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A Frame-Based NLP System for Cancer-Related Information Extraction  

Yuqi Si, MS1, Kirk Roberts, PhD1 
1School of Biomedical Informatics 

The University of Texas Health Science Center at Houston 

Houston, TX, USA 

Abstract 

We propose a frame-based natural language processing (NLP) method that extracts cancer-related information from 

clinical narratives. We focus on three frames: cancer diagnosis, cancer therapeutic procedure, and tumor description. 

We utilize a deep learning-based approach, bidirectional Long Short-term Memory (LSTM) Conditional Random 

Field (CRF), which uses both character and word embeddings. The system consists of two constituent sequence 

classifiers: a frame identification (lexical unit) classifier and a frame element classifier. The classifier achieves an F1 

of 93.70 for cancer diagnosis, 96.33 for therapeutic procedure, and 87.18 for tumor description. These represent 

improvements of 10.72, 0.85, and 8.04 over a baseline heuristic, respectively. Additionally, we demonstrate that the 

combination of both GloVe and MIMIC-III embeddings has the best representational effect. Overall, this study 

demonstrates the effectiveness of deep learning methods to extract frame semantic information from clinical narratives.  

Introduction 

The past decade has seen a massive increase in the amount of data stored in electronic health record (EHR). Patient 

data consists of both structured data and unstructured (free-text) data. Free-text data such as clinical notes, discharge 

summaries, lab reports, and pathology reports are documented in detail by healthcare professionals during the course 

of patient care. Compared to the structured data within the EHR, free-text data often conveys more granular and 

contextual information of clinical events, as well as enhancing communication between clinical teams. As such, 

extracting information from these document resources is valuable to supporting a multitude of aims, from clinical 

decision support and quality care improvement to the secondary use of clinical data for research, public health, and 

pharmacovigilance activities. 

In this paper, we take a frame-based approach to extracting cancer-related information. Frames are schematic 

representations of situations based on the theory of frame semantics that involve a series of participants such as events, 

states, and relations1. In frame semantics, the words or phrases that trigger the frame are known as lexical units (LU), 

and the frame elements are described as the participants or roles of a frame that defines the characteristics or attributes 

associated with the lexical units. Using the cancer diagnosis frame as an example, the lexical units are different types 

of cancer (e.g., melanoma, carcinoma) and the frame elements are cancer-related information one would expect to see 

that describing a particular cancer, such as status, histological characteristics, and the anatomic location of a tumor. 

Our study utilizes a machine learning method for extracting the cancer-related information. Machine learning 

approaches have been widely adopted in clinical NLP clinical tasks such as concept recognition and relation extraction. 

Traditional machine learning and statistical approaches such as conditional random fields (CRF), support vector 

machines (SVM), or hidden Markov models (HMM) have been widely used for information extraction of rich free-

text data in EHR2. However, these traditional machine learning methods require a set of manually hand-crafted 

features and often suffer in terms of performance. More recently, deep learning techniques have been successfully 

implemented in many domains due to its power of identifying hidden patterns in large amounts of data and 

consequently better performance than traditional machine learning3. There remains a huge potential for deep learning 

methods to extract information from clinical notes given the intricacy of free text. The most widely-used neural 

networks for concept recognition and relation extraction are convolutional neural networks (CNN), recurrent neural 

networks (RNN), and RNN variants such as bidirectional Long Short-Term Memory (Bi-LSTM). 

