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Supercurrent reversal in Zeeman-split Josephson junctions
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We theoretically study the current-phase relation in a Josephson junction comprising the Zeeman-split
superconductors (ZSs) and a normal metal (N). We show that at low temperatures the Josephson current in
the ZS/N/ZS junctions exhibits a supercurrent reversal at a certain phase difference ϕc ∈ (0, π ). By calculating
the spectral Josephson current, we demonstrate that the band splitting due to the Zeeman interaction causes
the level crossing in the spectra of the Andreev bound states and the sign reversal of the Josephson current.
Additionally, we propose an alternative method to observe the supercurrent reversal. Tuning the Rashba spin-
orbit coupling electrically, one can control the critical phase difference ϕc, eliminating the need for manipulating
two magnetizations independently.
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I. INTRODUCTION

A relation between the Josephson current J and the phase
difference ϕ across a junction, called a current-phase relation
(CPR), reflects various possible mechanisms of Cooper pair
transport in the structure [1]. The transmission coefficients of
Cooper pairs are governed by junction characteristics such as
the transmission probability of the normal segment and the
pairing symmetries of the superconductors. With advances in
experimental techniques, CPR has recently become a mea-
surable quantity using superconducting quantum interference
devices (SQUIDs) [2–13].

The typical CPR represented as J ∝ sin ϕ can be realized,
for example, in a junction in which two BCS superconductors
are separated by an insulator. Only the lowest-order cou-
pling is allowed between two BCS superconductors because
the transparency of an insulator is much smaller than unity.
When an insulator is replaced by a highly transparent metal,
higher harmonics such as sin( jϕ) with j > 1 modify the
CPR. With increasing the transparency to unity, the CPR at
low temperatures crosses over to a sawtooth shape [14,15]
with a jump at ϕ = ±π . Recently, it has been predicted that
the 4π -periodic CPR might be realized at low temperatures
in a Josephson junction hosting the Majorana bound states
(MBSs). The Andreev bound states (ABSs) [16,17] including
the MBSs [18–22] stemming from the unconventional Cooper
pairing [23–26] cause the resonant transmission of quasiparti-
cles [27–36]. The 4π -periodic Josephson currents observed
in topological superconducting junctions may indicate the
realization of the MBSs [6,37,38].

At the same time, the CPR can be qualitatively modified
by the Zeeman splitting (i.e., spin-splitting superconductors
[39–50]). The Josephson current in the diffusive SFcFS junc-
tion has been studied using the quasiclassical Green’s function
method [51], where S, F, and c stand for a superconductor, a
ferromagnetic metal, and a constriction, respectively. It was
shown that in such structures the Josephson current at low
temperatures changes the direction at an intermediate phase
difference ϕc ∈ (0, π ) in addition to the standard current re-

versals at ϕ = 0 and π [50,51]. In other words, the CPR at
a low temperature has an extra abrupt jump at the critical
phase at ϕ = ϕc. Such an unusual CPR, however, has not been
detected in experiments yet. To observe the current reversal
at ϕc, we need to understand how to control this behavior to
suggest a more feasible experimental setting.

In this paper, we study the Josephson effect between two
Zeeman-splitting superconductors (ZSs) in one dimension. In
particular, we investigate the mechanism of the Josephson-
current reversal at ϕc and consider an experimental setup to
observe this effect. Using the recursive Green’s function (GF)
method in the lattice model, we obtain the CPR with varying
the junction parameters: magnetizations in the ZSs, junction
length, and temperature. We have shown that the supercurrent
reversal at ϕc takes place when the magnetizations are not
antiparallel and can be the most prominent when the magneti-
zations are parallel at low temperatures. Analyzing a spectral
Josephson current, we also show the origin of the anomalous
current reversal in the CPR. We discuss the relation between
the critical phase difference and the positions of Andreev
levels (i.e., energy levels of the quasiparticle bound states in a
junction).

