
A classification of S-boxes generated by orthogonal cellular automata

Luca Mariot1 • Luca Manzoni2

Accepted: 1 August 2023 / Published online: 24 August 2023
� The Author(s) 2023

Abstract
Most of the approaches published in the literature to construct S-boxes via Cellular Automata (CA) work by either iterating

a finite CA for several time steps, or by a one-shot application of the global rule. The main characteristic that brings

together these works is that they employ a single CA rule to define the vectorial Boolean function of the S-box. In this

work, we explore a different direction for the design of S-boxes that leverages on Orthogonal CA (OCA), i.e. pairs of CA

rules giving rise to orthogonal Latin squares. The motivation stands on the facts that an OCA pair already defines a

bijective transformation, and moreover the orthogonality property of the resulting Latin squares ensures a minimum

amount of diffusion. We exhaustively enumerate all S-boxes generated by OCA pairs of diameter 4� d� 6, and measure

their nonlinearity. Interestingly, we observe that for d ¼ 4 and d ¼ 5 all S-boxes are linear, despite the underlying CA local

rules being nonlinear. The smallest nonlinear S-boxes emerges for d ¼ 6, but their nonlinearity is still too low to be used in

practice. Nonetheless, we unearth an interesting structure of linear OCA S-boxes, proving that their Linear Components

Space is itself the image of a linear CA, or equivalently a polynomial code. We finally classify all linear OCA S-boxes in

terms of their generator polynomials.

Keywords S-boxes � Symmetric Ciphers � Boolean Functions � Cellular Automata � Orthogonal Latin Squares �
Polynomial Codes � Cyclic Codes

Mathematics Subject Classification 05B15 � 68Q80 � 37B15 � 11T06

1 Introduction

In cryptography, the design of symmetric ciphers is usually

based on the key principles of confusion and diffusion set

forth by Shannon in 1949 (1949). The confusion principle

states that the relationship between the ciphertext and the

secret key should be as complicated as possible. The dif-

fusion principle, on the other hand, prescribes that the

statistical structure of the plaintext should be spread as

much as possible over the ciphertext.

These two principles are usually implemented through

different designs approaches. In the context of block

ciphers, one of the most widespread approaches is the

Substitution-Permutation Network (SPN) (Stinson and

Paterson 2018). For example, the RIJNDAEL cipher, which

has been selected by the NIST for the the Advanced

Encryption Standard (AES), is designed following the SPN

paradigm (Daemen and Rijmen 2020). The idea behind

SPN ciphers is that a fixed-length block of plaintext is first

passed through a substitution layer, which realizes the

confusion principle, and then fed into a permutation layer,

that embodies the diffusion principle. In particular, the

substitution layer is usually implemented with a series of

small Substitution Boxes (S-boxes), that are basically

vectorial Boolean functions mapping n-bit input vectors to

n-bit output vectors. The plaintext block is thus processed

by chopping it into n-bit sub-blocks, each of which is

transformed by the corresponding S-box. Usually, to save

on the implementation cost the same S-box is used for all

sub-blocks.

& Luca Mariot

l.mariot@utwente.nl

Luca Manzoni

lmanzoni@units.it

1 Semantics, Cybersecurity and Services Group, University of

Twente, Drienerlolaan 5, 7522 NB Enschede,

The Netherlands

2 Dipartimento di Matematica e Geoscienze, Università degli

Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy

123

Natural Computing (2024) 23:5–16
https://doi.org/10.1007/s11047-023-09956-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-023-09956-z&domain=pdf
https://doi.org/10.1007/s11047-023-09956-z

The S-boxes used in the substitution layer of a SPN

cipher need to satisfy a number of properties, both for

security and implementation reasons. For example, to

ensure that the ciphertext can be decrypted back to the

plaintext, the S-box need to be bijective. Further, the S-box

must also have a high nonlinearity, to withstand linear

cryptanalysis attacks. This property is directly related to

the confusion principle.

There are several ways to construct S-boxes that are

both bijective and highly nonlinear, and most of the

methods proposed in the literature employ algebraic con-

structions. For instance, RIJNDAEL uses an 8� 8 S-box that

computes the inversion over the finite field F28 , and which

is applied in parallel over a 128-bit plaintext block. Other

than the one used in RIJNDAEL, many other S-boxes of

different sizes and defined by different operations have

been considered in this research thread. The choice of a

specific S-box mainly depends on the security and effi-

ciency requirements for a particular cipher. For example,

lightweight ciphers such as PRESENT (Bogdanov et al. 2007)

and RECTANGLE (Zhang et al. 2015) employ small 4� 4

S-boxes, since they are designed for very efficient hard-

ware implementations.

An interesting approach for the design of strong S-boxes

is based on Cellular Automata (CA), which provide a good

trade-off between security and efficiency. The efficiency

advantage stems from the fact that CA are shift-invariant

functions, or equivalently the same local rule is applied in

parallel at all output coordinates of the S-box. Thus, the

design problem reduces to the choice of a good local rule

that induces a globally invertible S-box with high nonlin-

earity. The KECCAK sponge construction (Bertoni et al.

2013), which has been selected by the NIST in 2012 as the

new SHA-3 standard for cryptographic hash functions

(Dworkin 2015), is perhaps the best known example of a

symmetric primitive that uses a cellular automaton to

achieve confusion. In particular, the permutation in KECCAK

employs a 5� 5 S-box defined by the elementary CA v,
which corresponds to rule 210 in Wolfram’s numbering

convention.

In the context of the literature related to CA-based

S-boxes, a one-dimensional CA with periodic boundary

conditions is usually seen as a particular kind of vectorial

Boolean function, whose cryptographic properties need to

be optimized. Most of the works in this research line

consider the CA as a discrete dynamical system, which is

iterated for multiple time steps to compute the output of the

S-box (Seredynski et al. 2004; Seredynski and Bouvry

2004; Marconi and Chopard 2006; Szaban and Seredynski

2008; Oliveira et al. 2010). Other works study instead the

S-box arising from a one-shot evaluation of the CA global

rule, as in the case of KECCAK (Bertoni et al. 2006; Picek

et al. 2017a; Mariot et al. 2019).

In this paper, we take on a different perspective to

design S-boxes with CA, namely by employing results

from the research line of orthogonal CA (OCA). Two CA

defined by bipermutive local rules are called orthogonal if

they can be used to generate a pair of orthogonal Latin

squares (Mariot and Leporati 2018). The motivation to

employ OCA to design S-boxes is twofold: first, the

superposition of two orthogonal Latin squares defines a

permutation on the Cartesian product of the set of entries.

Hence, the superposition of two OCA yields a bijective S-

box. Second, orthogonal Latin squares are equivalent to

ð2; 2Þ�multipermutations, and thus they ensure a minimum

amount of diffusion (Vaudenay 1994). Therefore, the

research question addressed in this paper is the following:

is it possible to use OCA to define S-boxes with high

nonlinearity? While the theory of linear OCA is already

well-developed (Mariot et al. 2020), we observe that much

less is known about nonlinear OCA (Mariot et al. 2017a),

which seem to be a necessary condition to construct highly

nonlinear S-boxes from OCA.

