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A B S T R A C T

This paper studies the discrete-time Stochastic Knapsack with Periodic Scheduled Arrivals (SKPSA). The goal
is to find a schedule such that the capacity usage of the unconstrained cousin of the knapsack is as close as
possible to a target utilization. We approximate the SKPSA with a Wasserstein distance based Distributionally
Robust Optimization (DRO) model, resulting in the DRO-SKPSA. We present an algorithm that efficiently solves
this model, and show that the DRO-SKPSA produces robust schedules. The problem arises in particular in
healthcare settings in the development of Master Surgical Schedules (MSSs). We discuss managerial insights
for MSSs with downstream capacity constraints.
1. Introduction

In this paper we consider the problem of developing a periodic
schedule, dictating the arrivals to a discrete-time stochastic knap-
sack. More precisely, jobs of different classes are to be scheduled on
multiple parallel machines. These jobs generate a random number of
objects that occupy one or more shared resources of the knapsack
for a random holding time. The objective is to find a schedule such
that the occupancy of these resources is close to the target occu-
pancy of the unconstrained cousin of the knapsack. We introduce
the Stochastic Knapsack with Periodic Scheduled Arrivals (SKPSA),
and its Distributionally Robust Optimization (DRO) approximation, the
Distributionally Robust Stochastic Knapsack with Periodic Scheduled
Arrivals (DRO-SKPSA).

The problem that motivated this research is a common one in
healthcare. Surgical departments are well known to be one of the
most expensive departments of hospitals, driving other departments
such as wards. The Operating Rooms (ORs) correspond to the parallel
machines, and the ward to the stochastic knapsack. The relationship be-
tween the surgical department and downstream wards has been studied
in several ways. Vanberkel et al. (2011) were on of the first to explicitly
relate the surgical schedule to bed occupancy on a tactical level by
predicting bed occupancy given the Master Surgical Schedule (MSS).
This has been further extended by Kortbeek et al. (2015) and Braaksma
et al. (2021). The optimal assignment of surgical sessions in a cyclic
schedule, known as the MSS, while accounting for downstream resource
capacity is studied in, e.g., van Essen et al. (2014), Fuegener et al.
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(2014) and Schneider et al. (2020). Scheduling patients from a wait-
ing list given the MSS while accounting for bed capacity is done in,
e.g., Neyshabouri and Berg (2017) and Shehadeh and Padman (2021).
As an MSS is a cyclic schedule, the problem of finding the best MSS,
i.e., the Master Surgical Schedule Problem (MSSP), fits perfectly in
the framework of a discrete-time stochastic knapsack with periodic
scheduled arrivals.

There are also examples from other areas. Consider for instance a
production planning problem where goods are produced on parallel
production lines or ordered from external parties, and stock levels
are not allowed to exceed limited warehouse capacity. If demand is
uncertain, it is important to find a schedule that aims to make the
most efficient use of existing capacity, without exceeding its limits.
This problem is commonly referred to as the ‘‘Warehousing Scheduling
Problem’’, see, e.g., Hariga and Jackson (1996). Another example arises
from the service industry, in which a consultancy company has to
select projects out of a number of opportunities. All projects demand
resources from consultants, for a possibly random amount of time. The
goal then is to find a subset of projects and to schedule their starting
time while accounting for the availability of employees, which is an
example of the Project Selection and Scheduling Problem as studied in,
e.g., Drezet and Billaut (2008).

In the stochastic knapsack literature, two variants are considered:
the static and the non-static stochastic knapsack. The static stochastic
knapsack problem is to select a subset of items with random weights
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or rewards such that the total reward is maximized while capacity is not
exceeded. In a non-static stochastic knapsack, as defined in, e.g., Ross
(1995) or Kleywegt and Papastavrou (2001), objects arrive to the
knapsack according to a Poisson process and occupy a certain number
of resources in the knapsack for a random amount of time. Applications
of the non-static stochastic knapsack include loss networks (Kelly,
1991; Ross, 1995), revenue management and reward optimization (van
Slyke and Young, 2000; Kleywegt and Papastavrou, 2001), and project
scheduling (Lu et al., 1999).

We approach our problem with a discrete-time (non-static) stochas-
tic knapsack and its unconstrained cousin. The decision maker has to
decide on a cyclic schedule dictating the arrivals of objects to this knap-
sack. Related work on scheduling arrivals in the context of Queueing
Theory includes Pegden and Rosenshine (1990) and Hassin and Mendel
(2008). These authors’ goal is to find the best inter arrival times for
customers such that waiting time and availability cost are minimized.
We focus on the occupancy of the knapsack resources. Also related
are batch arrivals to infinite server queues (Pang and Whitt, 2012;
Daw and Pender, 2019), and product form distributions for networks of
discrete-time infinite server queues with batch arrivals (Walrand, 1983;
Boucherie and Van Dijk, 1991). Their work differs from our work, as
their objective is to describe the behavior of the queueing system with
a random arrival process, while our goal is to find the best schedule of
jobs generating the batch arrivals.

Our goal is to optimize the cyclic schedule of jobs on the parallel
machines generating arrivals of objects in the knapsack, given the
uncertainty in the knapsack’s inflow and objects’ length of stay. A com-
monly used method in optimization under uncertainty is Stochastic Pro-
gramming (SP). One of the main drawbacks of this method, however,
is the assumption on full knowledge about the underlying stochastic
processes, which in many cases is not realistic. SP suffers from out-
of-sample disappointment (Smith and Winkler, 2006), which refers to
the predicted performance based on training data versus the actual
performance based on out-of-sample data. An alternative is Robust
Optimization (RO), which considers the worst case of random variables
with respect to their uncertainty set. This approach is known to produce
rather conservative solutions (Bertsimas et al., 2011). DRO overcomes
the necessity of full probabilistic knowledge, as one optimizes with
respect to the worst case distribution in a set of distributions. This
is less conservative than optimization with respect to the worst case
realization, as is done in RO (Esfahani and Kuhn, 2018).

Three commonly used methods in optimization under uncertainty
are SP, RO and DRO. One of the main drawbacks of SP is the as-
sumption that there is complete knowledge of the underlying stochastic
processes, which in most cases is not realistic. Besides, SP suffers from
out-of-sample disappointment (Smith and Winkler, 2006), which refers
to the predicted performance based on training data versus the actual
performance based on out-of-sample data. An alternative is RO, which
considers the worst case of random variables with respect to their
uncertainty set. This approach is known to produce rather conservative
solutions (Bertsimas et al., 2011). DRO is often considered as a middle
road between these two methods.

In DRO, originating from Scarf (1957), rather than assuming a
probability distribution, one assumes a ambiguity set of many dis-
tributions, after which one optimizes with respect to the worst case
distribution. This approach requires less rigid assumptions compared to
SP, and produces less conservative solutions compared to RO (Esfahani
and Kuhn, 2018). The method has gained renewed attention due to
tractability results as presented in Delage and Ye (2010) and Esfa-
hani and Kuhn (2018). Chen et al. (2020) recently presented a new
model unifying both scenario tree-based stochastic optimization and
DRO, together with their modeling tool RSOME: Robust Stochastic
Optimization Made Easy. Concerning DRO with chance constraints, Liu
et al. (2023) consider globalized distributionally robust counterpart,
in which also distributions outside of the ambiguity set are explicitly
2

addressed and violation of the constraint by those distributions is
controlled. DRO with state-dependent ambiguity is applied in, e.g., Liu
et al. (2022), who model demand uncertainty in a Facility Location
problem with a state-dependent ambiguity set.

DRO has been applied in, e.g., facility location problems (Saif and
Delage, 2021; Shehadeh and Sanci, 2021; Liu and Li, 2021), machine
scheduling problems (Chang et al., 2019; Bruni et al., 2020), power
grid operations (Wang et al., 2020) and healthcare logistics (Wang
et al., 2019; Shehadeh et al., 2020; Shehadeh and Padman, 2021).
Similar to the shape of the uncertainty set in RO, the type of ambiguity
set plays a key role in DRO. Two common types of ambiguity are
moment based ambiguity and distance based ambiguity. In the former,
the ambiguity set consists of all distributions subject to one or more
moment based constraints. In the latter, the ambiguity set contains all
distributions within a distance from a reference distribution. In this
paper, we use the distance based Wasserstein ambiguity set around
the empirical distribution retrieved from data. We use this set for the
following reasons. First, it uses all available data through the empir-
ical distribution, instead of only using the sample moments. Second,
Wasserstein based DRO generalizes other forms of decision making
under uncertainty, such as Sample Average Approximation (SAA) and
the expected value approach, facilitating easy comparison. Third, there
are theoretical confidence results on containing the true distribution,
and fourth Wasserstein DRO has tractable reformulations (Esfahani and
Kuhn, 2018).

