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ABSTRACT
The massive use of artificial neural networks (ANNs), increasingly popular in many areas of scientific computing, rapidly increases the energy
consumption of modern high-performance computing systems. An appealing and possibly more sustainable alternative is provided by novel
neuromorphic paradigms, which directly implement ANNs in hardware. However, little is known about the actual benefits of running ANNs
on neuromorphic hardware for use cases in scientific computing. Here, we present a methodology for measuring the energy cost and compute
time for inference tasks with ANNs on conventional hardware. In addition, we have designed an architecture for these tasks and estimate
the same metrics based on a state-of-the-art analog in-memory computing (AIMC) platform, one of the key paradigms in neuromorphic
computing. Both methodologies are compared for a use case in quantum many-body physics in two-dimensional condensed matter systems
and for anomaly detection at 40 MHz rates at the Large Hadron Collider in particle physics. We find that AIMC can achieve up to one order
of magnitude shorter computation times than conventional hardware at an energy cost that is up to three orders of magnitude smaller. This
suggests great potential for faster and more sustainable scientific computing with neuromorphic hardware.
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I. INTRODUCTION
The energy demand of modern high-performance computing

systems is currently rapidly rising owing to the massive use of arti-
ficial neural networks (ANNs).1 Moreover, for several of the most
challenging compute tasks in scientific computing, applications of
ANNs offer competitive advantages over standard algorithms. This
includes various examples in condensed matter physics2–4 and par-
ticle physics,5–7 which feature data rates as high as 1 Pb/s in bursts
separated by just 25 ns.8 Such workloads are very challenging for
conventional hardware since the corresponding energy consump-
tion is simply too high, even for inference tasks with pre-trained
networks.

Neuromorphic hardware offers great potential as an accel-
erator for such highly demanding compute tasks. For example,
spiking neural networks are considered advantageous for optimiza-
tion problems9–12 and have also been recently applied to entangled
quantum states.13 Another efficient realization of ANNs involves
physically instantiating the synaptic weights in memory devices and
exploiting the physical attributes of these memory devices to imple-
ment the ANN in hardware.14–16 This approach, typically referred to
as analog in-memory computing (AIMC), would obviate the need to
shuttle millions of synaptic weights between the memory and pro-
cessing units and could lead to significant gains in energy efficiency
and latency. However, rather little is known about the actual benefits
of running ANNs on AIMC for concrete physics use cases. More-
over, physics users often do not even consider the energy cost of
complete ANN workloads as a relevant figure of merit.

In this Letter, we aim to assess the potential of AIMC accel-
erators for ANN-based use cases in condensed matter and parti-
cle physics by benchmarking them against conventional hardware
implementations of the ANNs. To this end, we develop a generic
methodology for measuring the energy cost and compute time for
inference tasks with ANNs on central processing unit (CPU) and
graphics processing unit (GPU) hardware. In addition, we have
designed an architecture to estimate these metrics for inference tasks
on a Mixed-Precision Analog In-Memory Computing (MP-AIMC)
platform. The scientific use cases chosen feature computation of
quantum many-body states in two dimensions17,18 and the 40 MHz
challenge for anomaly detection at the Large Hadron Collider (LHC)
in particle physics.19,20 By comparing the measurements on conven-
tional hardware against the estimations for MP-AIMC, we find that
the latter can reach up to an order of magnitude shorter compute
time and down to three orders of magnitude lower energy cost.

II. SCIENTIFIC USE CASES
A. Condensed matter physics

Understanding the effect of correlations on the properties
of quantum many-body systems is one of the most fascinating
research fields in condensed matter physics. Recently, a new method
for the simulation of quantum many-body systems has been pio-
neered, inspired by machine learning.17 In this approach, the many-
body wave function is approximated by an ANN and the quan-
tum states generated this way are termed neural-network quantum
states (NQSs). Already the simplest network, the Restricted Boltz-
mann Machine (RBM), was found to give competitive advantages
over conventional methods, in particular, in two dimensions (2D)

for which quantum correlations are strongest.17,18,21,22 Despite this
potential, the method suffers from long training times when applied
to large systems. Moreover, extracting observables from an already
trained network takes up a large part of the computational effort.

