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Satellite gravimetry missions have enabled the calculation of high-accuracy and
high-resolution Earth gravity field models from satellite-to-satellite tracking data
and gravitational gradients. However, calculating high maximum degree/order
(e.g., 240 or even higher) gravity field models using the least squares method
is time-consuming due to the vast amount of gravimetry observations.
To improve calculation efficiency, a parallel algorithm has been developed
by combining Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) programming models to calculate and invert normal equations for
the Earth gravity field recovery. The symmetrical feature of normal equations
has been implemented to speed up the calculation progress and reduce
computation time. For example, the computation time to generate the normal
equation of an IGGT_R1 test version of degree/order 240 was reduced from
88 h to 27 h by considering the symmetrical feature. Here, the calculation
was based on the high-performance computing cluster with 108 cores in the
School of Geodesy and Geomatics, at Wuhan University. Additionally, the MPI
parallel Gaussian-Jordan elimination method was modified to invert normal
equation matrices and scaled up to 100 processor cores in this study while the
traditional method was limited in a certain number of processors. Furthermore,
the Cholesky decomposition from the ScaLAPACK library was used to compare
with the parallel Gauss-Jordan elimination method. The numerical algorithm
has effectively reduced the amount of calculation and sped up the calculation
progress, and has been successfully implemented in applications such as building
the gravity field models IGGT_R1 and IGGT_R1C.
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1 Introduction

Since the beginning of the 21st century, with the development of
space and satellite technologies, the dedicated Earth gravity satellite
missions have been implemented successfully: the Challenging
Minisatellite Payload (CHAMP, 2000–2010) (Reigber et al.,
2002), Gravity Recovery and Climate Experiment (GRACE,
2002–2017) (Tapley et al., 2004), Gravity field and steady-state
Ocean Circulation Explorer (GOCE, 2009–2013) (Drinkwater et al.,
2006) as well as the ongoing mission Gravity Recovery and Climate
Experiment-Follow-on (GRACE-FO, 2018-) (Flechtner et al., 2014).
In this context, it is possible to build up the high-precision and
high-spatial-resolution Earth gravity field models as the GRACE
mission consists of two identical satellites in near-circular orbits at
≈500 km altitude and 89.5° inclination, separated from each other
by approximately 220 km along-track, and can provide satellite-
to-satellite tracking (SST) measurements in the high-low model
(GPS receivers) and low-low model (K-Band microwave ranging
system) which help to provide highly precise information of the
Earth’s gravity field on the low frequency (Tapley et al., 2004). On the
other side, the GOCE mission consists of a three-axis gravitational
gradiometer which directly determines the second derivative of
gravity potential (four of six components of gravity gradients) in
near-circular orbits at≈250 kmaltitude and 96.7° inclination. GOCE
gravitational gradients (GGs) can weaken the effects that the Earth’s
gravity field signal attenuates with the increase of altitude.Therefore,
it can provide highly precise information of the Earth’s gravity field
on the middle-high frequency (Drinkwater et al., 2006).

In terms of gravity field recovery based on satellite gravimetry
measurements, several approaches were developed to determine
gravity field models (parameterized as a finite spherical harmonic
series) from GGs. Most of these methodologies (e.g., time-wise
method, direct method, as well as the method based on invariants
of the gravitational gradient tensor) are based on the least
squares method (e.g., Rummel and Colombo, 1985; Rummel, 1993;
Klees et al., 2000; Migliaccio et al., 2004; Pail et al., 2011; Yi, 2012;
Bruinsma et al., 2014; Lu et al., 2018b). It is time-consuming to
compute and invert the normal equations due to the vast amount
of satellite gravimetry observations, especially when calculating
high maximum degree/order (e.g., 240 or even higher) gravity
field models. On the other hand, normal equations of GRACE
models (e.g., ITSG-Grace2014s) need to be inverted from the
variance-covariance matrices if researchers want to use them as
one of the combinations of different satellite gravimetry normal
equations (Pavlis et al., 2012; Mayer-Gürr et al., 2014). In addition,
inverting matrices is also time-consuming in the loops when
combining different datasets by the variance component estimation
(Förstner, 1979; Koch and Kusche, 2002). In summary, it is time-
consuming to complete these vast computations in gravity field
recovery on small high-performance computing (HPC) clusters.