This manuscript is an extended version of the confer-

ence paper ‘‘On the Linear Components Space of S-boxes

Generated by Orthogonal Cellular Automata.’’ presented

at ACRI 2022 (Mariot and Manzoni 2022). There, the main

results were as follows:

1. We exhaustively searched the set of OCA pairs of

diameter d ¼ 4 and d ¼ 5, remarking that all of them

generate linear S-boxes. This ruled out the possibility

of using the corresponding S-boxes in practice.

2. We remarked an interesting coding-theoretic structure

in the Linear Component Space (LCS) of the S-boxes

generated by OCA. Indeed, we empirically observed

all these vector spaces are actually polynomial codes.

The interesting aspect is that the generator matrix of a

polynomial code is itself the transition matrix of a

linear CA.

In this paper, we introduce the following new contributions

with respect to the conference version:

• We extend our exhaustive search experiments up to

OCA of diameter d ¼ 6, exploiting the combinatorial

enumeration algorithm of Mariot et al. (2017a). The

results show that nonlinear OCA S-boxes indeed exist.

Unfortunately, the observed values of nonlinearity are

still too low to grant the use of these S-boxes in the

substitution layer of SPN ciphers.

• We formally prove the conjecture formulated in our

conference paper, i.e. that if the S-box generated by a

pair of OCA is linear, then its LCS is always a

polynomial code.

6 L. Mariot, L. Manzoni

123

• Finally, we provide a classification of all linear OCA

S-boxes in terms of the generator polynomials of their

LCS.

In perspective, the findings above are negative concerning

the use of OCA for the design of S-boxes to be used in the

confusion layers of block ciphers. However, the charac-

terization of the LCS of linear S-boxes might give some

insights for future research on the characterization of

nonlinear OCA.

The rest of this paper is organized as follows. Section 2

covers all background definitions and concepts related to

Boolean functions, S-boxes and cellular automata used

throughout the paper. Section 3 gives a general overview

of the literature concerning the design of S-boxes with CA.

Section 4 describes our method to construct a S-box from a

pair of OCA. Section 5 reports the results of the exhaustive

search experiments conducted for OCA pairs of diameter

4� d� 6. Section 6 analyzes the LCS of linear OCA

S-boxes, and provide a characterization in terms of their

generator polynomials. Finally, Sect. 7 recaps the key

contributions of the paper, and points out a few directions

for future research on the subject.

2 Background

In this section, we introduce all basic definitions and results

related to Boolean functions and cellular automata that we

use in the remainder of the paper. The discussion here is far

from complete: for a thorough treatment on Boolean

functions and S-boxes, we refer the reader to Carlet’s

recent book (Carlet 2021). For orthogonal CA we follow

the notation and terminology of Mariot and Leporati

(2018), Mariot et al. (2020).

2.1 Boolean functions and S-boxes

In what follows, we denote by F2 ¼ f0; 1g the finite field

with two elements. The field operations correspond

respectively to the XOR (denoted by �) and logical AND

(denoted by concatenation) of two elements. Given n 2 N,

the n-dimensional vector space of all n-bit strings is

denoted by Fn2. The sum between two vectors x; y 2 Fn2 is

defined as their bitwise XOR (and, slightly abusing nota-

tion, still denoted as x� y). The multiplication of a vector

x 2 Fn2 by a scalar a 2 F2 is the field multiplication of each

coordinate of x by a. In particular, this implies that two

vectors x; y 2 Fn2 are linearly independent if and only if

x 6¼ y, and that a set of k vectors in Fn2 is linearly inde-

pendent if and only if each vector cannot be written as a

bitwise XOR of a subset of the others. Further, the dot

product of two vectors x; y 2 Fn2 is defined as

x � y ¼ a
n

i¼1
xiyi, while their Hamming distance dHðx; yÞ ¼

#fi : xi 6¼ yig is the number of coordinates where x and y

disagree. The support of x 2 Fn2 is the set of nonzero

coordinates of x, that is, suppðxÞ ¼ fi : xi 6¼ 0g. The

Hamming weight of x 2 Fn2 is the size of its support, i.e.

wHðxÞ ¼ jsuppðxÞj. Equivalently, the Hamming weight of x

is the Hamming distance between x and the null vector 0,

or the number of ones in x.

A Boolean function of n variables is a mapping

f : Fn2 ! F2, and there are several ways to uniquely rep-

resent it. Here, we focus on the three representations that

are most commonly used in cryptography, namely the truth

table, the algebraic normal form and the Walsh transform.

In what follows, we assume that the vectors of Fn2 are

lexicographically ordered.

The truth table of f : Fn2 ! F2 is the 2n-bit vector Xf 2
F2

n

2 which specifies for each input vector x 2 Fn2 the cor-

responding output value f(x). The weight of a Boolean

function is the Hamming weight of its truth table. In par-

ticular, a function f : Fn2 ! F2 is called balanced if

wHðXf Þ ¼ 2n�1, i.e. if its truth table has an equal number of

zeros and ones. Balanced functions are usually sought in

the design of combiner or filter stream ciphers, to avoid

introducing any statistical bias in the ciphertext that might

be exploited by an attacker.

Remarking that x2 ¼ x for all elements x 2 F2, the

Algebraic Normal Form (ANF) of f is the multivariate

polynomial in the quotient ring F2 x1; � � � ; xn½ �= x21 � x1;
�

� � � ; x2n � xn� defined as:

Pf ðxÞ ¼ a
u2Fn2

aux
u ¼ a

u2Fn
2

aux
u1
1 x

u2
2 . . .x

un
n ; ð1Þ

where au 2 F2 for all u 2 Fn2. The coefficients au 2 Fn2 in

the ANF of f can be obtained through the binary Möbius

transform:

au ¼ a
x2Fn2:suppðxÞ�suppðuÞf ðxÞ : ð2Þ

Notice that the binary Möbius transform is an involution:

therefore, one may retrieve the truth table of a function

from its ANF coefficients by using the above formula,

swapping a with f and u with x. The algebraic degree of f

corresponds to the size of the largest monomial occurring

in its ANF; formally, this is defined as degðf Þ ¼ maxu2Fn2
fwHðuÞ : u 6¼ 0g. Functions of degree 1 are also called

affine, and an affine function is called linear if a0 ¼ 0 (i.e.,

the ANF of f does not have any constant term). The ANF of

a linear function can be defined as a dot product a � x, with
a 2 Fn2.

The Walsh transform of f : Fn2 ! F2 is the map Wf :

Fn2 ! Z defined for all a 2 Fn2 as:

Classification of S-boxes generated by OCA 7

123

Wf ðaÞ ¼
X

x2Fn2

ð�1Þf ðxÞ�a�x; ð3Þ

Intuitively, the coefficient Wf ðaÞ measures the correlation

between f(x) and the linear function defined by a � x. The
nonlinearity of a Boolean function f : Fn2 ! F2 is the

minimum Hamming distance of f from the set of all n-

variable affine functions. Using the Walsh transform, the

nonlinearity can be computed as follows:

nlðf Þ ¼ 2n�1 � 1

2
max
a2Fn2

jWf ðaÞj
� �

: ð4Þ

As a cryptographic criterion, the nonlinearity of Boolean

functions used in stream and block ciphers should be as

high as possible to withstand fast-correlation attacks and

linear cryptanalysis, respectively.

Substitution Boxes (S-boxes) are the vectorial general-

ization of Boolean functions. Given n;m 2 N, a (n, m)-

function or S-box is a vectorial mapping of the form

F : Fn2 ! Fm2 , which is defined by its coordinate functions.