Closely related to our work is the work presented by Wang et al.
(2019) and Shehadeh and Padman (2021). Our work differs in several
ways. First, in Wang et al. (2019) a similar scheduling problem is con-
sidered, but the downstream resource usage is omitted. Second, both
authors used an operational timescale, where we consider a tactical
timescale. Third, the schedules considered in both works are non-cyclic,
where we assume a cyclic schedule. Fourth, in both works a moment-
based ambiguity set is used, whereas we use a distance based ambiguity
set in our DRO approximation.

Our first contribution is the introduction of the discrete-time
Stochastic Knapsack with Periodic Scheduled Arrivals (SKPSA). This
model generalizes existing work on, e.g., master surgery scheduling
with downstream capacity constraints. Our second contribution is the
DRO-SKPSA, an approximation of the SKPSA with a distance based am-
biguity set. We solve this approximation using an available algorithm
form literature.

This paper is organized as follows. In Section 2 we formally in-
troduce the SKPSA and in Section 3 the DRO-SKPSA as well as a
column-and-constraint generation algorithm to solve our model. In
Section 4 we provide computational results, and Section 5 provides the
conclusions of our research and possible directions for future work.

2. Stochastic knapsack with periodic scheduled arrivals

We consider the discrete-time stochastic knapsack with periodic
scheduled arrivals. In this model, a schedule of jobs generates objects
routed to the knapsack, in which the objects have to complete their
length of stay.

The arrival process of objects is generated by a repeating cyclic
schedule of 𝑇 time units,  = {1,… , 𝑇 }, that schedules jobs of classes
𝑘 ∈ ,  = {1,… , 𝐾}, over 𝑀 machines,  = {1,… ,𝑀}. Let cycle 𝑠
start at time 𝑡 = 𝑠𝑇 , 𝑠 ∈ {… ,−1, 0, 1,…}. Let 𝑥𝑘,𝑚,𝑡 ∈ {0, 1} be 1 if we
schedule job 𝑘 ∈  on machine 𝑚 ∈  at time 𝑡 ∈  . A complete cycle
of the cyclic schedule is then encoded by 𝐱 ∈ {0, 1}𝐾𝑀𝑇 . A class-𝑘 job
takes one time unit to complete and generates a random number 𝑂𝑘
of objects of class 𝑘 that arrive instantaneously to the knapsack. We
assume that for each 𝑘 ∈ , the number of objects 𝑂𝑘 are independent
and identically distributed, with finite support {1,… , 𝑂𝑘}. Let 𝑝𝑂𝑘 (𝑜) =
P(𝑂𝑘 = 𝑜), 𝑜 = 1,… , 𝑂𝑘.

The knapsack consists of 𝐿 resources,  = {1,… , 𝐿}, where resource
𝓁 ∈  has a capacity of 𝑐𝓁,𝑡 resource units at time 𝑡. We define the
column vector 𝐜 = [𝑐 , 𝑐 ,… , 𝑐 ]⊺. Let  ⊆  denote the set of
𝓁 𝓁,1 𝓁,2 𝓁,𝑇 𝓁
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object classes using resource 𝓁, 𝓁 ∈ . An object of class 𝑘 ∈ 𝓁 uses
𝑏𝑘 resource units of resource 𝓁. We will number the elements of 𝓁
as 𝓁(1),… ,𝓁(|𝓁|). We assume that 𝓁 ∩ 𝓁 = ∅, 𝓁 ≠ 𝓁, which
means that each object class only uses one resource, and ∪𝓁𝓁 = ,
implying all classes are assigned a resource. Let 𝐻𝑘 denote the discrete
random holding time during which an object of class 𝑘 occupies these
resource units. We assume that for each 𝑘 ∈ , 𝐻𝑘 are independent
and identically distributed with finite support {1,… ,𝐻𝑘}. Let 𝑝𝐻𝑘

(ℎ) =
P(𝐻𝑘 = ℎ), ℎ = 1,… ,𝐻𝑘.

The resource utilization at time 𝑡 by the number of class-𝑘 objects in
the knapsack, 𝑢𝑘,𝑡 =

∑

𝑘∈𝓁
𝑏𝑘𝑛𝑘, cannot exceed the available resource

units at each time 𝑡. Thus, at time 𝑡 the state space for the number 𝑛𝑘
of objects of class 𝑘, 𝑘 ∈ , is

𝑡 ∶=

{

𝐧 = [𝑛1, 𝑛2,… , 𝑛𝐾 ]⊺ ∈ N𝐾 ∣
∑

𝑘∈𝓁

𝑏𝑘𝑛𝑘 ≤ 𝑐𝓁,𝑡, 𝓁 ∈ 

}

, (1)

with N = {0, 1,…}. The evolution of the stochastic process,
{

𝑈𝑘,𝑡,
𝑘 ∈ , 𝑡 ∈  }, recording the number of objects in the system is then
determined by the distributions of 𝑂𝑘 and 𝐻𝑘, 𝑘 ∈ .

The unconstrained cousin of the stochastic knapsack described
above has unlimited capacity, i.e., 𝑐𝓁,𝑡 = ∞, 𝓁 ∈ , 𝑡 ∈  . Our goal
s to design the cyclic schedule such that the utilization of the resource
nits in the unconstrained cousin of the stochastic knapsack at state
pace 𝑡, 𝑡 ∈  , is as close as possible to the capacity of the stochastic
napsack as specified in (1). This requires a more detailed description
f the state space.

Let 𝜃𝑘,1 = 𝑂𝑘 denote the random number of class-𝑘 objects arriving
to the knapsack upon completion of job 𝑘, and 𝜃𝑘,𝜏+1 record the random
number of class-𝑘 objects in the system 𝜏 time slots after its arrival
time, 𝜏 = 1,… ,𝐻𝑘 − 1. Let 𝜽𝑘 = [𝜃𝑘,1, 𝜃𝑘,2,… , 𝜃𝑘,𝐻𝑘

]⊺ ∈ N𝐻𝑘 denote
the objects vector of a class 𝑘 job. As class-𝑘 objects depart form the
knapsack after completion of their holding time, it is immediate that
𝑂𝑘 ≥ 𝜃𝑘,1 ≥ 𝜃𝑘,2 ≥ ⋯ ≥ 𝜃𝑘,𝐻𝑘

. We then have that 𝜽𝑘 ∈ 𝛩𝑘, where

𝑘 ∶=
{

𝜽𝑘 ∈ N𝐻𝑘 ∣ 𝜃𝑘,1 ≤ 𝑂𝑘, 𝜃𝑘,2 ≤ 𝜃𝑘,1,… , 𝜃𝑘,𝐻𝑘
≤ 𝜃𝑘,𝐻𝑘−1

}

=
{

𝜽𝑘 ∈ N𝐻𝑘 ∣ 𝐀𝑘𝜽𝑘 ≤ 𝐚𝑘
}

, 𝑘 ∈ ,
(2)

where 𝐀𝑘 is a matrix with 1 on the diagonal and −1 on the sub diagonal,
and 𝐚𝑘 = 𝑂𝑘𝐞1, where 𝐞1 is the first unit vector, with 1 in position 1,

elsewhere. Note that 𝐀𝑘 is totally unimodular (TU) as it corresponds
o the node-arc incidence matrix of a directed graph (Conforti et al.,
014, Theorem 4.9).

