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Abstract—In parking lots with large groups of electric vehicles
(EVs), charging has to happen in a coordinated manner, among
others, due to the high load per vehicle and the limited capacity
of the electricity grid. To achieve such coordination, model
predictive control can be applied, thereby repeatedly solving
an optimization problem. Due to its repetitive nature and its
dependency on the time granularity, optimization has to be
(computationally) efficient.

The work presented here focuses on that optimization sub-
routine, its computational efficiency and how to speed up the
optimization for large groups of EVs. In particular, we adapt
FOCS, an algorithm that can solve the underlying optimization
problem, to better suit the repetitive set-up of model predictive
control by adding a pre-mature stop feature. Based on real-world
data, we empirically show that the added feature speeds up the
median computation time for 1-minute granularity by up to 44%.
Furthermore, since FOCS is an algorithm that uses maximum
flow methods as a subroutine, the impact of choosing various
maximum flow methods on the runtime is investigated. Finally,
we compare FOCS to a commercially available solver, concluding
that FOCS outperforms the state-of-the-art when making a full-
day schedule for large groups of EVs.

Index Terms—algorithm, optimization, computational perfor-
mance, real data, electric vehicle

I. INTRODUCTION

With the on-going transition to electric mobility, the number
of electric vehicles (EVs) in the Netherlands is increasing
rapidly [1]. Especially near-work locations have been found
to be good locations to charge large groups of EVs, partially
due to the long stays [2] and the potential availability of
solar energy [3]. However, due to limited grid capacity [4],
high synchronicity [5] and possible temporal mismatches with
said solar energy production [6], charging has to occur in a
coordinated manner. For successful coordination, a controller
needs information on the charging sessions, for example the
(expected) energy demand and departure time of an EV in
the parking lot. In practice, the EVs currently do not com-
municate such information [7]. Therefore, next to the sheer
amount of charge required per vehicle, the biggest challenge
in managing the charging processes of the EVs is the absence
of information.

To bridge this information gap, model predictive control
(MPC) can be applied (e.g., [8]). Based on the information
available at the current point in time and an underlying

system model, MPC generates and solves a suitable offline
optimization problem and an (in time) initial portion of this
solution is realized. This process is repeated frequently over
the given time horizon. Specifically to solve this offline
problem, the Flow-Based Offline Charging Scheduler (FOCS)
has been developed [9]. FOCS is a polynomial time algorithm
which in theory has a complexity of O(n2µ), where n is the
number of EVs to be charged and µ is the complexity of the
maximum flow algorithm embedded in FOCS.

Notably, research has shown that for some algorithms the-
oretical and empirical runtime do not align. For example, the
simplex algorithm, while theoretically exponential in runtime,
performs well in practice. The other way around, Ellipsoid
methods for linear programs are known to be polynomial on
paper, while performing poorly in practice. This motivates us
to investigate the empirical runtime of the novel algorithm
FOCS based on real world EV data.

The main contributions of the work presented here are:
• Introduction and validation of a pre-mature stop feature

that increases computational efficiency in model predic-
tive controllers using FOCS.

• Extensive comparative runtime analysis of FOCS, and its
validation using real world EV charging data.

The remainder of the paper is organized as follows. Sec-
tion II discusses the mathematical model of the considered EV
scheduling problem (Section II-A), briefly introduces FOCS
(Section II-B) and proposes a pre-mature stop feature for FOCS
(Section II-C) expected to increase its efficiency for MPC
applications. Then, Section III specifies the experimental setup
and gives some information on the implementation of the used
algorithms. Furthermore, the section describes the real world
data set used for the experiments (Section III-C). Section IV
presents the experimental results, followed by a discussion in
Section V and a conclusion in Section VI.