The rest of this paper is organized as follows. First, we describe the relevant prior work, notably in cancer information 

extraction and deep learning for clinical NLP. Next, we outline our prior work in developing the dataset and its 

corresponding annotation process, including a detailed description of the cancer frames. Then, we detail the deep 

learning model used to extract the frames. After that, we describe our experiments and results. Finally, we conclude 

with a discussion, including the limitations of the method and directions for future work. 
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Background 

 

1. Cancer-related information extraction 

Many efforts have focused on extracting cancer-related information from clinical records. Similar studies to ours have 

applied either rule-based methods or traditional machine learning methods (or combination of both) to identify 

different varieties of cancer-related information. Taira et al.4 proposed an automatic frame-structured representation 

of radiology reports. Xu et al.5 explored the performance of an existing NLP system, MedLEE, in capturing narrative 

and tabular information related to cancer. Weegar and Dalianis6 developed a rule-based system for extracting cancer-

related information from breast cancer pathology reports. McCowan et al. 7 adopted a support vector machine approach 

in order to extract TNM stages listed in cancer staging protocols with the Cancer Stage Interpretation System (CSIS). 

D’Avolio et al.8 applied a rule-based method including regular expressions to parse Gleason scores and TNM stages 

from prostate cancer post-operative pathology reports. Coden et al. 9 proposed an integrated cancer disease knowledge 

representation model (CDKRM) in order to process cancer and its progression through another clinical NLP system, 

Medical Text Analysis System. Cheng et al.10 discerned tumor status, magnitude and significance from MRI brain 

reports using both SVMs and a rule-based system. Ou and Patrick11 applied a CRF-based system to extract melanoma-

related entities including metastasis, site, and size from primary cutaneous melanoma pathology reports. Yala et al.12 

demonstrated that using machine learning methods to extract breast cancer-related information from pathology reports 

is effective. Denny et al.13 conceived the use of clinical NLP to aid in cancer screening by identifying patients in need 

of a colonoscopy by extracting terms of interest from colon cancer testing reports through the Knowledge Map 

Concept Identifier (KMCI) system. Napolitano et al.14 defined a rule-based method to identify different formats of 

Gleason score, Clark level, and Breslow depth. Wilson et al.15 classified ancillary cancer history for mesothelioma 

patients by using two kinds of rule-based methods, Dynamic-Window and ConText, with the assistance of domain-

specific lexicons. Martinez and Li16 used a traditional machine learning classification method to extract colorectal 

cancer diagnosis and staging information from pathology reports at the document level. Herkema et al.17 demonstrated 

that an NLP system can be tailored to aid in quality measurements for colonoscopy procedures. As we have listed 

here, it is widely acknowledged that different types of cancer information are overlapping to a large extent18-24. It is 

our hope that by focusing on a frame semantic approach, relevant and consistent information should be integrated 

together instead of relying on developing task-specific NLP systems. 

2. Deep learning in biomedical language domain 

There has also been a significant amount of attention paid by researchers to the use of deep learning for processing 

biomedical text, including not only clinical narratives, but scientific literature articles, drug labels, and other types of 

biomedical text. Chalapathy et al.25 proved the effectiveness of the Bi-LSTM-CRF model by experimenting on a set 

of public dataset, 2010 i2b2/VA challenge26, especially when using GloVe embeddings. Wu et al.27 demonstrated the 

increased performance of the RNN model by comparing a convolutional neural network (CNN) and an RNN on the 

2010 i2b2/VA datasets. Further, Liu et al.28 proved that the RNN can achieve the state-of-the-art performances on 

i2b2 201027, i2b2 201229, and i2b2 201430 corpora. Habibi et al.31 compared traditional CRF and Bi-LSTM-CRF 

method with different embeddings on several biomedical corpora and drew the conclusion that deep learning methods 

with domain-specific embeddings can largely improve recall without significant cost of precision, thereby increasing 

overall model performance. Gridach et al.32 demonstrated the effectiveness of character-level embeddings with a 

