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Abstract: The degradation of biopolymers such as polylactic acid (PLA) has been studied for several
years; however, the results regarding the mechanism of degradation are not completely understood
yet. PLA is easily processed by traditional techniques including injection molding, blow molding,
extrusion, and thermoforming; in this research, the extrusion and injection molding processes were
used to produce PLA samples for accelerated destructive testing. The methodology employed
consisted of carrying out material testing under the guidelines of several ASTM standards; this
research hypothesized that the effects of UV light, humidity, and temperature exposure have a
statistical difference in the PLA degradation rate. The multivariate analysis of non-parametric data
is presented as an alternative to multivariate analysis, in which the data do not satisfy the essential
assumptions of a regular MANOVA, such as multivariate normality. A package in the R software
that allows the user to perform a non-parametric multivariate analysis when necessary was used.
This paper presents a study to determine if there is a significant difference in the degradation rate
after 2000 h of accelerated degradation of a biopolymer using the multivariate and non-parametric
analyses of variance. The combination of the statistical techniques, multivariate analysis of variance
and repeated measures, provided information for a better understanding of the degradation path of
the biopolymer.

Keywords: non-parametric analysis; mechanical testing; statistical analysis; accelerated lifetime
testing; lifetime analysis; PLA

1. Introduction

Polylactic acid (PLA) is a biodegradable polymer made from renewable resources
such as corn and potato starch, as well as sugars generated from beets, cane, and other
agricultural goods. PLA may be utilized in a wide range of products due to its ability to
be easily processed using traditional methods such as injection molding, blow molding,
extrusion, and thermoforming, as well as its high strength and thermo-plasticity. Gupta and
Kumar [1] found that, depending on the use for various products, PLA is well suited and
commonly used due to its low molecular weight and reduced degradation time. PLA has a
reasonable shelf-life for most single-use packaging applications, meaning that the products
are used once, or for a short period of time, before being thrown away. There are different
applications for PLA, as rigid plastics, biaxially oriented films, plastic bottles, meat trays,
opaque dairy (yogurt) containers, consumer displays, electronics packaging, envelop and
display carton windows, bottles for short-shelf-life milk, and bottles used for edible oils [2].
PLA and its copolymers have attracted significant attention in environmental, automotive,
biomedical, and pharmaceutical applications as alternatives to petroleum-based polymers
due to their mechanical and physical properties and, in particular, their short degradation
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time [3]. The use of PLA could be a technical and economic solution to the problem of the
eventual disposal of the very large amount of plastic packaging used in the USA [4].

PLA degradation has been studied for several years; however, the results regarding
the mechanism of degradation are not completely understood yet [5]. The investigation of
the degradation rates of biopolymers would allow industries and researchers to predict the
life-span of these types of materials and learn how to further improve a product’s usable life.
In terms of production costs, PLA presents advantages such as energy savings between 25
and 55 percent compared to petroleum-based polymers; up to this point, the challenge has
been reducing PLA’s manufacturing cost. Since the use of PLA products continues to grow,
it is useful to understand the degradation rates by studying the accelerated failure process.
This process is called accelerated life testing, and it requires a model representation [3,6]. A
powerful knowledge/understanding tool based on degradation models could, then, lead
to the predictability of the usable life of materials and products. In general, most polymers
experience degradation due to a combination of two or more factors such as heat, light,
oxygen, and/or water. The degradation level of a polymeric material depends on its ability
to absorb UV light (due to the presence of catalyst residues such as hydro peroxide and
carbonyl groups) and/or water. The exposure of polymers to UV light irradiation leads to
chain scission, which causes mechanical deterioration and the breaking of the material into
small pieces; this consequently allows oxygen and microorganisms to degrade the polymer
at an accelerated rate [7].

Test responses could be similar among different models of acceleration, depending on
the specific test used during the experimentation. The main difference is that the different
statistical analyses of the results may lead to a different statistical model [8]. Several studies
related to the degradation model have been performed and analyzed, some of them with
characteristics similar to the type of degradation. A previous study of degradation analysis
listed eight different approaches, which were used as the baseline in the methodology of
this research, including the accelerated destructive degradation (ADDT) approach [9].