In view of this challenging problem, some scholars theoretically
studied how to improve the efficiency of gravity field recovery.
For example, Schuh (1996) investigated the general use of iterative
solvers for spherical harmonic analysis and suggested the use of
preconditioned conjugate gradients. Klees et al. (2000) studied an
algorithm which combines the iterative solution of the normal
equations, using a Richardson-type iteration scheme, with the
fast computation of the right-hand side of the normal equations

in each iteration step by a suitable approximation of the design
matrix. Sneeuw (2000) presented a semi-analytical approach
to gravity field analysis from satellite observations. Pail and
Plank (2002) assessed of three numerical solution strategies (the
preconditioned conjugate gradient multiple adjustment, semi-
analytic approach and distributed non-approximative adjustment)
for gravity field recovery from GOCE satellite gravity gradiometry.
On the other side, some scholars studied how to implement
the calculation in fast ways on an ordinary personal computer
or high-performance computing (HPC) clusters. For example,
Baur et al. (2008) developed an efficient strategy based upon
the Paige-Saunders iterative least-squares method using QR
decomposition and parallelized this method using Open Multi-
Processing (OpenMP) on a shared-memory supercomputer. In
addition, Baur (2009) compared the iterative least-squares QR
method and the “brute-force” approach. The iterative least-squares
algorithm was investigated in a Message Passing Interface (MPI)
programming environment on a distributed memory system while
the “brute-force” approach was investigated on a shared memory
system using OpenMP for parallelization. Brockmann et al. (2014a)
implemented the preconditioned conjugate gradient multiple
adjustment algorithm in a massive parallel HPC environment and
extended to estimate unknown variance components for different
observation groups. They also assembled the normal equations in
parallel using a block-cyclic distribution and solved using Cholesky
decomposition from the ScaLAPACK library (Blackford et al., 1997;
Brockmann et al., 2014b).

For small HPC clusters, there are some issues with using
parallel computation libraries (or even lacking such libraries).
For example, we use the small HPC cluster in the School of
Geodesy and Geomatics at Wuhan University. It has ten nodes
with 320 cores, but seven nodes are constructed from INTEL
cores (one login node), while the other three are constructed
from the Advanced Micro Devices (AMD) cores. One critical
problem is that the Internet connection between these nodes is
the Ethernet instead of the InfiniBand network. Therefore, it has
limitations to use MPI programming models between nodes. In
this context, we studied a parallel numerical algorithm based on
MPI andOpenMP programmingmodels to speed up the calculation
progress on small HPC clusters for global and regional gravity field
recovery [e.g., IGGT_R1, IGGT_R1C, HUST-Grace2016, HUST-
Grace2016s (Lu et al., 2017a; Zhou et al., 2017a; Lu et al., 2017b;
Zhou et al., 2017b; Lu et al., 2018b; Zhou et al., 2018; Lu et al.,
2020)]. Specifically, MPI is used for inter-node communication,
and OpenMP is used for intra-node communication (Pacheco,
1997; Gropp et al., 1999). It is especially useful for calculating the
multiplication of small block matrices on the same node. That
means it can make full use of cores on a single node to speed
up the calculation process (Chandra, 2001; Chapman et al., 2008).
Therefore, the combination of MPI and OpenMP is a suitable
strategy to fully use server clusters with several nodes and each node
has several cores.

This article presents the calculation progress in gravity field
recovery, especially how to compute and invert the normal equations
in a parallel way. The main contents of this article are as follows:
In Section 2 the parallel processing strategies based on MPI and
OpenMP are given. Then Section 3 shows some applications with
numerical results in gravity field recovery, while Section 4 briefly
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illustrated the potential geophysical applications of the gravity
field models. Finally, discussion and conclusions are presented in
Section 5.

2 Materials and methods

This section will first present the overall calculating process of
global gravity field recovery. Then, the primary parallel processing
of calculation normal equations and inversion of normal equations
will be explained in detail.

