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Generalized and transferable patient language representation for 
phenotyping with limited data 
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A B S T R A C T   

The paradigm of representation learning through transfer learning has the potential to greatly enhance clinical 
natural language processing. In this work, we propose a multi-task pre-training and fine-tuning approach for 
learning generalized and transferable patient representations from medical language. The model is first pre- 
trained with different but related high-prevalence phenotypes and further fine-tuned on downstream target 
tasks. Our main contribution focuses on the impact this technique can have on low-prevalence phenotypes, a 
challenging task due to the dearth of data. We validate the representation from pre-training, and fine-tune the 
multi-task pre-trained models on low-prevalence phenotypes including 38 circulatory diseases, 23 respiratory 
diseases, and 17 genitourinary diseases. We find multi-task pre-training increases learning efficiency and ach
ieves consistently high performance across the majority of phenotypes. Most important, the multi-task pre- 
training is almost always either the best-performing model or performs tolerably close to the best-performing 
model, a property we refer to as robust. All these results lead us to conclude that this multi-task transfer 
learning architecture is a robust approach for developing generalized and transferable patient language repre
sentations for numerous phenotypes.   

1. Introduction 

The goal of representation learning is to automatically learn a 
semantically robust mathematical representation from raw data and has 
been widely studied in natural language processing (NLP). A good rep
resentation that encodes raw inputs into meaningful features is essential 
to high-performance machine learning algorithms. We apply the notion 
of representation learning and propose to learn meaningful represen
tations of patient data from electronic health records (EHR), i.e., patient 
representation learning. The objective of patient representation learning 
is to learn a dense mathematical representation of a patient from raw 
records (both structured and unstructured), which themselves are 
sparse, high-dimensional, temporal, irregular, and uncertain. We hope 
to build a generalized and transferable patient representation. However, 
most patient representation learning approaches are task-specific [1], 
while an ideal patient representation would be robust and generalizable 
to a variety of clinical prediction tasks. In particular, a good represen
tation should greatly benefit “small data” tasks, where not enough 
samples are available to learn optimal task-specific representations 

using existing approaches. 
Numerous studies in computer vision and NLP have shown the po

tential of transfer learning, where a productive approach is to fine-tune a 
downstream task from large models pre-trained on ImageNet [2] for 
vision or a large corpus like Wikipedia [3] for text. This recipe would 
also be appropriate for building a transferable patient representation, 
since we hope pre-training from large resources will bring medical 
knowledge to other clinical tasks, and therefore improve predictive 
performance. At the first step of pre-training, we need to construct a 
source task, and we anticipate the architecture (i.e., deep learning model 
and objective function) for pre-training to encode a holistic perspective 
of the patient’s data, similar to how physicians diagnose based on a 
comprehensive understanding of a patient. In that way, a generalized 
patient representation can be obtained through pre-training. To achieve 
this goal in as robust a manner as possible, multi-task joint learning 
across different but related clinical outcomes is desired for composing 
the pre-training task. 

We propose a novel representation learning architecture that com
bines supervised multi-task learning clinical phenotype prediction, and 
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fine-tuning on downstream tasks through transfer learning. Specifically, 
we pre-train the model from a large clinical note corpus with the su
pervised objectives of multiple clinical outcomes. The supervised ob
jectives consist of different, but related high-prevalence diseases. We 
hypothesize this architecture is capable of learning a patient represen
tation that is generalizable and universal, as multiple top high- 
prevalence phenotypes will cover the majority of patients. 

To validate the robustness of the pre-trained representation, we 
apply it to be fine-tuned on low-prevalence disease phenotyping. Our 
primary motivation is to classify low-prevalence phenotyping with 
clinical notes. This task is generally challenging to achieve satisfactory 
performance because only a small number of positive samples are 
available. We hypothesize that through transfer learning, the pre- 
trained model will incorporate knowledge about patients and thus 
would improve low-prevalence disease phenotyping as it is fine-tuned 
further. A generally-robust representation should largely favor “small 
data” tasks, where only a limited amount of samples are available to 
achieve optimal performance in prediction using its own data. There
fore, we consider the low-prevalence disease as a transfer learning target 
task to be further fine-tuned from the pre-trained multi-task source 
model to validate the generalizability of the source model. 

Our experimental results suggest this generalized representation 
with multi-task pre-training consistently improves performance on low- 
prevalence phenotypes compared to single source task pre-training and 
traditional supervised learning. Importantly, we only need to pre-train 
once and use this generalized representation for numerous pheno
types. In practice, it is infeasible for NLP phenotyping models to always 
perform the array of phenotyping experiments that we demonstrate 
here. This is why we emphasize the stable and robust nature of the 
proposed method: it regularly outperforms the baselines, and in those 
cases where it does not, the performance delta is tolerably small. Thus, 
multi-task pre-training is a good starting point for future NLP pheno
typing methods, especially for low-prevalence phenotypes. 

2. Related work 

Representation learning was first proposed to explore the motiva
tions and techniques of learning good representations [4]. It was applied 
in the clinical domain and the techniques became more advanced and 
capable of modeling patient EHR data [1]. Some of the early attempts 
were proposed to generate computational representations based on pa
tient diagnoses [5]. Apart from showing the feasibility of learning pa
tient information, these studies also pointed out the challenges of 
handling EHR data, which is high-dimensional [6], sparse, heteroge
neous [7], temporal [8], incomplete, less-interpretable [9,10], large- 
scale [11], and multimodal [12]. The motivation behind learning good 
patient representations is to encode meaningful information about the 
patient that can be used to predict various useful properties or outcomes 
including patient subtyping [13], mortality [14,15], readmission 
[16,17], computational phenotyping [18], and length of stay [11,12]. 

The earliest and most prominent work to learn patient representa
tions from structured data in EHRs with deep learning models was 
DoctorAI [8], where a recurrent neural network was applied to learn 
patient representations from sequential clinical events. This work 
demonstrated the impact of transfer learning from large-scale clinical 
data to tasks with small amounts of data. Numerous other studies have 
modeled patient data with supervised deep learning architectures 
including RETAIN [9], Dipole [19], HCNN [20], Patient2vec [21]. In 
addition to those supervised methods, DeepPatient [22] proposed an 
unsupervised learning approach, where the authors applied a stacked 
denoising autoencoder to learn patient representations from a longitu
dinal clinical data warehouse. Additionally, tensor decomposition is a 
deep learning approach used in unsupervised [23], supervised [24] and 
semi-supervised [25] manners. This method could learn patterns of 
interaction between events (e.g. beta blocker prescription ⇒ heart dis
ease diagnosis) and was used to learn patient phenotype representations 

from EHR data [24]. 
Furthermore, with the success of learning effective word represen

tations from natural language, many studies have been able to learn 
patient representations from unstructured data in EHRs. Similar to 
DeepPatient [22], Sushil et al. [26] explored unsupervised methods to 
learn patient representations from clinical notes and applied them as 
features to multiple prediction tasks. Dligach et al., [27] explored 
transfer learning where they pre-trained a CUI-based encoder from 
MIMIC-III [28] clinical notes and evaluated the encoder by extracting 
patient features to predict target phenotypes with a small number of 
patients. A more recent work by Kemp et al. [29] employed hierarchical 
modeling of clinical notes to build patient representations and addi
tionally demonstrated the effect of pre-training. Steinberg et al. [30] 
proposed that language models are effective techniques for patient 
representation learning. Their experiments showed that adapting NLP 
techniques such as word2vec to patient representation schemes can in
crease the performance of clinical predictions, and the knowledge can be 
transferred from the entire patient cohort to the task-specific model. 
Overall, these studies support the hypothesis that learning a robust pa
tient representation is feasible with resources directly from clinical notes 
and also highlight the potential of transfer learning of medical language. 

Currently, studies using either multi-task learning or transfer 
learning to learn patient representation are still relatively novel. 
Although a few methods have applied multi-task learning to modeling 
clinical events with the assumption that certain patterns can be shared 
between related tasks [15,31], previous work has shown contradictory 
results [32]. Prior work on EHR transfer learning [8,27,33] has largely 
used a feature-based approach: extracting a patient vector from the in
termediate layer of a deep learning model and using it as input to the 
downstream task. This extracting technique depends on task-customized 
models; thus, the performance improvement on the target task is in
cremental. Inspired by the idea of large source task pre-training and 
task-specific fine-tuning in open domain NLP [3,34], we propose pre- 
training and fine-tuning to learn patient representations from medical 
language. To the best of our knowledge, this is one of the earliest at
tempts to build transferable and generalized patient representation from 
unstructured clinical notes, and to evaluate the representations on low- 
prevalence phenotypes. 