For this use case, we consider NQS for the 2D antiferro-
magnetic Heisenberg model on a square lattice. The Hamiltonian
is defined as

Ĥ = J∑
⟨i,j⟩

Ŝi ⋅ Ŝj, (1)

where J is the exchange constant, Ŝi is the quantum spin operators
for S = 1/2, and the sum runs over the nearest neighbors. In the con-
text of NQS, an inference task is defined by the evaluation of the
RBM wave function, which for translation invariant systems can be
written as

ψ(s) =
αN

∏
i=1

2 cosh([Ws + b]i), (2)

where α is the ratio between the number of spins and hidden layer
nodes, N is the number of spins in the lattice, W is a matrix of
dimensions αN ×N with the weights, b is a vector of dimension
αN with the biases, and s represents the input spin configuration,
which is encoded in a binary tuple (column vector) s = (s1, . . . , sN)

T ,
with sj = ±1. A schematic representation of the RBM is shown in
Fig. 1. For large systems, ψ(s) is evaluated only for a subset of the
2N possible states by Monte Carlo sampling. For our assessment, it
is sufficient to consider a 4 × 4 system for which the input dataset is
defined by all possible states with zero magnetization.

In order to obtain ground state properties, the network is
trained by minimizing the energy E = ⟨ψ∣Ĥ∣ψ⟩/⟨ψ∣ψ⟩ using the
stochastic reconfiguration method,23 while a closely related training
procedure is obtained for quantum dynamics based on the time-
dependent variational principle.17,24 In either case, the training itself

FIG. 1. Schematic representation of the RBM. The hidden layer size is αN, with α
being a positive integer (in this schematic representation, N = 4 and α = 2). Each
hidden neuron features a hyperbolic cosine activation. Their outputs are multiplied
to produce the network output.
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relies on the repeated evaluation of ψ(s) at fixed RBM parameters
before updates are computed. Moreover, evaluation of observables
exclusively relies on inference. Therefore, we focus on the infer-
ence procedure alone and take already trained weights for the RBM
ground state.18 In this case, both the weights and biases can be
chosen to be real valued.

B. Particle physics
One of the most important challenges in High Energy Physics

(HEP) today is to find rare new physics signals among an abundance
of Standard Model (SM) proton–proton collisions. This use case20

uses Deep Learning (DL) techniques to find anomalous signals at the
LHC among many SM events, also known as anomaly detection. The
event rate from which events must be selected at the ATLAS detector
is 40 MHz, brought down to the final collection rate of 300 Hz using
a three staged trigger system. The network in this use case is designed
to run on the level-1 trigger system responsible for reducing the rate
to less than 75 kHz. Therefore, very low latency is required to ensure
the network can keep up with the proton–proton collision rate.

The network in this use case is designed to detect events that
are forbidden in the SM. This is achieved by a one-class Deep Sup-
port Vector Data Description (Deep SVDD) approach, trained to
map every input of the Deep SVDD onto a predefined multidimen-
sional point. The distance to this point is then regarded as the final
anomaly score. A schematic representation of the SVDD is shown
in Fig. 2. The models are trained under the assumption that all SM
data fall inside the predetermined manifold. During the testing, the

FIG. 2. A schematic representation of the Deep SVDD model. The input is the
event data of proton–proton collisions, and the output is a z-dimensional vector
denoted model (x). An anomaly score can be given to the event by comparing
the model output with a target (Oz

n). In this case, the model output is far from the
target, and therefore, the event can be considered an anomaly.

beyond the Standard Model (BSM) data will fall outside this mani-
fold. Several Deep SVDD networks are combined into an ensemble
to maximize the efficiency. The networks are fully connected net-
works that output a constant vector for every input. The loss is
defined as

S(x) = [Oz
n −model(x)]2. (3)

The model maps the input x to the same tensor shape as the
vector O, with z and n referring to the number of elements and the
scalar value, respectively. The activation function of the hidden lay-
ers is an exponential linear unit (ELU). In this use case, we employ
an ensemble of 63 networks in total. They contain the same network
structure but different combinations of values [5, 8, 13, 21, 34, 55,
89, 144, 233] for z and [0, 1, 2, 3, 4, 10, 25] for n.