2.1 Calculation of normal equations

In the calculating process of the gravity field models, e.g.,
IGGT_R1C, especially dealing with a large amount of satellite
gravity measurement datasets by the least squares method, it
needs to undertake large-scale numerical calculations. To solve
this problem, we studied a parallel numerical algorithm, and the
corresponding flowchart is shown in Figure 1. It can be seen that
the blue dotted line box indicates the numerical calculation process
of normal equations by the MPI. Furthermore, the red dotted line
box presents the process of each part of normal equations by the
combination of MPI and OpenMP which also makes full use of
the symmetrical structure of the normal equations (symmetrical
feature) in gravity field recovery.

In Figure 1, the blue dotted box indicates how to decompose the
parallel computing process of design matrices and normal equation
matrices. It uses the following independent property of observations,
which shows how to divide them into n parts:

A = [A1 A2 …An]
T

N = ATA =
n

∑
i=1

AT
i Ai =

n

∑
i=1

Ni

b = ATy =
n

∑
i=1

AT
i yi =

n

∑
i=1

bi (1)

where Ai is a sub-block design matrix of A, Ni is a part of the
normal matrix from the design matrix Ai, bi is a part of the right
side of the normal equation (sub-block matrix of b) which is the
multiplication of the design matrix Ai and the observations of yi
(sub-block matrix of observations y). Here, we assume that the
observations have equal weights and independent. In the gravity
field recovery, e.g., IGGT_R1, the GOCE gravitational gradients
were band-pass filtered, which could be used as independent, and
the weights could be multiplied into the design matrix Ai (Lu et al.,
2018b).

In the next step, we analyze how to use the MPI based on
the partitioned solution as shown in Eq. 1. It means that column
blocks of the design matrix are restored into certain processors,
respectively. Here, each part of the normal equation matrix Ni (in
the red dotted box in Figure 1) is designed to calculate in the same
node to avoid data exchange between different nodes. The reason
is to avoid using the Ethernet network between the different nodes
mentioned above. Then multiplication of small blocks is calculated
in each storage, as shown in Figure 2 (left). In this context, the
multiplication results are restored in the corresponding storages,

and the data is exchanged in storages, as shown in Figure 2 (right).
After that, the corresponding values of matrix multiplication are
calculated, and it continues to exchange data until the full values of
matrixmultiplication are completed. For this process, it is essentially
presented in Figure 3 that the block diagonal matrices in the same
color are calculated step by step after exchanging the data, e.g., theB0
to Bp−1 are changed in sequence to each processors 0 to p− 1. Here,
six kinds of color matrices represent the parallel calculation process
for simplification. For example, Figure 2 (left) shows the result of
black blocks in Figure 3 (left) at the very beginning while Figure 2
(right) indicates the result of brown blocks in Figure 3 (right) after
first exchanging the B0 to Bp−1 in each processors. In the actual
calculation process, it only needs to calculate half of the normal
equation matrix because of its symmetrical feature, such as the part
of the red line triangle in Figure 3 (left). In order to simplify the
computing program and combine the OpenMP in this calculation
easily, the part of the red line box in Figure 3 (right) is actually
calculated, which has almost no effect on calculation time compared
to that red line box in Figure 3 (left). By taking the symmetrical
feature of normal equations into account, it can reduce nearly half
of the calculation to build normal equations, which costs most of
the computing time in gravity field recovery.

In MPI’s coarse-grained parallel circumstance, OpenMP’s fine-
grained thread parallel programming models are implemented into
the process in order to speed up the calculation progress further.
This is mainly applied to the multiplication of small matrices in
a single processor where exists nested loops. Therefore, it can
increase the parallel granularity of the program by paralleling the
outermost loop. In this context, the number of threads can be
flexible according to cores on the single node to make full use of
the CPUs and improve computational efficiency. On the other hand,
the consumptions of the multiplications of small block matrices are
reducing along with the loops of calculating block diagonal matrices
as shown in Figure 3 (right). This is because of the symmetrical
feature of normal equations as mentioned before. Therefore, the
cores used in OpenMP thread parallel can be effectively allocated to
the multiplication of the same color block diagonal matrices along
with the loops.