3. Methods 

3.1. Proposed method for patient representation learning 

We introduce the implementation of the transferable patient repre
sentation in this section. The overall architecture is shown in Fig. 1. In 
general, the method consists of two steps: pre-training and fine-tuning. 
In pre-training, we apply multi-task learning in a supervised manner, 
sharing hidden information between multiple tasks. The model is jointly 
trained on different (but related) high-prevalence phenotypes. Our 
target task is to predict low-prevalence phenotypes. Importantly, our 
work focuses on one of the most challenging clinical problems, low- 
prevalence phenotyping, as it is difficult to identify these phenotypes 
using their own limited data. So in fine-tuning, we consider the low- 
prevalence phenotype as the target task to be further fine-tuned. We 
select phenotypes that are relatively rare in MIMIC-III, specifically 
phenotypes defined by ICD-9 with less than 550 patients. This results in 
78 diseases that meet this low-prevalence threshold. During fine-tuning, 
the pre-trained model from multi-task supervised learning is restored 
and applied to the target task, and training is initialized with the pre- 
trained parameters. The model weights are continuously updated 
based on the target phenotype corresponding to its own labels. Each 
target task has its specific fully-connected layer before the final 
classification. 

The deep learning model for learning patient representations (i.e., 
General Patient Representation or GPR in Fig. 1) is a hierarchical 
attention recurrent neural network (RNN) proposed in Si & Roberts 
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[33]. We consider this model because of its potential to deal with the 
hierarchical (i.e., word, sentence, document, patient) and chronological 
nature of the clinical note. The model is shown in Fig. 2 and we will 
briefly describe the neural network. The network is trained progres
sively from word embeddings. At each level of hierarchy (sentence, 
document, and patient), we apply a bi-directional long-short term 
memory (LSTM) as the encoder and an attention mechanism. The output 
vector of each level is fed as the input of the next level, and the final 
output is directly applied to the outcome of either pre-training or fine- 
tuning. Also, at the patient level, we greedily combine notes within a 
time interval together, and separate those notes outside the interval, to 
capture the real temporal sequences between notes as a reflection of 
clinical reality. In reality, notes within a short time span often do not 
have a strong time order and they generally come in “bursts”. We choose 
a 1-hour interval in this work because the results of the 1-hour interval 
yielded the best performance in previous work [33]. As for the hyper
parameters used in the model, we report results using the following: 
embedding size of 50; hidden and output size of LSTM: 100, and 100 
respectively; the size of attention output: 200 at each hierarchy; and the 
total trainable parameters: 653,101. Note that we are comparing 
different methods rather than pursuing state-of-the-art performance, we 
choose this set of hyperparameters with preferences of both efficiency 
and effectiveness. 

3.2. High-prevalence phenotyping-guided pre-training 

To obtain a generalized patient representation, we construct a source 
task for pre-training for that attempts to be comprehensive by incor
porating a wide variety of perspectives. We propose a multi-task joint 
training on multiple related high-prevalence phenotypes, so that patient 
information is more likely to be encoded in the pre-trained models. More 
specifically we looked into three organ systems: circulatory, respiratory, 
and genitourinary. These are three of the most frequent organ systems 
by cumulative ICD-9 code assignment. Within each organ system, we 
selected the top five phenotypes by patient frequency. We pre-train the 
model on the joint learning of these five high-prevalence phenotype 
tasks. The detailed information about phenotypes and the number of 
patients from MIMIC-III v1.4 [28] are shown in Table 1. This dataset is 
discussed in more detail below. 

We pre-train the deep learning model using clinical notes from 

MIMIC-III v1.4 [28], a public Intensive Critical Care database containing 
de-identified data from 46,520 patients, including 1.9 million clinical 
notes. As described in 3.1, with the greedy segmentation mechanism, for 
each patient, we combine clinical notes within 1 h time intervals and 
separate clinical notes out of 1 h spans into different units. At the word 
level, word embeddings obtained from our previous study [35] are 
applied to prepare input text features. The deep learning model adopted 
a three-level hierarchical attention RNN model (Fig. 2) that progres
sively trains from input word embeddings to sentences, documents and 
finally towards the patient. 

The outcomes for pre-training are to classify patients with high- 
prevalence phenotypes. Specifically, for each organ system, we pre- 
train a model on the joint learning of the top five phenotypes shown 
in Table 1. The loss/objective functions from all five tasks are jointly 
optimized to reach the minimum of the total loss. We use the ICD-9 code 
from the structured diagnosis table as the prediction label as a proxy for 
the phenotype. The labels for multi-task learning pre-training include 
the five highest-prevalence phenotypes. For example, if the patient has 
been diagnosed with disease A, B; not with disease C, D and E. The label 
for this patient should be A:1, B:1, C:0, D:0 and E:0. We can also consider 
the five-task pre-trained models as organ system-specific models, 
because each model specifically targets one organ system. Overall, we 
pre-trained three MTL models (i.e., Circulatory MTL model, Respiratory 
MTL model, and Genitourinary MTL model). For simplicity, we use the 
ICD-9 code as a proxy for the phenotype, but in future research, we will 
adopt more rigorous algorithms from medical resources to identify the 
phenotype. 

3.3. Fine-tuning on rare conditions 

Fine-tuning is straightforward as we apply the pre-trained model to 
the target task, and fine-tune the parameters end-to-end. Specifically, 
the task-specific inputs including features from clinical notes and labels 
from structured diagnoses are fed into the pre-trained model. At the fine- 
tuning stage, the neural network is initialized with the weights from the 
pre-trained model. A fully-connected weight matrix is applied at the 
output layer for classification. The add-on part at the output layer for 
target task fine-tuning is similar to the fine-tuning for BERT [3], which 
transforms the output state from the neural network to a logit function 
that maps to a probability. 

Fig. 1. Overall pre-training and fine-tuning procedure for transferable patient representation learning. Each green box represents a learned model (one pre-trained 
model and multiple fine-tuned models). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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As stated, our main motivation for this study is to use a pre-training 
and fine-tuning approach to improve prediction for phenotypes that are 
relatively rare, as these would benefit the most from a robust transfer 

learning approach. To begin with, we select phenotypes that are rela
tively rare in MIMIC-III (n = 50–550 patients) in three organ systems. In 
total, there are 78 diseases including 38 circulatory diseases, 23 

Fig. 2. Hierarchical attention RNN architecture (reprinted from Si & Roberts [33]).  

Table 1 
Descriptive statistics of top five high-prevalence phenotypes in three organ systems.  

Circulatory Respiratory Genitourinary 

Disease Name (ICD-9) # 
patients 

Disease Name (ICD-9) # 
patients 

Disease Name (ICD-9) # 
patients 

Unspecified essential hypertension (401.9) 20,703 Acute respiratory failure 
(518.81) 

7,497 Acute kidney failure (584.9) 9,119 

Congestive heart failure (428.0) 13,111 Pneumonia (486) 4,839 Urinary tract infection (599.0) 6,555 
Atrial fibrillation (427.31) 12,891 Chronic airway obstruction 

(496) 
4,431 Chronic kidney disease (585.9) 3,435 

Coronary atherosclerosis of native coronary artery 
(414.01) 

12,429 pleural effusion (511.9) 2,734 Acute kidney failure with lesion of tubular 
necrosis (584.5) 

2,287 

Hypertensive chronic kidney disease (403.90) 3,421 Asthma (493.90) 2,195 End stage renal disease (585.6) 1,926  

Y. Si et al.                                                                                                                                                                                                                                        
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respiratory diseases, and 17 genitourinary diseases that meet this low- 
prevalence threshold. We run experiments on all those diseases to 
avoid any cherry picking. The rare phenotype disease name, ICD-9 code, 
and the number of patients for each phenotype is shown in Table 2. Due 
to the extremely imbalanced distribution of positive samples for rare 
diseases, we assign a coefficient weight to the loss function to emphasize 
the positive targets over the negative to compensate for this bias. The 
formula for calculating the weight for each phenotype is defined as 
follows (we also report the weights reported in Table 2): 

weight positive =
(1 + positive) × total

2 

where positive is the number of patients who have positive labels; 
and total is the total number of patients (i.e., 31,360 in this experiment). 

3.4. Baseline approaches 

To evaluate the proposed method, we compare the predictive per
formance with the following three baseline methods: 

[Baseline 1] Single-task pre-training with top one high- 
prevalence phenotype: The pre-training source task consists of only 
one of the five high-prevalence phenotypes with the highest number of 
patients. More specifically, the pre-training task for circulatory, respi
ratory, and genitourinary corresponds to Unspecified essential hyperten
sion (ICD-9: 401.9), Acute respiratory failure (ICD-9: 518.81), and Acute 
kidney failure (ICD-9: 584.9), respectively. 

[Baseline 2] Single-task pre-training with the most relevant 
high-prevalence phenotype: The pre-training source task consists of 
only one of the five high-prevalence phenotypes that is the most related 
to the target task. The selection of choosing the most related source 
phenotype was made by a practicing clinician in internal medicine 
(EVB) based on clinical knowledge. The selection is prior to training the 
pre-trained model. The target phenotype with its most related high- 
prevalence phenotype (out of the five) is shown in the column of 
“Most-related Phenotype” in Table 2. 

[Baseline 3] Target only: This is a traditional deep learning 
method and the model is trained solely based on the specific target task 
for each low-prevalence phenotype. 