Bi-LSTM-CRF. Jagannatha et al.33-34 experimented and assigned clinical-related labels to each word in clinical notes 

by using several variants of RNNs including Bi-LSTM, combinations of Bi-LSTM with CRF, Bi-LSTM CRF with 

pairwise modeling, and approximate Skip-chain CRF. They showed that variants of LSTM outperformed other 

methods especially in terms of attributes with intricate phrases like medication duration or frequency. Xu et al.35 

applied Bi-LSTM-CRF to extract adverse drug reaction for the 2017 TAC track36 and achieved the best overall results 

in the challenge. Tao et al.37 used word embeddings trained on MIMIC-III38 as the features of a machine learning 

model to extract prescription information from clinical notes. Gehrmann et al.39 carefully compared outputs from an 

existing NLP pipeline, cTAKES, with CNN and concluded that the CNN is an alternative method in terms of patient 

phenotyping tasks and should be integrated into systems like cTAKES in order to improve predictive models. Luo et 

al.40-41 proposed a novel segment-level deep neural network model to classify relations in clinical notes, which is one 

of the early investigations in how to use neural networks for medical relation classification. Models only used word 

embedding that were trained on MIMIC-III for features. The author also showed the benefits of segment-level over 

sentence-level classification for relation extraction.  
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Method 

1. Dataset and Annotation 

The dataset and annotation processes are described in detail in Roberts et al42. Here, we describe the data in brief. We 

focus on frames based on typical cancer phenotype tasks involving the extraction of cancer diagnoses, cancer 

therapeutic procedures, and tumor descriptions. These correspond to three frames, respectively: CANCER_DIAGNOSIS, 

CANCER_THERAPEUTIC_PROCEDURE, and TUMOR_DESCRIPTION. An expert physician devised a list of lexical units 

(trigger phrases) and corresponding elements (attributes) for each frame. The elements were determined by an iterative 

process by which elements with sufficient frequency and importance were included in the schema. The final list is 

shown in Table 1. With the approval of UT Health Institutional Review Board, under protocol number HSC-SBMI-

13-0549, we extracted cancer-related clinical notes from the UT Physicians data warehouse. Sentences containing 

candidate lexical units were extracted from the note. To avoid duplicate sentences and improve sentence diversity, the 

sentences were sorted by TF-IDF cosine distance. The sentences were manually de-identified and checked by an 

automatic de-identification system. The frame annotation was performed in Brat43 by two annotators and then 

reconciled by an expert in clinical NLP.  

Table 1. Frame Lexical Units and Elements 

Frame  

Lexical Units 

Frame  

Element  

Description  

CANCER_MASTER_FRAME  
CERTAINTY  Certainty/hedging of frame (e.g., possible, likely)  
DATETIME  Temporal information for the frame   
POLARITY  Existence/negation of frame (e.g., no, positive) 

CANCER_DIAGNOSIS  
  

adenocarcinoma, 

cancer, carcinoma, 

leukemia, lymphoma, 

malignancy, 

malignant, 

melanoma, myeloma, 

sarcoma 

FAMILYHISTORY  Specifies a family member with the diagnosis  

HISTOLOGY  Histological description  

LOCATION  Part of body associated with the cancer 

PATIENT  Reference to the patient (e.g., patient, female) 

QUANTITY  Some quantitative measure of the cancer 

STATUS  Diagnostic status (e.g., history, ongoing)  

CANCER_THERAPEUTIC_PROCEDURE 

colectomy, 

hysterectomy, 

lymphadenectomy, 

mastectomy, 

palliative, 

pancreatectomy, 

prostatectomy, 

radiation, whipple  

AGENT     Agent performing the procedure (e.g., surgeon) 

COMPLICATION Unexpected, undesirable outcome of procedure 

(e.g.nausea) EXTENT Extent of the procedure (e.g., partial) 

LOCATION Part of body procedure targets 

PATIENT  Reference to the patient (e.g., patient, female) 

RESULT  Result of the procedure (e.g., successful, negative) 

STATUS  Procedure status (e.g., planned, postoperative)  

TUMOR_DESCRIPTION 

lesion, mass, tumor  LOCATION  Part of body tumor is located in  
MALIGNANCY  Whether the tumor is benign or malignant  
MARGINSTATUS  Description of tumor margin (e.g., superficial edge)  
METASTASIS  Whether the tumor has metastasized   
PATIENT  Reference to the patient (e.g., patient, female)   
QUANTITY  Some quantitative measure of the tumor   
RECURRENCE  Whether the tumor has recurred  
RESECTABILITY  Indicator of whether tumor is resectable   
MORPHOLOGY  Morphology of tumor   
SIZE  Diameter/volume of tumor, including unit (e.g., 3-4 mm)  
SIZETREND  Trend in tumor size over time (e.g., increasing, 

decreasing, stable) 
 

STAGE  Stage number (e.g., stage IV)  
STATUS  Tumor status (e.g., present, active)  
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2. Model and Architecture 

This section details the components of the neural network and as well as the embedding philosophy employed to 

improve extraction performance. 