2. State-of-the-Art
2.1. PLA Degradation Testing

PLA is water-insoluble when it has a sufficiently high molecular weight. When water
penetrates the polymer matrix and hydrolysis on the ester groups takes place, long polymer
chains are converted into short ones; subsequently, oligomers and monomers are created as
a result of the water solubility of the polymer. The degradation of PLA is affected by several
factors: material, hydrolysis media, as well as by the factor’s coefficient such as molar
mass, degree of swelling of the matrix, rigidity, chemical structure, molecular weight, chain
mobility, and crystallinity [10]. Some studies presented results indicating apparent visual
signs of degradation; however, no significant weight loss was presented within 39 weeks
in compost. This situation suggested that degradation happened from the interior of the
samples. The molecular weight decreased to around 36–44% after the melting process.
The average molecular weight of PLA decreased from 149,593 to 113,096 g/mol [11]. In
a previous study, experimentation with different commercial polymers was performed,
and it was concluded that the degradation occurs due to chain scission of these polymers
when they are exposed to UV. It is well known in polymer science that the exposure
of polymers to UV light irradiation leads to main chain scission, causing mechanical
deterioration, breaking into small pieces, and consequently, oxygen and microorganism
access, making the polymer biodegradable. This information is extremely relevant when
UV light experimentation is being considered [12].

The understanding of the degradation, as well as the impact of the use of thepolymers
is a relevant topic in the manufacturing industry; the environment where polymers are
used must not be negatively impacted. Both terrestrial and marine ecosystems need to
be preserved in their natural equilibrium. In fact, two strategies are being studied for
the production of biodegradable polymers with short lives, such as for food packaging,
agricultural mulches, medical devices, etc., as well as innovative technologies. It might be
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challenging to strike the ideal balance between long-lasting and biodegradable polymers.
The new materials are expected to be durable while in use, yet biodegradable when their
useful lives are through. Co-extrusion of natural and man-made polymers is one potential
technique [13].

It is important to point out that previous studies have created a path toward degra-
dation analysis of biopolymers, such as PLA, which includes tensile and flexural testing
as the main indicators of the degradation of the materials. Mechanical properties are very
important in the manufacturing industry because they are, sometimes, the key to product
durability. Understanding and improving the mechanical properties of biopolymers over
time is one of the researchers’ shared goals in terms of polymer characteristics and character-
ization. Mechanical testing, on the other hand, is simply one of the features used to analyze
the material’s capabilities in current biomaterials. Based on this, the current study aimed to
improve the capability of biopolymer analysis by adding a variety of tests to the analysis,
allowing for a better understanding and more accurate degradation predictions [14].

2.2. Accelerated Testing

Degradation has many different definitions depending on the experiment or situation
that is being evaluated. In the field of reliability, this means making “time” go faster so that
inference about the material or product can be made rapidly. There are several methods of
acceleration depending on the specimen that is being analyzed: One is to increase the use
rate of the product; this method applies when the product/material is not in continuous
use. Other methods are to increase the intensity of the radiation exposure, increase the level
of stress (voltage, pressure, etc.), or increase the aging rate of the product; these methods
increase the level of the experimental variables such as the temperature, humidity, and
UV light, and these types of acceleration lead to a faster degradation rate of the chemical
and physical processes of failure. Furthermore, a combination of these methods is used
depending on the study [8].

Escobar described that, depending on the type of accelerated testing used in the
experimentation, there may be a different type of response, and some commonly used
testing types are described as follows:

1. Accelerated binary tests (ABTs): The response is binary; there is only one thing to
evaluate: whether the product has failed or has not failed.

2. Accelerated life tests (ALTs): The response is directly related to the lifetime of the
product, based on inspections at intervals, and the failure may or may not happen in
one interval.

3. Accelerated repeated measures degradation tests (ARMDTs): In this type of test, degrada-
tion is measured on a sample of units at different points in time; one unit may provide
many degradation measures (usually depending on whether the test is destructive
or not); in this case, the degradation response is open to the researcher; it may be
physical or chemical changes, color changes, mass loss, or any particular characteristic
of the product itself.

4. Accelerated destructive degradation tests (ADDTs): An ADDT is similar and can be used
as a complement to an ARMDT, except that the measurements of the response are
destructive; some examples of this kind of test are tensile and flexural tests, which
completely break the specimens in order to estimate the yield points [8].

3. Materials and Methods

The goal of this research was to present a multivariate non-parametric analysis of the
lifetime of PLA. The experiment’s general hypothesis (Hypothesis 1) was that the accel-
erating factors of UV light, humidity, and temperature have a statistical difference in the
degradation rate of PLA after an accelerated weather exposure of 2000 h. In Hypothesis 2,
the experiment evaluated four response factors individually to determine if they were
affected by the exposure of 2000 h. Finally, the third hypothesis stated that the accelera-
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tion time has a significant effect on the PLA samples, after 250, 500, 1000, and 2000 h of
accelerated condition exposure.