In addition, we demonstrate that the shape of the CPR
and the magnitude of ϕc can be controlled by varying the
Rashba spin-orbit coupling (SOC) in the normal segment by
an external gate, which is easier than controlling the magne-
tizations of the ZSs. The Rashba SOC effectively changes the
magnetization configuration of the junction through the spin

FIG. 1. Schematic of the system. The junction consists of
Zeeman-split superconductors (ZSs) and a nanowire with a strong
SOC. The spin-splitting directions in the SCs are characterized by
VL(R). The length of the nanowire is characterized by LN .
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precession [52,53] in the normal segment. To control ϕc in the
absence of the Rashba SOC, one has to tune the misalignment
between two magnetizations in the ZSs. At the same time,
by tuning the SOC strength, one can qualitatively reproduce
all of the CPR types without changing the direction of the
magnetizations.

II. MODEL AND FORMULATION

We consider a one-dimensional Josephson junction that
consists of two ZSs. The two ZSs are separated by a normal
metal with the length LN , where we consider the Rashba SOC.
The Zeeman-splitting superconducting state can be realized
in the structure shown in Fig. 1, where the pair potential and
the Zeeman interaction are present in the wire because of the
proximity from the conventional superconductors (SCs) and
the ferromagnetic insulators. The Hamiltonian in the normal
segment is given by

HN = − t
∑
j,α

[c†
j+1,αc j,α + c†

j,αc j+1,α]

+ i
λ

2

∑
j,α,β

[c†
j+1,α (σ̂y)αβc j,β − c†

j,α (σ̂y)αβc j+1,β ]

+
∑
j,α

c†
j,α (2t − μN )c j,α, (1)

where t , λ, and μN are the hopping energy, the energy of the
Rashba spin-orbit interaction, and the chemical potential in
the normal metal, respectively. The creation and annihilation
operators at the lattice site j with spin α are denoted by
c†

j,α and c j,α , respectively. The Pauli matrices in spin and
Nambu space are denoted by σν and τν with ν ∈ {x, y, z},
respectively. The identity matrix in each space is defined as
σ0 and τ0. In this paper, the accents ·̂ and ·̌ mean the 2 × 2 and
4 × 4 matrices in the spin and Nambu space, respectively. The
Hamiltonian in the superconducting leads are

Hi = − t
∑
j,α

[c†
j+1,αc j,α + c†

j,αc j+1,α]

+
∑
j,α

c†
j,α[(2t − μS )σ̂0 − V i · σ̂]αβc j,β

+
∑

j

[
eiϕi c†
j,↑c†

j,↓ + H.c.], (2)

with i = L and R, where μS is the chemical potential, 
 is the
amplitudes of the pair potential, and ϕL(R) represents the phase
of the order parameter in the left (right) SC.

The electric current is obtained from the Matsubara GF
Ǧ j, j′ (iωn) in the normal segment [54–56],

J = ie

2h̄
T

∑
ωn

Jn, (3)

Jn = Tr{τ̌3[ť+Ǧ j, j+1(iωn) − ť−Ǧ j+1, j (iωn)]}, (4)

where ωn = (2n + 1)πT is the Matsubara frequency, T is the
temperature, n is an integer number, and e < 0 is the charge
of an electron. The hopping matrices are defined as

ť± =
[

t̂± 0
0 t̂∗

±

]
, t̂± =

[ −t ∓λ/2
±λ/2 t

]
. (5)
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1
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FIG. 2. Current-phase relation in a ZS/N/ZS junction without
SOC. The amplitudes of the magnetization are set to V = 0.5
0. The
magnetization in the left SC is V L = V ez and that in the right V R is
(a) V ez, (b) −V ez, and (c) V ey. The temperature is set to T = Tc ×
10nT , where nT varies from −2 (blue line) to −0.5 (orange line) by
0.5. The length of the junction and the chemical potential are LN =
80 and μS = μN = 0.5t , respectively. The legend in (a) refers to all
panels.