Bi-LSTM CRF Networks 

Long Short-Term Memory (LSTM) network is an extension of recurrent neural networks (RNN) and are capable of 

coping with long term dependencies by minimizing vanishing gradient problems. Further, apart from the forward 

sequence representation (first word to last word in the sentence) that makes use of previous context, by concatenating 

a second LSTM network that processes the same sequence in reverse (last word to first) should capture both past and 

future information. This forward and backward LSTM was introduced as bidirectional LSTM44. However, in the 

decoding layer, the network still makes independent token-level labeling decisions, which is not well-suited for 

concept recognition or relation extraction since sequential information is an important factor in language.  Therefore, 

to consider the correlations and jointly decode the best series, a linear-chain conditional random field (CRF) algorithm 

was applied in a Viterbi-style manner in the decoding layer instead of independent decoding. For the CRF layer, a 

state transition matrix score was calculated. The final score from the Bi-LSTM network along with the transition score 

was used to make a decision on sequence prediction. The overall neural network follows the structure proposed in 

Lample et al45. 

Embedding  

Medical text information is characterized by its complexity in vocabulary and richness in morphology. Therefore, 

using character embeddings to capture morphological information from complex medical terms can avoid out of 

vocabulary problems and compensate traditional word embeddings. We implemented a Bi-LSTM neural network and 

adjoined the output vector from both forward and backward sequences to obtain a vector of the final character 

representation. The initial character embedding was randomly assigned, but dynamically altered during training. 

Besides this character representation, we also applied pre-trained word embeddings, which have been shown to result 

in significant improvements in many NLP tasks. Due to the fact that word embeddings vary largely between general 

and specific domains, we performed experiments from different public resources. Thus, we make full use of contextual 

representation of each word by feeding into both character embeddings along with pre-trained word embeddings of 

the same word into the input layer of the neural network. 

System Architecture and Pipeline 

We propose a sequence labeling pipeline that extracts lexical units and elements in two steps. Figure 1 shows the main 

architecture of the system. The first step is a traditional concept recognition system that identifies all the frame-evoking 

lexical units in one sentence. As shown in Figure 1, the sentence has three lexical units predicted by the first system: 

cancer → B-CANCER_DIAGNOSIS, prostatectomy → B-CANCER_THERAPEUTIC_PROCEDURE, and melanoma → 

B-CANCER_DIAGNOSIS. Note that in the second step, during training we assign the lexical unit of interest in each 

sentence with a new tag called “B-<#Target#>” to make the system aware about which word is the lexical unit in the 

current sentence. Then the system splits the sentences into three samples and each sample has one lexical unit and its 

corresponding elements. For example, in sample 1, cancer was labeled as B-<#Target#> and the elements of this 

cancer: man, hx, prostate were labeled as B-PATIENT, B-STATUS, and B-LOCATION, respectively. Other lexical units 

and elements were not marked in this sample; thus, we emphasized the position information of the lexical unit to the 

element identifier system and avoid being confused with multiple candidate lexical units. Last, we merge the split 

sentences into the final output. In this way, we integrated cancer information into one large architecture. At run time, 

when a new sentence comes in, the first system would identify the lexical units in this sentence and transfer the 

identified lexical unit outputs into the input of the second system that could extract all the associated elements.  