The data used to test and train this use case consist of five
data records.8 One record containing a mixture of SM processes
and four separate records of BSM processes. The data are generated
using Pythia 8.24025 using a collision energy of

√
s = 13 TeV. The

BSM processes were A→ 4l, LQ→ bτ, H → ττ, and H± → τν. The
detector response is modeled with DELPHES 3.3.2.26 Input variables
available for each event are the pT , η, and ϕ values of the missing
energy, four electrons, four muons, and ten jets.

III. METHODS
A. Energy-measurement methodology CPU and GPU

Energy measurements were performed on the Emergency
Smart Computing (ESC) cluster within Innovation Labs at SURF.
The inference of the networks is performed on a dual socket sys-
tem with two Intel Xeon Gold CPUs and a NVIDIA V100 GPU.
The measurements are performed using the Energy Aware Run-
time (EAR) software package27 and provide an energy management
framework for experimental computing. The inference jobs are
monitored by measuring the DC node power using a Baseboard
Management Controller (BMC), which is a specialized service pro-
cessor that monitors the physical state of the hardware device using
sensors and communicates with the system administrator through
an independent connection. The BMC is part of the Intelligent
Platform Management Interface (IPMI), which is a standardized
message-based hardware management interface.

EAR is currently implemented to give the metrics of an entire
submitted job on a specific node. The energy metric used employs
the DC node energy E node

DC . The metrics presented below are the
average energy per inferred sample, defined as

E sample =
E node

DC

N
, (4)

where N is the number of inferred samples, and the throughput T is
defined as

T =
N
Δt

, (5)

where Δt is the elapsed time. An effective latency could be derived
from the throughput by taking the inverse, i.e., L = T−1.

The samples were supplied in batches to the ANNs. The batch
size was chosen to minimize Esample by doing a sweep search. The
most energy efficient batch size was in these cases also the batch size
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with the highest throughput. To ensure that initialization processes
are insignificant in terms of energy and time, the total computation
time of inference is forced to be larger than 99% by increasing the
number of inference steps.

B. Energy estimation for mixed-precision analog
in-memory computing hardware

In this section, we present a dedicated MP-AIMC hardware
design, which can support both the physics use cases described ear-
lier. Although originating from vastly different fields of physics, the
operations necessary to compute the wave function ψ(S) and the
anomaly score are similar, and therefore the two use cases are easily
combined in one design.

AIMC hardware is based on memory crossbar arrays with
stationary weights, implementing matrix–vector multiplication
(MVM) directly in hardware. The proposed MP-AIMC architecture,
shown in Fig. 3, is composed of four analog tiles and a Digital Pro-
cessing Unit (DPU). The analog tile is assumed to be similar to a
phase-change memory-based AIMC tile designed and fabricated in
a 14 nm CMOS technology node.28,29 The DPU components are also
estimated based on circuit designs at the same technology node.

FIG. 3. Proposed MP-AIMC architecture. (a) Block diagram of the proposed AIMC-
based architecture showing four identical tiles and the DPU. It includes a zoom-in
of one tile and a zoom-in of the DPU where the corresponding data types are
mentioned per block. Included in blocks A and B are a hard-wired look-up table,
floating point multiplier, and floating point adder. (b) The utilization of the proposed
AIMC-based architecture for the condensed matter physics use case, where only
tile 4 and the DPU are utilized. (c) The utilization for the particle physics use case,
where all four tiles and the DPU are utilized.

The four tiles are identical and consist of a local controller,
512 Digital-to-Analog Converters (DACs), a 512 × 512 memory
crossbar with Phase Change Memory (PCM) devices, 512 Analog-
to-Digital Converters (ADCs), and a Local Digital Processing
Unit (LDPU).

The DAC converts an 8-bit signed integer to a voltage pulse
with fixed height (negative and positive numbers have a different
fixed height) where the width of the pulse corresponds to the value
of the integer. The DACs are connected to the wordlines of the mem-
ory crossbar. The crossbar evaluates the vector matrix multiplication
by accumulating current along the bitlines according to Ohm’s law
and Kirchoff’s law. The ADCs are variants of the current-controlled
oscillator-based ADCs, as described in Ref. 28. The instantaneous
current flowing through the bitlines is digitized and accumulated in
a digital counter (which is also part of the ADC) during the appli-
cation of the input pulse. The ADC outputs two 10-bit unsigned
integers, one integer corresponding to positive values and the other
corresponding to negative values. Due to the compact design of
the ADCs, it is possible to operate all 512 ADCs in parallel. We
emphasize that the input and output buffers for the tiles and DPU
are considered in the estimation. Moreover, both LDPU and DPU
consist of internal stages that are divided by registers, which are
also included. The combined latency of the DACs, ADCs, and the
memory crossbar is estimated to be 40 ns.

