithm19 to obtain explanations of the features driving dis-
ease progression.

Gaussian process for stage inference
Considering a dataset with N patients with P variables, the 
observed data X ¼ xif g

N
i¼1 are conditionally independent 

given a mean function l sð Þ and an observation covariance 
matrix R. These are predicted on the latent unobserved dis-
ease stage s ¼ s1; . . . ; sNf g; si 2 1; . . . ; ff g; where f stands 
for the number of stages. f may either be informed by prior 
knowledge of the disease or deduced from empirical data, for 
instance, by employing a high Kendall rank correlation coef-
ficient in bootstrap analyses as detailed in Section Internal 
validation. The corresponding results are discussed in the 
results section for each specific disease. For each j feature, the 
mean function lj is given an independent GP prior with a 
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covariance function K jð Þ; where K jð Þ s; s
0� �

denotes the cova-
riance between any two stages s and s

0

. The model is pre-
sented as follows in a hierarchical structure: 

xi � N l sið Þ; Rð Þ; i ¼ 1; . . . :; N

li ¼ GP 0; K jð Þ
� �

; j ¼ 1; . . . :; P

K jð Þ s; s
0� �
¼ exp

�
� kjðs � s

0

Þ
2
�
; j ¼ 1; . . . :; P

R ¼ diag r2
1; . . . ; r2

P

� �

kj � expðcÞ

r2
j � invgammaða;bÞ

si � Uð0; 1Þ

where s follows a uniform prior distribution and r2 

describes the prior variance, which follows an inverse gamma 
distribution with shape parameter a and scale parameter b. In 
general, the shape parameter a determines the shape of the 
distribution, with larger values leading to a more peaked dis-
tribution. The scale parameter b controls the spread or scale 
of the distribution, with larger values resulting in a wider dis-
tribution. The parameter k is the process variance, following 
an exponential distribution with rate parameter c and has an 
intuitive interpretation in the context of curve fitting. The 
likelihood of x given the latent stage s is conditionally inde-
pendent across features, so 

P Xjs; r2; k
� �

¼
YP

j

pðxjjs; r2
j ; kj Þ

p xjjs; r2
j ; kj

� �
¼ Nðxjj0; K jð Þ kj; s

� �
þr2

j IÞ

Therefore, the objective function for Maximum A Posterior 
(MAP) estimation is 

p s; k; r2� �
3
YP

j¼1

Nðxjj0; K jð Þ kj; s
� �

þr2
j IÞ�

YN

m¼1

YN

n¼mþ1

ðsm � snÞ

Notably, the kernel function should have a different form for 
different applications. For example, the kernel function 
should include a periodic function with sin and cos forms for 
the features with circadian rhythm.

Inference
We assume the model's unknown parameters to be distrib-
uted according to a multivariate Gaussian distribution. To 
estimate these parameters—which include the stage variables 
s, rate parameter k, and variance r2—we implemented the 
Metropolis–Hastings (MH) algorithm using a random-walk 
strategy, where random perturbations from a normal distri-
bution are used to explore the parameter space. The process 
begins with the initialization of the model's hyperparameters 
(a;b; c) of the model, as well as s; k; r2. We then calculate 
the posterior distribution of these parameters given the 
observed data and current estimates of hyperparameters.

Following initialization, we compute the complete log- 
likelihood. Proposed parameter samples are then evaluated: 
they are accepted if they increase the likelihood, or rejected 
otherwise, maintaining the current parameter values. If 
accepted, the parameter set—including latent variables and 
hyperparameters—is updated to these new proposed values.

The optimization continues with iterations of the MH 
algorithm to refine the parameter estimation. This iterative 
process is repeated until convergence is achieved, ensuring 

Figure 1. Overall schema. (A) The overall schema of the model. The model is divided into data processing, disease progression for each subgroup, and 
interpretability. (B) The general procedure of model fitting, including subgroup estimation with k-means, determination of the optimal number of 
subgroups with elbow method, and stage inference with GP in the blue box (C) The detailed procedure for stage estimation using the Gaussian process.
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the parameter estimates are robust and accurately reflect the 
underlying data structure.

Internal validation
To ensure the robustness of the inferred stage information, 
we used 1000 bootstrap resampling across different potential 
stage numbers. We computed the Kendall rank correlation 
coefficient (Kendall's Tau)20 to measure the order consistency 
between inferred stages from two consecutive samples during 
each resampling. The goal was to determine the stage count 
that yielded the highest average Kendall's Tau.