As shown in Figure 1, each loop in the blue dotted box
calculates the normal equation from a certain amount of satellite
observations. The loop will end until all the input observations
are completed in this calculation. Here, these main MPI and
OpenMP functions were used as follows: MPI_COMM_GROUP
accesses the group associated with given communicator which is
used to control different groups to compute normal equation Ni as
shown in the blue dotted box of Figure 1; MPI_COMM_CREATE
creates new communicators corresponding to each group;
MPI_SEND and MPI_RECV are used to exchange data when
computing small blocks of normal equations as shown in Figure 3;
OMP_SET_NUM_THREADS sets the number of threads in
subsequent parallel regions which paralleling the outermost loop
in multiplication of small blocks as mentioned above.

2.2 Inversion of normal equations

After obtaining the normal equation matrices using the parallel
algorithm described before, we need to use the MPI to invert them

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2023.1080879
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lu et al. 10.3389/feart.2023.1080879

FIGURE 1
The parallel numerical calculation process by combining MPI and OpenMP in gravity field recovery.

FIGURE 2
Data exchanging during the parallel calculation process of normal
equations. Ai is a column block of the design matrix and Bi is the
transpose of Ai. The left figure shows the data storage in the
processors at the first step, while the right one shows the data storage
exchange after finishing the first step in the loops.

in a parallel way which is shown in the green dotted line box of
Figure 1. We use the Gauss-Jordan elimination method, which is
suitable for inverting both symmetric and asymmetric matrices,
and program it in FORTRAN language, where arrays are stored
by column priority. The Gauss-Jordan elimination method with
column exchange is used with a parallel algorithm, as described by
previous studies (Melhem, 1987; Chen et al., 2004; Markus, 2012).

To implement the parallel calculation, we divide the columns
of the matrix and use the main columns in a queue to perform

FIGURE 3
The parallel calculation process of matrix multiplication, six kinds of
color matrices represent the parallel calculation process for
simplifying. The left figure shows the block diagonal matrices in the
same color are calculated step by step after exchanging the data in
Figure 2. The right one shows that the part of the red line box is
calculated based on the symmetrical feature of normal equations in
gravity field recovery.

elementary column transformations on the rest of the columns.
Since the columns are independent in the inversion calculation,
we divide the columns of the normal matrix to enable parallel
computation while ensuring load balance between processors. As
shown inFigure 4, assuming the number of processors is p, the order
of the normal matrix is n, and the columns of the normal matrix
i, i+ p,… , i+ (m− 1)p (same color columns inFigure 4) are restored
in the processor of number i. Here, m = n/p. In the calculation,
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FIGURE 4
Cross classified storage of the normal matrix in the computer
memory. Columns in the same color are stored in the corresponding
processors. Each processor takes turns choosing a primary column
and broadcasts it to other processors. The processor that broadcasts
the primary column applies this column to the remaining m− 1
columns as elementary column transformation, while the other
processors perform elementary column transformation on m columns
using the received primary column. The loop continues until the last
primary column with the number n− 1 is broadcast and the elementary
column transformation is completed.

we point out the columns 0,1,… ,n− 1 as the primary columns
in order and broadcast them to all processors. Each processor
then takes turns choosing a primary column and broadcasts it
to other processors. The processor that broadcasts the primary
column applies this column to the remaining m− 1 columns as
elementary column transformation, while the other processors
perform elementary column transformation onm columns using the
received primary column.

According to previous studies (Chen et al., 2004), p should be an
exact divisor of n. However, we found that this is not a requirement
and modified the program accordingly. If p is not an exact divisor
of n, we set m to be the integer part of n/p plus one, and the values
of some columns stored in certain processors are set to 0 if they are
not allocated values from the normal matrix because (m+ 1)*p > n.
In addition, we set a judging condition to ensure that the program
continues until the last primary column with the number n− 1 is
broadcast and the elementary column transformation is completed.
Otherwise, columns with the value 0 (n+ 1,… ,(m+ 1)*p) will be
broadcast, resulting in incorrect elementary column transformation.

In the calculation of inversion of normal equations, three
main MPI functions were used: MPI_FILE_READ_AT and
MPI_FILE_WRITE_AT are respectively used to read and write
normal equations between hard disks and different processors
by explicit offsets. MPI_BCAST broadcasts a message from the
process with rank “root” to all other processes of the communicator.
Here, it is used to broadcast the primary column in order to do the
elementary column transformation.