II. EV SCHEDULING PROBLEM AND ALGORITHMS

In this section, we describe the considered EV scheduling
problem in terms of notation, constraints and considered
objective function. Furthermore, we briefly introduce FOCS,
an algorithm that can be used to determine an optimal solution
for said problem. For more details on FOCS, we refer to [9].
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A. Problem definition

We consider jobs 1, ..., n, where each job j corresponds to
a pending charging session (or EV) with associated energy
requirement ej , arrival time aj , departure time dj and job-
specific charging power limit pmax

j . We denote the set of all
jobs by [n]. We consider a problem instance feasible if

ej ≤ pmax
j (dj − aj) ∀j ∈ [n].

Moreover, we discretize the time horizon [minj aj ,maxj dj ]
into atomic intervals by using all arrival and departure times
of EVs as breakpoints. The resulting (ordered) sequence of
breakpoints we denote as t1, . . . , tm+1, resulting in m ≤ 2n−
1 atomic intervals Ii = [ti, ti+1] for i = 1, ...,m.

To relate jobs to atomic intervals, we denote by J(i) the
jobs that are available in interval Ii, i.e.,

J(i) = {j|(aj ≤ ti) ∧ (ti+1 ≤ dj)}.

Similarly, J−1(j) is defined as the set of indices i of the
intervals Ii where j is available. Finally, as atomic intervals
are in general not unit-sized, we introduce maximum energy
limits emax

i,j = pmax
j (ti+1 − ti) per job j and interval Ii.

As decision variables, let ei,j be the energy that EV j
charges in Ii. Note that preemption is allowed, meaning the
charging can be suspended for a few intervals to be continued
at a later interval. In this work, we do not consider V2G,
implying that ei,j ≥ 0.

Summarizing, the EV model is constrained by∑
i∈J−1(j)

ei,j ≥ ej ∀j ∈ [n] (1a)

ei,j ≥ 0 ∀j ∈ [n], i ∈ J−1(j) (1b)

ei,j ≤ emax
i,j ∀j ∈ [n], i ∈ J−1(j). (1c)

From a grid perspective, the aggregated power level result-
ing from an EV schedule is of interest. For a given schedule,
the average aggregated power level pi in atomic interval Ii is
given by

pi =

∑
j∈J(i) ei,j

ti+1 − ti
.

The two most frequently considered objectives for the
overall grid usage are the ℓ∞ and ℓ2-norms of the aggregated
power. FOCS was developed for minimization of objective
functions

F (p1, . . . , pm) (2)

that are convex, differentiable and for which increasing any
value pi increases the value of the objective function. The
complexity of FOCS is independent on the exact form of the
objective function. In this work, we specifically consider the
square of the ℓ2-norm given by

F (p1, . . . , pm) =

m∑
i=1

Li ·
(
p2i
)

(3)

where Li is a normalization term to account for the length of
the interval.
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Fig. 1: Schematic of flow network structure of EV charging schedule.

B. The general working of FOCS

FOCS is a recursive algorithm that finds an optimal solution
to the problem described above. To this end, it makes use
of various properties of optimal solutions to this problem.
First, any optimal aggregated power profile that minimizes an
objective function (2) is a step function in the sense that within
each atomic interval, the aggregated power is constant. Based
on this, FOCS iteratively identifies a critical interval where the
highest speed is needed, determines the minimum speed for
this interval, and fixes the schedule for this interval, ultimately
minimizing the maximum peak. The selected critical interval
and the charge provided in that interval are then removed from
the problem instance.

To determine the critical intervals, FOCS computes multiple
iterations of maximum flows. Figure 1 depicts the basic struc-
ture of the considered flow network. Here, at each iteration,
FOCS adapts the capacities of edges adjacent to sink node
t. The iterations until a critical interval is identified, form a
round r. The edge capacities gr,k : {Ii|i ∈ [m]} → R≥0 in
round r and iteration k represent a fill-level that is increased
over the iterations until critical interval(s) are found.