3. Experiment and Evaluation 

The annotated data was split into training, testing, and validation sets, with a ratio of 80 percent for training, 10 percent 

for testing and 10 percent for validation. The details of sample size information are shown in Table 2. The input 

embedding layer is concatenated with character representation with 100 dimensions and word representation. We 

implemented different word embedding methods: 300-dimesion GloVe embeddings, 100-dimension medical domain 

embeddings, and the combination of the two. The GloVe embeddings were pre-trained on 6 billion words from 

Wikipedia and web text46.  For the medical domain embeddings, we adopted the pre-trained embeddings from a 

previous study47, which was induced from the publicly available medical dataset MIMIC III. We also experimented 

by using GloVe and MIMIC-III embedding together with a dimensionality of 400. 
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Figure 1. Main Architecture of the System 
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Table 2.  Descriptive statistics of train, test, and dev set. 

Type Train size Test size Dev size 

Frame Lexical Units 5696 759 708 

Frame Elements 9108 1178 1092  
  

During the training process, sentences and labels are split into two types of input data lists that contain all the necessary 

information. The first input list contains only lexical units with labels and are fed into the first system that can identify 

all lexical units in the sentence. The second input list consists of several labeled sentences and each sentence only has 

one lexical unit with its corresponding elements. All sentences in the second list are the input of the second system 

that extracts the elements of the target lexical units and classifies the relations between the lexical unit and candidate 

role in one step. During training, the gold standard lexical unit is fed into the second system. The final Bi-LSTM CRF 

neural network has one hidden layer that was implemented in Tensorflow48 on an NVidia Tesla GPU with the cuDNN 

library. We compare several combinations of parameters on the validation set and finally settle the following 

parameters: hidden unit dimension at 400, dropout probability at 0.5, learning rate at 0.0001, learning rate decay at 

0.99, and Adam as the optimization algorithm. We also assign an embedding to provide target information for the 

second system. The target embedding for this information has 5 dimensions.  

To understand how well the frame identification and frame element classification performs, we compare the model’s 

prediction with the annotations on the held-out test set. We calculate micro-averaged precision, recall, and F1-score 

for exact matching. In terms of the first step to extract lexical units, we compare the model with the baseline heuristic. 

The baseline simply identifies lexical unit that appears in the sentence as the frame-evoking lexical unit (i.e., a 100% 

recall baseline). 

Results 

Detailed performance comparison between the baseline heuristic and the proposed Bi-LSTM CRF method with 

different initialization is shown in Table 3. As a first note, the Bi-LSTM CRF method initialized with combination 

embeddings of GloVe and MIMIC-III outperforms all other embedding methods. Notably, the performance of GloVe 

embeddings have a slightly better result than MIMIC-III embeddings over the entire three frames. 

The F1-scores of CANCER_DIAGNOSIS, CANCER_THERAPEUTIC_PROCEDURE, and TUMOR_DESCRIPTION are 93.70%, 

96.33%, and 87.18% respectively. For CANCER_DIAGNOSIS, the performance of three embeddings are of about the 

same level (at around 93%), while the combined embeddings model shows an improvement of 10.72% F1 score over 

the baseline heuristic. CANCER_THERAPEUTIC_PROCEDURE already reaches a high baseline score of 95.48% and the 

combined embeddings improves on this a small amount. TUMOR_DESCRIPTION has a low baseline of 79.14% F1 and 

the combined embeddings improves 8.04% of F1 score over the baseline.  

The element classifier is also measured in Precision, Recall and F1-score provided in Table 4&5. In terms of general 

performance results in Table 4, the combined embedding gets the best F1 score of 75.81% over two other embeddings. 