The research methodology utilized a series of experiments to test the proposed hy-
potheses. The experiments were carried out under the guidelines of the American Society
for Testing and Materials (ASTM) standards: ASTM D618-05 Standard Practice for Con-
ditioning Plastics for Testing is a test standard that considers that the the physical and
electrical properties of plastics are influenced by temperature and relative humidity in a
manner that materially affects the test results. In order for reliable comparisons to be made
of different materials and between different laboratories, it is necessary to standardize the
humidity conditions, as well as the temperature to which the specimens of these materials
are subjected prior to and during the testing. ASTM D638-10 Standard Test Method for
Tensile Properties of Plastics is a test method covering the determination of the tensile
properties of unreinforced and reinforced plastics in the form of standard dumbbell-shaped
test specimens when tested under defined conditions of pretreatment, temperature, hu-
midity, and testing machine speed. The test data obtained by this test method are relevant
and appropriate for use in engineering design. This test method is designed to produce
tensile property data for the control and specification of plastic materials. ASTM D790-03
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and
Electrical Insulating Materials is a test method that covers the determination of the flexural
properties of unreinforced and reinforced plastics, including high-modulus composites
and electrically insulating materials in the form of rectangular bars molded directly or cut
from sheets, plates, or molded shapes. ASTM G151-00 Exposing Nonmetallic Materials
in Accelerated Test Devices that Use Laboratory Light Sources, is a practice that provides
the general procedures to be used when exposing nonmetallic materials in accelerated test
devices that use laboratory light sources. Detailed information regarding the procedures
to be used for specific devices is found in the standards, describing the particular device
being used. ASTM G155-04a Standard Practice for Operating Xenon Arc Light Apparatus
for Exposure of Non-Metallic Materials is a practice that covers the basic principles and op-
erating procedures for using xenon arc light and a water apparatus intended to reproduce
the weathering effects that occur when materials are exposed to sunlight (either direct or
through window glass) and moisture as rain or dew in actual use. This practice is limited
to the procedures for obtaining, measuring, and controlling the conditions of exposure.
Test specimens are exposed to filtered xenon arc light under controlled environmental
conditions. Different types of xenon arc light sources and different filter combinations are
described. Finally, ASTM D2565-08 Standard Practice for Xenon-Arc Exposure of Plastics
Intended for Outdoor Applications is a practice that covers the specific procedures and
test conditions that are applicable to xenon arc exposure of plastics conducted in accor-
dance with Practices G 151 and G 155. This practice also covers the preparation of the test
specimens, the test conditions best suited for plastics, and the evaluation of the test results.
Significance and use: the ability of plastic material to resist the deterioration of its electrical,
mechanical, and optical properties caused by exposure to light, heat, and water can be very
significant for many applications. This practice is intended to induce property changes
associated with end-use conditions, including the effects of daylight, moisture, and heat.

The setup of the parameters and the fabrication process: In order to create samples for
flexural and tensile testing, a number of trials were run to determine the initial parameters
of the extrusion and injection molding processes. The following conditions were specified
for the last trial for which the samples were created: The following process conditions were
used: the DMS extruder melt temperature for PLA was set at 200 °C; the motor speed was
set at 50 Rpm; the max force was 8000 N; the max acceleration speed was 1000 Rpm. For
the injection molding: the mold temperature was set at 45 °C; the molding temperature
was set at 175 °C. The process was as follows: Step 1, 12 bar for 13 s; Step 2, 12 bar for 12 s.
Ultimately, a total of 180 good PLA flexural samples were fabricated using these parameters.
Another set of trials was performed to fabricate the samples for tensile testing. Adjustments
were needed of the injection molding machine for the tensile samples as follows: injection
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molding for tensile testing: the melting temperature was set at 180 °C; the mold was set at
55; Process Step 1, 12 bar for 10 s; Step 2 12 bar for 6 s. Finally, a total of 90 tensile samples
were fabricated using these parameters.

Experimentation

The experiment included 10 replications on each test/code; ASTM standard recom-
mends at least 6 specimens to validate the experiment, and it was decided to include 10
to minimize the variability. The sample fabrication included a total of 70 color samples,
70 flexural samples, and 70 tensile samples. Another 30 extra samples (10 for each group of
tests) were fabricated to be tested as control samples. The times selected were based on
the methodology and previous experiments in the area of degradation [3]. The accelerated
destructive degradation test (ADDT) approach was the approach used in this paper, and
it was proposed by Meeker et al. [15]. In an ADDT type of test, the measurements of the
response are destructive; as examples of this kind of test, we can mention that the tensile
and flexural tests completely break the specimens in order to estimate the yield points.
Temperature (which is specified by ASTM) was set at room temperature for the tensile
and flexural testing, between 20 °C and 30 °C. Additionally in Appendix C, a strain–stress
graph is added for the purposes of the illustration of the experimentation (Figure A1).