The LDPU implements the affine scaling, addition of biases,
and optionally the Rectified Linear Unit (ReLU) activation function.
Due to practical considerations, the Deep SVDD implementation
on the MP-AIMC architecture employs a ReLU instead of an ELU
activation function. Both activation functions result in a similar
accuracy. The LDPU and all the components used inside the DPU
are synthesized to verify that both timing and area constraints are
met and custom designed for relatively low-precision operations.

The additional DPU takes the network output and computes
ψ(s) for NQS, and for the SVDD, it evaluates the Euclidean distance
between the target, Oz

n, and the network output, which can be viewed
as the anomaly score. This evaluation can be done with the use of
look-up tables for activation functions and an adder tree for both
use cases. For NQS, only one analog tile and the DPU are utilized
[shown in Fig. 3(c)], while for the SVDD application, all four tiles
and DPU are utilized [Fig. 3(b)].

Due to the stationary nature of the weights in the proposed
MP-AIMC architecture, this design is well suited for a data-flow in a
pipeline fashion. This means that the data-flow can be divided into
several sequential pipeline stages. The throughput is then limited
by the slowest pipeline stage, which in this design is estimated to
be 50 ns, and is independent of network size as long as the indi-
vidual layers fit on the 512 × 512 crossbar arrays. When running
the workloads of the two use cases with maximum load (entire
512 × 512 crossbar is utilized), the power consumption of the cross-
bar (the memory array and the peripheral circuitry, including the
data converters) is estimated to be 0.13 W, where the peripheral
circuitry contributes about 90% of the power consumption. The
average power consumption of the LDPU and DPU after synthesis is
estimated to be 0.33 and 0.18 W, respectively. In this case, the aver-
age power consumption for the computational and particle physics
use cases is 0.63 and 2.03 W, respectively. Note that, in the former
case, just one tile and the DPU are used, whereas in the latter case,
all four tiles and the DPU are employed. Energy consumption of
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communication between tiles and between the final tile and the DPU
is included in the energy estimation.

IV. RESULTS
A. Condensed matter physics

Figure 4(a) shows the average energy of inference, and Fig. 4(b)
shows the throughput, both as a function of the hidden layer den-
sity α. For the NVIDIA GPU, the energy consumption (throughput)
increases (decreases) with hidden layer size and by increasing the
data precision from floating point 32 to floating point 64, the two
commonly used precision settings in the field. For both metrics, the
GPU outperforms the CPU up to a factor 10. The dual socket Intel
Xeon Gold CPU features a non-monotonic dependence on network
size and floating point precision. This is attributed to irregular uti-
lization of the cores (40 in total). Forcing execution on a single core

recovers the expected linear scaling with hidden layer density as we
have confirmed by independent measurements (data not shown).

The energy and throughput estimates from the proposed
MP-AIMC architecture are also shown in Figs. 4(a) and 4(b) (dashed
lines). The estimated energy use of this architecture is up to a factor
103 lower than the CPU and GPU. We observe that the MP-AIMC
design yields a throughput comparable to CPU. However, GPU out-
performs the MP-AIMC throughput up to a factor 7 for α ≤ 4. For
large networks, the GPU throughput reduces, whereas MP-AIMC
remains flat by design, given that the hidden layer fits into a single
MP-AIMC tile. This suggests that, for even larger networks,
MP-AIMC will also have an advantage for the throughput. In addi-
tion, we note that unlike both the CPU and the GPU, the proposed
MP-AIMC architecture features no parallelization. The through-
put of the MP-AIMC architecture naturally increases if multiple
networks are run in parallel using more tiles and DPU resources at
the expense of an increase in area of the chip.