C. Adapting FOCS for model predictive control

FOCS was developed to determine the optimal solution of
the offline EV scheduling problem described in Section II-A.
To this end, it solves the instance over the entire planning
horizon. However, for MPC, often only the next (few) time
intervals and their control actions are of interest. Based on
this, we propose an adaptation to FOCS. For convenience, we
assume in the following that only the first time interval is of
interest. The proposed concept extends naturally to include the
first few intervals.

FOCS recursively identifies intervals that require the highest
aggregated power in an optimal schedule (so-called critical
intervals), determines the partial schedule corresponding to
that interval, and repeats this with the remaining problem
instance. In particular, each of those recursion steps fixes a part
of the optimal schedule. Therefore, if we are only interested in
the schedule of the first interval, we can pre-maturely terminate
FOCS once the schedule for that interval was found, without
losing any information on the first interval.

We illustrate this concept in Figure 2 for an instance with
two EVs and three intervals. The annotations at the edges
of the flow network are of the form x/y, where x is the
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Fig. 2: Intermediate states of FOCS with pre-mature stop for an example
instance, tracked over rounds and iterations.

flow going through the edge, and y is the edge capacity.
Moreover, the green shaded blocks are the identified critical
intervals. Those are fixed, and in the last step combined into
the algorithm output. After finding the schedule for the first
interval (i.e., when we find the green block for the first interval
in the fifth step in Figure 2), we terminate the algorithm.
Note that even though the schedule for the third interval
has not yet been found and thereby the returned schedule
(last power profile in Figure 2) is not feasible considering
the entire problem instance, there exists an optimal schedule
that complements the found partial solution. In particular, the
aggregated power in the first interval is optimal. This follows
by optimality of FOCS, and the following lemmas paraphrased
from [9].

Lemma 1: (Lemma 2 in [9]) If a critical interval Ii and its
aggregated power are found, and if there is at least one interval
Ii′ left that at that point has not yet been scheduled, then no
scheduled charging work can feasibly be moved from Ii to Ii′

for any such Ii′ .
Lemma 2: (Lemma 3 in [9]) The aggregated power of the

subsequently identified (sets of) critical intervals by FOCS is
strictly decreasing. In particular, if FOCS fixes the schedule
for Ii before that of Ii′ , then

pi > pi′

in the optimal solution.
For the precise formulation and proof of the lemmas, we

refer the reader to [9].
Notably, for EV parking lots near office locations, the

optimal schedule over a day typically resembles a concave
curve. The pre-mature stop feature we propose here terminates
the algorithm once the first interval has been scheduled, where
intervals are scheduled by order of their aggregated power in
the optimal solution. Therefore, the time of day at which we
apply the pre-mature stop feature impacts its effectiveness.
In particular for an office parking lot, we expect the greatest
reduction in computation time with pre-mature stop compared
to the unrestricted FOCS to be around noon. In the following,
we refer to the implementation of FOCS with pre-mature stop
as FOCS-pm.

III. METHODS

In this section, we provide some details on the imple-
mentation of the three tested optimization models (Quadratic
program in Gurobi (QP), FOCS and FOCS with pre-mature
stop (FOCS-pm)), after which we describe the experimental
setup and real-world data set used.1

A. QP implementation

Based on the problem constraints (1) and the quadratic ob-
jective function (3), we use the commercial solver Gurobi [10]
to solve this problem. Gurobi is used for comparison with
state-of-the art solvers. Note that while FOCS leads to optimal

1The source code with all implementations and the experimental
setup can be found under https://github.com/lwinschermann/
FlowbasedOfflineChargingScheduler.

https://github.com/lwinschermann/FlowbasedOfflineChargingScheduler.
https://github.com/lwinschermann/FlowbasedOfflineChargingScheduler.
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solutions also for more general objective functions, for prac-
tical reasons we compare its runtime to a Gurobi model and
for that we restrict us to a quadratic objective function.