The necessity of extrapolating data is a well-known feature of accelerated testing, and
the experiment is typically carried out under accelerated conditions; however, the results
are intended to provide information for real or natural situations [16]. It was expected
that PLA would have a rapid visual degradation (250 h), and then, the degradation rate
would slow down, which is the reason for the following times being in 500 h’ intervals
(500, 1000, 1500, and 2000). The fabrication process was performed using an extrusion and
injection molding machine; the extrusion machine had 15cc twin co-rotating screws by
the Xplore model DSM 15 cc capacity. The machine’s control was based on two sections:
the front and rear section with three heating areas: up, middle, and low-out section. The
injection molding machine was an Xplore DSM 12 cc heating chamber, model Micro 12 cc
IMM. Subsequently, the PLA samples were exposed to accelerated degradation using the
weatherometer ATLAS Ci5000 Xenon Weather-Ometer.

Tensile testing was performed at different points of time, and the machine used was
the INSTRON 5882 Floor Model Testing Systems (100,000 N (22,500 lb.)). This equipment
performs tensile and compression testing. Data points were collected in Newtons (load).
The results showed that, for instance, in Sample 7, the breaking point was reached at 70.5 s
and 842.5 Newtons, and the test is graphically represented in Figure 1. The graph presents
the load in Newtons (N) required to break the tensile samples, and the x-axis is the time the
machine took to break the part in seconds (s).

Figure 1. Tensile test.

Batch 1 was a control group averaged at a UTS of approximately 85 MPa. The UTS
of this material was slowly decreased, assumed to be affected by the exposure to the
accelerating factors of UV, humidity, and high temperatures. Flexural testing was performed
by using a three-point test. The machine used was the INSTRON 5882 Floor Model Testing
Systems. The maximum stress and strain are calculated on the incremental load applied,
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and this was used in the experimentation of this research. In the flexural testing, the bar
samples (fabricated under ASTM D790) were positioned as a flat cross-section on two
parallel supporting pins. The load was then applied through a loading point in the center
of the cross-sectional area of each sample. In this study, what was important was the force
needed to break the sample (since degradation is being evaluated); however, we included a
strain–stress graph in Appendix C for the tensile testing.

The flexural samples were tested until they reached the breaking point. The maximum
force at the breaking point was evaluated, and the flexural strength was calculated. Figure 2
presents the force applied and the breaking point in N (for Sample 4 at 0 h). The data were
used to calculate the flexural strength when the material broke. In this experimentation, all
samples broke during the tests; it is important to mention that some polymeric materials
with high elasticity usually just bend at their maximum force and do not break, and this is
relevant for researchers that are looking to experiment with different ranges of brittleness
of the material.

Figure 2. Flexural test.

For the non-parametric analysis, the findings of the flexural strength (measured in
megapascals) for each sample tested under these conditions were determined. The L*a*b*
colorimetry model devised by the Commission International d’Eclairage (CIE) was used
for color testing. In a technical report publication (15.2), they established color testing as a
standard (1986). Color denotes lightness and is described by two axes: The L* (lightness)
axis, which goes from 100 to zero, with 100 denoting perfect reflecting diffusion and zero
denoting dark color. The a* and b* axes are the two chromatic components (ranging from
−120 to 120), and the a* component goes from green (−120) to red (120), while the b*
component goes from blue (−120) to yellow (120). The results for the 60 samples were
used for the analysis. Weight loss (also known as mass loss) in a material is closely related
to the strength and flexibility of materials. Samples were weighed before conducting the
destructive flexural test. The initial weight of the control samples averaged 7.076 gr. These
data were used to analyze the behavior of the material during the 2000 h of accelerated
weathering exposure. Physical evidence of the changes in the material are presented in
Figure 3 for illustration purposes.

Figure 3. Degradation.

4. Statistical Analysis

Multivariate analysis of variance (MANOVA) can be expressed as a set of tools that
provide simultaneous analysis of multiple dependent and independent variables; more in
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general, a design is considered multivariate if it involves two or more dependent measures.
A multivariate test is designed to account for multiple responses and combines them into a
single analysis. Suppose that you have six dependent variables, and you want to run an
ANOVA, then six different tests would be necessary. MANOVA is able to do this in one test
and infer more information among the variables. The dependent variables that are included
in the analysis are often called a “composite variable” or a “synthetic variable”, and in such
a way, a new variable is created; then, the test is performed on this composite variable, and
inferences are made based on this new variable [17]. Rencher and Christensen explained
that multivariate analysis consists of a collection of methods that can be used when several
measurements are made on each individual or object (research units, experimental units,
or sampling units) in one or more samples. Historically, multivariate analysis has had
applications in behavioral and biological sciences; currently, this technique is used in
multiple science fields including chemistry, education, physics, geology, medicine, law
business, mining, engineering, and many more fields [18].