For all i 2 f1; � � � ;mg, the coordinate function fi : F
n
2 ! F2

is a n-variable Boolean function that specifies the i-th

output bit of the S-box F. The component functions of

F : Fn2 ! Fm2 are defined as the nontrivial linear combina-

tions of the coordinate functions of F. More precisely,

given a vector v 2 Fm2 nf0g, the corresponding component

function v � F : Fn2 ! F2 of F is defined as the dot product

v � FðxÞ, for all x 2 Fn2.

In the rest of this work, we will be mostly interested in

S-boxes where n ¼ m, since these are the most commonly

used in SPN ciphers. The cryptographic properties descri-

bed above for Boolean functions are generalized to the

vectorial case by using their coordinate and component

functions. In particular, an S-box F : Fn2 ! F2 is balanced

if and only if all its component functions are balanced.

Remark that balancedness in (n, n)-functions corresponds

to bijectivity, and this explains why S-boxes in the SPN

paradigm are sought balanced: if they are not, then

decryption is not possible. The algebraic degree of an S-

box, on the other hand, is defined as the maximum algebraic

degree among all its coordinate functions. Finally, the

nonlinearity of an S-box F : Fn2 ! F2 is defined as the

minimum nonlinearity among all its component functions.

This means that a single linear component functions suf-

fices to make the whole S-box linear.

Finally, remark that the set LF ¼ fv 2 Fm2 nf0g : nlðv �
FÞ ¼ 0g of all linear component functions of an S-box F is

a subspace of Fm2 . As a matter of fact, if two functions are

affine, their sum must be affine too. We call LF the linear

components space (LCS) of F, and we will use it in later

sections to classify the S-boxes generated by orthogonal

cellular automata.

2.2 Orthogonal cellular automata

A Cellular Automaton (CA) is a discrete computational

model made of a regular lattice of cells, also called a cel-

lular array. In what follows, we will focus only on one-

dimensional CA, meaning that the cellular array is basi-

cally a line of cells. The alphabet A of the CA specifies the

values for the states of the cells. Each cell updates its state

in parallel by applying the same local rule, which is eval-

uated on the cell’s neighborhood.

Usually, the relevant literature considers a CA as a

discrete dynamical system, and studies their long-term

(asymptotic) behavior which emerges from the iterated

application of the local rule over multiple time steps. On

the contrary, in this work we are interested in CA as mere

algebraic systems: in particular, we consider a CA as a

particular kind of vectorial Boolean function. Formally, we

introduce the following definition:

Definition 1 Let d; n 2 N such that d� n, and let

b ¼ d � 1. A no-boundary cellular automaton with local

rule f : Fd2 ! F2 of diameter d is a vectorial Boolean

function F : Fn2 ! Fn�b
2 whose i-th coordinate is defined as:

Fðx1; � � � ; xnÞi ¼ f ðxi; � � � ; xiþbÞ ð5Þ

for all i 2 f1; � � � ; n� bg and x 2 Fn2.

Thus, for all i 2 f1; � � � ; n� bg, the output coordinate Fi

is defined as the local rule f evaluated over the neighbor-

hood ðxi; � � � ; xiþbÞ. This model of CA is called ‘‘no-

boundary’’ since the local rule is applied only up to the

point where there are enough cells in the input to construct

a d-variable neighborhood, that is until i ¼ n� b. There-

fore, the cellular array ‘‘shrinks’’ after the application of

the global rule F, as we lose b cells. However, this does not

pose a problem, since as we mentiond above we are not

interested in iterating the CA over multiple time steps.

Therefore, we do not need to define any boundary condi-

tion (such as periodic boundaries). In what follows, we will

mostly use CA to refer to the no-boundary case, specifying

if other boundary conditions are used.

We now introduce orthogonal cellular automata. A Latin

square of order N 2 N is a N � N square matrix L whose

rows and columns are permutations of ½N� ¼ f1; � � � ;Ng.
Thus, if we fix any row or column of L, all numbers from 1

to N occur exactly once. Moreover, two Latin squares

L1; L2 of the same order N are orthogonal if their super-

position yields all possible pairs in the Cartesian product

½N� � ½N� exactly once. Orthogonal Latin squares have

many applications in cryptography and coding theory, most

notably for the design of secret sharing schemes and MDS

codes (Stinson 2004).

8 L. Mariot, L. Manzoni

123

Eloranta (1993) and Mariot et al. (2016) independently

proved that a CA defined by a bipermutive local rule can be

used to define a Latin square. A local rule f : Fd2 ! F2 is

called bipermutive if it can be written as the XOR of the

leftmost and rightmost variables with a generating function

of the d � 2 central ones, i.e. f ðx1; � � � ; xdÞ ¼ x1 � gðx2;
� � � ; xbÞ � xd, with g : Fd�2

2 ! F2. Then, a CA F : F2b2 !
Fb2 equipped with such a local rule f corresponds to a Latin

square of order N ¼ 2b. The idea is to use the left and right

b input cells of F respectively to index the rows and the

columns of a 2b � 2b square, and then take the output of the

CA as the entry of the square at those coordinates.

A pair of orthogonal CA (OCA) is a pair of CA F;G :

F2b2 ! Fb2 defined by bipermutive rules f ; g : Fd2 ! F2 such

that the corresponding Latin squares of order 2b are

orthogonal.

3 Related work

We start with an overview of the use of CA in the design of

block ciphers, and especially for the construction of

S-boxes. For further information, we refer the reader to the

recent survey chapter on AI methods for the design of

symmetric cryptographic primitives (Mariot et al. 2022).

Gutowitz (1993) was the first to propose a symmetric

cryptosystem based on the iteration of both irreversible and

reversible CA. The main drawback of his design was that

the diffusion phase expanded the length of the ciphertext,

since it was based on the preimage computation of irre-

versible CA.

Daemen pioneered the use of CA in cryptography

through a single application of the global rule, instead of

iterating it as a dynamical system. In his PhD thesis

(Daemen 1995), he started to study a very simple local rule

of diameter d ¼ 3, which he named v. This local rule may

be succintly described as ‘‘flip the value of the current cell

if the two right neighboring cells are in the state 10’’. Using

Wolfram’s numbering convention (Wolfram 1983), which

encodes the truth table vector of a local rule as a decimal

number, the map v corresponds to rule 210. What is

especially interesting about v is that it induces an invertible

CA if the length of the cellular array is odd. Moreover,

Daemen et al. (1994) showed that the correlation and dif-

ferential properties of v are easy to analyze from an alge-

braic point of view, making it interesting for cryptographic

applications. This rule (or a variation thereof) was adopted

in several symmetric primitives designed by Daemen and

other authors, such as PANAMA (Daemen and Clapp 1998)

and RADIOGATÚN (Bertoni et al. 2006). Most notably, the

permutation in the KECCAK sponge construction (Bertoni

et al. 2013), which became the NIST SHA-3 standard for

hash functions, uses a 5� 5 S-box where rule v is applied

with periodic boundary conditions. Interestingly, this S-box

is the only nonlinear component in the design of KECCAK.