Let 𝝃𝓁 = [𝜽𝓁 (1),𝜽𝓁 (2),… ,𝜽𝓁 (|𝓁 |)]
⊺ denote the stacked random

ector of 𝜽𝑘, and 𝐝𝓁 = [𝐚𝓁 (1), 𝐚𝓁 (2),… , 𝐚𝓁 (|𝓁 |)]
⊺ the stacked vector

f the 𝐚𝑘, 𝑘 ∈ 𝓁 . Let 𝐃𝓁 be the block diagonal matrix with blocks
𝓁 (1),𝐀𝓁 (2),… ,𝐀𝓁 (|𝓁 |). Note that the matrix 𝐃𝓁 consists of TU
locks and therefore is TU. Let 𝜻 denote the stacked vector of 𝜉𝓁 ,
= 1,… , 𝐿. We have that 𝜻 ∈ Z, where

∶=
{

𝜻 =
[

𝝃⊺1,… , 𝝃⊺𝐿
]⊺ ∈ N

∑

𝓁∈
∑

𝑘∈𝓁
𝐻𝑘 ∣ 𝐃𝓁𝝃𝓁 ≤ 𝐝𝓁

}

. (3)

Let 𝑈𝓁,𝑡 record the resource utilization of resource 𝓁 at time 𝑡. Then
𝑈𝓁,𝑡 is obtained by adding all objects using resource 𝓁 at time 𝑡 ∈ 
rom the current cycle 0, 𝑟𝑐𝓁,𝑡, and from previous cycles 𝑠 ∈ {… ,−2,−1},
𝑝
𝓁,𝑡. Thus

𝓁,𝑡 = 𝑟𝑝𝓁,𝑡 + 𝑟
𝑐
𝓁,𝑡, (4)

here 𝑟𝑐𝓁,𝑡 is obtained by considering all options for class-𝑘 jobs in the
urrent schedule that may be present at time 𝑡, i.e.,

𝑐
𝓁,𝑡 =

∑

𝑘∈𝓁

𝑀
∑

𝑚=1

𝑡
∑

𝑗=1
𝑥𝑘,𝑚,𝑡−𝑗+1𝑏𝑘𝜃𝑘,𝑗 . (5)

or previous cycles, we should only consider those cycles from which
bjects may be present at time 𝑡, i.e., if 𝐻 − 𝑡 > 0. As a consequence,
3

𝑘 N
for class-𝑘 objects we must include cycles 𝑠 = −⌊𝐻𝑘−𝑡−1
𝑇 ⌋ − 1,… ,−1.

Thus,

𝑟𝑝𝓁,𝑡 =
∑

𝑘∈𝓁

1{𝐻𝑘−𝑡>0}

𝑀
∑

𝑚=1

⌊

𝐻𝑘−𝑡−1
𝑇 ⌋

∑

𝑖=0

min{𝐻𝑘−𝑡−𝑖𝑇 ,𝑇 }
∑

𝑗=1
𝑥𝑘,𝑚,𝑇−𝑗+1𝑏𝑘𝜃𝑘,𝑡+𝑗+𝑖𝑇 . (6)

For fixed 𝑘 ∈  and 𝑚 ∈ , each 𝜃𝑘,𝑡, 𝑡 = 1,… ,𝐻𝑘 appears exactly
once in (5), (6). Therefore, it follows that 𝑈𝓁,𝑡 is a linear function of 𝜽
with coefficients depending on 𝑏𝑘 and 𝐱. We collect the coefficients of
ach 𝜃𝑘,𝑡, 𝑡 = 1,… ,𝐻𝑘. To this end, define the vectors

𝐟 𝑐𝑘,𝑡(𝐱) =
[ 𝑀
∑

𝑚=1

𝑡
∑

𝑗=1
𝑥𝑘,𝑚,𝑡−𝑗+11(𝑡 = ℎ), ℎ = 1,… ,𝐻𝑘

]⊺

,

𝐟𝑝𝑘,𝑡(𝐱) =
⎡

⎢

⎢

⎢

⎣

𝑀
∑

𝑚=1

⌊

𝐻𝑘−𝑡−1
𝑇 ⌋

∑

𝑖=0

min{𝐻𝑘−𝑡−𝑖𝑇 ,𝑇 }
∑

𝑗=1
𝑥𝑘,𝑚,𝑇−𝑗+11(𝑡 = ℎ), ℎ = 1,… ,𝐻𝑘

⎤

⎥

⎥

⎥

⎦

⊺

,

𝐠𝓁,𝑡(𝐱) =
[

𝐟𝑝𝓁 (𝑘),𝑡
(𝐱)⊺ + 1{𝐻𝓁 (𝑘)−𝑡>0}

𝐟 𝑐𝓁 (𝑘),𝑡
(𝐱)⊺, 𝑘 = 𝓁(1),… ,𝓁(|𝓁|)

]⊺
,

hich allows us to give the following expression for 𝑈𝓁,𝑡:

𝓁,𝑡 =
∑

𝑘∈𝓁

(

𝐟𝑝𝑘,𝑡(𝐱) + 1{𝐻𝑘−𝑡>0}
𝐟 𝑐𝑘,𝑡(𝐱)

)⊺
(𝑏𝑘𝜽𝑘) = 𝐠𝓁,𝑡(𝐱)⊺(𝐛𝓁 ⊙ 𝝃𝓁), (7)

where 𝐛𝓁 =
[

𝑏𝓁 (𝑘)𝟏𝐻𝓁 (𝑘)
, 𝑘 = 𝓁(1),… ,𝓁(|𝓁|)

]⊺

, with 𝟏𝑛 the all-
nes vector of size 𝑛, and ⊙ denotes the Hadamard product. Let 𝐔𝓁 =
𝑈𝓁,1,… , 𝑈𝓁,𝑇

]⊺, and 𝐆𝓁(𝐱) = [𝐠𝓁,1(𝐱)⊺, 𝐠𝓁,2(𝐱)⊺,… , 𝐠𝓁,𝑇 (𝐱)⊺]⊺, the matrix
ith rows 𝐠𝓁,𝑡(𝐱)⊺, 𝑡 = 1,… , 𝑇 . This gives

𝓁 = 𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁). (8)

We are now ready to introduce the optimization model which
etermines the optimal schedule. The model searches for a schedule
such that over- and under-utilization of the knapsack, penalized by

osts 𝑝𝑜 and 𝑝𝑢 respectively, is minimized. Let 𝐲𝓁 ∈ R𝑇 denote an
nalytical variable representing the over or under utilization costs.
he Stochastic Knapsack with Periodic Scheduled Arrivals (SKPSA) is
ormulated as follows:

SKPSA) min
𝐱,𝐲1 ,…,𝐲𝐿

𝐿
∑

𝓁=1
𝐲⊺𝓁𝟏𝑇 (9a)

s.t. 𝑝𝑜
(

𝐜𝓁 −𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁)
)

≤ 𝐲𝓁 , 𝓁 ∈ , (9b)

𝑝𝑢
(

𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁) − 𝐜𝓁
)

≤ 𝐲𝓁 , 𝓁 ∈ , (9c)

𝐱 ∈  , (9d)

where

 ∶=

{

𝐱 ∈ {0, 1}𝐾𝑀𝑇 ∣
∑

𝑘∈
𝑥𝑘,𝑚,𝑡 ≤ 1, 𝑚 ∈ , 𝑡 ∈ 

}

. (10)

rom Constraints (9b) and (9c) the under and over utilization of the
napsack’s resources is obtained, which is in turn minimized by the
bjective function (9a). Note that  could be more restricted depending
n the application. If, for instance, scheduling jobs on times 𝑡 ∈  of
he cycle is prohibited, the set of feasible schedules would be smaller.

By analogy with van Essen et al. (2014), we can show that the
KPSA is NP-Hard by a reduction from 3-Partition. To this end, let
= 3, 𝐿 = 1, and let the holding time be 1 for all jobs. Let 𝐾 = 3𝑇 .

ach job of class 𝑘 is assumed to have a known outflow of 𝑜𝑘 objects.
et 𝑤 be an integer such that ∑𝐾

𝑘=1 𝑜𝑘 = 𝑇𝑤. Then determining whether
here exists a schedule that requires 𝑝 resource units is equivalent to
etermining whether there are 𝑇 disjoint subsets 𝑡 ⊂ {1,… , 3𝑇 } such

that ∑𝑘∈𝑡
𝑜𝑘 = 𝑟𝑤. This is known as the 3-Partition problem, which is

P-Hard (Garey and Johnson, 1979).
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3. Distributionally robust stochastic knapsack with periodic
scheduled arrivals

This section presents the proposed DRO-SKPSA approximation of
the SKPSA presented in Section 2. In Section 3.1 we provide a brief
introduction to the DRO paradigm and how this is applied to our model.
In Section 3.2 we provide a column-and-constraint generation based
algorithm to solve our model efficiently.

3.1. DRO approximation of the SKPSA with wasserstein distance based
ambiguity

Let (Z) the probability space containing all distributions sup-
ported on Z. Let 𝜻 ′, 𝜻 ′′ be random variables with support Z. The
Wasserstein distance (Kantorovich and Rubinstein, 1958) is a distance
measure between probability distributions P and Q, defined as 𝑑𝑤 ∶
(Z) ×(Z) ↦ R+ with

𝑑𝑤(P,Q) ∶= inf

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫Z×Z
‖𝜻 ′ − 𝜻 ′′‖𝑝𝛱(𝑑𝜻 ′, 𝑑𝜻 ′′)

|

|

|

|

|

|

|

|

|

|

|

𝛱 is a joint
distribution of
𝜻 ′, 𝜻 ′′, with
marginals P, Q

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where ‖ ⋅‖𝑝 is an arbitrary norm. The Wasserstein distance can be inter-
preted as the costs of moving ‘‘mass’’ from distribution P to distribution
Q, where the weights or costs are encoded by the norm ‖⋅‖𝑝. From now
on, we assume that 𝑝 = ∞.