The Josephson current can be calculated also in the real-
energy representation, which helps us to understand a relation
between the Josephson current and the Andreev bound state
energies. The Josephson current is represented alternatively
in terms of the spectral current JE (E ),

J = e

2h̄

∫
JE tanh

(
E

2T

)
dE , (6)

JE = 1

2π
Tr{τ̌3[ť+Ǧ j, j+1(E ′) − ť−Ǧ j+1, j (E

′)]}, (7)

where Ǧ j, j+1(E ′) is the retarded GF with E ′ = E + iδ with δ

being the smearing factor (i.e., an infinitesimal real number).
Throughout this paper, the Matsubara GF Ǧ j, j′ (iωn) and

the retarded GF ǦR
j, j′ (E ) are calculated by using the recur-

sive GF method [57]. The amplitudes of the magnetization
in the ZSs are assumed to be the same (V = VL = VR with
Vi = |V i|), whereas the directions of them can be different
from each other. The ratio between the pair potential at T = 0
and the hopping energy is set to 
0 = 0.01t . We assume
that the Zeeman interaction is smaller than 0.5
0 so that the
pair potentials in the ZSs are finite [58,59]. The temperature
dependence of the pair potential is calculated by the BCS
relation. The current density is normalized to J0 = |e|
0/2h̄,
and the smearing factor is set to δ = 0.02
0. The unit of
length is the lattice constant.

III. ANOMALOUS CURRENT REVERSAL IN THE
JOSEPHSON CURRENT

We first show the numerical results of the CPRs without
the SOC in Fig. 2. The amplitude of the magnetizations is set
to V = 0.5
0. The magnetization in the left SC is fixed to
V L = V ez. The magnetization in the right SC is (a) parallel
(V R = V L), (b) antiparallel (V R = −V L), and (c) perpendic-
ular (V R ⊥ V L) to that in the left SC. The temperature is
set to T = Tc × 10nT , where nT varies from −2 (blue line)
to–0.5 (orange line) by 0.5. For the parallel configuration in
Fig. 2(a), the Josephson currents at low temperatures change
the direction abruptly at a certain phase difference that is
neither 0 nor π . We define this phase difference as the critical
phase ϕc ∈ (0, π ). Hereafter, we mainly focus on the jump in
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FIG. 3. (a) Temperature dependence of the critical phase in a
ZS/N/ZS junction without SOC. The magnetization in the left is
V L = V ez. The magnetization in the right is V R = V (cos θRez +
sin θRex ). The amplitudes of the magnetization are set to V = 0.5
0.
The temperature is set to T = Tc × 10nT , where nT varies from
−2 to −1 by 0.5. The length of the junction is LN = 80. [(b),(c)]
Length dependence of the critical phase. The temperature is fixed
at (b) T/Tc = 10−1 and (c) 10−2. The coherence length in a normal
metal is estimated as ξT ≈ 370 in (b) and ξT ≈ 3700 in (c). For (c),
the same legend is used as in (b).

the CPR appearing at low temperatures and the dependence of
ϕc on the junction parameters.

For the antiparallel configuration in Fig. 2(b), the CPR
changes from the sinusoidal function at a high temperature
to the sawtooth shape [14] at a low temperature. The abrupt
sign change of the Josephson current occurs only at ϕ = π .
The CPR at a low temperature is neither cos(ϕ/2) nor ϕ. This
suggests that the junction at LN = 80 is in the intermediate
parameter region between the short junction limit LN � ξ0

and the long junction limit LN � ξ0, where ξ0 = h̄vF /2πTc

is the coherence length and vF is the Fermi velocity. In Fig. 2,
the coherence length is estimated as ξ0 ≈ 37 at μS = 0.5t .
These characteristic behaviors in Figs. 2(a) and 2(b) can be
also seen in the quasiclassical limit Tc � μS as shown in
Appendix A. The Usadel equation can be solved analytically
in the short junction limit. The analytic expression of the
Josephson current helps us to understand the reasons for the
presence (absence) of the current reversal in the parallel (an-
tiparallel) configuration. For the perpendicular configuration,
the abrupt sign change also appears as shown in Fig. 2(c). In
this case, ϕc is larger than that in the parallel configuration in
Fig. 2(a).