For simplicity, in the following sections, we name the proposed 
method, multi-task learning as “MTL”; baseline 1 method, single-task 
learning with the top one high-prevalence phenotype as “STL-highest”; 
baseline 2 method, single-task learning with the most clinically-related 
phenotype as “STL-related”; and baseline 3 method, traditional machine 
learning as “Target”. 

3.5. Data and experimental details 

We conduct the experiments using clinical notes from MIMIC-III v1.4 
[28], a collection of 2 million free-text notes. We only keep adults (age 
≥ 18), and delete notes with the “ISERROR” label. For each note, basic 
tokenization with regular expression and sentence segmentation with 
spaCy are performed. We apply word2vec embeddings (dimension of 
50) trained in our previous study [35] to represent tokens and to prepare 
the input text features. For each patient, notes within 1-hour are com
bined together as one note and notes outside the 1-hour span are splitted 
into different segments. The structured diagnosis tables consisting of 
ICD-9 codes are used to construct the prediction label for patients. This 
results in 31,360 patients to use in the experiments below. We utilize 
ICD-9 codes as the prediction label and a proxy for the phenotype. For a 
given ICD-9 code, if the patient has the ICD-9 code on record, then this 
patient is considered a positive case for that ICD-9 phenotype. All other 
patients without being labeled with the ICD-9 code in structured diag
nosis tables are negative cases. 

For each patient and each low-prevalence phenotype, the input 
features for pre-training and fine-tuning are the embeddings derived 
from the patient’s clinical notes. But the prediction labels in pre-training 

Table 2 
Descriptive statistics of low-prevalence phenotypes in three organ systems. 
(Weights: coefficient weights assigned with the loss to emphasize the positive 
samples. Most-related phenotype: one of the five high-prevalence phenotypes 
that is the most relevant to the target task.)  

A. Circulatory 

Disease name ICD-9 # 
cases 

Weight Most-related 
Phenotype 

Acute systolic heart failure 428.21 492 32 428.0 
Coronary atherosclerosis of 

autologous vein bypass graft 
414.02 474 33 414.01 

Other late effects of 
cerebrovascular disease 

438.89 465 34 401.9 

Benign essential hypertension 401.1 454 35 401.9 
Late effects of cerebrovascular 

disease, hemiplegia affecting 
unspecified side 

438.20 437 36 403.90 

Acute diastolic heart failure 428.31 432 36 401.9 
Systolic heart failure, unspecified 428.20 416 38 428.0 
Subdural hemorrhage 432.1 392 40 401.9 
Sinoatrial node dysfunction 427.81 389 40 427.31 
Acute myocardial infarction of 

unspecified site, initial episode 
of care 

410.91 354 44 414.01 

Atherosclerosis of native arteries 
of the extremities with 
gangrene 

440.24 327 48 427.31 

Acute on chronic combined 
systolic and diastolic heart 
failure 

428.43 327 48 428.0 

Chronic total occlusion of 
coronary artery 

414.2 292 54 414.01 

Atherosclerosis of aorta 440.0 283 55 414.01 
Sub-endocardial infarction, 

subsequent episode of care 
410.72 279 56 414.01 

Atherosclerosis of native arteries 
of the extremities with 
ulceration 

440.23 264 59 414.01 

Atherosclerosis of native arteries 
of the extremities with 
intermittent claudication 

440.21 257 61 414.01 

Late effects of cerebrovascular 
disease, aphasia 

438.11 240 65 427.31 

Atherosclerosis of renal artery 440.1 233 67 414.01 
Iatrogenic hypotension 458.2 233 72 428.0 
Cerebral atherosclerosis 437.0 196 80 401.9 
Hypertrophic cardiomyopathy 425.1 183 86 401.9 
Chronic combined systolic and 

diastolic heart failure 
428.42 179 88 428.0 

Malignant essential hypertension 401.0 172 91 401.9 
Paroxysmal supraventricular 

tachycardia 
427.0 161 97 427.31 

Acute myocardial infarction of 
anterolateral wall, initial 
episode of care 

410.01 142 110 414.01 

Hypertensive chronic kidney 
disease, benign, with chronic 
kidney disease stage I through 
stage IV, or unspecified 

403.10 122 129 403.90 

Combined systolic and diastolic 
heart failure, unspecified 

428.40 110 143 428.0 

Unspecified transient cerebral 
ischemia 

435.9 96 163 401.9 

Atherosclerosis of native arteries 
of the extremities with rest pain 

440.22 88 178 414.01 

Abdominal aneurysm, ruptured 441.3 76 206 401.9 
Acute combined systolic and 

diastolic heart failure 
428.41 73 215 428.0 

Unspecified late effects of 
cerebrovascular disease 

438.9 69 227 401.9 

Unspecified cerebrovascular 
disease 

437.9 64 245 401.9 

Atherosclerosis of other specified 
arteries 

440.8 63 249 414.01 

Cerebral thrombosis with 
cerebral infarction 

434.01 60 261 401.9 

425.9 53 296 428.0 

(continued on next page) 
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depend on the pre-training method. The labels for “MTL” consist of the 
five highest-prevalence phenotypes in each organ system. The labels for 
“STL-highest” come from the highest-prevalence phenotype for each 
organ system (listed in section 3.4, Baseline 1). The labels for “STL- 
related” are constructed from Table 2 column “Most-related Phenotype”. 
There is no pre-training for “Target” and the labels for “Target” are 
solely whether the patient has been diagnosed with each low-prevalence 
disease. That is also the label for fine-tuning across all pre-training 
methods. The predictions for pre-training and fine-tuning are alto
gether patient-level. 

We set aside non-overlapping 80%, 10%, 10% samples at random 
from the entire dataset as training, validation, and test sets, respectively. 
The validation set is used to evaluate the trained model and prevent the 
model from overfitting on training sets. We applied the early stopping 
technique on validation sets to prevent overfitting. More specifically, the 
validation loss is calculated at each epoch. Early stopping is triggered 
when there is no improvement in the validation loss (i.e., the loss is 
increasing) for three consecutive epochs. To avoid any possible data 
leakage, we reserve the test set and only use it to report the performance. 
In other words, the pre-training or fine-tuning process does not have any 
chance to learn test data. Both the pre-training and fine-tuning task use 
the hierarchical attention recurrent neural network to predict and build 
the general patient representation. Networks were trained using Adam 
optimization (batch size of 32, learning rate of 0.001). We use a sigmoid 
loss function and the positive weights from Table 2. We report the area 
under the ROC curve (AUC) on the test set for all four methods (one 
proposed and three baselines) and for all 78 diseases (from three organ 
systems), which results in 312 AUC scores. We note that small test sets 
for some of the phenotypes is a limitation of this work, leading to greater 
variance in the results. However, the use of AUC instead of F1 measure 
and Accuracy reduces the variance in some degree as AUC is a more 
stable metric. 

To compare different pre-training methods, we report the following 
experiment results:  

1. the AUC scores across all low prevalence phenotypes (Table 4);  
2. box plots of the performance distribution in different organ systems 

(Fig. 3);  
3. the number of phenotypes that the proposed method outperformed 

the baselines (Table 5);  
4. for each method, the number of phenotypes for which the method 

achieves the best performance (Table 6);  
5. when the method does not achieve the best result, the number of 

phenotypes that are still within 90% of the best performance 
(Table 6);  

6. the average mean squared error on test set for each method (Table 7). 

To better understand the time and computational resources dedi
cated for future reproducibility of the experiments, we investigate the 
time for pre-training with different configuration settings (i.e., MTL, 
STL), for fine-tuning, and for target-only training. In general, 5-task pre- 
training (i.e., proposed MTL) took around 10 min for each epoch. Single- 
task pre-training took around 9 min every epoch. Given a defined 
phenotype, fine-tuning initialized with the 5-task model took around 3 

Table 2 (continued ) 

A. Circulatory 

Disease name ICD-9 # 
cases 

Weight Most-related 
Phenotype 

Secondary cardiomyopathy, 
unspecified 

Acute myocardial infarction of 
unspecified site, subsequent 
episode of care 

410.92 53 296 414.01  

B. Respiratory 

Disease name ICD-9 # 
cases 

Weight Most-related 
Phenotype 

Post-inflammatory pulmonary 
fibrosis 

515 544 29 486 

Pneumonia due to Pseudomonas 482.1 430 36 486 
Chronic respiratory failure 518.83 331 47 518.81 
Acute edema of lung, 

unspecified 
518.4 305 51 511.9 

Chronic obstructive asthma 
with (acute) exacerbation 

493.22 299 52 496 

Pneumonia due to other gram- 
negative bacteria 

482.83 264 59 486 

Bacterial pneumonia, 
unspecified 

482.9 227 69 486 

Pneumonia due to Klebsiella 
pneumoniae 

482.0 226 69 486 

Pneumococcal pneumonia 
[Streptococcus pneumoniae 
pneumonia] 