Kendall's Tau was designed to assess the consistency of 
progression patterns. Kendall's tau values ranged from − 1 
(100% disagreement in rank) to 1 (100% agreement in 
rank), while 0 indicated no correlation. We deemed the stage 
identification robust when the mean Kendall's Tau exceeded 
0.5, indicating a strong ordinal association.

Consider two ordering sequences SA and SB, for any pair of 
two observations x1 and x2, their positions in the sequences 
are denoted by x1A and x2A for SA, and x1B and x2B for SB, 
respectively. Moreover, x1 and x2 would concordant; if 
x1A< x1B, then x2A < x2B. Otherwise, they would be discord-
ant. The Kendall s is calculated as: 

s ¼
number of concordant pair � number of discordant pairs

total number of pairs 

Datasets and feature selection
The Osteoarthritis Initiative
The Osteoarthritis Initiative (OAI) is a repository for data on 
OA, a joint condition known for causing knee pain and stiff-
ness. We leveraged OA imaging and clinical data from the 
OAI (https://www.niams.nih.gov/grants-funding/funded- 
research/osteoarthritis-initiative), involving 1356 participants 
aged between 45 and 79 with recorded imaging scans and 
demographic information. The distribution of participants is 
presented in Table S1. The radiographic markers in this study 
were extracted from MRIs and X-rays, including minimal 
cartilage thickness, joint space narrowing (JSN), and relative 
areas of denuded bone.

Adolescent brain cognitive development
Bipolar disorder (BP), also known as manic-depressive illness, 
manifests through severe mood oscillations, including manic 
and depressive episodes. Our BP research utilizes data from 
the Adolescent Brain Cognitive Development Study (ABCD) 
repository (https://nda.nih.gov/abcd/), selecting a subset of 
3211 participants aged 9 to 11, including 1607 females. The 
participants' distribution is cataloged in Table S1. The study 
evaluated morphometric data to understand this condition's 
neurological basis, specifically the cortical volumes across 68 
cortical21 and 40 subcortical regions.22

Hepatocellular carcinoma datasets
Hepatocellular carcinoma is the primary form of liver cancer, 
arising from mutative alterations in liver cells. We sourced 
HCC-related information from two distinct cohorts: 
UTHealth and The Cancer Genome Atlas (TCGA). The 
UTHealth study comprised 144 patients, while TCGA had a 
sample size of 119. The distribution of participants is pre-
sented in Table S1. From MRI scans, we derived 16 

quantifiable features for our analysis, including tumor size, 
margin sharpness, and maximum lesion area, with an 
extended overview given in Table S2.

Results
Robustness of GPSI in recovering predefined disease 
progression using synthetic data
In this study, we compared the performance of the GPSI with 
SuStaIn in recovering a predefined progression using synthetic 
data. We generated a dataset of 500 samples across five features 
with 16 predefined ground-truth stages. The general change of 
features over time is defined in Figure 2A. The details of gener-
ating synthetic data are presented in Section S3.

Figure 2B illuminates the comparative performance of 
GPSI and SuStaIn in recovering predefined feature trajecto-
ries. The gray dot represents the results estimated by SuS-
taIn, the blue dot stands for the ground truth, and the green 
dot shows the results obtained by GPSI. Between stages 1 
and 6, GPSI identified a significant change in feature 2, 
aligning with the ground truth, contrasted with SuStaIn, 
which identified feature 4. From stages 6 to 11, both GPSI 
and SuStaIn concurred in identifying substantive changes in 
features 1 and 5. Between stages 11 and 16, feature 4 was 
identified by GPSI, aligning with the ground truth, where 
SuStaIn identified changes in feature 2. In the end, feature 3 
was successfully identified by both methods. Though both 
methodologies proficiently captured feature shifts during 
the mid and late stages, GPSI demonstrated additional 
adeptness at identifying variations during the early stages of 
progression.

We performed an additional comparison using two simu-
lated datasets with different signal-to-noise ratios (SNRs).  
Figure 2C shows the inferred stage distribution of each model 
using data with SNR¼5 and Figure 2D shows results for 
SNR¼1. In summary, GPSI demonstrated robustness and 
higher accuracy than SuStaIn in high-noise data.

GPSI application for identifying OA progression patterns
Utilizing the GPSI on data from the OAI, we divided OA pro-
gression into 15 distinct stages, revealing two separate sub-
groups, as depicted in Figure 3A and B. Figure 3C delineates 
the unique progression patterns of these subgroups, discerned 
without prior genotype information. Subgroup 1 patients 
first suffered comorbidity impacts before displaying reduced 
cartilage thickness and joint space, concluding with substan-
tial subchondral bone area reduction and acute pain. Con-
trastingly, subgroup 2 began with JSN, followed by a 
decrease in subchondral bone area and then cartilage thick-
ness, with comorbidities manifesting subsequently.