We show the relations between ϕc and the misalignment
angle θR in Fig. 3, where V L = V ez, θR is defined as V R =
V (cos θRez + sin θRex ) and μS = μN = 0.5t . The results in
Fig. 3(a) suggest that the CPR depends sensitively on tem-
peratures. The critical phase is calculated for several choices
of the junction length LN in Figs. 3(b) and 3(c), where we fix
a temperature at T = 0.1Tc in (b) and T = 0.01Tc in (c). At
T = 0.1Tc, ϕc approaches π at smaller θR when the junction
is long.

The Josephson current can be decomposed into the har-
monics as

J =
∞∑

�=1

J� sin(�ϕ). (8)

At a high temperature T � Tc, the contribution of the lowest-
order term with � = 1 is dominant for any junctions because
of the relation J� ∝ exp(−�LN/ξT ) [1], where ξT = h̄vF /2πT

FIG. 4. Spectral Josephson currents in a ZS/N/ZS junction with-
out SOC. The two magnetizations align in parallel: V R = V L = V ez.
The amplitude of magnetization is chosen as (a) V/
0 = 0, (b) 0.2,
and (c) 0.4. The junction length, the chemical potential, and the
smearing factor are set to LN = 80, μ = t , and δ = 0.02
0, respec-
tively. The signs in (c) indicate the sign of the contribution to the total
current.

is the coherence length at a clean metal. In this temperature
regime, the CPR is always sinusoidal. To obtain the current
reversal at ϕc, the CPR needs to deviate from the standard
sinusoidal function. At a very low temperature T � Tc, the
contributions of the higher harmonics can modify the CPR,
leading to the abrupt sign change of the Josephson current.
At T = 0.1Tc [Fig. 3(b)], the amplitudes of higher harmon-
ics rapidly decrease with increasing LN . Thus, ϕc at θR = 0
increases to π with increasing LN in Fig. 3(b).

At a higher temperature [Fig. 3(b)], the abrupt sign change
occurs only when LN is sufficiently short. In a long junction
(i.e., LN > ξT ), the higher harmonics are sufficiently large to
change the CPR from the standard sinusoidal shape. At a suf-
ficiently low temperature T = 0.01Tc [Fig. 3(c)], on the other
hand, ϕc is independent of LN because the contributions of
the higher harmonics to the Josephson current are sufficiently
large even when LN = 320. In Figs. 3(b) and 3(c), the thermal
coherence lengths are estimated as ξT ≈ 370 and ξT ≈ 3700,
respectively.

Figure 3 also shows that ϕc is minimum at θR = 0 and
approaches π with increasing θR. The abrupt sign reversal
does not occur when the misalignment angle is large. In partic-
ular, in a long junction [Fig. 3(b)], the current reversal occurs
only when the misalignment angle is smaller than a certain
value, the maximum misalignment angle. As LN increases, the
maximum misalignment angle decreases. Currently, there is
no intuitive picture that explains this behavior.

The origin of the current reversal at ϕc can be understood
by the level splitting in the Andreev bound state energy due
to Zeeman fields. The spectral Josephson currents JE (E ) in
Eq. (7) are shown in Fig. 4, where we fix (a) V/
0 = 0, (b)
0.2, and (c) 0.4 with V L = V R, and LN = 80. The relation
between JE and J is presented in Eq. (6). In the absence of
the magnetization, the spectral Josephson current has peaks
around E = ±
0(1 − ϕ/π ) as shown in Fig. 4(a). Since the
junction at LN = 80 is not in the long-junction limit, the cal-
culated results in Fig. 4(a) deviate slightly from such a linear
relation. The spectra are doubly degenerate due to spin degree
of freedom at V = 0. For finite V , Zeeman fields lift the
degeneracy by ±V as shown in Figs. 4(b) and 4(c). At E = 0,
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FIG. 5. Current-phase relation in a ZS/NW/ZS junction with the
SOC. The amplitude of the SOC in the NW is set to λ = 0.5t . The
magnetization in the left superconductor is V L = V ey. The magneti-
zation in the right superconductor is (a) V R = V ey, (b) V R = −V ey,
and (c) V R = V ez. The other parameters are set to the same values as
those used in Fig. 2. The legend in (a) refers to all panels.