481 194 81 486 

Bronchiectasis without acute 
exacerbation 

494.0 191 82 486 

Empyema without mention of 
fistula 

510.9 190 83 511.9 

Methicillin resistant pneumonia 
due to Staphylococcus aureus 

482.42 162 97 518.81 

Pulmonary congestion and 
hypostasis 

514 155 101 511.9 

Unspecified sinusitis (chronic) 473.9 149 105 493.90 
Edema of larynx 478.6 145 108 518.81 
Malignant pleural effusion 511.81 132 119 511.9 
Acute bronchitis 466.0 126 124 518.81 
Asbestosis 501 116 135 496 
Acute upper respiratory 

infections of unspecified site 
465.9 96 163 493.90 

Abscess of lung 513.0 86 182 486 
Unilateral paralysis of vocal 

cords or larynx, partial 
478.31 74 212 518.81 

Empyema with fistula 510.0 72 218 511.9 
Stenosis of larynx 478.74 61 257 518.81  

C. Genitourinary 
Disease name ICD-9 # 

cases 
Weight Most-related 

phenotype 

Hematuria 599.7 509 31 599.0 
Hydronephrosis 591 413 38 584.9 
Chronic kidney disease, Stage IV 

(severe) 
585.4 334 47 585.6 

Hypertrophy (benign) of prostate 
with urinary obstruction and 
other lower urinary tract 
symptoms (LUTS) 

600.01 314 50 599.0 

Neurogenic bladder NOS 596.54 225 70 599.0 
Hematuria, unspecified 599.70 216 73 599.0 
Calculus of kidney 592.0 206 76 599.0 
Gross hematuria 599.71 181 87 599.0 
Secondary hyperparathyroidism 

(of renal origin) 
588.81 169 93 585.9 

Acute pyelonephritis without 
lesion of renal medullary 
necrosis 

590.10 132 119 599.0 

Calculus of ureter 592.1 111 141 599.0 
Cyst of kidney, acquired 593.2 107 147 585.9 
Hypertrophy (benign) of prostate 600.0 92 170 599.0 
Pyelonephritis, unspecified 590.80 84 187 599.0 

583.9 84 187 584.9  

Table 2 (continued ) 

C. Genitourinary 
Disease name ICD-9 # 

cases 
Weight Most-related 

phenotype 

Nephritis and nephropathy, not 
specified as acute or chronic, 
with unspecified pathological 
lesion in kidney 

Vascular disorders of kidney 593.81 83 189 584.5 
Chronic glomerulonephritis in 

diseases classified elsewhere 
582.81 67 234 585.9  
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min every epoch, and fine-tuning initialized with the STL model took 
around 5 min per epoch. The target-only method took around 9 min for 
each epoch, similar to MTL/STL, because the model is exactly the same 
in pre-training. In total, MTL pre-training took around 3 h, and STL pre- 
training took around 2.5 h. 

4. Results 

4.1. Pre-training on high-prevalence phenotypes 

We pre-trained three organ system-specific models using MTL of the 
top five highest-prevalence phenotypes within the same organ system. 
Specifically, we used three five-task pre-trained models (i.e., 3 MTL 
models including Circulatory MTL model, Respiratory MTL model, 
Genitourinary MTL model). We also pre-trained single-task learning 
(STL) models for each phenotype (15 STL models). Performances (AUCs) 
of MTL and STL for each phenotype are reported in Table 3. Here the 
MTL column represents that the pre-trained MTL model was tested on 
the test set for each high-prevalence phenotype. The STL column reports 
the performance on the test set using pre-trained STL models. Specif
ically, for each organ system, the score in the STL column on each row 
was obtained from one STL model, while the five scores in the MTL 
column were coming from one MTL model. Although there was only one 
model in MTL pre-training, as five phenotypes were used to optimize in 
the training; thus there would be five AUC scores reported using the test 
set. Although we focused on low-prevalence phenotypes, we noted that 
MTL did not harm the performance on high-prevalence phenotypes and 
achieved a well-matched performance among all tasks. Notably, there 
was a distinct improvement from STL to MTL for the majority of phe
notypes, with the biggest improvement (0.2715) from STL to MTL on 
Asthma. 

4.2. Transfer learning on low-prevalence phenotypes 

4.2.1. The effectiveness of pre-training 
We further investigated the effectiveness of pre-training and fine- 

tuning on the low-prevalence phenotypes. To get an overall sense of 
the effectiveness of the proposed method and three baselines, we plotted 
the distribution of AUC scores for four methods among three organ 
systems in Fig. 3. The AUC performances of three organ systems for all 
78 phenotypes are reported in Table 4. 

In Fig. 3, each box plot represented the performance for each organ 
system. The box plots showed the median, first and third quartile, 
minimum, and maximum of scores for different methods. We noticed 
that among four methods, the MTL performances were the most compact 
and Target performances were the most variable. We also observed a 
trend for each organ system that the median of MTL was higher than that 
of the other three methods. 

In Table 4, for 86% of diseases (67 out of 78), at least one of the three 
pre-training methods (MTL, STL-highest, STL-related) worked better than 
straightforward Target prediction. Specifically, MTL performed better 
than Target in 28 circulatory phenotypes, 18 respiratory phenotypes, 
and 11 genitourinary phenotypes. STL-highest is higher than Target in 26 

circulatory phenotypes, 20 respiratory phenotypes, and 10 genitouri
nary phenotypes. STL-related performed better than Target in 27 circu
latory phenotypes, 18 respiratory phenotypes, and 9 genitourinary 
phenotypes. Specifically, we saw the biggest jumps from three pre- 
training methods to solely Target are 0.5946 in the circulatory system 
(Disease Name: Atherosclerosis of other specified arteries, ICD-9: 
440.8), 0.4860 in the respiratory system (Disease Name: Chronic 
obstructive asthma with exacerbation, ICD-9: 493.22), 0.5159 in the 
genitourinary system (Disease Name: Chronic kidney disease, Stage IV 
severe, ICD-9: 585.4). 

4.2.2. The effectiveness of MTL 
The number of phenotypes in which the proposed method out

performed the baseline methods are shown in Table 5. Totally, the 
number of phenotypes that MTL outperforming the other baseline are 
always higher than that in the opposite way (i.e., the other baseline 
outperformed MTL). Specifically, 47 phenotypes (60%) have higher 
AUC scores with MTL over STL-highest, 53 phenotypes (68%) have 
higher AUC scores with MTL over STL-related, and 57 phenotypes (73%) 
have higher AUC scores with MTL over Target. We can also refer to 
Table 4 and find out that the biggest improvements of MTL over the 
maximum of the other three methods were 0.2063 in the circulatory 
system (ICD-9: 438.11, MTL: 0.959, STL-highest: 0.7527), 0.1226 in the 
respiratory system (ICD-9: 478.31, MTL: 0.809, STL-highest/related: 
0.6864), and 0.1042 in the genitourinary system (ICD-9: 592.0, MTL: 
0.8299, Target: 0.7257). 

MTL pre-training improved performance consistently and often 
substantially over single-task pre-training (STL-highest and STL-related). 
In Table 6 we summarized that, among 78 phenotypes, 33 phenotypes 
obtained the best performance with MTL (circulatory: 19; respiratory: 9; 
genitourinary: 5); 25 phenotypes obtained the best performance with 
STL-highest (circulatory: 7; respiratory: 12; genitourinary: 6); 9 pheno
types obtained the best performance with STL-related (circulatory: 6; 
respiratory: 1; genitourinary: 2); and 11 phenotypes obtained the best 
performance with Target (circulatory: n = 6; respiratory: n = 1; geni
tourinary: n = 4). These 11 phenotypes are shown in Appendix Table 1. 
As shown in Supplemental Table 1, for the majority of phenotypes where 
target-only training outperformed the other methods, we still observed 
that they achieved comparative results with MTL. For the remaining, our 
assumption is that for some phenotypes such as Chronic glomerulone
phritis in diseases classified elsewhere, because the sample size is too 
limited, even the recipe of pre-training and fine-tuning is still not helpful 
enough to improve the prediction. More importantly, the sample size is 
the key factor. 

When the approach did not perform the best, if it was within 90% of 
the best performance, we considered this tolerable because the perfor
mance differences were not likely to be practically significant. Thus, we 
count the number of tolerable cases for four different methods. For the 
circulatory, respiratory, and genitourinary systems, the number of 
phenotypes that MTL has the best performance was 19, 9, 5, respec
tively. For phenotypes where MTL not have the best performance, the 
number of phenotypes where MTL performance was tolerable (within 
90% of the best performance) was 18 (out of 19), 11 (out of 14), 8 (out of 

Table 3 
Performance in AUC scores for high-prevalence phenotypes. Within the same organ system, the performance of each disease in the MTL column comes from one MTL 
model, while the performance of each disease in the STL column comes from the individual STL model.  