B. FOCS implementation

The FOCS implementation used for the empirical runtime
analysis of FOCS has been developed specifically as a proof
of concept for this paper. The code is written in python,
heavily relying on the networkx package [11]. This package
is chosen for its user friendly flow models, and because various
maximum flow algorithms are readily available within the
package. An overview of the considered algorithms is provided
in Table I. Next to that, we also implemented the adapted FOCS
with pre-mature stop as introduced in Section II-C by adding
a feature that stops the algorithm once the relevant parts of the
schedule are computed. In the following, we refer to FOCS-pm
for results achieved with this pre-mature stop.

C. Dataset

The experiments described in this paper use data collected
at a real life EV charging parking lot in Utrecht, the Nether-
lands [13]. The data was collected between September 1st
2022 and August 31st 2023, resulting in a total of 13694
charging sessions. Each session specifies (among others) an
arrival time, departure time and total energy charged during
the session. At the parking lot, most charging stations have two
sockets each. If only one socket is occupied, the maximum
charging power is 22 kW. Else, it is 11 kW per socket.
Therefore, for the experiments, we set the maximum charging
power per session to either 11 kW or 22 kW, depending on
whether the average observed charging power is below or
above 11 kW. From the 13694 sessions in the data, a maximum
of 113 sessions was recorded in a single day.

D. Numerical experiments

The main focus of this paper is on optimization in MPC for
EV charging parking lots and in particular its efficiency. To this
end, we present numerical experiments based on real world
data, evaluating the empirical runtime of FOCS and FOCS-pm
compared to the benchmark results by Gurobi.

The main parameters to classify the experiments are the
• instance size n, i.e., the number of EV charging sessions;
• time granularity, i.e., either 1 minute, 15 minutes, 30

minutes or 1 hour;
• used maximum flow method in FOCS (and FOCS-pm).

Given a set of parameters for the experiment, we randomly
sample n sessions from the dataset described in Section III-C
and apply all three optimization models. We record the CPU
runtime using the function time.process_time() in-
built in the python package time. In particular, we record
the CPU runtime for building the models (QP, FOCS, FOCS-
pm) and solving them. For a given model and experiment, the
total runtime is the sum of CPU time taken to build and solve
the model.

As pointed out in Section II-C, FOCS-pm is most effective
when the first interval is expected to have one of the highest

power peaks in the optimal profile. Therefore, next to solving
the entire instance over one day, we also repeat the experiment
assuming optimization starting at noon. In that case, due to
the characteristics of an office parking lot, the first interval is
expected to have quite a high power. To get meaningful results,
we repeat this process 500 times, starting at the instance
sampling. The values reported in this work are the median
runtimes over those 500 runs. All experiments are run on an
Intel Xeon E5-2630 v3 processor.

IV. RESULTS

In this section, we present and analyze the results of the
runtime experiments. In particular, we are interested in the
efficiency and therefore usability of the various algorithms
for MPC in (large) EV parking lots. To this end, we focus
on the dependency of runtime on the instance size n. In
Section IV-A we first discuss the pre-mature stop feature for
FOCS introduced in Section II-C, and how it reflects in the
empirical results. Then, in Section IV-B, we focus on the
impact that the different maximum flow methods have on
the performance of FOCS. Lastly, we compare the impact
of various time granularities under invariant maximum flow
methods in Section IV-C.

A. FOCS-pm

As discussed in Section II-C, an MPC approach is mostly
interested in the next (few) control action(s). Therefore, we
propose FOCS-pm as an adapted FOCS that speeds up com-
putation by stopping the optimization pre-maturely when the
control action for the first upcoming intervals is known. While
by design we expect the feature to speed up computation, this
section investigates the extend of the effect, and validates it
empirically.

Figure 3 shows the total runtimes of FOCS
and FOCS-pm relative to instance size n for the
four time granularities, and maximum flow method
shortest_augmenting_path(). All instances are
solved for the full day. First, we note that the runtimes of
FOCS and FOCS-pm are very similar for full day instances.
Comparing the values over all instance sizes, the improvement
of FOCS-pm relative to FOCS is at most 8%, 11%, 12% and
15% for time granularities of 1 minute, 15 minutes, 30 minutes
and 1 hour respectively. The average improvements are 0%,
2%, 6% and 9% respectively. We see that especially for finer
time granularities, the computational gain of the feature is
rather small for this use case.