The reliability of the assigned stages and subgroups was 
assessed to probe the GPSI's stratification capability. We 
began our analysis by comparing the distribution of stages 
inferred through GPSI between the healthy group and the OA 
group (those with a KL score of �2). We observed a distinct 
separation between the healthy and the disease groups, as 
illustrated in Figure 3D. In Figure S11, the silhouette plots of 
OA are presented, revealing the highest silhouette score of 
0.55 when n¼2. Subsequent analysis of intra-cluster similar-
ity within each stage yielded an average similarity of 69%, as 
detailed in Figure S7A and B. The heatmap of inter-cluster 
dissimilarity for each pair of stages is presented in Figure S8A 
and B, illustrating the distinctions and separations between 
different stage pairs. The correlation between the inferred 
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Figure 2. Simulated dataset. (A) The predefined disease progression within five features. (B) The major biomarker changes in each stage. (C) The inferred 
stage distribution of model (Gaussian Process for Stage Inference [GPSI], SuStaIn and ground truth) using data with signal-to-noise ratio (SNR)¼5. (D) The 
inferred stage distribution of model (GPSI, SuStaIn and ground truth) using data with SNR¼1.

Figure 3. Osteoarthritis (OA) dataset. (A) Elbow methods for subgroup estimation. (B) Boxplot of the Kendall rank correlation of the increasing number of 
maximized stages. (C) Two major OA development patterns identified by Gaussian Process for Stage Inference (GPSI). (D) The distribution of healthy 
patients and OA patients. (E) The importance (SHAP value) of each imaging biomarker in predicting the risk of progression to the severer stage. (F) 
Scatter plot of three major diagnostic groups in two genotypes.
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stage and the KL was quantified using Kendall's Tau, yielding 
an average value of 0.72 (Figure S9A). Following this, the 15 
stages were mapped into four-class KL grades, with the heat-
map of the OA confusion matrix being presented and demon-
strating an accuracy of 0.78 (Figure S9B).

Since the KL system is insensitive to changes in the disease 
progression,10 we also compared the inferred stages with the 
Western Ontario and McMaster Universities Osteoarthritis 
Index (WOMAC) pain score and disability score23 in Figure 
S9C and D. The WOMAC pain score is the subscale for eval-
uating the level of pain the individual experiences during vari-
ous activities like walking, using stairs, lying in bed, sitting or 
lying, and standing upright. The WOMAC disability score is 
the physical function subscale for assessing an individual's 
difficulty when performing daily activities, including ascend-
ing or descending stairs, rising from sitting, standing, bend-
ing, and walking. Although the pain score and disability 
score are obtained from questionnaires, which inherently 
have a subjective component, we still can see that patients 
might experience an initial increase in pain or disability with 
stage progression.

Figure 3E illustrates the contribution of each image feature 
to different KL grades calculated by SHAP. For example, JSN 
is crucial in the middle stage, while osteophytes in the tibia 
medial compartment are essential in the early stage. Figure 4 
shows the dynamic contribution of features over time based 
on the available seven years of follow-up data. Decreasing 
variable values in the salmon ribbon represent the patient's 
knee gradually deteriorating, while the variables in the blue 
ribbon indicate a recovering status of the knee. In this case, 
we found that narrowing joint space in the medial compart-
ment led to worsening knee status, with knee alignment as 
the most crucial feature to indicate recovery. Some features, 
like the lateral compartment's JSN, predominated the predic-
tion of deterioration early and recovery later.

We further checked the genotypes of identified subgroups 
(Figure 3F) using genome-wide association study (GWAS) with 
PLINK.24 Peroxisome proliferator-activated receptor gamma 
(PPARG) genotypes were the main contributors to subgroup 2, 
whereas cadherin-like and PC-esterase domain containing 1 
(CPED1) genotypes were the main contributors to subgroup 1. 
Early studies have shown that mutations in the PPARG gene 

can increase the risk of developing obesity.25 In addition, over-
expression of PPARG in mice leads to increased adiposity and 
insulin resistance.26 Several studies have suggested that CPED1 
can regulate bone density through different mechanisms 
depending on age and sex.27–29

GPSI application for identifying BP progression patterns
The GPSI segmented BP progression into 15 developmental 
stages, categorized into two distinct subgroups (Figure 5A 
and B). Figure 5C shows the disease development sequence of 
type I (BP-I) and type II (BP-II). In the case of BP-I, significant 
atrophy first occurs in the central sulcus. Other parietal and 
frontal areas become involved subsequently, while the cuneus 
is only affected in the late stages. Contrastingly, in BP-II, sig-
nificant atrophy first occurs in the cuneus, followed by the 
subsequent involvement of the cingulate and central sulcus.