The Wasserstein ambiguity set of a distribution P is defined as
the set of all probability distributions in the Wasserstein ball around
P (Esfahani and Kuhn, 2018):

(𝜖,Z) = {Q ∶ Q(𝜻 ∈ Z) = 1} ∩
{

Q ∶ 𝑑𝑤 (P,Q) ≤ 𝜖
}

, (11)

where 𝜖 ∈ R+ controls the radius of the Wasserstein ball.
Let Ẑ =

{

𝜻1, 𝜻2,… , 𝜻𝑁
}

, with 𝜻𝑛 = [𝝃̂1,𝑛,… , 𝝃̂𝐿,𝑛] a finite set of
sample points from Z, indexed by  = {1,… , 𝑁}. We now define

P̂𝑁 (𝐴) ∶= 1
𝑁

𝑁
∑

𝑛=1
1
(

𝜻𝑛 ∈ 𝐴
)

, ∀𝐴 ∈  , (12)

where  is a Borel 𝜎−algebra on Z. The Wasserstein ambiguity set
(𝜖,Z) centered at P̂𝑁 is referred to as the data-driven Wasserstein
ambiguity set (Mevissen et al., 2013), in which case (𝜖,Z) contains
all distributions Q with 𝑑𝑤(P̂𝑁 ,Q) ≤ 𝜖, hence in loose terms all distri-
butions ‘‘close’’ to the empirical distribution. In the DRO paradigm, we
typically consider a problem of the form Esfahani and Kuhn (2018):

min
𝐱∈

sup
Q∈(𝜖,Z)

E𝜻∼Q (𝜙(𝐱, 𝜻)) , (13)

where 𝜙 ∶  ,Z ↦ R is commonly referred to as loss function.
We will now proceed with the DRO approximation of the SKPSA

model with a data-driven Wasserstein ambiguity set. In the SKPSA, the
only uncertain parameter is 𝜻 . Therefore, the Distributionally Robust
Stochastic Knapsack with Periodic Scheduled Arrivals (DRO-SKPSA)
may be formulated as follows:

(DRO-SKPSA) min
𝐱

sup
Q∈(𝜖,Z)

E𝜻∼Q

(

min
𝐲1 ,…,𝐲𝓁

𝐿
∑

𝓁=1
𝐲⊺𝓁𝟏𝑇

)

(14a)

s.t. 𝑝𝑜
(

𝐜𝓁 −𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁)
)

≤ 𝐲𝓁 , 𝓁 ∈ , (14b)

𝑝𝑢
(

𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁) − 𝐜𝓁
)

≤ 𝐲𝓁 , 𝓁 ∈ , (14c)

𝐱 ∈  . (14d)

Observe that all feasible 𝐱 for the DRO-SKPSA are feasible for the
SKPSA. Model (14) is not solvable in its current form. The next theorem
4

provides a solvable reformulation of (14), and relies on (Esfahani
and Kuhn, 2018, Corollary 5.4-(ii)). We chose to prove the required
conditions to apply the corollary instead of copying the full proof.

Theorem 1. If (𝜖,Z) is a Wasserstein ambiguity set, the DRO-SKPSA is
equivalent to:

min
𝐱, 𝜆≥0

𝝁𝓁 ,𝜸𝓁,𝑛,𝑣≥0

𝜆𝜖 + 1
𝑁

𝑁
∑

𝑛=1
𝜇𝑛 (15a)

s.t.
𝐿
∑

𝓁=1

(

(𝐯𝓁,𝑣)⊺(𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃̂𝓁,𝑛) + 𝐜̄)

+(𝜸𝓁,𝑛,𝑣)⊺(𝐝𝓁 − 𝐃𝓁 𝝃̂𝓁,𝑛)
)

≤ 𝜇𝑛, ∀𝑛 ∈  , 𝑣 ∈ ,

(15b)

𝐿
∑

𝓁=1

(

‖(𝐃𝓁)⊺𝜸𝓁,𝑛,𝑣 − (𝐆𝓁(𝐱))⊺𝐯𝓁,𝑣‖1
)

≤ 𝜆, ∀𝑛 ∈  , 𝑣 ∈ , (15c)

𝐱 ∈  , (15d)

where

𝐆𝓁(𝐱) =
[

𝐆𝓁(𝐱)⊺,−𝐆𝓁(𝐱)⊺
]⊺ , 𝐜̄ =

[

−𝐜𝓁 , 𝐜𝓁
]

,

and 𝝁𝓁 ∈ R𝑁 , 𝜆 ∈ R+, 𝜸𝓁,𝑛,𝑣 ∈ R
∑

𝑘∈𝓁
𝐻𝑘

+ .

Proof. We reformulate (14) into the following two-stage program with
right-hand side uncertainty:

min
𝐱

sup
Q∈(𝜖,Z)

E𝜻∼Q

( 𝐿
∑

𝓁=1
𝜙𝓁(𝐱, 𝐲𝓁 , 𝝃𝓁)

)

(16a)

s.t. 𝐱 ∈  , (16b)

with loss function

𝓁(𝐱, 𝐲𝓁 , 𝝃𝓁) ∶= min
𝐲𝓁

{

𝐲⊺𝓁𝟏𝑇
|

|

|

|

|

𝑝𝑢
(

𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁) − 𝐜𝓁
)

≤ 𝐲𝓁 ,
𝑝𝑜

(

𝐜𝓁 −𝐆𝓁(𝐱)(𝐛𝓁 ⊙ 𝝃𝓁)
)

≤ 𝐲𝓁

}

. (17)

Let  denote the dual feasible set of (17) with vertices 𝐰1,… ,𝐰2𝑇 ,
hat is:

∶=
{

𝐰 |

[

𝐈𝑇 , 𝐈𝑇
]

𝐰 = 𝟏2𝑇 ,𝐰 ≥ 0
}

, (18)

ith matrix
[

𝐈𝑇 , 𝐈𝑇
]

consisting of two identity matrices of size 𝑇 ,
tacked after one another. Note that  is identical for each 𝓁 ∈ . We
eadily obtain that  is nonempty and compact, and that the number
f vertices is finite.

Let  denote the dual feasible set of ∑𝐿
𝓁=1 𝜙𝓁(𝐱, 𝐲𝓁 , 𝝃𝓁), with vertices

1, 𝐯2,… , 𝐯2𝐿𝑇 , indexed by  = {1,… , 2𝐿𝑇 }, that is

∶=
{

𝐯 = [𝐰⊺
1,𝐰

⊺
2,… ,𝐰⊺

𝐿]
⊺
| 𝐰𝓁 ∈  ,𝓁 = 1,… , 𝐿

}

. (19)

For 𝑣 ∈ , 𝓁 ∈ , let 𝐯𝓁,𝑣, denote the 𝓁-th subvector 𝐰𝓁 of 𝐯𝑣.
The proof is completed following the proof of Esfahani and Kuhn

(2018, Corollary 5.4-(ii)), observing that 𝐃𝓁 is totally unimodular for
all 𝓁 and that for 𝐱1, 𝐱2 ∈ R𝑛 we have that ‖[𝐱⊺1, 𝐱

⊺
2]

⊺
‖1 = ‖𝐱⊺1‖1 +

‖𝐱⊺2‖1. □

An important benefit from Wasserstein based DRO is that it general-
izes an SAA model and an expected value approach. If we set 𝜖 = 0 the
SAA model is a special case of the DRO-SKPSA (Esfahani and Kuhn,
2018). Furthermore, if we use 𝜻̄𝓁 = 1

𝑁
∑𝑁
𝑛=1 𝜻𝓁,𝑛, an expected value

approach is derived where we only use averages as another special case
of the DRO-SKPSA.

Remark 1 (Separate Ambiguity Sets for Each Resource). A generalization
of our formulation of the DRO-SKPSA is to model a separate ambiguity
set 𝓁 for each resource 𝓁 ∈ , by which we could tune the Wasserstein
radius 𝜖 for each resource independently reflecting the degree of con-
fidence in the empirical data for each resource separately. This would,
however, result in having to tune 𝐿 hyper parameters 𝜖𝓁 , which might

be a cumbersome task.
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3.2. Column-and-constraint generation algorithm

The DRO-SKPSA (15) is a Mixed Integer Linear Program (MILP),
and can therefore be solved using off the shelve solvers. However, the
problem grows exponentially in terms of constraints and variables. In
this section, we present an algorithm exploiting the structure of our
problem.