the two branches cross at ϕ = ϕc. Near E = 0, the branch for
ϕ < ϕc and that for ϕ > ϕc contribute to the Josephson current
in the opposite way as indicated by the signs in Fig. 4(c). This
explains the abrupt change in the Josephson current at ϕ = ϕc.
In Appendix A, we show that the CPR for the short junction
limit indicates qualitatively the same behavior by solving the
quasiclassical Usadel equation.

In the quasiclassical limit (Tc � μ), the contributions from
the two branches to the Josephson current cancel perfectly and
the total current becomes zero (see Appendix A for details).
However, in finite-length Josephson junctions, the total cur-
rent is still finite at ϕc < ϕ < π as shown in Figs. 2(a) and
2(c). This would be because of, for example, the thermal deco-
herence or extra bound states trapped in the normal segment.

IV. CONTROLLING THE CRITICAL
PHASE DIFFERENCE

The current-phase relation with the SOC are shown in
Fig. 5, where we set λ = 0.5t and V L = V ey. The magneti-
zation in the right SC is (a) V R = V ey, (b) V R = −V ey, and
(c) V R = V ez. The CPRs shown in Fig. 5 are qualitatively the
same as those in Fig. 2. Namely, the SOC does not affect
the CPR in these magnetic configurations. The Hamiltonian
of the SOC represented as

HSOC = λ sin(k) σ̂y, (9)

in momentum space. The CPR is insensitive to the SOC in
a junction in which one of the Zeeman fields points the ey

direction. We have also confirmed that ϕc is also insensitive to
λ for V L = V ey (not shown). The sensitivity of the CPR to the
SOC depends on the magnetic configurations of the junction
as discussed below.

When the magnetic moments in the two superconduc-
tors are perpendicular to ey, the CPR shows a qualitatively
different behavior from those in Fig. 5. The direction of a
Zeeman field in the left SC is fixed at V L = V ez. The CPRs
for the parallel configuration with V R = V ez are shown in
Figs. 6(a)–6(e) where V = 0.5
0, LN = 80, μS = μN = t ,
and the amplitude of the SOC varies from (a) λ = 0.5t to (e)
0.1t by −0.1t . The critical phase ϕc changes depending on
the amplitudes of the SOC. We also show the results for the
perpendicular configuration with V R = V ex in Figs. 6(f)–6(j).
The dependence of ϕc on λ in the perpendicular configuration

0

1

0

1

0

1

0

1

0

1

0 0.5 1 0 0.5 1

FIG. 6. Current-phase relation of ZS/NW/ZS junctions with the
SOC. The Zeeman field in the left SC is V L = V ez. The Zeeman
field in the right SC V R = V ez is parallel to V L in [(a)–(e)]. The
strength of the SOC varies from (a) λ = 0.5t to (e) 0.1t by −0.1t .
The Zeeman field in the right SC V R = V ex is perpendicular to V L in
[(f)–(j)]. These results are plotted in the same manner as in [(a)–(e)].
The junction length and the chemical potential are fixed at LN = 80
and μS = μN = t , respectively. The legend in (a) refers to all panels.

in Figs. 6(f)–6(j) is different from that in the parallel
configuration in Figs. 6(a)–6(e). The calculated results show
that ϕc can be controlled by the amplitude of the SOC.

In Fig. 7, ϕc is plotted as a function of the junction
length LN for several choices of λ, where V L = V R = V ez,
V = 0.5
0, and a temperature is fixed at T = 0.01Tc. The
results show that ϕc oscillates as a function of LN . The abrupt
sign change in the Josephson current disappears for several
specific lengths LN at which ϕc becomes π . From the nu-
merical results, we find that the period of the oscillation is
approximately proportional to λ−1. The oscillating behav-
ior originates from the spin precession due to the SOC as
discussed in Refs. [49,52,53]. The quasiparticles have an ad-
ditional phase shift depending on their spin while they travel
across the normal wire.