3 Applications in gravity field recovery

To test the numerical algorithm as described above, we
calculated an experimental version of the gravity field model

FIGURE 5
Difference degree amplitudes (unitless) of several gravity field models
(GOCO01S and IGGT_R1C) w.r.t. EGM2008 and that of IGGT_R1_test
w.r.t. its a priori model EIGEN-5C. The degree amplitudes of the
EGM2008 model (black) are shown for reference.

IGGT_R1 (named IGGT_R1_test, degree/order 240) based on six
synthetic gravitational gradients derived from the a priori gravity
field model EIGEN-5C as a known value (Förste et al., 2008). The
GOCE orbit positions are given in the Earth-fixed Reference Frame
from the GOCE orbit product SST_PSO_2 (Gruber et al., 2010).
The data period is from 01 November 2009, to 11 January 2010,
as used in the first release of the European Space Agency’s (ESA)
gravity field models based on GOCE observations (six million
observations). Here, the methodology of gravity field modeling is
based on the second invariant of the gravitational gradient tensor
(Lu et al., 2018b). In processing the real data, the bandpass filtering
is applied to the gravitational gradients.Therefore, the weightmatrix
(stochastic model) is a diagonal array derived from white noise. In
this experimental study, the weight matrix is also a diagonal array
and multiplied with the observation matrix before computing the
normal equation matrix. The spectral behaviors of IGGT_R1_test
are shown in Figure 5: The difference degree amplitudes for the
testing model to the a priori model EIGEN-5C are at the level of
10–16 to 10–20. In contrast, they are at the level of 10–12 to 10–10

for the real gravity field models (e.g., GOCO01S and IGGT_R1C)
to the reference model EGM 2008 (or EIGEN-6C4) which shows
the accuracy level of current gravity field models (Pail et al., 2010;
Pavlis et al., 2012; Lu et al., 2018a). It is even clearer from the
coefficient differences between IGGT_R1_test and the priori model
EIGEN-5C as shown in Figure 6. The coefficient differences are
about −22 to −20 as absolute values in the logarithmic scale (log10)
except for the very low order parts and very high degree parts due
to the influence of GOCE polar gaps. Here, the stand deviations of
spherical harmonic coefficients from current gravity field models
(e.g., EGM 2008, EIGEN-6C4) are at the level −12 to −10.Therefore,
the calculation errors in this parallel numerical algorithm caused by
the numerical accuracy of the current HPC cluster can be ignored.

In addition, we also analyzed the calculating time and efficiency
of the numerical algorithm. The calculation in this study was based
on theHPC cluster in the School of Geodesy andGeomatics,Wuhan
University. The MPI version used on the HPC cluster is MPICH-
3.1b1 based on Intel Fortran. We used six nodes with 108 cores
to compute and invert the normal equation of the testing model
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FIGURE 6
Coefficient differences between IGGT_R1_test and EIGEN-5C,
provided as absolute values in logarithmic scale (log10).

IGGT_R1_test as mentioned above. The calculation time of the
normal equation was respectively 88, 40, and 27 h for the three
different schemes as shown in Table 1. Here, the dimensions of
Ai as shown in Figure 1 is 100× 58077 in the calculation process.
The first dimension was set as 100 by testing the calculation
time between computing the blocks Ai and the corresponding
multiplication Ai

TAi. The second dimension is corresponding to
the number (58077) of the spherical harmonic coefficients of the
gravity fieldmodel (degree/order 240) in the simulation study. Here,
the computation time of blocks Ai(100×58977) and yi(100) was 0.8 h
while the computation time of multiplication Ai