Circulatory MTL STL Respiratory MTL STL Genitourinary MTL STL 

Essential hypertension 0.8041 0.8041 Acute respiratory 
failure 

0.9107 0.9112 Acute kidney failure 0.8469 0.8519 

Congestive heart failure 0.9183 0.9145 Pneumonia 0.8542 0.8603 Urinary tract infection 0.7423 0.7468 
Atrial fibrillation 0.9408 0.9336 Chronic airway 

obstruction 
0.8378 0.8048 Chronic kidney disease 0.8664 0.8550 

Coronary atherosclerosis of native 
coronary artery 

0.9517 0.9503 Pleural effusion 0.8539 0.8560 Acute kidney failure with lesion of 
tubular necrosis 

0.9105 0.8882 

Hypertensive chronic kidney disease 0.8768 0.8731 Asthma 0.8449 0.5734 End stage renal 0.9752 0.9412  
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Table 4 
AUC of different methods on target phenotyping tasks in organ systems (AUC in 
bold means the best across four methods).  

A. Circulatory 

Disease name MTL STL- 
highest 

STL- 
related 

Target 

Acute systolic heart failure 0.9256 0.9238 0.9124 0.9279 
Coronary atherosclerosis of 

autologous vein bypass graft 
0.9627 0.9662 0.9403 0.9295 

Other late effects of cerebrovascular 
disease 

0.8595 0.8301 0.5741 

Benign essential hypertension 0.8542 0.8850 0.6578 
Late effects of cerebrovascular 

disease, hemiplegia affecting 
unspecified side 

0.9533 0.9297 0.9057 0.4138 

Acute diastolic heart failure 0.8801 0.8793 0.9086 
Systolic heart failure, unspecified 0.8248 0.8668 0.5946 0.7846 
Subdural hemorrhage 0.9036 0.9640 0.9063 
Sinoatrial node dysfunction 0.9310 0.9251 0.9359 0.9209 
Acute myocardial infarction of 

unspecified site, initial episode of 
care 

0.8400 0.8151 0.7982 0.7581 

Atherosclerosis of native arteries of 
the extremities with gangrene 

0.9448 0.9305 0.9557 0.9241 

Acute on chronic combined systolic 
and diastolic heart failure 

0.8448 0.8173 0.8330 0.8594 

Chronic total occlusion of coronary 
artery 

0.9509 0.9405 0.9532 0.9444 

Atherosclerosis of aorta 0.8158 0.8345 0.8440 0.8709 
Sub-endocardial infarction, 

subsequent episode of care 
0.9396 0.8986 0.9043 0.4282 

Atherosclerosis of native arteries of 
the extremities with ulceration 

0.8312 0.8341 0.9213 0.6387 

Atherosclerosis of native arteries of 
the extremities with intermittent 
claudication 

0.8295 0.9059 0.8659 0.8893 

Late effects of cerebrovascular 
disease, aphasia 

0.9590 0.7527 0.6746 0.5184 

Atherosclerosis of renal artery 0.9014 0.8544 0.7915 0.4861 
Iatrogenic hypotension 0.9223 0.8896 0.8526 0.6864 
Cerebral atherosclerosis 0.7836 0.7524 0.5232 
Hypertrophic cardiomyopathy 0.9951 0.9378 0.6124 
Chronic combined systolic and 

diastolic heart failure 
0.9043 0.5110 0.8916 0.8922 

Malignant essential hypertension 0.8528 0.8480 0.6048 
Paroxysmal supraventricular 

tachycardia 
0.7152 0.6640 0.5093 0.7146 

Acute myocardial infarction of 
anterolateral wall, initial episode 
of care 

0.9124 0.5029 0.9240 0.9172 

Hypertensive chronic kidney 
disease, benign, with chronic 
kidney disease stage I through 
stage IV, or unspecified 

0.8408 0.7920 0.4643 0.3244 

Combined systolic and diastolic 
heart failure, unspecified 

0.8715 0.6269 0.8559 0.8998 

Unspecified transient cerebral 
ischemia 

0.6328 0.5479 0.6945 

Atherosclerosis of native arteries of 
the extremities with rest pain 

0.9041 0.7885 0.5801 0.5415 

Abdominal aneurysm, ruptured 0.9974 0.9972 0.5881 
Acute combined systolic and 

diastolic heart failure 
0.9204 0.8526 0.9426 0.7184 

Unspecified late effects of 
cerebrovascular disease 

0.6250 0.8097 0.7283 

Unspecified cerebrovascular disease 0.8909 0.5888 0.8324 
Atherosclerosis of other specified 

arteries 
0.9216 0.9519 0.7880 0.3573 

Cerebral thrombosis with cerebral 
infarction 

0.9381 0.9351 0.7420 

Secondary cardiomyopathy, 
unspecified 

0.6790 0.4789 0.6423 0.5308 

Acute myocardial infarction of 
unspecified site, subsequent 
episode of care 

0.8799 0.6348 0.8387 0.4825  

B. Respiratory  

Table 4 (continued ) 

B. Respiratory 

Disease name MTL STL- 
highest 

STL- 
related 

Target 

Disease name MTL STL- 
highest 

STL- 
related 

Target 

Post-inflammatory pulmonary 
fibrosis 

0.9194 0.8437 0.8694 0.8487 

Pneumonia due to Pseudomonas 0.9381 0.9307 0.9267 0.9186 
Chronic respiratory failure 0.8879 0.7741 0.7496 
Acute edema of lung, unspecified 0.8358 0.8393 0.8332 0.8662 
Chronic obstructive asthma with 

(acute) exacerbation 
0.9866 0.9880 0.9743 0.5019 

Pneumonia due to other gram- 
negative bacteria 

0.9306 0.9074 0.9271 0.9198 

Bacterial pneumonia, unspecified 0.8862 0.8831 0.8773 0.8629 
Pneumonia due to Klebsiella 

pneumoniae 
0.8858 0.8685 0.8855 0.8179 

Pneumococcal pneumonia 
[Streptococcus pneumoniae 
pneumonia] 

0.8029 0.8097 0.7887 0.7833 

Bronchiectasis without acute 
exacerbation 

0.6873 0.7980 0.6988 0.7016 

Empyema without mention of 
fistula 

0.9858 0.9959 0.9888 0.9873 

Methicillin resistant pneumonia 
due to Staphylococcus aureus 

0.9291 0.9600 0.6498 

Pulmonary congestion and 
hypostasis 

0.6007 0.7987 0.5504 0.6108 

Unspecified sinusitis (chronic) 0.5860 0.6584 0.6340 0.6365 
Edema of larynx 0.8221 0.8302 0.5535 
Malignant pleural effusion 0.9767 0.9266 0.9842 0.8537 
Acute bronchitis 0.7482 0.8139 0.4523 
Asbestosis 0.7506 0.7375 0.4252 0.4262 
Acute upper respiratory infections 

of unspecified site 
0.9289 0.9380 0.8356 0.5727 

Abscess of lung 0.8882 0.9557 0.9505 0.7781 
Unilateral paralysis of vocal cords 

or larynx, partial 
0.8090 0.6864 0.4811 

Empyema with fistula 0.9981 0.9984 0.9879 0.9875 
Stenosis of larynx 0.9979 0.9976 0.9943  

C. Genitourinary 

Disease name MTL STL- 
highest 

STL- 
related 

Target 

Hematuria 0.8609 0.8168 0.7640 0.8124 
Hydronephrosis 0.9513 0.9690 0.9690 
Chronic kidney disease, Stage IV 

(severe) 
0.8124 0.8687 0.5444 0.3528 

Hypertrophy (benign) of prostate 
with urinary obstruction and other 
lower urinary tract symptoms 
(LUTS) 

0.7134 0.7252 0.7542 0.6236 

Neurogenic bladder NOS 0.6845 0.5690 0.6133 0.4658 
Hematuria, unspecified 0.7362 0.6404 0.7012 0.6723 
Calculus of kidney 0.8299 0.6291 0.6624 0.7257 
Gross hematuria 0.8590 0.8347 0.8857 0.8100 
Secondary hyperparathyroidism (of 

renal origin) 
0.7201 0.7595 0.5630 0.5462 

Acute pyelonephritis without lesion 
of renal medullary necrosis 

0.9534 0.9710 0.9528 0.9218 

Calculus of ureter 0.9925 0.9984 0.5979 0.4971 
Cyst of kidney, acquired 0.4814 0.7061 0.4498 0.5582 
Hypertrophy (benign) of prostate 0.8882 0.4491 0.9069 0.9320 
Pyelonephritis, unspecified 0.9189 0.8562 0.7573 0.5235 
Nephritis and nephropathy, not 

specified as acute or chronic, with 
unspecified pathological lesion in 
kidney 

0.7017 0.7093 0.7848 

Vascular disorders of kidney 0.7180 0.7303 0.7963 0.9842 
Chronic glomerulonephritis in 

diseases classified elsewhere 
0.2514 0.0676 0.1894 0.5203  
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12), respectively. As shown in Table 6, among four methods, MTL ob
tained the most number of best performance, and MTL also achieved the 
most number of tolerable cases. 

To quantitatively measure the effectiveness of MTL, we calculated 
the average mean squared error on the test set (Table 7). The average 
mean squared error is inversely proportional to the performance. What 
stands out in Table 7 is that for the three organ systems, the average 
mean squared error of MTL was smallest compared to the other three 
methods. 