The SOC also affects the spectral current as shown in
Fig. 8, where V L = V R = V ez with V = 0.5t , LN = 80 and
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 30  50  70  90

FIG. 7. The critical phase ϕc is plotted as a function of the length
of normal segment LN for several choices of λ. The magnetizations
are set to V L = V R = V ez with V = 0.5
0 and the temperature is
fixed at T = 0.01Tc.

the SOC varies from λ/t = 0.4 to 0.6 by 0.1. At λ/t = 0.4,
the amplitude of the band splitting δE is almost maximum.
As a consequence, ϕc takes its minimum as shown in Fig. 7.
With increasing λ, δE decreases and almost vanishes at λ/t =
0.6. As a consequence, the anomalous current reversal does
not occur at λ/t = 0.6. The numerical results show that δE
changes periodically as a function of λ. The result in Figs. 8(a)
[8(c)] corresponds to one of the maxima (minima) of δE .
The magnitude of the band splitting in the spectral current is
consistent with those obtained in the continuum model [49].
In the continuous limit, the band splitting is estimated as
δE = V cos(λLN/h̄vF ). From this relation with μN = t , the
period of the oscillation in Fig. 7 is estimated as L0 ∼ 5.44t/λ,
which is almost consistent with our numerical simulation.

In the original paper by one of the authors, there is no con-
trolling parameter in a SFcFS junction after fabrication. Thus
the current reversal can be detected only by tuning the phase
difference ϕ. The results in Fig. 6 suggest that the current
reversal occurs at a fixed phase ϕ by changing the amplitude of
SOC in the normal segment λ. Observing the current reversal
would be easier in the Josephson junction proposed in this
paper because fine-tuning λ is possible by adjusting the gate
voltage.

0.0 0.5 1.0
-10

0

10

0.0 0.50.0 0.5

-1

0

1

FIG. 8. Spectral currents in the parallel configuration are plotted
for several choices of the amplitude of SOC as (a) λ = 0.4t , (b) 0.5t ,
and (c) 0.6t . The other parameters are set to the same values as those
in Figs. [6(a)–6(e)].

V. CONCLUSIONS

We have studied an unusual current-phase (J − ϕ) relation
(CPR) of a Josephson junction that consists of two Zeeman-
splitting superconductors (ZSs). At a low temperature, the
Josephson current changes its direction abruptly at a critical
phase difference ϕc ∈ (0, π ). The results show that ϕc depends
sensitively on the arrangement between the two magnetiza-
tions in the two ZSs. The most pronounced current jumps
are observed in the parallel configuration, while no current
jumps are seen in the antiparallel configuration. Analyzing the
spectral Josephson current, we have shown that the current
reversal is due to the energy splitting of the Andreev bound
state by the Zeeman potential. In the parallel configuration, the
Josephson current changes direction at ϕ = ϕc because a pair
of the Andreev levels cross at zero energy. In the antiparallel
configuration, however, the current reversal disappears. This is
because the two magnetizations in opposite directions cancel
each other’s effect on the Andreev levels. The current reversal
also occurs when the two magnetizations are perpendicular to
each other. Namely, the cancellation is absent in the perpen-
dicular magnetic configuration.

In addition, we have demonstrated that ϕc depends on
the Rashba spin-orbit interaction introduced in the normal
segment. The spin precession of a quasiparticle due to the
spin-orbit interaction modifies the energy spectra of the An-
dreev levels and ϕc. In experiments, the amplitude of the
spin-orbit interaction is tunable by applying the gate voltage.
Therefore, by measuring the CPR by tuning the spin-orbit
coupling, one would be able to observe the anomalous current
reversal.
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APPENDIX A: QUASICLASSICAL GREEN’S FUNCTION
THEORY