Let  and  be as defined in Theorem 1. Observe that the number of
constraints and variables of (15) grows exponentially as || = 2𝐿𝑇 . We
will present an algorithm that solves (15) by only considering subsets of
these constraints by iteratively adding them. The algorithm we present
is derived from results in Saif and Delage (2021), who encounter the
same challenge in terms of model growth after applying the tractability
results as presented in Esfahani and Kuhn (2018).

We first reformulate the DRO-SKPSA as follows:

min
𝐱, 𝜆≥0

𝝁𝓁 ,𝜸𝓁,𝑛,𝑣≥0

𝜆𝜖 + 1
𝑁

𝑁
∑

𝑛=1
𝜇𝑛 (20a)

s.t. ℎ𝑛(𝐱, 𝜆, 𝐯) ≤ 𝜇𝑛, 𝑛 ∈  , 𝐯 ∈  , (20b)

𝐱 ∈  , (20c)

with ℎ𝑛 ∶  ,R, ↦ R defined as

𝑛(𝐱, 𝜆, 𝐯𝓁,𝑣) ∶= min
𝜸𝓁,𝑛,𝑣≥0

𝐿
∑

𝓁=1

(

(𝐯𝓁,𝑣)⊺(𝐆𝓁(𝐱)𝝃̂𝓁,𝑛 + 𝐜̄) + (𝜸𝓁,𝑛,𝑣)⊺(𝐝𝓁 − 𝐃𝓁 𝝃̂𝓁,𝑛)
)

(21a)

s.t.
𝐿
∑

𝓁=1

(

‖(𝐃𝓁)⊺𝜸𝓁,𝑛,𝑣 − (𝐆𝓁(𝐱))⊺𝐯𝓁,𝑣‖1
)

≤ 𝜆. (21b)

The value of ℎ𝑛(𝐱, 𝜆, 𝐯𝓁,𝑣) is readily obtained as for fixed 𝐱, (21) is a
inear Program.

We are now ready to solve (20),(21) by iteratively adding con-
traints (20b). To this end, let 𝑛 ⊆ , 𝑛 ∈  , denote (small) subsets of

obtained from Theorem 2, where each 𝑛 corresponds to the subset
f constraints (20b) which are indexed by 𝑛. Let 𝑜𝑝𝑡𝑟 ∶ 1,… ,𝑁 ↦ R
enote the optimal value of the relaxation of the DRO-SKPSA obtained
y considering constraints (20b) for which 𝑣 ∈ 𝑛, 𝑛 ∈  . Let
𝑝𝑡∗ denote the optimal value of the DRO-SKPSA (20). The following
heorem provides a lower and upper bound on 𝑜𝑝𝑡(1,… ,𝑛), and which
ndices of vertices to add to each 𝑛.

heorem 2. Let (𝐱̄, 𝜆̄, 𝜇̄𝑛) denote an incumbent solution obtained from
olving the DRO-SKPSA (20) with only constraints (20b) for which 𝑣 ∈
𝑛, 𝑛 ∈  . Then

𝑝𝑡𝑟
(

1,… ,𝑁
)

≤ 𝑜𝑝𝑡𝑟
(

1 ∪ {𝑣1},… ,𝑁 ∪ {𝑣𝑁}
)

≤ 𝑜𝑝𝑡∗

≤ 𝜆̄𝜖 + 1
𝑁

𝑁
∑

𝑛=1
𝜇∗𝑛 (𝐱̄, 𝜆̄),

(22)

with

𝜇∗𝑛 (𝐱̄, 𝜆̄) = max
𝑣∈𝑛

ℎ𝑛(𝐱, 𝜆, 𝐯𝓁,𝑣), 𝑣𝓁,𝑛 = arg max
𝑣∈𝑛

ℎ𝑛(𝐱, 𝜆, 𝐯𝓁,𝑣). (23)

Proof. The first and second inequality are trivial, as the first and sec-
ond quantities are obtained from solving a relaxation of the
DRO-SKPSA. The third inequality follows from the fact that 𝐱̄ and 𝜆̄
are both feasible for the DRO-SKPSA, and that for any feasible 𝜇𝑛 for
the DRO-SKPSA, we have that 𝜇𝑛 ≤ 𝜇∗𝑛 (𝐱̄, 𝜆̄). □

We are now ready to introduce a column-and-constraint algorithm
to solve the DRO-SKPSA.
5

Algorithm 1 CCG Algorithm to solve DRO-SKPSA

1: input A feasible 𝐱̄, sample data 𝜁1, 𝜁2,… , 𝜁𝑁 , Wasserstein radius
𝜖 ≥ 0, time limit 𝑇𝑙𝑖𝑚, 𝜅 ∈ [0, 1].

2: output A solution 𝐱 ∈  , optimality gap.
3: initialize 𝑛 ← ∅ ∀𝑛 ∈  , LB ← −∞ and UB ← ∞, Gap ← ∞
4: while CurrentTime < 𝑇𝑙𝑖𝑚 and Gap < 𝜅 do
5: for 𝑛 ∈  do
6: Find a new 𝜇∗𝑛 (𝐱̄, 𝜆̄) and 𝑣𝑛 from (23) .
7: Let 𝑛 ← 𝑛 ∪ {𝑣𝑛} .
8: UB ← min

{

UB, 𝜆̄𝜖 + 1
𝑁

∑𝑁
𝑛=1 𝜇

∗
𝑛 (𝐱̄, 𝜆̄)

}

.
9: Solve DRO-SKPSA (20) with constraints for which 𝑣 ∈ 𝑛 to

obtain a new 𝐱̄ and 𝜆̄, and 𝑜𝑝𝑡𝑟
(

1,… ,𝑁
)

.
10: LB ← opt𝑟

(

1,… ,𝑁
)

.
11: Gap ← UB−LB

UB .

12: end

The algorithm is initialized with any feasible 𝐱 ∈  , sample data
̂1, 𝜻2,… , 𝜻𝑁 , a Wasserstein radius 𝜖 and empty vertex sets 𝑛. The
algorithm iterates until it exceeds the given time limit 𝑇𝑙𝑖𝑚, or until
he relative optimality gap is smaller than 𝜅. In each iteration, the
lgorithm obtains a new 𝜇∗𝑛 (𝐱̄, 𝜆̄) and 𝑣𝑛 from (23) in Step 6. If 𝜇∗𝑛 (𝐱̄, 𝜆̄) >
𝑛(𝐱̄, 𝜆̄), the algorithm adds 𝑣𝑛 to 𝑛. If 𝜇∗𝑛 (𝐱̄, 𝜆̄) ≤ 𝜇̄𝑛(𝐱̄, 𝜆̄) ∀𝑣 ∈ ,
.e., there is no vertex to add, we declare the current solution optimal.
ndex 𝑣𝑛 is added to 𝑛 in Step 7. In Step 8, the upper bound is updated
sing (22). In Step 9 we solve a relaxed DRO-SKPSA (20), by only con-
idering constraints (20b) for 𝑣 ∈ 𝑛 to obtain a new incumbent solution
̄ and 𝜆̄ and 𝑜𝑝𝑡𝑟(1,… ,𝑁 ). The latter is used in Step 10 to update the
ower bound. The iteration is concluded by updating the optimality gap
n Step 11. As we are iteratively converging to the full model, and stop
f no other vertex can be found in Step 6, the algorithm is guaranteed
o converge. Observe that we can exploit parallel computing to find
∗
𝑛 (𝐱̄, 𝜆̄), which we found to work for instances of a reasonable size. For
arger instances, we refer to a KKT based approach as presented in Saif
nd Delage (2021).

. Numerical results

This section presents numerical results for several instances of the
KPSA. The results in Section 4.1 are based on a theoretical instance,
hereas the results in Section 4.2 are obtained using an instance
enerator of the MSSP. For a definition of the MSSP see, e.g., Santos and
arques (2021). For both instance types, we solve the DRO-SKPSA us-

ng Algorithm 1. As the performance of Algorithm 1 is analyzed in Saif
nd Delage (2021), experiments with the sole purpose investigating the
erformance of Algorithm 1 are excluded. In all experiments, we aim
o find the right value of the Wasserstein radius 𝜖. The Wasserstein
adius 𝜖 has to be chosen by the decision maker, which can be done
sing cross validation as suggested in Esfahani and Kuhn (2018). Note
hat for all instances we solve the DRO-SKPSA for 𝜖 = 0, so that we
lso obtain the results for an SAA model. All results were obtained
sing a computing cluster with 1TB of memory, 32 CPUs and Gurobi
0.0.0 (Gurobi Optimization, 2022) as solver.