TAi was 25.8 h in
the third scheme inTable 1. It shows that the numerical algorithmby
combiningMPI andOpenMPcan improve the calculating efficiency,
especially including consideration of the symmetrical feature of
the normal equations. Apart from that, the calculating time will
be linearly reduced as the computing resource increasing (e.g.,
more nodes). This is because of the independent property of design
matrices and normal equation matrices as shown in Figure 1. On
the other hand, the calculating time and relative efficiency to invert
the normal equation matrix N58077×58077 w.r.t. degree/order 240 are
shown in Table 2. One thing that should be pointed out was that the
calculating time in this table did not contain the input and output
time to avoid the influence from other possible running programs
due to the shared read and write resources of the HPC cluster.
It is obvious that the calculating time is reducing as the number
of processor cores increases. However, the communicating time is
increasing between processors (also, between nodes) as the number
of processor cores increases. Therefore, we use the computation
time to divide the number of processor cores (Hi/100× ni) to define
the relative efficiency of the inverting calculation. In this case, the
smaller the numerical value is, the higher the relative efficiency
is. We found that the relative efficiency generally decreases by
using more processor cores in the inversion, especially when the
number of processor cores is larger than 40. As the Gauss-Jordan
elimination method does not make full use of the symmetrical
feature to invert normal equation matrices, we further tested the
Cholesky decomposition in our applications and hence installed the
mathematical library ScaLAPACK on the HPC cluster. Here, two
main functions from the mathematical library ScaLAPACK were
used as follows: PDPOTRF computes the Cholesky decomposition

TABLE 1 The calculating time of computing the normal equation
(N58077 × 58077) by the parallel numerical algorithm. The calculation used six
nodes with 108 cores from the HPC cluster in the School of Geodesy and
Geomatics,Wuhan University.

Programming models MPI MPI + OpenMP MPI + OpenMP +
Symmetrical feature

Time (hours) 88 40 27

TABLE 2 The calculating time and relative efficiency of inverting the
normal equationmatrix (N58077 × 58077) by the parallel numerical algorithm.

Number of cores (ni) 10 20 40 60 80 100

Time of hours (Hi) 5.58 4.84 3.88 2.88 2.15 1.76

Relative efficiency (Hi/100× ni) 0.56 0.96 1.55 1.73 1.72 1.76

while PDPOTRS solves a systemof linear equations (Blackford et al.,
1997). For example, the computation time is 0.16 h by using 100
processor cores to invert the normal equationmatrixN58077 × 58077. It
ismuch faster compared to theMPI basedGauss-Jordan elimination
method (1.76 h) due to the application of the symmetrical feature
of the normal equation matrices and using level 3 BLAS which
applies block-partitioned algorithms (e.g., Dongarra et al., 1990;
Blackford et al., 2002; Goto and Van De Geijn, 2008). Here, the
relative efficiency of Cholesky decomposition is 0.16, which is about
ten times better than using theMPI-basedGauss-Jordan elimination
method.Therefore, we suggested using the Cholesky decomposition
if the matrices are symmetrical.

Furthermore, this parallel numerical algorithm was successfully
applied to calculate the gravity field model named IGGT_R1
based on the real GOCE gravimetry data (Lu et al., 2018b). The
numerical calculation progress was the same as the testing model
IGGT_R1_test and its accuracy was at a similar level as ESA’s
official released gravity field models with the same period of
GOCE data (Pail et al., 2011). As far as we know, it was the first
gravity field model calculated based on the invariants of the GOCE
gravitational gradient tensor in a direct approach. Additionally,
the parallel numerical algorithm was also applied to calculate the
new gravity field model named IGGT_R1C which combines GOCE
(IGGT_R1 (Lu et al., 2018b)), GRACE [ITSG-Grace2014s (Mayer-
Gürr et al., 2014)], polar gravity anomalies [from the ArcGP project
and PolarGap project (Forsberg and Kenyon, 2004; Forsberg et al.,
2017)] and also Kaula’s rule of thumb (Kaula, 1966; Reigber, 1989)
at the normal equation level to solve the GOCE polar gap problem
(Lu et al., 2018a). In this combined model, the normal equation
matrix N of GRACE comes from ITSG-Grace2014s and was gotten
from its published variance-covariance matrix (Pavlis et al., 2012;
Mayer-Gürr et al., 2014). For the GRACE model, we only used the
part of the full normal equationmatrix fromd/o 2–150 and removed
the shorter wavelengths to d/o 200 there by block matrix reduction:

[[[[

[

N11 N12

N21 N22

]]]]

]

[[[[

[

p̂1

p̂2

]]]]

]

=
[[[[

[

r1

r2

]]]]

]

(2)

whereN11,N12,N21,N22 are blocks of the normal equationmatrix of
GRACE (NGRACE), p̂1, p̂2 are blocks of the parameter vector (p̂GRACE)
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TABLE 3 External validation of gravity fieldmodels (d/o 180) by obit adjustment tests. RMS values of the orbit fit residuals (Unit: cm).