The research line of implementing S-boxes with a single

evaluation of a CA global rule has been revived in more

recent years. Picek et al. (2017a, 2017b) investigated the use

of Genetic Programming (GP) to evolve S-boxes defined by

CA rules. Their results showed that GP is able to discover

CA-based S-boxes up to size 7� 7 with optimal crypto-

graphic properties and implementation cost on par with other

state-of-the-art S-boxes. Ghoshal et al. (2018) employedCA

rules to define lightweight S-boxes of size 4� 4 that are

resistant against side-channel attacks. Mariot et al. (2019)

carried out a theoretical analysis on the cryptographic

properties of S-boxes defined by CA rules, proving bounds

for their nonlinearity and differential uniformity.

Another approach which instead considers CA as a

dynamical system for the synthesis of S-boxes is based on

second-order CA. The next state of a cell is computed by

XORing the result of the local rule applied to its usual

neighborhood with the state of the cell in the previous time

step. This method ensures that the overall system is

reversible. The first to investigate this approach for

designing block ciphers with CA were Seredynski et al.

(2004). There, the authors used the forward evolution of a

second-order CA to encrypt the whole plaintext block,

rather than a small portion of it as in the SPN paradigm

based on small S-boxes. Decryption then corresponded to

backward evolution of the CA, granted by the second-order

property. The authors performed experimental evaluations

on the avalanche property of the resulting block cipher,

testing over a random sample of local rules of diameter

d ¼ 5 and d ¼ 7. Szaban and Seredynski (2008) used the

same second-order approach to define S-boxes of size

8� 8, focusing on elementary local rules of diameter

d ¼ 3. In particular, they selected the subset of rules that

yielded the best values of nonlinearity and autocorrelation.

Some other worls also explored other methods to design

block ciphers and S-boxes via CA, although they represent

minor research threads. For instance, Marconi and Chopard

(2006) studied the analogies between the Lattice Gas

Automata (LGA) model for fluids and the SPN paradigm.

In particular, the authors proposed to use the collision

operator of the LGA model to implement the substitution

layer of a block cipher.

We conclude this section with a brief outlook of the

research line devoted to orthogonal cellular automata,

which has been mostly investigated by the second author of

this manuscript. Mariot et al. first proved in Mariot et al.

(2016) a necessary and sufficient condition for a pair of

linear bipermutive CA to generate orthogonal Latin

squares. The characterization is quite simple, since it

consists in checking whether the polynomials associated to

Classification of S-boxes generated by OCA 9

123

the local rules of the CA are relatively prime. This result

was later developed in Mariot et al. (2020) by counting the

number of pairs of coprime polynomials with a nonzero

constant term, and by providing a construction for maximal

families of Mutually Orthogonal Latin Squares (MOLS)

generated by linear bipermutive CA. These results have

been subsequently used by Gadouleau et al. (2020) to

devise a new construction of bent Boolean functions, which

reach the highest possible nonlinearity. Later, it turned out

that the construction could be greatly simplified through

the formalism of linear recurring sequences, instead of

using orthogonal CA (Gadouleau et al. 2023). Formenti

and Mariot (2022) devised a combinatorial algorithm to

enumerate all pairs of coprime polynomials with nonzero

constant term, and thus all linear OCA of a given diameter.

Finally, Mariot (2022) considered orthogonal CA as

pseudorandom generators, and devised an algorithm to

compute the period of the resulting sequences when the

underlying CA are linear.

The amount of theoretical results and applications

developed for linear OCA contrasts with what little is

known about the nonlinear setting. From a theoretical point

of view, only a necessary condition on the local rules of

two nonlinear OCA is currently known (Mariot et al.

2017a), and an inversion algorithm for the configurations

of nonlinear OCA has been proposed in Mariot and

Leporati (2018). The authors of Mariot et al. (2017b) also

used evolutionary algorithms to evolve pairs of nonlinear

OCA. However, to date a theoretical characterization of

nonlinear OCA similar to the linear case is still missing.

4 S-boxes generated by OCA

We now describe our method to generate an S-box from a

pair of orthogonal CA. As we said in Sect. 2.2, our model

of CA is a particular kind of vectorial Boolean function.

More precisely, given a bipermutive local rule f : Fd2 ! F2
of diameter d ¼ bþ 1, we can interpret the corresponding

CA equipped with f both as a Latin square of order 2b and

as a (2b, b)-function. However, here we are mainly inter-

ested in S-boxes for the SPN paradigm, thus we need to

define an (n, n)-function with the same number of input

and output bits. To this end, we use a pair of orthogonal CA

to define the superposition S-box as follows:

Definition 2 Let f ; g : Fd2 ! F2 be two bipermutive local

rules of diameter d ¼ bþ 1 that give rise to a pair of OCA

F;G : F2b2 ! Fb2. Setting n ¼ 2b, the superposition S-box is

the vectorial function H : Fn2 ! Fn2 defined for all x 2 Fn2 as:

HðxÞ ¼ FðxÞjjGðxÞ ; ð6Þ

where || denotes the concatenation operator.

Thus, the output of the superposition S-box is defined by

concatenating the outputs of the OCA F and G evaluated

on the same input vector. Alternatively, the first b coordi-

nates functions of H correspond to the coordinates of F,

while the last b coordinates correspond to the coordinates

of G. Hence, Eq. (6) can be explicitly rewritten as:

HðxÞ ¼
�
f x1; � � � ; xdð Þ; � � � ; f xb; � � � ; xnð Þ;

g x1; � � � ; xdð Þ; � � � ; g xb; � � � ; xnð Þ
�
:

ð7Þ

A legit question is why an S-box should be defined by the

superposition of two OCA, instead of using a single CA rule

as done in most of the literature reviewed in Sect. 3. As

argued in Mariot (2022), where OCA are used to generate

pseudorandom sequences, there are two main motivations:

Motivation 1: Bijectivity.

Since F and G are orthogonal CA, the superposition of their

associated Latin squares defines a permutation over the

Cartesian product ½2b� � ½2b�. Remark that the set ½2b� is in
a one-to-one correspondence with the vector space Fb2;

hence, the Cartesian product ½2b� � ½2b� is also straight-

forwardly mapped one-to-one onto the product space

Fb2 � Fb2, which is in turn isomorphic to F2b2 . It follows that

the superposition S-box H is bijective, since it simply

concatenates the output of F and G. As we mentioned in

the previous sections, the S-boxes used in SPN ciphers

must be bijective, in order to ensure decryption. With a

single CA, there is no such guarantee, and the cipher

designer has only two alternatives: either resort to sub-

classes of rules for which invertibility conditions are

known (as in the case of the v map used in KECCAK (Bertoni

et al. 2013)), or use heuristic algorithms to optimize the

bijetivity of the S-box (Picek et al. 2017a).

Motivation 2: Diffusion.

The permutation defined by the superposition of two Latin

squares is not a generic bijection. As a matter of fact, this

permutation ‘‘spreads’’ the input in an optimal way, since

taking two different ordered pairs which agree on the first

(respectively, on the second) coordinate implies that their

corresponding output pairs cannot have the same value on

the first (respectively, on the second) coordinate. Vaudenay

(1994) formalized this observation by showing that

orthogonal Latin squares are (2, 2)-multipermutations, and

thus they provide an optimal diffusion between 4-tuples

formed by pairs of inputs and outputs. In the context of the

superposition S-box introduced in Definition 2, this means

that for all x; x0; y; y0 2 Fb2 such that ðx; yÞ 6¼ ðx0; y0Þ, the

tuples (x, y, F(x||y), G(x||y)) and ðx0; y0;Fðx0jjy0Þ;Gðx0jj0yÞÞ
always disagree on at least 3 coordinates.