1. Usadel equation

In a superconducting proximity structure in the quasiclas-
sical limit μS � Tc, the solution of the Usadel equation

h̄D∇ · (ǧ∇ǧ) + i[iωnτ̌3 + Ȟ , ǧ]− = 0, (A1)

describes well superconducting phenomena, where D is the
diffusion constant and ǧ = ǧ(r, iωn) is the Matsubara Green’s
function in the Nambu space (i.e., particle-hole ⊗ spin space)
defined as

ǧ =
(

ĝ f̂ω

f̂ †
−ω −ĝ

˜

)
. (A2)

In Eq. (A2), we have used the symmetry relation between the
anomalous Green’s function, − f̂

˜
ω = f̂ †

−ω, where the under-
tilde functions are defined by X̂

˜
(r, iωn) = X̂ (r, iωn)∗ with X

being an arbitral function. In the presence of a Zeeman filed
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V = V ez, the Ȟ matrix is given by

Ȟ =
[
ξ̂ η̂

η̂
˜

ξ̂
˜

]
=

[ −V σ̂z i
0(iσ̂y)
i
∗

0(iσ̂y)† −V σ̂z

]
, (A3)

where we have assumed the Zeeman potential V (x) depends
on the spatial coordinate x. In this case, it is convenient to
apply the unitary transform,

Ǔ −1(iωnτ̌3 + Ȟ )Ǔ (A4)

=
[

iωn − V σ̂z i
0σ̂0

i
∗
0σ̂0 −iωn + V σ̂z

]
, (A5)

with Ǔ = diag[σ̂0,−iσ̂y]. Accordingly, the Green’s function
can be parametrized as

Ǔ −1ǧǓ =

⎛
⎜⎜⎜⎝

g+ 0 fω,+ 0
0 g− 0 fω,−

f ∗
−ω,+ 0 −g

˜
− 0

0 f ∗
−ω,− 0 −g

˜
+

⎞
⎟⎟⎟⎠, (A6)

where we have used ĝ = diag[g+, g−] and f̂ω =
diag[ fω,+, fω,−](iσ̂y). The Usadel equation in 4 × 4 space can
be reduced into two Usadel equations in 2 × 2 space, The
Green’s function in each spin subspace can be described as

g̃σ =
(

gω,σ fω,σ

f ∗
−ω,σ −g

˜
ω,σ̄

)
=

(
gω,σ fω,σ

f
ω,σ

−g
˜
ω,σ̄

)
, (A7)

where σ = ± (with σ̄ = −σ ) specifies the spin subspace.
We have introduced the underline accent as f

ω
= f ∗

−ω. The
normalization condition becomes

g2 + f f = 1. (A8)

In the homogeneous limit, the Green’s functions satisfy

g̃σ = 1

�σ

[
ωσ 
0


∗
0 −ωσ

]
, (A9)

with �σ = √
ω2

σ + |
0|2 and ωσ = ωn + iσV .

2. Josephson current

We consider a superconductor/constriction/supercondu-
ctor (ScS) junction as discussed, for example, in Ref. [51].
The Josephson current in an ScS junction can be written as

J = πT

i|e|RN

∑
ωn,σ

Jσ (iωn), (A10)

Jσ =
( f

L,σ
fR,σ − fL,σ f

R,σ
)/2

2 − D[1 − gL,σ gR,σ − ( f
L,σ

fR,σ + fL,σ f
R,σ

)/2]
,

(A11)

where the subscript i = L (R) specifies the left (right) super-
conductor [60]. In two Zeeman-splitting superconductors, the
Green’s functions are given by

gi,σ = ωi,σ /�i,σ , fi,σ = 
0eiϕi/�i,σ , (A12)

where ωi,σ = ωn + iσVi, �i,σ =
√

ω2
i,σ − 
2

0. The current
across the junction can be obtained as

I = πT

i|e|RN

∑
ωn,σ

Jσ (iωn), (A13)
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FIG. 9. Spectral Josephson current in ScS junction obtained by
solving the Usadel equation.

Jσ (iωn) = i
2
0 sin ϕ

Zσ

, (A14)

Zσ = 2�L,σ�R,σ − D
[
�L,σ�R,σ − ωL,σωR,σ − 
2

0 cos ϕ
]
.