Figure 5D and F illustrates that the distribution of stages 
inferred by GPSI exhibits variations between different diag-
nostic groups, implying distinct patterns among the healthy, 
BP-I, and BP-II groups. In Figure S12, the silhouette plots of 
BP are presented, revealing the highest silhouette score of 
0.43 when n¼2. Subsequent analysis of intra-cluster similar-
ity within each stage yielded an average similarity of 90%, as 
detailed in Figure S7C and D. The heatmap of inter-cluster 
dissimilarity for each pair of stages is presented in Figure S8C 
and D, illustrating the distinctions and separations between 
different stage pairs.

Figure 5E presents how each image feature contributes to a 
different BP type calculated by SHAP. Bipolar II disorder has 
two significant features: mean diffusivity (MD) within the 
parcellation of sub-adjacent white matter and MD within the 
parcellation of cortical gray matter. In contrast, age and aver-
age longitudinal diffusivity (LD) within the parcellation of 
sub-adjacent white matter are critical factors in BP-I. Mean 
diffusivity reflects the average magnitude of water diffusion 
within a given voxel or region of interest, while LD demon-
strates the degree of water diffusion in the axial direction.

GPSI-predicted HCC progression pattern reproduction in 
two independent clinical datasets
Hepatocellular carcinoma development had nine stages with-
out distinct subgroups using UTHealth data (Figure 6A and 

Figure 4. Dynamic feature importance. Dynamic importance of each imaging biomarker. Shaded areas show the three most important input features 
towards either non-survival (pink) or survival (blue) during the seven-time points. High opacity reflects high relative feature importance. Numbers are used 
to identify the features; labels are added whenever a feature is outranked by another.

Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 2                                                                                                      401 

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/31/2/396/7459188 by H
AM

-TM
C

 Library user on 14 February 2024

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad230#supplementary-data


C). The results were similar in the TCGA dataset (Figure 6B 
and D). Figure 6E displays the HCC progression patterns 
identified by the GPSI. The trajectory was identical in the 
TCGA dataset, so it is not shown.

We initiated our analysis by comparing the distribution of 
GPSI inferred stages across each LR grade, observing a con-
sistent increase in the inferred stage as the LR grade increases 
(Figure 6F and G). Following this, Kendall's Tau was utilized 
to delve deeper into the UTHealth and TCGA datasets. The 
boxplot depicted in Figure S10A illustrates the Kendall rank 
correlation between inferred stages and LR grade, revealing 
averages of 0.95 and 0.94 for the UTHealth and TCGA data-
sets, respectively.

We then mapped the nine stages into five-class LR grades, 
and the heatmap of the HCC confusion matrix for UTHealth 
and TCGA achieved average accuracies of 0.67 and 0.61, 
respectively (Figure S10B and C). The mapping was as fol-
lows: stage 1 to LR1, stages 2 and 3 to LR2, stages 4–6 to 
LR3, stages 7 and 8 to LR4, and stage 9 to LR5. The chal-
lenge in distinguishing LR3 and LR4 is the primary reason 
causing the low accuracy. The LR3 and LR4 patients are in 
the middle of developing HCC, where their lesions are non-
specific. Even experienced radiologists sometimes struggle 
when classifying these two, and the actual probabilities of 
HCC associated with LR3 and LR4 remain obscure.12

A more granular analysis of the staging includes an explo-
ration of intra-cluster similarity within each stage, revealing 
an average similarity above 84% (Figure S7E and F) and a 
heatmap of inter-cluster dissimilarity among all stage pairs, 
showcased in Figure S8E and F.

Figure 6H shows how each image feature contributed to 
different LR grades in the UTHealth dataset. For example, 

the tumor's hypodense halo and area ratio over the liver were 
crucial in the LR4 stage, while the number of lesions was 
essential in the early stage. Figure 6I presents how each image 
feature contributed to different LR grades in the TCGA. The 
hypodense halo still played a crucial role in the LR4 stage, 
while the number of lesions was a critical factor in the early 
stage.

Discussion
We developed the GPSI approach to uncover chronic disease 
progression patterns and assess features' dynamic contribu-
tions to the diseases. Unlike methods dependent on clinical 
staging, GPSI extracts progression timelines directly from 
cross-sectional data, negating the need for longitudinal data-
sets. Gaussian Process for Stage Inference's innovation lies in 
its allowance for non-linear feature trajectories and its ability 
to integrate additional covariates, unveiling pertinent trends 
in feature progression.