10 L. Mariot, L. Manzoni

123

One might object that multipermutation-like diffusion is

not a relevant criterion for the design of S-boxes, since this

property is usually provided by the permutation layer in

SPN ciphers rather than by the substitution layer. More-

over, diffusion layers are usually implemented with linear

mappings, such as the MDS matrix in RIJNDAEL (Daemen

and Rijmen 2020) or other similar transformations (Li and

Wang 2017). However, there has been a recent interest also

in nonlinear diffusion layers (Liu et al. 2018), which

integrate confusion and diffusion. Thus, superposition

S-boxes might be interesting for this specific application.

In the next section, we address the following research

question concerning superposition S-boxes.

Research Question 1 Let b 2 N and n ¼ 2b. Do there

exist superposition S-boxes H : Fn2 ! Fn2 defined as in

Eq. (6) that are nonlinear? And if they exist, do they

achieve a high nonlinearity?

In this work we focus only on nonlinearity, as this is one

of the most important cryptographic properties when con-

sidering S-boxes for the design of block ciphers. By ‘‘high

nonlinearity’’, we mean a nonlinearity value close to the

theoretical upper bounds, for which we refer the reader to

Carlet (2021).

5 Exhaustive search experiments

As we saw in Sect. 3, there is a rich theory pertaining linear

OCA. Thus, at a first glance one might be tempted to

exploit these results to construct superposition S-boxes.

Unfortunately, the S-box H associated to two linear OCA is

also linear: indeed, any linear combination of linear coor-

dinates will always yield a linear component function.

Therefore, superposition S-boxes generated by linear OCA

are certainly useless in the design of substitution layers in

SPN ciphers.

For this reason, we considered S-boxes generated by

nonlinear OCA. Since there is no theoretical characteriza-

tion of nonlinear OCA yet, the most natural way to address

this problem is to exhaustively generate all pairs of

bipermutive rules of diameter d, check if the resulting Latin

squares are orthogonal, and in that case compute the non-

linearity of the associated S-box.

The space of all Boolean functions of d variables is 22
d
,

since one needs to define a 2d-bit truth table to uniquely

identify a function. However, we are only interested in

bipermutive local rules, which are 22
d�2

for a given diam-

eter d. This is due to the fact that the truth table of a

bipermutive function is determined only by the central d �
2 variables, since the leftmost and rightmost ones are

always XORed. Hence, to exhaustively enumerate all pairs

of bipermutive local rules of diameter d, one needs to

generate 22
d�2 � 22d�2 ¼ 22

d�1

elements in total.

We adopted the naive enumeration approach outlined

above in the conference version of this paper (Mariot et al.

2022), applying it to the enumeration all nonlinear OCA

pairs of diameter d ¼ 4 and d ¼ 5 (therefore, superposition

S-boxes of sizes 6� 6 and 8� 8, respectively).1 At that

point, the main finding of our search was that all super-

position S-boxes of those sizes turned out to be linear. This

was quite surprising, since one could reasonably expect

that at least some of the nonlinear OCA pairs would give

rise to a nonlinear superposition S-box. Instead, the main

conclusion of our experiments was that even in the case

where the OCA are defined by nonlinear local rules, there

is always at least one nontrivial combination of (nonlinear)

coordinate functions that results in an affine function.

Clearly, this finding should be corroborated with further

experiments on nonlinear OCA defined by larger local

rules. In principle, one could still employ the naive enu-

meration algorithm for diameter d ¼ 6, since in this case

one has to generate 22
6�1 	 4:3 � 109 pairs, which is still

computationally feasible. However, we employed the more

efficient combinatorial algorithm described in Mariot et al.

(2017a), which enumerates only pairs of nonlinear biper-

mutive rules that are pairwise balanced. As proved in the

same paper, pairwise balancedness is a necessary condition

for two bipermutive rules to generate a pair of OCA. Thus,

the number of pairs to visit reduces to about 8:4 � 108.
Using this algorithm, one obtains 532800 nonlinear OCA

pairs of diameter d ¼ 6.2

We thus focused on this set of rules and generated the

corresponding superposition S-boxes, computing their

nonlinearity. Contrary to the evidence gathered for d ¼ 4

and d ¼ 5, we found nonlinear S-boxes for diameter d ¼ 6.

Therefore, this finding allows us to answer affirmatively to

the first part of Research Question 1, and falsifies one of

the natural hypotheses that arised after seeing what hap-

pens for lower diameters: namely, that the superposition

S-boxes generated by OCA are always linear, indepen-

dently of the nonlinearity of the underlying local rules.

Table 1 summarizes our exhaustive search experiments

for each considered diameter d. In particular, we further

classified linear S-boxes with respect to the dimension of

their Linear Components Space (LCS). Column nl(H)

denotes the nonlinearity of the superposition S-boxes,

1 We discarded the case d ¼ 3 since there are no nonlinear OCA

pairs for that diameter.
2 Notice that this number can be further divided by 8, thus giving

66600 pairs. This is due to the fact that there are three symmetry

classes that preserve the orthogonality property of an OCA pair, as

shown in Mariot et al. (2017a). However, in this work we stick to the

total number of pairs.

Classification of S-boxes generated by OCA 11

123

#nlðHÞ the number of S-boxes attaining that nonlinearity,

dim their LCS dimension, and#dim the number of S-boxes

whose LCS have that dimension.

One can see from the table that the great majority of

d ¼ 6 OCA pairs still generate S-boxes of size 10� 10 that

are linear. Moreover, the remaining S-boxes have a very

low value of nonlinearity, i.e. either 64 or 128. To give a

reference, the Sidelnikov-Chabaud-Vaudenay bound (Car-

let 2021) states that the upper bound for the nonlinearity of

a (10, 10)-function is 480. Moreover, S-boxes of size 10�
10 are seldom used in real-world ciphers. Therefore, we

can confirm the conclusion of our conference paper (Mariot

et al. 2022): nonlinear OCA cannot be used to design

S-boxes in the substitution layer of SPN ciphers. Still, we

remark that these S-boxes might be useful in the design of

nonlinear diffusion layers (Liu et al. 2018), since it is not

required to reach a nonlinearity close to the theoretical

upper bounds in that use case. Indeed, the goal of a non-

linear diffusion layer is to provide extra confusion in

addition to that already given by a classic substitution

layer.

6 The linear component space of OCA
S-boxes

The computer search presented in the previous section

shows that most of the superposition S-boxes obtained by

nonlinear OCA are linear. Therefore, their linear compo-

nents spaces are nontrivial, or equivalently they have a

strictly positive dimension. We now analyze the LCS of

these S-boxes more in detail, uncovering an interesting

coding-theoretic structure. Below, we recall some basic

facts about linear error correcting codes. Some good ref-

erences that the reader may consult for a more complete

overview of the topic are MacWilliams and Sloane (1977)

and McEliece (2002).

A (n, k)-binary linear code C � Fn2 of length n 2 N and

dimension k� n is a k-dimensional subspace of Fn2. The

vectors in C are also called the codewords, and they are

characterized by a minimum Hamming distance dmin, which

determines how many errors the code can correct. Suppose

that fb1; b2; � � � ; bkg � C is a set of k linearly independent

vectors in C, i.e. they form a basis of the subspace. Then,

these vectors can be seen as the rows of a k � n generator

matrix G of the code C. The encoding of a k-bit message

m 2 Fk2 into an n-bit codeword c 2 C is given by the

multiplication of m by the generator matrix, i.e. c ¼ mG. A

parity-check matrix P for C is a n� k matrix such that

y � P ¼ 0 if and only if y 2 C. The parity-check matrix is

used in the decoding step, and the k-bit vector resulting

from the multiplication of a n-bit message by P is also

called the syndrome, which is employed to correct errors

occured during transmission.