Repeated measures or repeated measurements analysis designs are defined by mea-
sures taken on each participant (sample unit) under each of several conditions; the condi-
tions could refer to a situation or very commonly to different times. This strategy is widely
used by researchers, mainly because it offers a more powerful analysis than between-subject
designs, offering a greater likelihood of rejecting a false null hypothesis; the statistical reason
for this situation is that the samples are their own control, and variation due to individual
difference is one of the components of the error in the variance “noise”. In experimentation
and statistical analysis, no matter the design or analysis that is being used, the researcher is
always looking for ways to reduce the error in the variance [18]. In many cases, because the
multivariate analysis allows the researcher to carry out a specific test of the experimental
hypothesis, it might actually be more powerful than the traditional statistical univariate
test analysis [19].

In experimentation, it is common to encounter a problem that involves several re-
sponses of the same experimental unit (ex: person, animal, machine, final product, materi-
als). These response variables usually represent different qualitative characteristics; mass
loss, length, width, color change, etc. Variation among these variables and the significance
of the experimental outcome can be measured by the use of multivariate methods, such
as multivariate analysis of variance. Along with this, these variables might be coming
from a one-time measure, which would be a simple MANOVA, or the measurements may
come from performing a repeated measures response to the levels of an experimental factor
of interest, such as time, treatment, or dose; in such a case, repeated measures would be
necessary [20]. MANOVA and repeated measures comprise the base methodology for the
experimentation in this research.

Non-Parametric Analysis

The multivariate analysis of non-parametric data is presented as an alternative testing
to multivariate analysis when the data do not satisfy the essential assumptions of regular
MANOVA, such as multivariate normality; sometimes, the restrictions of the classical
parametric MANOVA are very hard to verify, making the analysis useless in such cases.
Another restriction of MANOVA is that, even when the normality assumptions are met, the
analysis is hard to use because only a global statement about the significance is calculated,
and there is a lack of information related to the sub-groups of the response that affect the
global significance. Burchett et al. [16] developed a package in the R software that allows
the user to perform a non-parametric multivariate analysis, when necessary. They intended
to solve two critical issues of the regular MANOVA: (a) providing a fully non-parametric
approach, and even more important for this research, (b) providing a procedure to identify
the significance response at variable levels. The non-parametric package is “npmv”. The
“npmv” package states that the multivariate observation vectors Xij = (Xij(1) , . . . , Xij(p))T
are independent, and within the same factor level i, and they follow the same p-variate
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distribution: Xij Fi. It is assumed implicitly that the same p response variables are observed
in the same levels, and that these p variables may be dependent.

Burchett et al. [16] described that the hypothesis testing can be statistically formulated
as follows: Ho: F1 = . . . = Fa. If the global hypothesis is rejected, further analysis is
desired. The first thing you want to know in the follow-up analysis is which variables or
treatments, or even groups, contribute to the significance of rejecting the null hypothesis,
and the npmv package performs this type of analysis. There are several ways to test
the overall null hypothesis of the multivariate distribution. Using the “npmv” package,
four different tests were performed; they were based on the theoretical/mathematical
array in several previous studies [21,22]. The tests performed with this package were
an approximation of the multivariate analysis of variance. The approximations used for
hypothesis testing were the ANOVA type; Wilk’s Lambda type; Lawley–Hotelling type
(McKeon’s F approximation); and Bartlett–Nanda–Pillai type (Muller’s F approximation).

Grimm and Yarnold [17] pointed out that the approach of using a MANOVA in
repeated measures creates no strategic complications in comparison to using repeated
measures ANOVA. However, to fit repeated measures data into a MANOVA framework,
it is necessary to create a set of dependent variables. It is helpful to understand the main
differences between ANOVA and MANOVA in repeated measures; it is the handling of the
within-subject effect. The MANOVA approach for repeated measures can offer advantages
over the traditional mixed-model analysis. In many cases, because the multivariate analysis
allows the researcher to carry out specific tests of the experimental hypothesis, it might
actually be more powerful than the traditional statistical univariate test analysis.

5. Results and Discussion

The database consisted of the independent variable (time) and four response variables:
flexural strength, ultimate tensile strength, weight (W), and color (L). A sample of the
database is presented in Table 1. There were three initial tests that were conducted for this
multivariate database: (1) based on the hypothesis that at least one group (time) is statisti-
cally significantly different from the other group (see Section 3); (2) individual responses
analysis; and (3) looking for multivariate significance. The analysis was performed using
the R software.

Table 1. Accelerated degradation test database.