Moreover, GPSI distinctively accounts for the uncertainties 
in event sequencing attributable to measurement noise and 
population diversity. In contrast to machine learning 
approaches that provide only point estimates, GPs offer a 
predictive mean and variance, quantifying uncertainty in data 
point positioning. This uncertainty quantification is vital for 
informed clinical decision-making, particularly in under-
standing the confidence level in predicted outcomes.

When applying GPSI to the OAI dataset, we identified two 
distinct subgroups where further GWAS analysis indicated 
that these two subgroups corresponded to two gene groups: 
PPAR and CPED1. Subgroup 1 predominantly shared a 
CPED1 genotype, suggesting a connection to bone- 

Figure 5. Bipolar disorder (BP) dataset. (A) Elbow methods for subgroup estimation. (B) Boxplot of the Kendall rank correlation of the increasing number 
of maximized stages. (C) Two major BP development patterns identified by Gaussian Process for Stage Inference (GPSI). (E) The relative importance 
(Shapley Additive Explanations [SHAP] value) of each imaging biomarker in predicting the risk of progression to the severer stage. (D) The distribution of 
control (healthy) group and BP type I patients. (F) The distribution of control (healthy) group and BP type II patients.
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remodeling pathways. In contrast, subgroup 2 shared a PPAR 
genotype, indicating an association with obesity-related path-
ways. The regulatory roles of PPARc in fat cell differentiation 
and inflammation suggest its potential impact on metabolic 
and inflammatory aspects of OA.30,31 Conversely, CPED1's 
involvement in matrix remodeling may affect cartilage integ-
rity in the disease.28,27,32,33

Our analysis with GPSI also demonstrated a clear distinc-
tion between healthy individuals and those with bipolar I and 
II disorders, correlating specific white and gray matter 
changes with each condition. This underscores GPSI's ability 
to refine stage information, providing a sharper diagnostic 
classification across disease stages.

The refined staging information of the GPSI provided a 
more accurate diagnosis classification, especially in the early 
and late stages. In the OA case, the KL grade failed to capture 
the nuanced progression of the disease.10 For example, we 
found that comorbid conditions differentiated patients with 
higher pain scores but the same KL grade. This indicates the 
role comorbidities play in pain exacerbation and the disease's 
interaction with other health issues.

Similarly, in HCC analysis, GPSI helped to discern patterns 
in lesions that could indicate disease stages, aiding in the clas-
sification of ambiguous cases like LR3 and LR4 lesions. We 

observed that tumor margin irregularities and size provided 
significant clues for staging.

However, GPSI's current form does not support out-of- 
sample predictions, presenting challenges when integrating 
new patient data with an existing model. Future work will 
explore back constraints to enable new data projection into a 
pre-established latent stage space without retraining the 
model. Such enhancements will aid in the practical applica-
tion of GPSI, allowing for continued use as new data 
emerges. Another concern is that although GPSI offers a 
robust way to capture intricate patterns in data, it may not 
always be necessary for linear progressions. It is imperative 
to conduct exploratory data analysis (EDA) to discern the 
underlying data relationship prior to application. Gaussian 
Process for Stage Inference's sensitivity to initial settings also 
calls for multiple initializations to ensure result stability, 
which we plan to address in further developments.

Conclusion
In sum, we developed an unsupervised approach for studying 
and characterizing progression patterns for three chronic dis-
eases in unique detail. Based on the differences in these fea-
tures across stages, physicians can better tailor treatment 

Figure 6. Hepatocellular carcinoma (HCC) dataset. (A) Elbow methods for subgroup estimation using UTHealth. (B) Elbow methods for subgroup 
estimation using TCGA. (C) Boxplot of the Kendall rank correlation of the increasing number of maximized stages using UTHealth. (D) Boxplot of the 
Kendall rank correlation of the increasing number of maximized stages using TCGA. (E) HCC development patterns identified by Gaussian Process for 
Stage Inference (GPSI) using UTHealth and TCGA dataset. (F) The comparison between GPSI staging vs. Liver Imaging Reporting and Data System (LI- 
RADS) grading system in UTHealth. (G) The comparison between GPSI staging vs LI-RADS grading system in TCGA. (H) The relative importance (Shapley 
Additive Explanations [SHAP] value) of each imaging biomarker in predicting the LI-RADS in UTHealth dataset. (I) The relative importance (SHAP value) of 
each imaging biomarker in predicting the LI-RADS in TCGA dataset.
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plans and medications to individual patients. In short, refin-
ing disease staging can help advance medical research by 
allowing for more precise and targeted studies, leading to a 
better understanding of disease mechanisms.
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