Overall, in the cases where MTL performed worse than one of these 
baselines, its performance was still usually close, while in cases where it 
outperforms a baseline its performance was often much better. The 
above behaviors justify our hypothesis that MTL pre-training is generally 
robust in terms of the prediction performance on low-prevalence 
phenotypes. 

4.2.3. Efficiency of MTL 
We assume the proposed method can also learn faster while 

improving the performance for some phenotypes in target tasks. Thus, 
we plotted the performance on the validation set during training to show 
how many epochs were required for convergence (stopping) for each 
model. We assume training would be more efficient if the model already 
contained existing knowledge from other resources and the hyper
parameters from the pre-trained model would be reflected on the target 
task fine-tuning. In other words, the model would take fewer epochs to 
reach optimal performance if using the pre-trained model. 

We randomly selected two phenotypes and plot performance (AUC) 
on validation sets to show the learning efficiency of the four methods 
across training epochs. As shown in Fig. 4(a), the phenotype was related 
to Acute myocardial infarction (ICD-9: 410.91), MTL pre-training took 6 
epochs to achieve the best performance, or the lowest loss. STL-highest 
pre-training also took 6, and STL-related took 8 epochs. Target task 
without any pre-training required 13 epochs and does not reach best 
performance (AUC scores referred to Table 4 A). 

Fig. 4(b) is another example from the genitourinary system, the 
phenotype is related to Hematuria (ICD-9: 599.70), MTL pre-training 
took 4 epochs to achieve the best performance. STL-highest and STL- 
related pre-training took 8 and 7 epochs, respectively. Target task 
without any pre-training took 9 epochs (AUC scores referred to Table 4 
C). 

Because the early stopping mechanism was the same across four 
methods, our proposed method required less time to converge compared 
to the other three methods. We hypothesize that this was due to MTL 
having more information from multiple sources compared to the other 
methods. Furthermore, as the MTL pre-trained model was only trained 
once at the pre-training step, we suggest that the proposed method is 
more efficient. 

5. Discussion 

In this study, we demonstrated the potential of learning generalized 
and transferable patient representations from clinical notes with multi- 
task pre-training and fine-tuning. The pre-trained model used multi-task 
learning of the five highest-prevalence phenotypes. We further fine- 
tuned this phenotype-specific pre-trained model to multiple low- 

Fig. 3. Box plots of AUC performance across different methods among three organ systems.  

Table 5 
Comparisons of MTL with other baselines in three organ systems.  

# phenotypes MTL & STL-highest MTL & STL-related MTL & Target  

MTL >
STL- 
highest 

STL- 
highest 
> MTL 

MTL >
STL- 
related 

STL- 
related 
> MTL 

MTL 
>

Target 

Target 
> MTL 

Circulatory 29 9 27 11 28 10 
Respiratory 10 13 15 8 18 5 
Genitourinary 8 9 11 6 11 6 
Total 47 31 53 25 57 21  

Table 6 
Tolerable performance analysis. The percent in the second column is calculated 
by dividing the best performance count (33, 25, 9, 11 for MTL, STL-highest, STL- 
related, Target, respectively) by the total number of phenotypes (78). The 
percent in the third column is calculated by dividing the count within 90% of the 
best performance (37, 36, 44, 27 for MTL, STL-highest, STL-related, Target, 
respectively) by the number of phenotypes not performing the best (45, 53, 69, 
67 for MTL, STL-highest, STL-related, Target, respectively).   

Best performance count 
(percent) 

Within 90% of the best performance 
count (percent) 

MTL 33 (42.31%) 37 (82.22%) 
STL- 

highest 
25 (32.05%) 36 (67.92%) 

STL- 
related 

9 (11.54%) 44 (63.77%) 

Target 11 (14.1%) 27 (40.30%)  

Table 7 
Average mean squared error on test set across three organ systems.   

MTL STL-high STL-related Target 

Circulatory 0.0368 0.0488 0.0477 0.0490 
Respiratory 0.0388 0.0461 0.0397 0.0422 
Genitourinary 0.0384 0.0431 0.0447 0.0500  
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prevalence phenotypes that had limited data. The results are promising 
since the performance on the majority of low-prevalence phenotypes 
with multi-task pre-trained models was consistently better than the 
baseline method of only predicting the low-prevalence phenotype using 
their own data. Further, the multi-task pre-training increases learning 
efficiency and achieves more robust performance than both baseline 
methods of single-task pre-training. As we only need to pre-train the 
multi-task model once, the multi-task pre-trained model is more efficient 
than the single-task pre-trained model, even when the latter has the 
most relevant source task associated with the low-prevalence pheno
types (i.e., STL-related). This supports our hypothesis that because the 
multi-task pre-training phenotypes are related to each other, the multi- 
task model enables generalizability by sharing a robust representation. 

MTL pre-training and fine tuning improved prediction performance 
for low-prevalence phenotypes. The pre-training uses highest- 
prevalence phenotypes for each organ system as the source tasks, 
which allows joint learning organ system-specific models. These organ 
system-specific pre-trained models are able to learn complex semantics 
by combining multiple phenotypes that convey different underlying 
factors and variable context. Therefore, they are capable of handling 
intricate unseen cases. For simplicity in this work, we only choose five 
phenotypes for each organ system. In practice, the number of pre- 
training phenotypes can be much larger than five. 

When thinking of how to best adapt the pre-trained model to a given 
target task, a feature extraction approach would be another option for 

this architecture. However, unlike the “pre-training and fine-tuning” 
approach, which adapts all model parameters, the feature extraction 
approach would obtain a fixed vector from layers of the language model. 
The representation can be selected from any layer (e.g., last hidden 
layer, etc.) or any combinations of multiple layers (e.g., weighted sum, 
concatenation, etc.). Next, the downstream task will be initialized with 
the extracted vector. There have been multiple studies in open domain 
fields to compare these two approaches since when the pre-trained 
language models were introduced [36]. For instance, in Table 7 of 
Devlin et al. [3], different types of feature-extraction strategies were 
applied. The performance on the dev sets showed all of them failed to 
outperform the fine-tuning approach with different sizes of the BERT 
model. We acknowledge that the feature-based approach certainly has 
its benefits over the fine-tuning approach, particularly in terms of 
computational resources. It is much computationally faster (in terms of 
training time) to extract a vector and to use it in many experiments with 
small models on top of this vector, rather than to restore a deep learning 
model and to tweak its parameters on the new task. 

While a feature extraction approach may be worth evaluating in the 
future, we assume the fine-tuning is needed to improve the performance 
for our specific downstream tasks. Because the features extracted with 
low-dimensional vectors (usually in the hundreds or thousands) are not 
particularly specialized for the new task, which can be improved by fine- 
tuning using appropriate hyperparameters specially trained for the new 
task. When using the feature extraction method, if the model trained on 
the downstream task was still a deep learning-based model, the exper
iments might still become computationally expensive. Time-saving 
comes from the fact that the extracted features only need to be 
computed once, not because training the target task would save time. 
Fine-tuning adapts the parameters of the entire model to make them 
more discriminative for the new task. It also allows us to accommodate a 
general-purpose representation to various targets. After evaluating 
trade-offs between time consumption and computational resources with 
the performance we desire, we still believe fine-tuning is much more 
appropriate to demonstrate our hypothesis. 

When classifying rare diseases, researchers traditionally encounter 
challenges including low diagnostic rates and limited patient population 
[37]. Recently, secondary data in the EHR opens perspectives for 
increasing knowledge of rare diseases. In the meantime, the capability of 
data-driven approaches to leverage and incorporate multi-source in
formation can be applied to many phenotyping tasks. Therefore, data- 
driven methods could potentially contribute to overcoming the afore
mentioned challenges. Some pilot works have tried to harmonize data- 
driven methods with EHR data to enrich rare disease knowledge [38]. 
Garcelon et al. [39] applied TF-IDF method to extract concepts from 
clinical notes in a clinical data warehouse for RETT syndrome. The 
extracted terms could improve existing phenotypic description. Shen 
et al. conducted a series of works to enrich rare disease knowledge with 
data-driven methods, including a graph convolutional network-based 
recommendation system [40], human phenotype ontology embeddings 
[41], and association rule mining algorithms [42]. Although, in this 
work, we attempt to focus on low-prevalence phenotypes (i.e., sample 
sizes are relatively small) in a specific patient cohort (i.e., MIMIC-III), 
rather than rare disease in the whole population. We believe these 
works show the enormous potential to integrate multi-source informa
tion and to elucidate insightful understandings of rare diseases. Incor
porating these works with our current experimental design and applying 
them into actual rare disease phenotyping tasks will be one of our future 
directions. 