.1. Results based on theoretical instances

In Section 4.1.1 we discuss the experimental setup for the theoreti-
al instance of the SKPSA. In Section 4.1.2 we discuss the performance
f the DRO-SKPSA approximation.

.1.1. Set up of the SKPSA instance
We consider a cyclic schedule of 𝑇 = 7 time units (days), in which

obs of 𝐾 = 16 classes have to be scheduled on 𝑀 = 4 machines. Each
ob generates at most 𝑂𝑘 = 5 objects. The knapsack consists of 𝐿 = 1
resource, with capacity 𝑐1 = 𝑐2 = ⋯ = 𝑐5 = 20, and 𝑐6 = 𝑐7 = 15,
to represent a capacity difference between week and weekend days.
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Table 1
Beta-binomial distributions 𝑖 = 1,… , 4.

Beta-binomial distribution 𝑖

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

𝛼𝑖 = 𝛽𝑖 100 10 1 0.10
Mean 2.50 2.50 2.50 2.50
Variance 1.27 1.49 2.92 5.41

Table 2
Beta-binomial distribution for each 𝐻𝑘, 𝑂𝑘, 𝑘 = 1,… , 16.
𝑘 1 2 3 4 5 6 7 8

𝑂𝑘 𝑖 = 1 𝑖 = 1 𝑖 = 1 𝑖 = 1 𝑖 = 2 𝑖 = 2 𝑖 = 2 𝑖 = 2
𝐻𝑘 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

𝑘 9 10 11 12 13 14 15 16

𝑂𝑘 𝑖 = 3 𝑖 = 3 𝑖 = 3 𝑖 = 3 𝑖 = 4 𝑖 = 4 𝑖 = 4 𝑖 = 4
𝐻𝑘 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

We let 𝐻𝑘 = 5, and let under and over utilization of the knapsack be
weighted equally by setting 𝑝𝑢 = 𝑝𝑜 = 1. The set of feasible schedules
 , see (10), consists of all schedules subject to three constraints. First,
scheduling multiple jobs on one machine at the same time is forbidden;
second, each job can be scheduled only once; third, jobs cannot be
scheduled during the weekend corresponding to 𝑡 = 6 or 𝑡 = 7. Besides,

e add symmetry breaking constraints as presented in, e.g., Santos
nd Marques (2021), which restricts the search space by eliminating
ymmetric schedules. This means that for this set of experiments  is

defined as:

 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐱 ∈ {0, 1}𝐾𝑀𝑇

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

∑

𝑘∈
𝑥𝑘,𝑚,𝑡 ≤ 1, 𝑚 ∈ , 𝑡 ∈  ,

∑

𝑘∈

∑

𝑚∈
𝑥𝑘,𝑚,𝑡 = 0, 𝑡 = 6, 7,

∑

𝑚∈

∑

𝑡∈
𝑥𝑘,𝑚,𝑡 ≤ 1, 𝑘 ∈ ,

𝑥𝑘,𝑚,𝑡 ≤
∑

{

𝑘∈∣𝑘≥𝑘
}

𝑥𝑘,𝑚,𝑡, 𝑘 ∈ , 𝑚 ∈ , 𝑡 ∈ 

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

(24)

We introduce four beta-binomial distributions 𝐵𝑒𝑡𝑎𝐵𝑖𝑛𝑖(𝑛, 𝛼𝑖, 𝛽𝑖), 𝑖 =
,… , 4, with parameters 𝛼𝑖 and 𝛽𝑖 and support 0,… , 𝑛. The mean of a
eta-binomial distribution is given by 𝑛𝛼𝑖

𝛽𝑖+𝛼𝑖
and the variance is given

by 𝑛𝛼𝑖𝛽𝑖(𝛼𝑖+𝛽𝑖+𝑛)
(𝛼𝑖+𝛽𝑖)2(𝛼𝑖+𝛽𝑖+1)

. We let 𝛼𝑖 = 𝛽𝑖 for all four distributions and 𝑛 = 5,
o that each beta-binomial distribution has equal mean of 2.50. The
arameters of each distribution 𝑖 are given in Table 1. We may now
btain 16 job classes combining for each job class 𝐾 = 1,… , 16, a beta-
inomial distribution 𝐵𝑒𝑡𝑎𝐵𝑖𝑛𝑖 for 𝑂𝑘 and 𝐵𝑒𝑡𝑎𝐵𝑖𝑛𝑗 for 𝐻𝑘 as shown in

Table 2.

4.1.2. Computational results of the DRO-SKPSA approximation
In this section we present the results of the DRO-SKPSA algorithm

on the theoretical instances based on the beta-binomial distributions.
We obtain the solution for 𝜖 ∈ {0, 0.1,… , 1} using 𝑁 = 100 samples,

hich we investigated to be a sufficiently high number, meaning that
etting 𝑁 > 100 does not change the solution. We allowed for a solving
ime of at most 10 h per instance. Table 3 presents the objective
alue, optimality gap, and solving time. It shows that Algorithm 1 is
ble to find close to optimal solutions with a largest optimality gap
f 5.9%. The optimality gap is the largest for small values of 𝜖. Note
hat the results in the row with 𝜖 = 0 correspond to the SAA solution.

The objective value increases as 𝜖 increases, which is because of a
larger Wasserstein ball contains more distributions to account for. The
objective values for 𝜖 = 0.1,… , 1, presented in Table 3, are likely to
be too conservative, as they are based on the worst case distribution
6

Table 3
Computational performance based on the theoretical instance.
𝜖 Objective value Gap Runtime

0.0 23.1 0.4% 11 049
0.1 31.8 5.9% 34 510
0.2 40.1 5.3% 34 509
0.3 47.7 2.3% 34 508
0.4 55.9 2.9% 34 507
0.5 63.4 2.0% 34 509
0.6 71.2 1.7% 34 508
0.7 79.0 1.5% 34 508
0.8 86.0 0.9% 34 507
0.9 93.8 1.5% 34 507
1.0 100.4 0.9% 34 507

of 𝝃𝓁 in (𝜖,Z). The objective value for 𝜖 = 0, however, is likely
to be too optimistic, because SP and therefore SAA suffers from out-
of-sample disappointment, see Section 1. To choose 𝜖, we need the
out-of-sample performance of the solutions, as suggested by Esfahani
and Kuhn (2018). We simulate the performance of these solutions using
new, unseen data, to be able to predict the out-of-sample performance
of the solutions and to provide the right value of 𝜖.

Table 4 presents the out-of-sample results, based on 25 replications
of 5 week simulations. These numbers are chosen such the confidence
intervals do not get too narrow. The warm up period is 3 weeks, which,
because the maximum holding time is 5 days, is a sufficiently long
warm up period. Table 4 shows that the mean total costs over all
replications do not significantly differ up to 𝜖 = 0.8, and that the
total mean costs are much lower than the reported objective values in
Table 3. The mean overutilization costs however decrease significantly
as 𝜖 increases, while the mean underutilization increase. This skewness
is because of 𝝃𝓁 being from below and that therefore the worst case
distribution in the Wasserstein ball rather causes overutilization than
underutilization of capacity. The more robust solution thus tends to
protect against overutilization of capacity. From a managerial point of
view decision makers are likely to prefer underutilization of capacity
over overutilization of capacity. Therefore, a higher value of 𝜖 might
be favorable, since the total costs are not likely to be much higher.
From this point of view, the best value of 𝜖 for this instance would
therefore be 𝜖 = 0.6. Also note the fact that the objective value of
he solution of 𝜖 = 0 in Table 3 is lower than the corresponding
ean out-of-sample costs. The difference between these two quanti-

ies is the out-of-sample disappointment. Concluding, for this instance
istributionally robust solutions protect against capacity overutilization
ithout a significant increase of the total costs and do not suffer from
ut-of-sample disappointment.

.2. Results for a master surgery scheduling problem

Our work is motivated by the Master Surgical Schedule Problem
MSSP) with downstream bed constraints, where surgical specialty
essions are to be scheduled in a cyclic MSS dictating the assignment of
urgical sessions to shifts, where a shift is a combination of a day (part)
nd an OR. The MSS should be such that the resulting bed occupancy
oes not exceed ward capacity limitations too often. The MSSP can be
odeled as a stochastic knapsack with scheduled arrivals by consider-

ng specialty sessions as jobs, and wards as knapsack resources. Each
ed on a ward then corresponds to a resource unit. After completion of
ach job, a random number of patients is transported to the wards and
s discharged after completion of a random length of stay.