(A15)

When the magnetizations are parallel (V L = V R), the current
density is reduced to

I = 2πT

|e|RN

∑
ωn>0

A
2
0 sin ϕ

A2 + 4ω2
nV 2

, (A16)

A = (
ω2

n − V 2
) + 
2

0[1 − D sin2(ϕ/2)]. (A17)

In this expression, the factor A changes the sign at

sin2(ϕc/2) = 
2
0 − V 2 + ω2

n

D
2
0

. (A18)

The results indicate that the Josephson current suddenly
changes direction at a certain phase difference ϕc (i.e.,
anomalous current reversal in the Josephson current). In the
antiparallel junction (V L = −V R), such an additional jump is
absent in CPR. The extra phases derived from the two Zeeman
fields cancel each other because of ωR = ω∗

L and �R = �∗
L.

Applying the analytic continuation, the expression of the
current in the real-energy representation can be obtained. In

0.6

0.8

1.0

0 0.5 1 0 0.5 0 0.5 1

FIG. 10. (a) Temperature dependence of critical phase in
ZS/NW/ZS junction. [(b),(c)] Length dependence of critical phase.
The magnetization in the left is V L = V ey. The magnetization in the
right is V R = V (cos θRey + sin θRez ). The results are shown in the
same manner as in Fig. 3.
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FIG. 11. Spectral Josephson currents in ZS/N/ZS junction with-
out SOC. The parameters are set to the same values as used in Fig. 4.
However, the junction length is set to LN = 20.

the parallel configuration, the current in terms of the spectral
current is given by

J = π

2|e|RN

∫
JE tanh

(
E

2T

)
dE , (A19)

JE = − 1

2π
(JR − JA), (A20)

JR =
∑

σ

i
2
0 sin ϕ


2
0[1 − D sin2(ϕ/2)] − (Ē − σV )2

. (A21)

where Ē = E + iδ. Using the relation JA = −(JR)∗, we have

JE =
∑

σ

JE ,σ , (A22)

JE ,σ = 1

2π

δ1


2
1 + δ2

1

sgn[E − σV ]
2
0 sin ϕ, (A23)


1 = 
2
0[1 − D sin2(ϕ/2)] − (E − σV )2, (A24)

with δ1 = 2|E − σV |δ. Equation (A23) becomes the
Lorentzian-type Dirac function at δ1 → 0 that has peaks
at

E = ±
√

1 − D sin2(ϕ/2) + σV. (A25)

The spectra reproduce the results in the high-transparency
limit in both the absence and the presence of a Zeeman field
[49,61]. The peak positions are shifted by a Zeeman field
in a superconductor. The spectral currents JE are shown in
Fig. 9, where (a) V/
0 = 0, (b) 0.2, and (c) 0.4. The results
are qualitatively the same as those in Fig. 4.

APPENDIX B: CRITICAL PHASE DIFFERENCE WITH
SPIN-ORBIT COUPLING

In this Appendix, we discuss ϕc in the presence of the
Rashba SOC. Note that one of the Zeeman interactions has
the same matrix structure as that of the Rashba SOC (i.e.,
V i · σ̂ ∼ Viσ̂2 ∼ kσ̂2). The results are shown in Fig. 10 in the
same manner as in Fig. 3, where the results without the SOC
are shown. Figure 10 shows that, when the one of the Zeeman
interactions is proportional to σ̂y, the SOC with kxσ̂y does not
qualitatively change ϕc.

APPENDIX C: SPECTRAL JOSEPHSON CURRENT IN
SHORT JUNCTIONS

In this Appendix, we discuss the spectral Josephson junc-
tion without the SOC. The results are shown in Fig. 11, where
the junction length is shorter (LN = 20) than that in Fig. 4
(LN = 80). When the junction length is sufficiently short, the
Andreev level obeys E = ±
0 cos(ϕ/2), which is analyti-
cally obtained by the Usadel theory. Moreover, the additional
branches do not appear.
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