Batch Sample Time (h) Tensile (Mpa) Flexural (Mpa) W (g) L*

1 1 0 84.73 131.90 7.09 80.06
1 2 0 85.50 127.78 7.05 80.64
1 3 0 86.24 121.32 7.05 80.8
1 4 0 84.75 121.90 7.07 79.95
1 5 0 86.60 125.80 7.09 80.23

. . . . . . . . . . . . . . . . . . . . .
6 58 2000 67.1835 20.8572 7.06 56.17
6 59 2000 82.6966 12.4594 7.03 53.78
6 60 2000 64.329 33.2392 5.88 68.01

As stated in the goals presented for this paper, Hypothesis # 1 was set to determine
if there was a significant difference in the multivariate analysis of variance. Here, four
different tests were presented: Wilks, Pillai, Hotelling–Lawley, and Roy tests. All the test
results had a p-value less than 0.05, therefore rejecting the null hypothesis Ho. This indicates
that the multivariate analysis of variance is statistically significant, in other words that
the accelerating factors of UV light, humidity, and temperature had a statistical difference
in the degradation rate of PLA after an accelerated weather exposure of 2000 h. The R
software results are presented in Table 2.
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Table 2. MANOVA: R p-value results.

Multivariate Analysis of Variance Tests

summary(fit, test=“Wilks”)
Df Wilks approx F Df den Pr(>F)

group 5 0.15739 6.3473 20 170.1 1.51 × 10−12

Residuals 54

summary(fit, test=“Pillai”)
Df Pillai approx F Df den Pr(>F)

group 5 1.1179 4.1888 20 216 4.58 × 10−8

summary(fit, test=“Hotelling–Lawley”)
Df Hotelling–Lawley approx F Df den Pr(>F)

group 5 3.7475 9.275 20 198 2.2 × 10−16

Residuals 54

summary(fit, test=“Roy”)
Df Roy approx F Df den Pr(>F)

group 5 3.3194 35.85 5 54 5.39 × 10−16

Residuals 54

The individual tests for the four responses were conducted in order to identify what
variables were significant in the statistical difference of the multivariate analysis. The
results indicated that three of them were significant. The tensile test, the flexural test, and
the color test had p-values of 1.41 × 10−6, 5.18 × 10−9, and 1.52 × 10−6 , respectively. Weight
(mass) loss resulted in being not statistically significant different during the accelerated
exposure with a p-value of 0.4204. Individual results from the R software are presented in
Table 3. For these particular results, the p-value for UV light degradation rate was used to
test what factor was affected by the accelerated weather exposure of 2000 h; individually,
only weight loss was not affected.

Table 3. Individual variables’ analysis of variance.

Response Variables

Tensile
Df Sum F value Pr (>F)

group 5 4268.7 853.75 9.5655 1.41 × 10−6

Residuals 54 4819.6 89.25

Flexural
Df Sum F value Pr(>F)

group 5 84625 16924.9 14.525 5.18 × 10−9

Residuals 54 62922 1165.2

Weight
Df Sum F value Pr(>F)

group 5 0.18162 0.036324 1.0108 0.4204
Residuals 54 1.94058 0.035937

Color
Df Sum F value Pr(>F)

group 5 1853.4 370.67 9.5059 1.52 × 10−6

Residuals 54 2105.7 38.99

A follow-up analysis was conducted to determine if the data followed a multivariate
normal distribution. For this, a skewness and kurtosis test was conducted, and the null
hypothesis for this test was that “the sample data are not significantly different than a
normal population.” In this case, probabilities greater than 0.05 indicated that the data



Polymers 2023, 15, 620 10 of 14

were coming from a normally distributed population. Probabilities less than 0.05 indicated
that the data were not normally distributed. The p-values for both tests were less than
0.05, indicating that the data were not normally distributed. Follow-up tests for individual
normality were conducted (as suggested by Shapiro–Wilk). The results indicated that
a p-values less than 0.05 suggested that none of the responses were following a normal
distribution. The results are presented in Table 4.

Table 4. Multivariate normality test.

Normality Results

Multivariate Normality
Test Statistic p-value Result Normality

1 Mardia Skewness 418.922587 2.41 × 10−76 NO
2 Mardia Kurtosis 18.79618702 0 NO

Univariate Normality
Test Statistic p-value Normality

1 Shapiro–Wilk 0.5681 <0.001 NO
2 Shapiro–Wilk 0.8662 <0.001 NO
3 Shapiro–Wilk 0.3137 <0.001 NO
4 Shapiro–Wilk 0.9175 6.00 × 10−4 NO

With these results, it can be concluded that MANOVA may not be the best way to
analyze the degradation test results of this experimentation. One of the restrictions of using
a multivariate analysis of variance is that, in order to provide reliable results, the data
should come from a normally distributed population.