Similar with the first step, GloVe embeddings has a slightly better performance of 1.64% over MIMIC-III embeddings. 

metrics Method CANCER_DIAGNOSIS CANCER_THERAPEUTIC_PROCEDURE TUMOR_DESCRIPTION 
Precision 

(%) 

Baseline 70.91 91.35 65.48 
GloVe 95.35 95.88 86.72 

MIMIC-III 93.65 94.40 79.87 

  GloVe+MIMIC-III 92.70 94.40 78.81 
Recall 

(%) 

Baseline 100 100 100 
GloVe 91.99 95.88 86.05 

MIMIC-III 93.55 97.12 92.25 

  GloVe+MIMIC-III 93.59 97.12 92.25 

F1 

(%) 

Baseline 82.98 95.48 79.14 

GloVe 93.64 95.88 86.38 
MIMIC-III 93.60 95.74 85.61 

  GloVe+MIMIC-III 93.70 96.33 87.18 

Table 3. Performance of System for Frame Identification 
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We also measure the performance for each element category across three frames in Precision, Recall, and F1-score 

and compare the performance results of three models, differing only in word representations, shown in Table 5. The 

combination embeddings improves the performance in majority of categories (MALIGNANCY: 81.82%, 

FAMILYHISTORY: 81.48%, RESECTABILITY: 54.55%, CERTAINTY: 50.87%, DATETIME: 68.29%, COMPLICATION: 

52.63%, SIZETREND: 42.86%, RECURRENCE: 40%). Among other categories, GloVe is next, followed by MIMIC-III. 

GloVe is pre-trained from news of general topics, which leads that it has much better representations for general 

categories including STAGE (73.91%), PATIENT (85.71%), STATUS (76.23%), SIZE (68.97%), POLARITY (69.88%). 

Note that the resource of MIMIC-III embedding is from ICU patient records, which presumably bring triple influence 

towards the representational effect. MIMIC-III outperforms in Morphology (40.00%). Generally speaking, three kinds 

of embeddings have slightly differences in performance for most categories (EXTENT: ~92%, STAGE: ~72%, PATIENT: 

~84%, HISTOLOGY: ~73%, LOCATION: ~78%, FAMILYHISTORY: ~78%, STATUS: ~75%, SIZE: ~67%, POLARITY: ~65%, 

CERTAINTY: ~49%) except some categories (MALIGNANCY, RESECTABILITY, DATETIME, COMPLICATION, SIZETREND, 

RECURRENCE) where adding medical domain representation actually helps to improve the performance by over 10-

20%.  

 

Table 5. Cross-Frame Per Category Performance Evaluation of System for Element Classifier   
Precision (%) Recall (%) F1 (%)  

GloVe MIMIC

-III  

GloVe 

+MIMIC-III 

GloVe MIMIC

-III  

GloVe 

+MIMIC-III 

GloVe MIMIC

-III  

GloVe 

+MIMIC-III 

Extent3 90.91 88.24 90.91 95.24 95.24 95.24 93.02 91.60 93.02 

Stage4 72.34 67.31 64.81 75.56 77.78 77.78 73.91 72.16 70.71 

Patient2,3,4 83.75 79.21 81.91 87.78 88.89 85.56 85.71 83.77 83.70 

Histology2 69.39 62.75 68.09 85.00 80.00 80.00 76.40 70.33 73.56 

Malignancy4 82.35 85.00 81.82 63.64 77.27 81.82 71.79 80.95 81.82 

Location2,3,4 79.69 73.55 79.13 76.40 78.76 80.53 78.01 76.07 79.82 

Family_history2 75.00 74.12 76.74 78.95 82.89 86.84 76.92 78.26 81.48 

Status2,3,4 78.76 71.64 71.60 73.86 79.67 76.35 76.23 75.44 73.90 

Size4 66.67 57.89 61.11 71.43 78.57 78.57 68.97 66.67 68.75 

Polarity1 70.73 54.90 65.91 69.05 66.67 69.05 69.88 60.22 67.44 

Resectability4 46.15 35.00 45.00 46.15 53.85 69.23 46.15 42.42 54.55 

Certainty1 59.65 45.56 48.89 40.96 49.40 53.01 48.57 47.4 50.87 

Datetime1 23.08 50.00 66.67 15.00 60.00 70.00 18.18 54.55 68.29 

Complication3 100.00

0 

55.56 83.33 23.08 38.46 38.46 37.50 45.45 52.63 

Morphology4 30.00 50.00 28.57 33.33 33.33 22.22 31.58 40.00 25.00 

Sizetrend4 50.00 20.00 37.50 16.67 16.67 50.00 25.00 18.18 42.86 

Recurrence4 0 50.00 100.00 0 25.00 25.00 0 33.33 40.00 

Agent3 

 