Models EGM2008 EIGEN-5C ITG-Grace2010s ITSG-Gracce2014s DIR-1

RMS 14.17 9.08 5.14 4.44 10.70

Models TIM-1 GOCO01S IGGT_R1 IGGT_R1C

RMS 23.78 4.63 16.2 4.07

and r1, r2 are blocks of the right side of the normal equation of
GRACE (rGRACE). According to Eq. 2, the new normal equation i.e.,
the part of the full normal equation from d/o 2–150 of GRACE after
the block matrix reduction is as follows:

(N11 −N12N
−1
22N21)p1 = r1 −N12N

−1
22 r2 (3)

Detailed methodologies and equations of the block matrix
reduction can be found in previous studies (e.g., Schwintzer et al.,
1991). This processing strategy was successfully applied to the
GRACE normal equation matrices to infer the GOCE official
gravity field models by the direct method (Bruinsma et al., 2010;
Bruinsma et al., 2014) and EIGEN series [EIGEN-5C, Förste et al.
(2008) and EIGEN-6C4, Förste et al. (2015)].The reason for making
this reduction was that the high-frequency gravity information
(higher than d/o 150) from GRACE deteriorates due to striping
errors. In this step of processing the GRACE normal equation
matrix, the main numerical calculation was to invert the variance-
covariance matrix to get the normal equation matrix and to invert
part of the normal equation matrix for the block matrix reduction.
In the next step, variance component estimation was applied to
determine the weights of different types of observations efficiently
(e.g., Förstner, 1979; Koch and Kusche, 2002). The main equation is
as follows:

Nc =
n

∑
i=1

si,jNi

si,j+1 = (mi − trace(N−1c Ni))/vTi Pivi
si,j = si,j+1 × si,j (4)

where Ni is the normal equation matrix of different types i,
si,j is the weight of the corresponding normal equation, it is
iteratively determined with the initial value set as 1, mi is the
number of observations, vi and Pi represent the vectors of residuals
and weighting matrix of different data types. From Eq. 4, the
main numerical calculation occurs to invert the combined normal
equation matrix Nc during the iterating numerical calculation
of variance component estimation. We applied the numerical
algorithm to the computations of gravity field recovery which
represented above.

For further external checking and comparison with
other global gravity field models, we checked IGGT_R1
and IGGT_R1C as well as some relevant gravity field
models, e.g., GO_CONS_GCF_2_DIR_R1 (DIR-1) and
GO_CONS_GCF_2_TIM_R1 (TIM-1), in GOCE orbit adjustment
tests (Pail et al., 2011). The observations for the orbit tests are from
GOCE kinematic 3D orbit positions (60 arcs from 1st November to
31st December of 2009) and the fit is calculated by dynamic orbit
computation (e.g., Reigber, 1989; Dahle et al., 2012). Table 3 gives
the RMS of the orbit fit residuals. From orbit adjustment tests, the

accuracy of gravity field models based on GRAEC are improving
due to the development of methodologies and increase of GRACE
observations which is shown by comparing the RMS values of the
orbit fit residuals from EGM 2008, EIGEN-5C, ITG-Grace2010s
and ITSG-Grace2014s. Apart from that, GRACE-only models are
better than GOCE-only models while combined models are better
than single satellite models, e.g., comparing the RMS values of orbit
fit residuals from ITG-Grace2010s, TIM-1 and GOCO01S. The
IGGT_R1C is better than GOCO01S due to the contribution of
more GRACE observations (ITSG-Grace2014s compared to ITG-
Grace2010s) and the polar gravity anomalies (Mayer-Gürr et al.,
2010; Pail et al., 2010). Additional GNSS/leveling checking and
gravimetry data checking could be found in the former publications
(Lu et al., 2018b; Lu et al., 2020).