We consider 5 ORs and 2 shifts per day, thus 𝑀 = 10. The cycle
ength is 𝑇 = 7 time units (days). We consider 𝑆 = 12 specialties. The
vailable bed capacity is 𝑐𝓁,𝑡 = 20, 𝓁 ∈ , 𝑡 ∈  . As in Section 4.1.2,
e assume that 𝑝𝑜 = 𝑝𝑢 = 1. This corresponds to the setting of a
edium sized hospital in The Netherlands. In the MSSP, specialties
sually have to be scheduled multiple times per cycle. Therefore, one
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C
d

𝛿

Table 4
Out-of-sample performance of the theoretical instance.
𝜖 Mean total costs 95%-CI Mean under utilization costs 95%-CI Mean over utilization costs 95%-CI

0 27.8 (25.3, 30.2) 18.1 (16.0, 20.2) 9.5 (8.3, 10.8)
0.1 24.9 (22.7, 27.1) 15.5 (14.1, 17.0) 9.3 (8.5, 10.1)
0.2 27.5 (25.1, 29.8) 16.3 (14.8, 17.9) 11.1 (10.3, 11.9)
0.3 27.4 (24.9, 29.8) 18.4 (16.6, 20.2) 8.8 (7.4, 10.2)
0.4 26.2 (23.9, 28.6) 19.9 (18.1, 21.7) 6.2 (5.3, 7.0)
0.5 25.5 (23.2, 27.9) 18.7 (16.9, 20.5) 6.9 (6.5, 7.3)
0.6 24.0 (21.8, 26.3) 19.1 (17.4, 20.8) 5.0 (4.1, 6.0)
0.7 28.5 (26.1, 31.0) 25.0 (22.8, 27.1) 3.3 (3.0, 3.7)
0.8 29.9 (27.3, 32.5) 26.5 (24.1, 28.9) 3.4 (3.1, 3.6)
0.9 32.7 (30.0, 35.5) 30.0 (27.4, 32.6) 2.6 (2.1, 3.1)
1.0 30.5 (27.9, 33.1) 27.9 (25.6, 30.3) 2.5 (2.3, 2.7)
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specialty maps to multiple jobs. Let 𝛴 = {𝜎1, 𝜎2,… , 𝜎𝑆} denote the set
of specialties. We define a demand 𝛿𝜎 , and availability 𝛼𝜎 : specialty 𝜎
has to be scheduled at least 𝛿𝜎 times per cycle, and at most 𝛼𝜎 times
per cycle. Let 𝐾 =

∑

𝜎∈𝛴 𝛼𝜎 , and denote 𝜎 ⊆ , 𝜎 ∈ 𝛴, as the set of
sessions belonging to specialty 𝜎. In this context, 𝑂𝑘 models the session
outflow, and 𝐻𝑘 the length of stay. All patients occupy one bed, thus
𝑏𝑘 = 1, 𝑘 ∈ , and all patients are routed to a single ward, hence 𝐿 = 1.

ompared to (24), we add the following constraints to account for the
emand and availability of specialties:

𝜎 ≤
∑

𝑚∈

∑

𝑡∈
𝑥𝑘,𝑚,𝑡 ≤ 𝛼𝜎 , 𝑘 ∈ 𝜎 , 𝜎 ∈ 𝛴,

∑

𝑚∈
𝑥𝑘,𝑚,𝑡 ≤

∑

𝑚∈
𝑥𝑘+1,𝑚,𝑡, 𝑘 = 1,… , |𝜎 | − 1, 𝜎 ∈ 𝛴, 𝑡 ∈ 

The first constraint ensures that all specialties are planned between 𝛿𝜎
and 𝛼𝜎 times per cycle. The second constraint ensures that, as surgical
sessions of the same specialties are assumed to be independent, for fixed
𝜎 ∈ 𝛴, session 𝑘 + 1 ∈ 𝜎 can only be scheduled if session 𝑘 ∈ 𝜎 is
scheduled. This results in the following set of feasible schedules for the
MSSP based experiments:

𝑀𝑆𝑆𝑃 =

⎧
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|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

∑

𝑘∈
𝑥𝑘,𝑚,𝑡 ≤ 1, 𝑚 ∈ , 𝑡 ∈  ,

𝛿𝜎 ≤
∑

𝑚∈

∑

𝑡∈
𝑥𝑘,𝑚,𝑡 ≤ 𝛼𝜎 , ∀𝑘 ∈ 𝜎 ,∀𝜎 ∈ 𝛴,

∑

𝑘∈

∑

𝑚∈
𝑥𝑘,𝑚,𝑡 = 0, 𝑡 = 6, 7,

∑

𝑚∈

∑

𝑡∈
𝑥𝑘,𝑚,𝑡 ≤ 1, 𝑘 ∈ ,

𝑥𝑘̄,𝑚,𝑡 ≤
∑

{𝑘∈∣𝑘≥𝑘̄}
𝑥𝑘,𝑚,𝑡, 𝑘̄ ∈ , 𝑚 ∈ , 𝑡 ∈  ,

∑

𝑚∈
𝑥𝑘,𝑚,𝑡 ≤

∑

𝑚∈
𝑥𝑘+1,𝑚,𝑡, 𝑘 = 1,… , |𝜎 | − 1,

𝜎 ∈ 𝛴, 𝑡 ∈ 
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. (25)

Instances are generated by a modified version of the instance gen-
erator presented in Santos and Marques (2021). We modified the
aforementioned instance generator such that the available capacity is
close to the required capacity, to give a realistic view of the robustness
of the solutions. We let 𝑂𝑘 be a truncated Poisson distributed random
variable, and 𝐻𝑘 a truncated geometrically distributed random vari-
able, as is done in Santos and Marques (2021) for their MSSP instances.
The maximum session outflow 𝑂𝑘 and patient’ length of stay 𝐻𝑘 are in-
stance dependent. For each instance, the demand 𝛿𝜎 , the availability 𝛼𝜎
and the parameters of the outflow and holding time distributions differ
through parameters 𝜂𝜎 and 𝜓𝜎 , which as in Santos and Marques (2021),
are called the activity level and reference percentage, respectively. To
prevent that two specialties with the same activity level have exactly
the same probability distributions for the length of stay and outflow,
we define a perturbed activity level 𝜂̄𝜎 . Table 5 presents the instance’s
parameter settings, for a more detailed description of the parameters
we refer to Santos and Marques (2021).

We solve the DRO-SKPSA for three instances generated by the
7

instance generator, which is sufficient to give an idea of the behavior 1
of the DRO-SKPSA applied on the MSS. In Tables 6–8 we present
the mean simulated out-of-sample over and underutilization of one
based on again 25 replications, with a three week warm up period.
From these results we can draw a similar conclusion as in Section 4.1,
i.e., that we improve the robustness, in terms of overutilization, of our
schedule by increasing 𝜖, although at a much faster rate. Contrary to the
xperiments in Section 4.1, the costs for this robustness is significantly
igher than the costs of the SAA with 𝜖 = 0. Thus, robustness comes
t a price of higher underutilization of capacity. However, especially
or the MSSP, having underutilization of beds is preferred over bed
verutilization, as the latter could lead to patient refusals. Therefore,
rom a managerial point of view, the solution with 𝜖 = 0.05 could in
any cases still be favorable over the solution with 𝜖 = 0, despite the
igher mean total costs.

. Concluding remarks

We considered the discrete-time Stochastic Knapsack with Periodic
cheduled Arrivals (SKPSA). Jobs are scheduled on parallel machines,
here each job subsequently generates a random number of objects

outed to a knapsack. The goal is to find a schedule of jobs on parallel
achines, such that the utilization of the unconstrained cousin of the

napsack is as close as possible to the capacity. We introduced the
KPSA, and proposed a DRO based approximation, the DRO-SKPSA.
nstead of assuming a distribution for the random job outflow and the
olding time, we proposed a Wasserstein distance based DRO solution
pproach where we try to find a distributionally robust solution using
mpirical data. This is of practical relevance, as it usually is hard to
it the correct distribution on data, especially when data is scarce. This
roblem has many applications, for instance in healthcare. An example
s the Master Surgical Schedule Problem (MSSP) with downstream
apacity constraints. Aside from healthcare our model can be applied
n the context of project selection and planning in for instance the
onsultancy industry.