0 0 0 0 0 0 0 0 0 

MarginStatus4 0 0 0 0 0 0 0 0 0 

Quantity4 0 0 0 0 0 0 0 0 0 

Result3 0 0 0 0 0 0 0 0 0 

Superscripts indicate frame(s) associated with element (see Table 1 for more details): 
1: CANCER_MASTER_FRAME, 2: CANCER_MASTER_FRAME, 3: CANCER_THERAPEUTIC_PROCEDURE, 4: TUMOR_DESCRIPTION 

 
 

  

Table 4. General Performance Evaluation of System for Element Classifier 

Embedding type Accuracy(%) Precision(%) Recall(%) F1(%) 

GloVe 94.73 77.39 73.83 75.57 
MIMIC-III 93.99 70.54 77.66 73.93 

GloVe+MIMIC-III 94.52 73.91 77.81 75.81 
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Discussion 

Our study proposes a frame-based NLP system based on Bi-LSTM-CRF to extract important cancer-related 

information from clinical narratives. It achieves superior performance when compared to the baseline heuristics. The 

neural network is initialized with both character embeddings and word embeddings. We also apply three kinds of word 

embeddings and compare the performances. We find that the overall performance of combined GloVe and MIMIC-

III embeddings generally outperform embeddings from only one dataset.  

An inspection of the system errors reveals several patterns. One notable problem is that frame elements are often 

extracted for the wrong frame. For instance, excise is a RESECTABILITY element for TUMOR_DESCRIPTION frame but it 

is not an element in CANCER_DIAGNOSIS. This is a result of training a single model on all frames, and while the 

classifier is provided with information to indicate what the current frame is, this is not enough to remove all such 

errors. The alternative, training a different model for every frame, results in even more errors due to the significantly 

reduced data. Since the three frames share several frame elements, training together effectively increases the size of 

the training set, but causes the aforementioned types of errors. One solution to this would involve a multi-task learning 

approach, where all three frames are trained concurrently, and share parameters for part of the network, but also have 

corresponding task-specific aspects of the network as well.  

As is typical with machine learning methods, both the frame identification and frame element classifiers the 

performances of different categories are variable due to the size of the training data. False negative samples probably 

result from the small size of the training set. For example, the performance of TUMOR_DESCRIPTION is poorer than that 

of other frames due to the smallest size in the training set. Similarly, the elements with lowest F1 score tend to be 

relatively rare in the training set (e.g., 6 AGENT, 18 MARGINSTATUS, 16 QUANTITY, 37 RESULT). 

A limitation of this study is that we currently limit our evaluation to the gold standard for each process in the pipeline. 

However, instead of a multi-step evaluation and optimizing the pipeline in that manner, our future work will focus on 

applying joint models to share weights of both concept identification and relation extraction. This will achieve both 

steps at the same time, and should result in increased performance due to information sharing between the models. 

Prior work has explored end-to-end models for performing concept recognition and relation extraction jointly49-50, so 

this is a promising line of work for improving system performance. 

Conclusion 

In this paper, we design a frame-based NLP system based on a Bi-LSTM-CRF neural network to extract cancer-related 

information in clinical narratives. We also apply different pre-trained embeddings including character embeddings 

and word embeddings as input. This initial study achieved promising results, with frame identification F1 between 

87.18% and 96.33% and element classification F1 up to 93.02%. Our primary goal is to test the feasibility of utilizing 

deep learning method to design a frame-based NLP system for extracting cancer frame elements from clinical notes. 

Our ultimate goal is to develop an integrated system that extracts all important cancer-related information from clinical 

narratives.  
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