FIG. 4. Results of benchmarks on CPU (Intel Xeon Gold dual socket) and GPU (NVIDIA V100) and estimations for the proposed AIMC architecture. (a) The average energy
per inference (or average energy per state) in joule and (b) the throughput inferences per second (or states per second) for the condensed matter physics use case. (c) The
average energy per inference (or average energy per event) in joule and (d) the throughput inferences per second (or events per second) for the particle physics use case.
The measurements on the CPU and GPU are repeated ten times, and the standard deviation is included in the plots. The batch size used for the condensed matter physics
use case is equal to all states with zero magnetization (12 870), and the batch size used for the particle physics use case is 106. Horizontal axes indicate a measure defining
the network complexity/size: this is the hidden layer density α for the condensed matter physics use case and the output dimension z for the particle physics use case.
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B. Particle physics
Figure 4(c) shows the average energy consumption of a batch

of inferred events, and Fig. 4(d) shows the throughput as a func-
tion of the individual network design of a single SVDD in the SVDD
ensemble, labeled with z, the dimension of the manifold. Distinct
from the condensed matter physics use case, GPU and CPU score
very similar results for both metrics, in particular, for single preci-
sion. Interestingly, in this case, the CPU outperforms the GPU for
the energy cost at the largest network sizes (z > 144). In addition, for
the throughput, the performance difference between CPU and GPU
is small. GPU is found to be superior to the CPU for double preci-
sion, while for single precision, again CPU performs better, now for
all network sizes. This nontrivial behavior is attributed to the com-
putational cost stemming from the distance calculation [Eq. (3)],
which in turn determines the anomaly score, which we confirmed
by leaving out the distance calculation in the code.

Figures 4(c) and 4(d) also include the energy estimation of the
proposed MP-AIMC architecture, which is observed to be up to a
factor of 103 more efficient than CPU and GPU. By the pipelined
dataflow, the MP-AIMC throughput is the same as for the con-
densed matter physics use case. However, on GPU and CPU, the
inference with the more complex and deeper structure of the SVDD
requires more computational efforts than the evaluation of the
shallow RBM. As a result, MP-AIMC can yield over a factor 20
faster throughput than CPU and GPU at the largest SVDD output
dimensions.

V. CONCLUSION
We have presented a methodology to measure energy cost and

compute time on CPU and GPU for inference tasks based on ANNs.
By applying this methodology to NQS for quantum many-body sys-
tems in condensed matter physics and SVDD networks for anomaly
detection in particle physics, we found that benefits of GPU, as
compared to CPU, for energy efficiency and throughput strongly
depend on the ANN architecture and non-MVM operations. In par-
ticular, CPU can outperform GPU even for the largest networks
considered. Therefore, energy benchmarks are always important,
especially when working with unorthodox experimental ANN-based
algorithms.

Furthermore, we have proposed a dedicated MP-AIMC archi-
tecture capable of implementing both physics use cases, based on
which the energy consumption and throughput can be estimated. By
comparing the measured energy on CPU and GPU with the energy
estimations for MP-AIMC, it is found that the latter improves the
energy efficiency up to a factor 103 for both the condensed mat-
ter physics and particle physics use case. The throughput is flat as
a function of the network size in the proposed MP-AIMC architec-
ture, as long as the network fits in the 512 × 512 crossbar array. For
the relatively small networks used for NQS tested for the condensed
matter physics use case, this yields a MP-AIMC throughput compa-
rable with that of the CPU, whereas GPU throughput is up to factor
7 higher. Importantly, for the larger SVDD networks in the particle
physics use case, the MP-AIMC throughput is always higher, over a
factor 20 for the largest network tested.

The benchmarks performed suggest great potential for neuro-
morphic accelerators based on MP-AIMC. A key challenge asso-
ciated with AIMC is computational imprecision.30 Yet, solutions

on device,31 unit cell and circuit,32 and algorithmic level33 have
been shown to be effective in compensating for the low-precision
analog computing. It is foreseen that similar approaches can be
effective for the networks presented in this work and consider study-
ing the impact of precision as a very interesting topic for future
work, which should include both nonidealities of PCM and those
of peripheral circuitry. Moreover, future work may focus on next-
generation cross-bar structures and parallel architectures that can
further improve the throughput. Combined with the fundamentally
flat scaling of the compute time with the network size, this suggests
great potential for scientific workloads with exceptionally high infer-
ence demands, potentially enabling so far uncomputable tasks in
scientific computing.
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