Based on these results, a different approach must be considered to analyze the re-
sults for multivariate analysis. The non-parametric inference tests for multivariate data
are presented as an alternative to a regular MANOVA, and as mentioned before in this
document, these tests do not require that the data come from a normally distributed popu-
lation. The functions nonpartest and ssnonpartest in the R software were used to calculate
the non-parametric test statistics; nonpartest was used to conduct the global hypothesis
test for multiple responses, as well as to provide certain information for every response
variable [22]. In the first step, the software assumes that the data have no missing values
(meaning all rows and columns are complete in the database). No missing values comprise
one of the restrictions, and all groups should be measured at the same points in time, as
suggested by Burchett et al. [16]. In this case, all four tests were selected for calculation:
ANOVA type approximation, Lawley–Hotelling test approximation, Bartlett–Nanda–Pillai
test (Muller’s approximation), and Wilks Lambda, as shown in Table 5.

Table 5. Multivariate non-parametric test results.

Test Test Statistic df1 df2 p-Value

ANOVA type test p-value 7.805 17.961 193.98 0.001
Lawley00Hotelling test 11.937 20 104.977 0.001
Bartlett–Nanda–Pillai test 4.96 21.973 233.357 0.001
Wilks Lambda 7.858 20 170.098 0.001

The results indicated that the effect of the independent time variable or treatment
effects was highly significant. At this point, the multivariate test was significant among
all three remaining variables. Next, it is essential to know which variables were in fact
contributing to this global difference. ssnonpartest provides a more detailed comparison of
the different variables involved in the multivariate test. The software package uses an algo-
rithm that determines which of the variables contribute to the significant differences [16];
this follow-up test was intended to indicate if the response variables were statistically
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significantly different at the various points of the independent variable time at 0, 500, 1000,
1500, and 2000 h.

The R software computes all comparisons through the database, i.e., 0 vs. 2000, 0
vs. 1500 vs. 2000, etc. The R code used is presented in Appendix A. The Wilks’ Lambda
type statistic was used in the following test. If the global hypothesis was significant, then
the subsets of the algorithm continue. The results are shown in Appendix B, where all
appropriate subsets using the factor levels were checked using a closed multiple-testing
procedure, which controls the maximum overall Type I error rate at alpha= 0.05. All
comparisons among the different points of time rejected the null hypothesis, concluding a
statistically significant difference. The third hypothesis was rejected, and it was concluded
that acceleration time had a significant effect on the PLA samples, after 250, 500, 1000, and
2000 h of accelerated exposure.

6. Closing Remarks and Conclusions

There were three hypotheses stated in this research paper, and each hypothesis served
to test a part of the experimentation, as well as the changes (degradation) of the material
through the accelerated weathering conditions. In the first hypothesis, the goal was to
identify if the selected response variables were significantly affected by the designated
accelerated degradation variables: UV light, humidity, and temperature. The hypothesis
testing was performed by using the multivariate non-parametric test. Table 1 presented a
multivariate test with four multivariate tests: ANOVA type test, McKeon approximation
for the Hotelling test, Muller approximation for the Bartlett–Nanda–Pillai test, and Wilks
Lambda test. All four tests provided a p-value less than 0.001; with the small p-value, the
null hypothesis is rejected. It was concluded that there was a statistically significant effect
of UV light, humidity, and temperature on the degradation rate of PLA after 2000 h of
accelerated weather exposure [14].

The second hypothesis targeted the effect on the response variables, analyzed indi-
vidually, concluding that, out the four responses, tensile, flexural, lightness and weight
loss, only three of these had a statistically significant effect. A note here is related to the
methods used, different from what normally is used for testing the mechanical properties
of biopolymers: by the integration of various factors affecting the material and measuring
(multivariate) as would be the reality of a product made of a biopolymer or any material,
the purpose is not to focus on the effect on one particular property, but to widen the range.
This research paper is part of a more complete research work in which the degradation
model were proposed in another paper (by the same authors) [9].

The third hypothesis was related to the different times selected for the experiment.
It is necessary to know the point of time at which the acceleration time has an effect on
the PLA samples. The test included the degradation after 250, 500, 1000, 1500, and 2000 h
of accelerated conditions exposure. The testing for this hypothesis was, in fact, a follow-
up test of Hypothesis 1. After testing the overall significance and by using the function
ssnonpartest, a series of tests was conducted. The test looked for statistical differences
among the six different times. The test was conducted, and the null hypothesis was rejected.
It can be concluded that there was a statistically significant effect of the acceleration time
on the PLA samples after 0, 250, 500, 1000, and 2000 h of exposure.