Despite exploring the benefits of learning generalized and transfer
able patient representation, we anticipate future work based on the ar
chitecture and effectiveness of MTL pre-training. First, this work makes 
the conventional assumption for predicting phenotypes from clinical 
notes that the billing codes (ICD-9, ICD-10, etc.) are the actual di
agnoses, and can be used for predictive labels of supervised learning. 
Further work is required to explore additional medical knowledge to 

Fig. 4. Learning efficiency of four methods across training epochs on two 
selected phenotypes. [The performances shown here are AUC scores of vali
dation set at each epoch. In both experiments, multi-task pre-training required 
fewer epochs to achieve the best performance than single-task pre-training or 
Target without pre-training.] 

Y. Si et al.                                                                                                                                                                                                                                        



Journal of Biomedical Informatics 116 (2021) 103726

11

augment billing codes. We will incorporate external resources to 
augment ICD codes to be used as the prediction labels. While developing 
validated phenotyping algorithms for the 78 low-prevalence phenotypes 
investigated in this work would be infeasible, we will implement two 
high-throughput computational phenotyping approaches to enhance the 
label (i.e., Phecode [43], PheMAP [44]). Further studies are required to 
prove the validity and reliability of this approach across datasets with 
precise labels. Additionally, it is necessary to use a hierarchical structure 
in the neural network to model clinical notes rather than a simple word- 
level classification with a single, large block of text so as to extract long 
contiguous and temporal sequences in the note. Hence, another future 
direction will focus on implementing advanced language models 
[3,45,46] into hierarchical levels and incorporate them into our learning 
architecture. In addition, more work on composing different pre- 
training tasks apart from phenotype predictions is needed, to further 
exploit the power of pre-trained language representation. Furthermore, 
the relationship between the number of tasks in MTL pre-training with 
the target task performance would be instructive to explore. It is 
assumed that with the number of tasks increasing, the pre-trained model 
would be enriched with more knowledge about the patient, thus it may 
be beneficial to the target task prediction. Thus, we will extend our 
methods to construct supervised learning with different numbers and 
types of tasks. 

6. Limitations 

This study evaluated only a single machine learning model (Si & 
Roberts [33]) on a single corpus (MIMIC-III [28]). While we would 
expect the general trend of the results to hold up for different models and 
different datasets as it is a general-purpose patient phenotyping model, 
the extent to which these results generalize cannot be empirically 
determined from this study. A total of 312 model instances were trained 
in the experiments, so it was deemed infeasible to evaluate several 
different classes of models or different datasets. However, since the hi
erarchical RNN model itself is not the core contribution of this work, 
further studies are necessary to validate this approach is robust across 
models and datasets. Another limitation is the reliability of ICD codes as 
labels, since these are known to be poor representations of clinical re
ality. While developing validated phenotyping algorithms for the 78 
low-prevalence phenotypes investigated in this work would be infea
sible, future work should investigate experiments with validated phe
notyping algorithms for the common phenotypes used in pre-training. 

7. Conclusion 

We propose a multi-task pre-training and transfer learning archi
tecture to learn generalized and transferable patient representations 
from clinical notes. This architecture enables us to obtain a pre-trained 
model from high-prevalence phenotypes and further fine-tune on low- 
prevalence phenotypes to achieve good performance even with limited 
data. The proposed method consistently and oftentimes greatly im
proves performance and enhances learning efficiency. Ultimately, this 
pre-training and fine-tuning paradigm may be used to build compre
hensive clinical language representations by incorporating the infor
mation from heterogeneous clinical sources. 
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Appendix Table 1. Low-prevalence phenotypes with Target as the best performance  

Disease ICD-9 MTL STL-high STL-related Target 

Acute systolic heart failure 428.21 0.9256 0.9238 0.9124 0.9279 
Acute diastolic heart failure 428.31 0.8801 0.8793 0.8793 0.9086 
Acute on chronic combined systolic and diastolic heart failure 428.43 0.8448 0.8173 0.833 0.8594 
Atherosclerosis of aorta 440.0 0.8158 0.8345 0.844 0.8709 
Combined systolic and diastolic heart failure, unspecified 428.40 0.8715 0.6269 0.8559 0.8998 
Unspecified transient cerebral ischemia 435.9 0.6328 0.5479 0.5479 0.6945 
Acute edema of lung, unspecified 518.4 0.8358 0.8393 0.8332 0.8662 
Hypertrophy (benign) of prostate 600.0 0.8882 0.4491 0.9069 0.9319 
Nephritis and nephropathy, not specified as acute or chronic, with unspecified pathological lesion in kidney 583.9 0.7016 0.7093 0.7093 0.7847 
Vascular disorders of kidney 593.81 0.718 0.7303 0.7963 0.9842 
Chronic glomerulonephritis in diseases classified elsewhere 582.81 0.2513 0.0676 0.1894 0.5202  

Appendix Table 2. Descriptive statistics of low-prevalence phenotypes in three organ systems with the cases for the test sets. 
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1. Circulatory 

Disease Name ICD-9 # cases # cases in test set 

Acute systolic heart failure 428.21 492 37 
Coronary atherosclerosis of autologous vein bypass graft 414.02 474 33 
Other late effects of cerebrovascular disease 438.89 465 30 
Benign essential hypertension 401.1 454 30 
Late effects of cerebrovascular disease, hemiplegia affecting unspecified side 438.20 437 27 
Acute diastolic heart failure 428.31 432 26 
Systolic heart failure, unspecified 428.20 416 31 
Subdural hemorrhage 432.1 392 24 
Sinoatrial node dysfunction 427.81 389 25 
Acute myocardial infarction of unspecified site, initial episode of care 410.91 354 28 
Atherosclerosis of native arteries of the extremities with gangrene 440.24 327 24 
Acute on chronic combined systolic and diastolic heart failure 428.43 327 21 
Chronic total occlusion of coronary artery 414.2 292 27 
Atherosclerosis of aorta 440.0 283 20 
Sub-endocardial infarction, subsequent episode of care 410.72 279 19 
Atherosclerosis of native arteries of the extremities with ulceration 440.23 264 17 
Atherosclerosis of native arteries of the extremities with intermittent claudication 440.21 257 19 
Late effects of cerebrovascular disease, aphasia 438.11 240 22 
Atherosclerosis of renal artery 440.1 233 17 
Iatrogenic hypotension 458.2 233 15 
Cerebral atherosclerosis 437.0 196 12 
Hypertrophic cardiomyopathy 425.1 183 14 
Chronic combined systolic and diastolic heart failure 428.42 179 10 
Malignant essential hypertension 401.0 172 10 
Paroxysmal supraventricular tachycardia 427.0 161 11 
Acute myocardial infarction of anterolateral wall, initial episode of care 410.01 142 9 
Hypertensive chronic kidney disease, benign, with chronic kidney disease stage I through stage IV, or unspecified 403.10 122 8 
Combined systolic and diastolic heart failure, unspecified 428.40 110 5 
Unspecified transient cerebral ischemia 435.9 96 6 
Atherosclerosis of native arteries of the extremities with rest pain 440.22 88 5 
Abdominal aneurysm, ruptured 441.3 76 5 
Acute combined systolic and diastolic heart failure 428.41 73 5 
Unspecified late effects of cerebrovascular disease 438.9 69 7 
Unspecified cerebrovascular disease 437.9 64 6 
Atherosclerosis of other specified arteries 440.8 63 4 
Cerebral thrombosis with cerebral infarction 434.01 60 7 
Secondary cardiomyopathy, unspecified 425.9 53 3 
Acute myocardial infarction of unspecified site, subsequent episode of care 410.92 53 3  

2. Respiratory 

Disease Name ICD-9 # cases # cases in test set 

Post-inflammatory pulmonary fibrosis 515 544 35 
Pneumonia due to Pseudomonas 482.1 430 31 
Chronic respiratory failure 518.83 331 29 
Acute edema of lung, unspecified 518.4 305 20 
Chronic obstructive asthma with (acute) exacerbation 493.22 299 25 
Pneumonia due to other gram-negative bacteria 482.83 264 18 
Bacterial pneumonia, unspecified 482.9 227 19 
Pneumonia due to Klebsiella pneumoniae 482.0 226 15 
Pneumococcal pneumonia [Streptococcus pneumoniae pneumonia] 481 194 17 
Bronchiectasis without acute exacerbation 494.0 191 13 
Empyema without mention of fistula 510.9 190 15 
Methicillin resistant pneumonia due to Staphylococcus aureus 482.42 162 10 
Pulmonary congestion and hypostasis 514 155 9 
Unspecified sinusitis (chronic) 473.9 149 7 
Edema of larynx 478.6 145 10 
Malignant pleural effusion 511.81 132 8 
Acute bronchitis 466.0 126 8 
Asbestosis 501 116 9 
Acute upper respiratory infections of unspecified site 465.9 96 6 
Abscess of lung 513.0 86 9 
Unilateral paralysis of vocal cords or larynx, partial 478.31 74 4 
Empyema with fistula 510.0 72 3 
Stenosis of larynx 478.74 61 4  

3. Genitourinary 

Disease Name ICD-9 # cases # cases in test set 

Hematuria 599.7 509 34 
Hydronephrosis 591 413 29 
Chronic kidney disease, Stage IV (severe) 585.4 334 25 
Hypertrophy (benign) of prostate with urinary obstruction and other lower urinary tract symptoms (LUTS) 600.01 314 27 
Neurogenic bladder NOS 596.54 225 18 
Hematuria, unspecified 599.70 216 16 
Calculus of kidney 592.0 206 12 

(continued on next page) 
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(continued ) 

3. Genitourinary 

Disease Name ICD-9 # cases # cases in test set 

Gross hematuria 599.71 181 12 
Secondary hyperparathyroidism (of renal origin) 588.81 169 8 
Acute pyelonephritis without lesion of renal medullary necrosis 590.10 132 13 
Calculus of ureter 592.1 111 7 
Cyst of kidney, acquired 593.2 107 8 
Hypertrophy (benign) of prostate 600.0 92 6 
Pyelonephritis, unspecified 590.80 84 8 
Nephritis and nephropathy, not specified as acute or chronic, with unspecified pathological lesion in kidney 583.9 84 6 
Vascular disorders of kidney 593.81 83 5 
Chronic glomerulonephritis in diseases classified elsewhere 582.81 67 3  
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[26] M. Sushil, S. Šuster, K. Luyckx, W. Daelemans, Patient representation learning and 
interpretable evaluation using clinical notes, J. Biomed. Inform. 84 (2018) 
103–113. 