Here, we focus on a particular type of linear codes,

namely polynomial codes. These are defined by a particular

basis that is obtained by shifting the coefficients of a

generator polynomial. Let gðXÞ ¼ a1 þ a2X þ � � � þ Xt 2
F2½X� be a polynomial of degree t� n. Then, the generator

matrix G of the associated (n, k) polynomial code C is

defined as:

G¼

a0 � � � at�1 1 0 � � � � � � � � � � � � 0

0 a0 � � � at�1 1 0 � � � � � � � � � 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

. ..
.

0 � � � � � � � � � � � � 0 a0 � � � at�1 1

0

BBBB@

1

CCCCA
:

ð8Þ

Thus, for all i 2 f1; � � � ; kg the i-th row of the matrix is

obtained by shifting the coefficients of g by i� 1 positions

to the right. Further, a polynomial code is cyclic if and only

if its generator polynomial g divides Xn þ 13. In this case,

the resulting code is closed under cyclic shifts, that is, if

c ¼ ðc1; � � � ; cn�1; cnÞ 2 C then c0 ¼ rðcÞ ¼ ðcn; c1; � � � ;
cn�1Þ also belongs to C.

On the other hand, in a generic polynomial code not all

codewords are necessarily obtained as (non-cyclic) shifts.

But clearly, at least each member of the basis that forms the

generator matrix in (8) is either a right shift (which we

denote by rR) or a left shift (denoted by rL) of another

member of the basis.

In the conference version of our paper (Mariot et al.

2022) we analyzed the LCS spaces of the superposition S-

boxes for diameters d ¼ 4 and d ¼ 5 and found out that all

of them are polynomial codes. We conjectured that this is

true for any diameter, i.e. if the superposition S-box H :

Table 1 Classification of OCA-based S-boxes of diameter 4� d� 6

in terms of their nonlinearity and LCS dimensions

d nl(H) #nlðHÞ dim #dim

4 0 32 3 32

5 0 1536 3 64

4 1472

6 128 4448 0 4448

64 64 0 64

0 528288 3 384

4 1984

5 525920

3 Notice that certain authors (see e.g. Kasami et al. (1968)) use the

term polynomial code to actually refer to a subclass of cyclic codes.

Here, instead, we follow Gilbert and Nicholson’s notation (see Gilbert

and Nicholson (2004)), where a polynomial code is a generalization

of a cyclic code (specifically, the generator polynomial does not need

to be a divisor of Xn þ 1).

12 L. Mariot, L. Manzoni

123

Fn2 ! Fn2 generated by two OCA is linear, then its LCS is

always a polynomial code, for any d 2 N. As a first check,

here we extended our empirical investigation to the case of

diameter d ¼ 6, and observed that the conjecture still held.

We now prove the above conjecture. First, we need the

following auxiliary lemma about the linear components of

a single no-boundary CA. We state this result without

proof, since it is a trivial generalization of Lemma 1 in

Mariot et al. (2022).4

Lemma 1 Let f : Fd2 ! F2 be a Boolean function of d

variables, n
 d and F : Fn2 ! Fn�dþ1
2 the no-boundary CA

of length n equipped with f as a local rule. Then, for any

v 2 Fn�dþ1
2 nf0g, the algebraic degree of the component

function v � F equals the algebraic degree of f.

A consequence of Lemma 1 is that if the local rule f is

nonlinear, then any component function of the CA F must

also be nonlinear, since it must have degree greater than 1.

We now use this remark to prove the following result:

Lemma 2 Let F;G : F2b2 ! Fb2 be two OCA respectively

defined by two nonlinear bipermutive rules f ; g : Fd2 ! F2
of diameter d ¼ bþ 1, and consider the superposition S-

box H : Fn2 ! Fn2 defined by F and G with n ¼ 2b. If v 2
Fn2nf0g is such that nlðv � HÞ ¼ 0, then the support of v

cannot contain only indices less than or equal to b, or only

indices greater than or equal to bþ 1.

Proof By contradiction, assume that suppðvÞ ¼
fi1; i2; � � � ; ilg and ij � b for all indices j 2 f1; � � � ; lg. This
means that the XOR of the coordinate functions

Hi1 ;Hiþ2; � � � ;Hil gives an affine function. By definition of H,

this sum corresponds to the following component function ofF:

v0 � FðxÞ ¼ f ðxi1 ; � � � ; xi1þbÞ � f ðxi2 ; � � � ; xi2þbÞ
� � � � � f ðxil ; � � � ; xilþbÞ :

ð9Þ

Hence, we have that nlðv0 � FÞ ¼ 0. But this contradicts

Lemma 1, since we assumed that f is nonlinear. Therefore,

any component function of F (or equivalently, any com-

ponent of H whose right half is zero) must be nonlinear as

well. A symmetric reasoning stands by assuming that

ij
 bþ 1 for all j 2 f1; � � � ; lg, using the nonlinearity of g.

h

Lemma 2 tells us that if a component function v � H of

the superposition S-box H is affine, then the support of v

must be spread in both halves of the vector. The next

lemma shows that if we have a linear component v � H

where the two halves of v are such that at least their last or

first coordinate is zero, then the right (respectively, left)

shift of v also gives a linear component of H:

Lemma 3 Given n ¼ 2b, suppose that H : Fn2 ! Fn2 is a

linear S-box defined by two OCA F;G : F2b2 ! Fb2 equipped

by nonlinear bipermutive rules f ; g : Fd2 ! F2 of diameter

d ¼ bþ 1. Further, assume that v ¼
ðv1; � � � ; vb; vd; � � � vnÞ 2 Fn2nf0g is such that nlðv � HÞ ¼ 0,

and that at least vb and vn (respectively, v1 and vd) are

zero. Then, the vector defined as the right (respectively,

left) shift of v is such that nlðv0 � HÞ ¼ 0.

Proof By Lemma 2 we know that supp(v) is such that the

subsets fi : i� b; vi 6¼ 0g and fi : i
 d; vi 6¼ 0g are both

nonempty. Therefore, we can write the component function

v � H as follows:

v � H ¼ a
i2suppðvÞ; i� b

f ðxi; � � � ; xiþbÞ
a

i2suppðvÞ; i
 d
gðxi�b; � � � ; xiÞ :

ð10Þ

Since nlðv � HÞ ¼ 0, it means that all nonlinear terms in

Eq. (10) (i.e., those of degree greater than 1) cancel out,

and only the affine terms remain. Suppose now that

vb ¼ vn ¼ 0. Then, the component v0 � H obtained by

shifting right the coordinates of v is equal to:

v � H ¼ a
i2suppðvÞ; i� b

f ðxiþ1; � � � ; xiþbþ1Þ
a

i2suppðvÞ; i
 d
gðxi�bþ1; � � � ; xiþ1Þ :

ð11Þ

As it can be seen in Eq. (11), the linear combination has the

same structure of (10), with the only difference that all

indices are increased by 1. But then, it follows that the

nonlinear terms of (11) must also cancel out. Therefore,

one has that nlðv0 � HÞ ¼ 0. The case where v1 ¼ vd ¼ 0 is

symmetrical, by considering the left shift of v. h

Thus, we proved that if a component function belongs to

the LCS of a superposition S-box H and there is ‘‘enough

space’’ either on the left or on the right, then its left (re-

spectively, right) shift also belongs to the LCS of

H. Remark that such components always exist: indeed,

even if one takes two linear components that cannot be

shifted (because they both have 1 on the leftmost and the

rightmost coordinates, for instance), then their sum can.