The findings show that PLA’s characteristics caused its flexural strength to degrade
more quickly than its tensile strength. This biopolymer has a tendency to be fragile,
according to the literature. The study’s findings quantified and modeled this particular
trait. The action of UV radiation on the material can be used to explain why, in terms of
physical qualities, the material loses its lightness before it loses weight.

The duration of the research’s experiments was restricted by the equipment resources’
availability. Using the same setup parameters with a longer exposure duration as the next
stage in this research could produce findings that are more accurate. The experiment,
for instance, may run 3000 h and involve at least ten separate points where the material
degradation would be assessed. The reliability and longevity of one biopolymer were
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thoroughly investigated in this work through experimental methods. It is recommended to
generalize the research’s technique to other biopolymers with comparable mechanical and
chemical properties.
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Appendix A

Code
ssnonpartest(Tensile|Flexural|Weight|LT̃ime,ADT, test= c(1, 0, 0, 0),
alpha=0.05,factors.and.variables=TRUE) #ANOVA TYPE
Tensile|Flexural|Weight|T̃ime,ADT, test= c(0, 1, 0, 0),
alpha=0.05,factors.and.variables= TRUE) #Lawley Hotelling type)
ssnonpartest(Tensile|Flexural|Weight|LT̃ime,ADT, test= c(0, 0, 1, 0),
alpha=0.05,factors.and.variables = TRUE) # Bartlett–Nanda–Pillai type
ssnonpartest(Tensile|Flexural|Weight|LT̃ime,ADT, test= c(0, 0, 0, 1),
alpha=0.05,factors.and.variables = TRUE) # Wilks Lambda Type

Appendix B

Performing the Subsets of Algorithm based on the Factor levels
The hypothesis of equality between factor levels 0, 250, 500, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 250, 500, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 500, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 500, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 500, 1000, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 500, 1000, 1500 is rejected
The hypothesis of equality between factor levels 500, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 250, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 250, 500, 1500, 2000, is rejected
The hypothesis of equality between factor levels 250, 500, 1000, 2000 is rejected
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The hypothesis of equality between factor levels 250, 500, 1000, 1500 is rejected
The hypothesis of equality between factor levels 0, 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 500, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 500, 1000, 2000 is rejected
The hypothesis of equality between factor levels 0, 500, 1000, 1500 is rejected
The hypothesis of equality between factor levels 0, 250, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 1000, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 1000, 1500 is rejected
The hypothesis of equality between factor levels 0, 250, 500, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 500, 1500 is rejected
The hypothesis of equality between factor levels 0, 250, 500, 1000 is rejected
The hypothesis of equality between factor levels 1000, 1500, 2000 is rejected
The hypothesis of equality between factor levels 500, 1500, 2000 is rejected
The hypothesis of equality between factor levels 500, 1000, 2000 is rejected
The hypothesis of equality between factor levels 500, 1000, 1500 is rejected
The hypothesis of equality between factor levels 250, 1500, 2000 is rejected
The hypothesis of equality between factor levels 250, 1000, 2000 is rejected
The hypothesis of equality between factor levels 250, 1000, 1500 is rejected
The hypothesis of equality between factor levels 250, 500, 2000 is rejected
The hypothesis of equality between factor levels 250, 500, 1500 is rejected
The hypothesis of equality between factor levels 0, 1500, 2000 is rejected
The hypothesis of equality between factor levels 0, 1000, 2000 is rejected
The hypothesis of equality between factor levels 0, 1000, 1500 is rejected
The hypothesis of equality between factor levels 0, 500, 2000 is rejected
The hypothesis of equality between factor levels 0, 500, 1500 is rejected
The hypothesis of equality between factor levels 0, 500, 1000 is rejected
The hypothesis of equality between factor levels 0, 250, 2000 is rejected
The hypothesis of equality between factor levels 0, 250, 1500 is rejected
The hypothesis of equality between factor levels 0, 250, 1000 is rejected
The hypothesis of equality between factor levels 0, 250, 500 is rejected
The hypothesis of equality between factor levels 1500, 2000 is rejected
The hypothesis of equality between factor levels 1000, 2000 is rejected
The hypothesis of equality between factor levels 500, 2000 is rejected
The hypothesis of equality between factor levels 500, 1500 is rejected
The hypothesis of equality between factor levels 250, 2000 is rejected
The hypothesis of equality between factor levels 250, 1500 is rejected
The hypothesis of equality between factor levels 0, 2000 is rejected
The hypothesis of equality between factor levels 0, 1500 is rejected
The hypothesis of equality between factor levels 0, 1000 is rejected
The hypothesis of equality between factor levels 0, 500 is rejected
The hypothesis of equality between factor levels 0, 250 is rejected

Appendix C

Figure A1. Strain–stress for tensile testing.
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