[27] D. Dligach, M. Afshar, T. Miller, Toward a clinical text encoder: pretraining for 
clinical natural language processing with applications to substance misuse, J. Am. 
Med. Inform. Assoc. 26 (2019) 1272–1278. 

[28] A.E. Johnson, T.J. Pollard, L. Shen, H.L. Li-wei, M. Feng, M. Ghassemi, B. Moody, 
P. Szolovits, L.A. Celi, R.G. Mark, MIMIC-III, a freely accessible critical care 
database, Sci. Data 3 (2016), 160035. 

[29] J. Kemp, A. Rajkomar, A.M. Dai, Improved hierarchical patient classification with 
language model pretraining over clinical notes. ArXiv Preprint ArXiv:1909.03039 
(2019). 

[30] E. Steinberg, K. Jung, J.A. Fries, C.K. Corbin, S.R. Pfohl, N.H. Shah, Language 
models are an effective representation learning technique for electronic health 
record data, Journal of Biomedical Informatics 113 (2020) 103637. 

[31] H. Harutyunyan, H. Khachatrian, D.C. Kale, G. Ver Steeg, A. Galstyan, Multitask 
learning and benchmarking with clinical time series data, Scientific Data 6 (2019) 
1–18. 

[32] D.Y. Ding, C. Simpson, S. Pfohl, D.C. Kale, K. Jung, N.H. Shah, The effectiveness of 
multitask learning for phenotyping with electronic health records data, Pacific 
Symposium on Biocomputing (2019) 18–29. 

[33] Y. Si, K. Roberts, Patient representation transfer learning from clinical notes based 
on hierarchical attention network, AMIA Summits on Translational Science 
Proceedings 2020 (2020) 597–606. 

[34] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving language 
understanding by generative pre-training, Technical Report, OpenAI, 2018. 

[35] K. Roberts, Assessing the corpus size vs. similarity trade-off for word embeddings in 
clinical NLP, Proceedings of the Clinical Natural Language Processing Workshop 
(ClinicalNLP) (2016) 54–63. 

[36] M.E. Peters, S. Ruder, N.A. Smith. To Tune or not to tune? Adapting pretrained 
representations to diverse tasks. Proceedings of the 4th Workshop on 
Representation Learning for NLP (RepL4NLP-2019). 2019 Aug (pp. 7-14). 

[37] J. Jia, Z. An, Y. Ming, Y. Guo, W. Li, Y. Liang, D. Guo, X. Lin, J. Tai, G. Chen, Y. Jin, 
Z. Liu, X. Ni, T. Shi. eRAM: encyclopedia of rare disease annotations for precision 
medicine. Nucleic Acids Res., 46(D1), D937-D943. 

[38] J. Schaefer, M. Lehne, J. Schepers, F. Prasser, S. Thun. The use of machine learning 
in rare diseases: a scoping review. Orphanet J. Rare Diseases, 15(1), 1–10. 

[39] N. Garcelon, A. Neuraz, R. Salomon, N. Bahi-Buisson, J. Amiel, C. Picard, N. 
Mahlaoui, V. Benoit, A. Burgun, B. Rance. Next generation phenotyping using 
narrative reports in a rare disease clinical data warehouse. Orphanet J. Rare 
Diseases, 13(1), 85. 

Y. Si et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.jbi.2020.103671
https://doi.org/10.1016/j.jbi.2020.103671
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0010
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0010
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0010
https://doi.org/10.1109/TPAMI.2013.50
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0025
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0025
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0025
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0045
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0045
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0045
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0050
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0050
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0050
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0050
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0055
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0055
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0055
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0060
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0060
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0060
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0060
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0065
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0065
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0065
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0065
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0070
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0070
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0070
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0070
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0075
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0075
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0075
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0080
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0080
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0080
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0080
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0085
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0085
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0085
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0090
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0090
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0090
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0095
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0095
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0095
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0095
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0100
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0100
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0100
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0100
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0105
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0105
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0105
https://doi.org/10.1038/srep26094
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0115
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0115
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0115
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0115
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0125
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0125
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0125
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0130
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0130
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0130
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0135
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0135
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0135
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0140
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0140
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0140
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0145
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0145
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0145
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0150
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0150
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0150
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0160
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0160
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0160
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0165
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0165
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0165
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0170
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0170
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0175
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0175
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0175


Journal of Biomedical Informatics 116 (2021) 103726

14

[40] F. Shen, A. Wen, H. Liu. Enrich rare disease phenotypic characterizations via a 
graph convolutional network based recommendation system, in: 2020 IEEE 33rd 
International Symposium on Computer-Based Medical Systems (CBMS), IEEE, pp. 
37–40. 

[41] F. Shen, A. Wen, H. Liu, Subgrouping rare disease patients leveraging the human 
phenotype ontology embeddings, in: 2020 IEEE 33rd International Symposium on 
Computer-Based Medical Systems (CBMS), IEEE, pp. 169–172. 

[42] F. Shen, Y. Zhao, L. Wang, M.R. Mojarad, Y. Wang, S. Liu, H. Liu, Rare disease 
knowledge enrichment through a data-driven approach, BMC Medical Inf. Decision 
Making, 19(1), 32. 

[43] W.Q. Wei, L.A. Bastarache, R.J. Carroll, J.E. Marlo, T.J. Osterman, E.R. Famazon, 
N.J. Cox, D.M. Roden, J.C. Denny, Evaluating phecodes, clinical classification 

software, and ICD-9-CM codes for phenome-wide association studies in the 
electronic health record, PloS one, 12(7), e0175508. 

[44] N.S. Zheng, Q.P. Feng, V.E. Kerchberger, J. Zhao, T.L. Edwards, N.J. Cox, C.M. 
Stein, D.M. Roden, J.C. Denny, W.Q. Wei. PheMap: a multi-resource knowledge 
base for high-throughput phenotyping within electronic health records, J. Am. 
Med. Inf. Assoc., 27(11), 1675–1687. 

[45] L. Rasmy, Y. Xiang, Z. Xie, C. Tao, D. Zhi, Med-BERT: pre-trained contextualized 
embeddings on large-scale structured electronic health records for disease 
prediction, ArXiv Preprint ArXiv:2005.12833 (2020). 

[46] Y. Li, S. Rao, J.R.A. Solares, A. Hassaine, R. Ramakrishnan, D. Canoy, Y. Zhu, 
K. Rahimi, G. Salimi-Khorshidi, BEHRT: transformer for electronic health records, 
Sci. Rep. 10 (2020) 7155, https://doi.org/10.1038/s41598-020-62922-y. 

Y. Si et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S1532-0464(21)00055-1/h0225
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0225
http://refhub.elsevier.com/S1532-0464(21)00055-1/h0225
https://doi.org/10.1038/s41598-020-62922-y

	Generalized and transferable patient language representation for phenotyping with limited data.
	Recommended Citation

	Generalized and transferable patient language representation for phenotyping with limited data
	1 Introduction
	2 Related work
	3 Methods
	3.1 Proposed method for patient representation learning
	3.2 High-prevalence phenotyping-guided pre-training
	3.3 Fine-tuning on rare conditions
	3.4 Baseline approaches
	3.5 Data and experimental details

	4 Results
	4.1 Pre-training on high-prevalence phenotypes
	4.2 Transfer learning on low-prevalence phenotypes
	4.2.1 The effectiveness of pre-training
	4.2.2 The effectiveness of MTL
	4.2.3 Efficiency of MTL


	5 Discussion
	6 Limitations
	7 Conclusion
	Author contributions statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix Table 1 Low-prevalence phenotypes with Target as the best performance
	Appendix Table 2 Descriptive statistics of low-prevalence phenotypes in three organ systems with the cases for the test sets.
	References