We solved our model using recent results from Esfahani and Kuhn
2018) and a column-and-constraint generation algorithm based on Saif
nd Delage (2021). This approach finds good quality solutions. We
howed that our approach indeed finds robust scheduled that protect
gainst overutilization of the knapsack. To illustrate the practical use of
ur model, we solved several instances of the MSSP with downstream
esource constraints.

This work presents a basis for future work. Our work formalizes
xisting work on, e.g., the MSSP, which allows for easy adaption of
xisting theory to other examples. One possible direction is to further
ncorporate methods from stochastic knapsack literature in the models
resented in this paper. A limitation of our work is that our approach
ecomes unsuitable if the number of time periods increases, due to the
apidly increasing state space. Therefore, future work should focus on
pproaches that extend our work to larger state spaces. In our numeri-
al experiments we only considered the case with one resource, i.e., 𝐿 =

. For 𝐿 ≫ 1, the solution algorithm has to consider many vertices
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Table 5
Parameters of the instance generator.
Parameters

Cycle length 𝑇 7
# Shifts per day 𝑀 5ORs ×2 shifts = 10
Number of specialties 𝑆 12
Number of beds 𝑐𝑡 , 𝑡 ∈  20
Activity level 𝜂𝜎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚({6,… , 10})
Reference percentage 𝜓𝜎

𝜂𝜎
∑

𝜎′ ∈𝛴 𝜂𝜎
Demand 𝛿𝜎 max(1, ⌊ 𝜓𝜎 |𝐵|

2
⌋)

Availability 𝛼𝜎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(N ∩ [𝛿𝜎 , ⌊1.35𝜓𝜎 |𝐵|⌋])
Perturbed activity level 𝜂̄𝜎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚([𝜂𝜎 − 0.5, 𝜂𝜎 + 0.5])
Length of stay per session 𝐻𝑘 , 𝑘 ∈ 𝜎 Poisson with mean 9𝜂̄𝜎+10

100
, truncated at ⌈

1+𝜂𝜎
5

⌉

Number of patients per session 𝑂𝑘 , 𝑘 ∈ 𝜎 Geometric with 𝑝 = 7.75−0.7𝜂̄𝜎
12.5

truncated at 2 + 3𝜂𝜎
Table 6
Results of the DRO-SKPSA for MSSP instance 1.

Instance 1

𝜖 Objective Gap Solving time (s) Mean total costs 95%-CI Mean under
utilization costs

95%-CI Mean over
utilization costs

95%-CI

0.00 24.7 10.3% 34 878 22.2 (20.3, 24.2) 15.3 (13.9,16.6) 7.0 (6.1, 7.8)
0.05 62.7 13.8% 34 757 32.0 (29.3, 34.7) 28.9 (26.4, 31.4) 3.1 (2.6, 3.6)
0.10 92.8 5.9% 34 751 39.2 (35.8, 42.6) 37.6 (34.2, 40.9) 1.7 (1.4, 2.0)
0.15 119.8 2.9% 34 772 38.7 (35.4, 41.9) 37.8 (34.6, 41.0) 0.8 (0.7, 1.0)
0.20 144.9 1.0% 34 745 54.1 (49.6, 58.6) 54.1 (49.6, 58.6) 0.0 (0.0, 0.0)
0.25 168.7 0.5% 18 214 61.1 (56.2, 66.0) 61.1 (56.2, 66.0) 0.0 (0.0, 0.0)
0.30 192.6 0.4% 24 355 59.7 (54.7, 64.7) 59.7 (54.7, 64.6) 0.0 (0.0, 0.1)
0.35 216.7 0.4% 19 387 62.8 (57.7, 67.9) 62.8 (57.7, 67.9) 0.1 (0.1, 0.1)
0.40 240.8 0.4% 13 327 60.8 (55.9, 65.7) 60.8 (55.9, 65.6) 0.1 (0.0, 0.1)
0.45 264.8 0.4% 10 195 60.1 (55.2, 64.9) 59.8 (55.0, 64.7) 0.2 (0.2, 0.3)
0.50 288.8 0.4% 11 774 61.9 (57.0, 66.9) 61.8 (56.9, 66.7) 0.1 (0.1, 0.1)
Table 7
Results of the DRO-SKPSA for MSSP instance 2.

Instance 2

𝜖 Objective Gap Solving time (s) Mean total costs 95%-CI Mean under
utilization costs

95%-CI Mean over
utilization costs

95%-CI

0.00 24.9 12.7% 34 917 29.4 (26.9, 31.9) 25.4 (23.2, 27.5) 4.0 (3.5, 4.5)
0.05 62.4 16.9% 34 794 34.4 (31.5, 37.3) 33.2 (30.4, 36.1) 1.2 (1.0, 1.4)
0.10 87.9 4.4% 34 814 49.1 (44.9, 53.3) 48.7 (44.5, 52.9) 0.4 (0.3, 0.5)
0.15 116.2 2.8% 34 805 63.2 (58.1, 68.2) 63.0 (58.0, 68.0) 0.2 (0.1, 0.2)
0.20 142.4 1.6% 34 783 64.3 (59.3, 69.4) 64.3 (59.3, 69.4) 0.0 (0.0, 0.0)
0.25 167.8 1.1% 34 754 73.2 (67.5, 78.8) 73.2 (67.5, 78.8) 0.0 (0.0, 0.0)
0.30 191.5 0.5% 34 747 71.9 (66.3, 77.5) 71.9 (66.3, 77.5) 0.0 (0.0, 0.0)
0.35 215.8 0.3% 31 478 70.3 (64.8, 75.7) 70.3 (64.8, 75.7) 0.0 (0.0, 0.0)
0.40 240.5 0.4% 23 663 72.7 (67.0, 78.3) 72.7 (67.0, 78.3) 0.0 (0.0, 0.0)
0.45 265.0 0.4% 22 618 72.6 (66.9, 78.2) 72.6 (66.9, 78.2) 0.0 (0.0, 0.0)
0.50 289.8 0.5% 26 852 72.5 (66.9, 78.1) 72.5 (66.9, 78.1) 0.1 (0.0, 0.3)
Table 8
Results of the DRO-SKPSA for MSSP instance 3.

Instance 3

𝜖 Objective Gap Solving time (s) Mean total costs 95%-CI Mean under
utilization costs

95%-CI Mean over
utilization costs

95%-CI

0.00 28.5 9.9% 36 252 28.1 (25.5, 30.7) 21.2 (19.0, 23.4) 6.9 (5.6, 8.1)
0.05 68.1 7.1% 37 579 32.5 (29.8, 35.3) 29.9 (27.3, 32.5) 2.6 (2.3, 3.0)
0.10 101.2 3.3% 37 537 42.0 (38.6, 45.3) 41.3 (37.9, 44.7) 0.6 (0.5, 0.7)
0.15 129.3 0.8% 37 047 61.1 (56.2, 66.0) 61.1 (56.2, 66.0) 0.0 (0.0, 0.1)
0.20 155.4 0.4% 10 223 64.6 (59.6, 69.6) 64.6 (59.6, 69.6) 0.0 (0.0, 0.0)
0.25 180.2 0.5% 6175 70.4 (64.9, 75.9) 70.4 (64.8, 75.9) 0.0 (0.0, 0.0)
0.30 204.4 0.4% 5676 70.8 (65.2, 76.3) 70.8 (65.2, 76.3) 0.0 (0.0, 0.0)
0.35 228.4 0.4% 5089 71.5 (65.9, 77.2) 71.5 (65.9, 77.1) 0.0 (0.0, 0.0)
0.40 252.8 0.4% 5834 70.9 (65.3, 76.5) 70.9 (65.3, 76.4) 0.0 (0.0, 0.0)
0.45 276.8 0.3% 5509 73.2 (67.5, 78.9) 73.2 (67.5, 78.9) 0.0 (0.0, 0.0)
0.50 301.4 0.5% 3213 73.2 (67.5, 78.9) 73.2 (67.5, 78.8) 0.0 (0.0, 0.0)
in each iteration, which might cause computational challenges. This
poses a challenging problem for future research. Besides, we applied
the Wasserstein ambiguity set because it generalizes other methods for
optimization under uncertainty. It could be interesting to investigate
the effect of considering other ambiguity sets as well. Another future
8

extension could be the situation where objects arriving to the knapsack
from a class-𝑘 job use multiple resources simultaneously, or subse-
quently. A last consideration are additional restrictions on the state
space 𝑡, such that when two jobs share the same knapsack resource,
one of them is allowed only a fraction of the resource’s capacity.
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