Therefore, the LCS of a superposition S-box cannot be

made entirely of vectors that cannot be shifted. Further,

observe that if we construct a family of linear components

by consecutive shifts, then they are all linearly indepen-

dent, and the largest family that can be obtained in this way

constitutes a basis for the LCS. We have thus finally proved

our main result:
4 In particular, Lemma 1 in Mariot et al. (2022) considers only the

specific case of the component function v � F where v ¼ ð1; � � � ; 1Þ,
i.e. the linear combination that sums all coordinates. But one can

straightforwardly prove the same result for any other component

function by following the same structure of the proof.

Classification of S-boxes generated by OCA 13

123

Theorem 4 Given n ¼ 2b, let H : Fn2 ! Fn2 be a linear S-

box defined by two nonlinear OCA F;G : F2b2 ! Fb2. Then,

the LCS of H is a polynomial code.

Proof By the remark above, one can construct a basis of

the LCS of H by consecutively shifting one linear com-

ponent and iteratively applying Lemma 3. The vectors of

this basis can be used to form a generator matrix of the

form of Eq. (8). h

We conclude this section by providing a classification of

thelinear S-boxes obtained for diameter 4� d� 6 in terms

of their generator polynomials, which uniquely identify the

respective LCS.

Referring to Table 1, all the 32 LCS for diameter d ¼ 4

and the 768 LCS for d ¼ 5 and nonlinearity (4, 4) are

actually (2b, b) cyclic codes with generator gðXÞ ¼ 1 þXb.

For diameter d ¼ 5 and nonlinearity (8, 8), the 704 S-

boxes with LCS of dimension 4 are again (2b, b) cyclic

codes with generator 1þ Xb, while the remaining 64 are

split in four classes, each of size 16, defined by the fol-

lowing generators:

X þ X4 þ X5; 1þ X4 þ X5;

1þ X þ X4; 1þ X þ X6:
ð12Þ

For diameter d ¼ 6, we have a total of 528,288 linear S-

boxes. In this case, the great majority of LCS have

dimension 5, and they are again all defined by the generator

polynomial gðXÞ ¼ 1þ Xb. For dimension 4, there are 4

classes each composed of 496 elements, represented by the

following polynomials:

X þ X5 þ X6; 1þ X þ X6;

1þ X5 þ X6; 1þ X þ X5:
ð13Þ

Finally, for dimension 3 we found 14 classes, two of which

contain 96 elements and are represented respectively by the

polynomials:

1þ X þ X2 þ X5 þ X7; 1þ X2 þ X5 þ X6 þ X7;

The remaining 12 classes, on the other hand, all have 16

elements and are represented by the following polynomials:

X2 þ X5 þ X7; X2 þ X5 þ X6 þ X7;

X þ X2 þ X5 þ X6 þ X7; 1þ X þ X2 þ X5 þ X6;

1þ X5 þ X7; 1þ X2 þ X5;

1þ X þ X2 þ X6 þ X7; 1þ X þ X5 þ X6 þ X7;

1þ X5 þ X6 þ X7; 1þ X þ X2 þ X5;

1þ X þ X2 þ X7; 1þ X2 þ X7;

ð14Þ

A final interesting remark is that the generator polynomial

1þ Xb (which accounts for the great majority of the LCS

examined here) corresponds to the case where the local rules

f and g share the same nonlinear terms in their ANF. Indeed,

this is the only way that the linear components of the form

Fi � Gi for i 2 f1; � � � bg can collapse to an affine function,

since f and g are evaluated on the same neighborhood.

7 Conclusions

In this paper, we investigated S-boxes defined by pairs of

orthogonal cellular automata. The motivation for consid-

ering this particular approach resides in the bijectivity of

the resulting S-box, which is ensured by the orthogonality

of the Latin squares generated by the OCA, and the dif-

fusion property granted by the fact that orthogonal Latin

squares are (2, 2)-multipermutations. We extended our

search experiments up to diameter d ¼ 6 and confirmed the

practical implications that we introduced in the conference

version of this paper (Mariot et al. 2022): OCA S-boxes

cannot be used to design the substitution layer of a SPN

block cipher, since most of them are linear, and the few

nonlinear ones have too small nonlinearity values. Still, we

believe that OCA S-boxes might be of interest for the

design of nonlinear diffusion layers (Liu et al. 2018),

where the goal is not to reach the highest possible non-

linearity, but rather to add some extra confusion in the

permutation layer. Future research could focus on this

aspect to investigate further the practical applicability of

nonlinear OCA.

Moreover, we settled the conjecture formulated in

Mariot et al. (2022) by formally proving that if an S-box

generated by a pair of nonlinear OCA is linear, then its

linear component space is a polynomial code. We finally

extended the classification of these LCS in terms of their

generator polynomials up to diameter d ¼ 6.

An interesting consequence of Theorem 4 stems from

the fact that polynomial codes are actually the images of

linear cellular automata. Indeed, the generator matrix in

Eq. (8) corresponds to the transition matrix of a linear CA.

Therefore, what we proved is that the LCS of a linear

S-box generated by a pair of OCA is itself a cellular

automaton. We deem this discovery potentially interesting

for future research on the theoretical characterization of

nonlinear OCA pairs, which is still an open problem.

Author Contributions All authors contributed equally.

Funding No funding was received to assist with the preparation of

this manuscript.

Availability of data and materials The experimental data are available

at https://github.com/rymoah/orthogonal-ca-sboxes.

14 L. Mariot, L. Manzoni

123

https://github.com/rymoah/orthogonal-ca-sboxes

Code Availability The source code is available at https://github.com/

rymoah/orthogonal-ca-sboxes.

Declarations

Conflict of interest The author has no competing interest to declare

that are relevant to the content of this article.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Bertoni G, Daemen J, Peeters M, Assche GV (2006) Radiogatún, a

belt-and-mill hash function. IACR Cryptol ePrint Arch 369

Bertoni G, Daemen J, Peeters M, Assche GV (2013) Keccak. In:

Proceedings of EUROCRYPT 2013, volume 7881 of Lecture

Notes in Computer Science, Springer, pp 313–314

Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A,

Robshaw MJB, Seurin Y, Vikkelsoe C (2007) PRESENT: an

ultra-lightweight block cipher. In: Proceedings of CHES 2007,

volume 4727 of Lecture Notes in Computer Science, Springer,

pp 450–466

Carlet C (2021) Boolean functions for cryptography and coding

theory. Cambridge University Press

Daemen J (1995) Cipher and hash function design strategies based on

linear and differential cryptanalysis. PhD thesis, Doctoral

Dissertation, KU Leuven

Daemen J, Clapp CSK (1998) Fast hashing and stream encryption

with PANAMA. In: Proceedings of FSE ’98, volume 1372 of

Lecture Notes in Computer Science, Springer, pp 60–74

Daemen J, Govaerts R, Vandewalle J (1994) An efficient nonlinear

shift-invariant transformation. In: 15th Symposium on Informa-

tion Theory in the Benelux, Louvain-la-Neuve (B), pp 30–31

Daemen J, Rijmen V (2020) The design of rijndael - the advanced

encryption standard (AES). 2nd Ed. Information Security and

Cryptography, Springer

Dworkin MJ (2015) Sha-3 standard: permutation-based hash and

extendable-output functions. In: Federal information processing

standards (NIST FIPS) - 202, pp 1–35

Eloranta K (1993) Partially permutive cellular automata. Nonlinearity

6(6):1009

Formenti E, Mariot L (2022) An enumeration algorithm for binary

coprime polynomials with nonzero constant term. In: CoRR

arXiv:2207.00406

Gadouleau M, Mariot L, Picek S (2020) Bent functions from cellular

automata. IACR Cryptol ePrint Arch 1272

Gadouleau M, Mariot L, Picek S (2023) Bent functions in the partial

spread class generated by linear recurring sequences. Des Codes

Cryptogr 91(1):63–82

Ghoshal A, Sadhukhan R, Patranabis S, Datta N, Picek S, Mukhopad-

hyay D (2018) Lightweight and side-channel secure 4 � 4

s-boxes from cellular automata rules. IACR Trans Symmetr

Cryptol 2018(3):311–334

Gilbert WJ, Nicholson WK (2004) Modern algebra with applications.

Wiley

Gutowitz H (1993) Cryptography with dynamical systems. Nato Asi

Ser C Math Phys Sci 396:237

Kasami T, Lin S, Peterson WW (1968) Polynomial codes. IEEE Trans

Inform Theory 14(6):807–814

Li C, Wang Q (2017) Design of lightweight linear diffusion layers

from near-MDS matrices. IACR Trans Symmetr Cryptol

2017(1):129–155

Liu Y, Rijmen V, Leander G (2018) Nonlinear diffusion layers. Des

Codes Cryptogr 86(11):2469–2484

MacWilliams FJ, Sloane NJA (1977) The theory of error-correcting

codes. Elsevier

Marconi S, Chopard B (2006) Discrete physics, cellular automata and

cryptography. In: Proceedings of ACRI 2006, volume 4173 of

Lecture Notes in Computer Science, Springer, pp 617–626

Mariot L (2022) Enumeration of maximal cycles generated by

orthogonal cellular automata. Nat Comput 1–15 (in press)

Mariot L, Formenti E, Leporati A (2016) Constructing orthogonal

latin squares from linear cellular automata. In: CoRR arXiv:

1610.00139

Mariot L, Formenti E, Leporati A (2017) Enumerating orthogonal

latin squares generated by bipermutive cellular automata. In:

Proceedings of AUTOMATA 2017, volume 10248 of Lecture

Notes in Computer Science, Springer, pp 151–164

Mariot L, Gadouleau M, Formenti E, Leporati A (2020) Mutually

orthogonal Latin squares based on cellular automata. Des Codes

Cryptogr 88(2):391–411

Mariot L, Jakobovic D, Bäck T, Hernandez-Castro J (2022) Artificial

intelligence for the design of symmetric cryptographic primi-

tives. In: Security and artificial intelligence, pp 3–24

Mariot L, Leporati A (2018) Inversion of mutually orthogonal cellular

automata. In: Proceedings of ACRI 2018, volume 11115 of

Lecture Notes in Computer Science, Springer, pp 364–376

Mariot L, Manzoni L (2022) On the linear components space of

s-boxes generated by orthogonal cellular automata. In: Chopard

B, Bandini S, Dennunzio A, Haddad MA (eds.) Cellular

automata - 15th international conference on cellular automata

for research and industry, ACRI 2022, Geneva, Switzerland,

September 12–15, 2022, Proceedings, volume 13402 of Lecture

Notes in Computer Science, Springer, pp 52–62

Mariot L, Picek S, Jakobovic D, Leporati A (2017) Evolutionary

algorithms for the design of orthogonal Latin squares based on

cellular automata. In: Proceedings of GECCO 2017, ACM,

pp 306–313

Mariot L, Picek S, Leporati A, Jakobovic D (2019) Cellular automata

based s-boxes. Cryptogr Commun 11(1):41–62

Mariot L, Saletta M, Leporati A, Manzoni L (2022) Heuristic search

of (semi-)bent functions based on cellular automata. Nat Comput

21(3):377–391

McEliece RJ (2002) The theory of information and coding.

Cambridge University Press

Oliveira GMB, Martins LGA, Alt LS, Ferreira GB (2010) Exhaustive

evaluation of radius 2 toggle rules for a variable-length

cryptographic cellular automata-based model. In: Proceedings

of ACRI 2010, volume 6350 of Lecture Notes in Computer

Science, Springer, pp 275–286

Classification of S-boxes generated by OCA 15

123

https://github.com/rymoah/orthogonal-ca-sboxes
https://github.com/rymoah/orthogonal-ca-sboxes
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2207.00406
http://arxiv.org/abs/1610.00139
http://arxiv.org/abs/1610.00139

Picek S, Mariot L, Leporati A, Jakobovic D (2017) Evolving S-boxes

based on cellular automata with genetic programming. In:

Companion Material Proceedings of GECCO 2017, ACM,

pp 251–252

Picek S, Mariot L, Yang B, Jakobovic D, Mentens N (2017) Design of

S-boxes defined with cellular automata rules. In: Proceedings of

the computing frontiers conference, CF’17, Siena, ACM,

pp 409–414

Seredynski F, Bouvry P, Zomaya AY (2004) Cellular automata

computations and secret key cryptography. Parallel Comput

30(5–6):753–766

Seredynski M, Bouvry P (2004) Block encryption using reversible

cellular automata. In: Proceedings of ACRI 2004, volume 3305

of Lecture Notes in Computer Science, Springer, pp 785–792

Shannon CE (1949) Communication theory of secrecy systems. Bell

Syst Tech J 28(4):656–715

Stinson DR (2004) Combinatorial designs - constructions and

analysis. Springer

Stinson DR, Paterson M (2018) Cryptography: theory and practice.

CRC Press

Szaban M, Seredynski F (2008) Cryptographically strong s-boxes

based on cellular automata. In: Proceedings of ACRI 2008,

pp 478–485

Vaudenay S (1994) On the need for multipermutations: Cryptanalysis

of MD4 and SAFER. In: Preneel B (ed.) Proceedings of FSE

1994, volume 1008 of Lecture Notes in Computer Science,

Springer, pp 286–297

Wolfram S (1983) Statistical mechanics of cellular automata. Rev

Mod Phys 55(3):601

Zhang W, Bao Z, Lin D, Rijmen V, Yang B, Verbauwhede I (2015)

RECTANGLE: a bit-slice lightweight block cipher suitable for

multiple platforms. Sci China Inform Sci 58(12):1–15

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

16 L. Mariot, L. Manzoni

123

	A classification of S-boxes generated by orthogonal cellular automata
	Abstract
	Introduction
	Background
	Boolean functions and S-boxes
	Orthogonal cellular automata

	Related work
	S-boxes generated by OCA
	Exhaustive search experiments
	The linear component space of OCA S-boxes
	Conclusions
	Author Contributions
	Availability of data and materials
	Open Access
	References