4 Potential geophysical applications

Satellite gravimetry data is helpful in studying the Earth’s
structure and dynamics. For example, Llubes et al. (2003) studied
the crustal thickness in Antarctica from CHAMP gravimetry
which showed more detailed information about the crust than
seismologicalmodels, especially in thewestern part of the continent.
However, the gravity anomalies were reconstituted up to only
degree 60 from the spherical harmonic coefficients, which means
a very low spatial resolution of 333 km. After that, Block et al.
(2009) researched regional crustal thickness variations under the
Transantarctic Mountains and Gamburtsev Sub-glacial Mountains
from the GRACE gravimetry. However, there were still unclear
questions and debates over the Gamburtsev Subglacial Mountains’
origins due to the limitation of the GRACE gravimetry in
terms of artifact striping, low spatial resolution, low accuracy at
high degree parts (larger than 150), and so on. More recently,
GOCE provided gravitational gradients with higher accuracy and
spatial resolution, which helped to enhance our knowledge of the
Earth’s structure and stress (e.g., Robert and Pavel, 2013; Eshagh,
2014; Sampietro et al., 2014; Ebbing et al., 2018; Llubes et al., 2018;
Eshagh et al., 2020; Rossi et al., 2022). However, a polar data gap
existed in the GOCE gravimetry due to the orbit inclination of
96.7°. In this context, our latest gravity field model IGGT_R1C
combined GRACE and GOCE gravimetry as well as the latest
airborne gravimetry data from the ESA’s PolarGap campaign
(Forsberg and Kenyon, 2004; Forsberg et al., 2017). Therefore, it
is potentially useful for geophysical and geological researching
applications as mentioned above, e.g., estimating crustal thickness
variations under the Transantarctic Mountains, which are in the
GOCE polar data gap area and lack of airborne gravimetry data
before the ESA’s PolarGap project. In addition, satellite gravimetry
could be combined with air-marine gravimetry to study the local
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Earth’s structure, e.g., bathymetry beneath glaciers, determining the
ocean bottom topography and so on (Lu et al., 2017a; Li et al., 2019a;
Li et al., 2019b; Lu et al., 2019; Yang et al., 2020; Yang et al., 2021;
Lu et al., 2022).

5 Discussion and conclusion

In this article, one parallel numerical algorithm was developed
based on MPI and OpenMP to speed up the calculation progress
of gravity field recovery. First, it combines MPI and OpenMP to
compute the normal equations, which also considers its symmetrical
feature to reduce the calculation time. Second, we modified the
parallel Gauss-Jordan eliminationmethod, which was used to invert
normal equations. This modified software can be scaled up to
100 processor cores in the test during the calculation process,
while only specific numbers of processors could be used in the
traditional way regarding the Gauss-Jordan algorithm. In addition,
we applied the Cholesky decomposition from the ScaLAPACK
library in gravity field recovery and used it to compare with
the parallel Gauss-Jordan elimination method. In this context,
an experiment testing gravity field model named IGGT_R1_test
was calculated based on six synthetic gravitational gradients from
EIGEN-5C. The computation time to generate the normal equation
of such a test model of degree/order 240 is 88, 44, and 27 h when
applying the three different schemes (MPI, MPI and OpenMP,
MPI and OpenMP including consideration of the symmetrical
feature), respectively. The computation time to invert the normal
equation is respectively 1.76 and 0.16 h by using the parallel Gauss-
Jordan elimination method and the Cholesky decomposition from
the ScaLAPACK library when 100 processor cores were used.
Therefore, we suggested using the Cholesky decomposition from
the ScaLAPACK library to invert symmetrical normal equation
matrices in gravity field recovery. For non-symmetrical equation
matrices, the parallel Gauss-Jordan elimination method could
replace the Cholesky decomposition. From the numerical analysis,
the calculation errors from the numerical algorithm can be ignored
because the difference degree amplitudes for the testing model to
the a priori model EIGEN-5C as a known value are at the level
of 10–16 to 10–20 while they are at the level of 10–12 to 10–10 for
the real gravity field models, which shows the accuracy level of
current gravity field models. Furthermore, this numerical algorithm
was successfully applied to calculate high-accuracy gravity field
models (e.g., IGGT_R1, IGGT_R1C). External checking verifies
these gravity field models based on the parallel numerical algorithm
in this study are at a high accuracy level. Finally, high-accuracy
gravity field models help improve our knowledge of the Earth’s
structure and dynamics.
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