In the analysis above, we considered instances for a full
day. In a next step, we present results of experiments that
consider instances starting at noon. Figure 4 shows the total
runtimes of FOCS and FOCS-pm relative to instance size n
for the four time granularities, and maximum flow method
shortest_augmenting_path(). However, as opposed
to Figure 3, instances are solved starting from noon. As
expected, for situations with the same instance size and time
granularity, solving the (smaller) problem at noon is faster than
solving the entire day. Furthermore, the added value of the
pre-mature stop feature is even more pronounced in the noon
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TABLE I: Complexity table for four maximum flow algorithms. Here, N , M and U are respectively the number of nodes,
edges and the maximum capacity in a given flow network.

Max flow algorithm Complexity [12] Networkx complexity Complexity on FOCS network
shortest_augmenting_path() O(NMU) O(N2M) O(n4)
edmonds_karp() O(M2N) or O(m2 logU) O(M2N) O(n5)

preflow_push() O(MN log(N
2

M
)) O(N2

√
M) O(n3)

dinitz() O(N2M) or O(MN logU) O(N2M) O(n4)
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Fig. 3: Runtimes relative to instance size, for various time granularities, solved for the whole day and using shortest_augmenting_path().

experiments. For time granularities of 1 minute, 15 minutes,
30 minutes and 1 hour, the experiments show runtime im-
provements of at most 44%, 39%, 37% and 38% respectively
for up to 400 EVs. That maximum improvement of the median
runtime corresponds to instance sizes 400, 390, 290 and 340,
all rather large instances. The average improvements amount
to 33%, 28%, 26% and 23% respectively.

B. Maximum flow method comparison

The efficiency of an algorithm in the context of an MPC
among others depends on the implementation. As mentioned in
Section II-B, FOCS relies on solving multiple maximum flow
problems. Hereby, in theory it does not matter which concrete
algorithm is used. However, since according to Table I the
available maximum flow algorithms are non-linear, this section
investigates their impact on the scalability of FOCS for large
groups of EVs.

As mentioned in Section III-B, networkx
provides a number of functions that compute
maximum flows. In particular, our experiments use the

shortest_augmenting_path(), edmonds_karp(),
preflow_push() and dinitz() functions from the
networkx package. Table I provides an overview of
those functions, and the following three properties. First,
per function, we cite the theoretical complexity of its
namesake based on [12]. Note that the implementations of
shortest_augmenting_path(), edmonds_karp(),
preflow_push() and dinitz() likely do not strictly
follow the original algorithms ( [14], [15], [16]/ [17] and [18]
respectively). Since their publication, various improvements
and variants have been introduced that are usually referred to
by the same name. Secondly, Table I presents the theoretical
complexity as reported by networkx2. Finally, the last
column takes the complexity reported by networkx
and bounds the theoretical complexity specifically for
flow networks of FOCS instances. We note that the
number of nodes (compare flow network in Figure 1) is
bound by 2 plus the number of jobs and intervals, being

2last accessed 19 December 2023
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Fig. 4: Runtimes for instances solved at noon using shortest_augmenting_path().

2 + n+ (2n− 1) = 3n+ 1. The number of edges is roughly
bound by n + n(2n − 1) + (2n − 1) = 2n2 + 2n − 1. We
derive the theoretical complexity in terms of the input size
of FOCS instances by substituting this in the bound reported
by networkx. Since these maximum flow solvers are only
used in the solving of FOCS (and therefore do not influence
the model building), we restrict the discussion of the results
to the solving part of the runtime.

Figure 5 presents the solving time of FOCS for a full day
and quarterly time granularity. Among the methods using
augmenting paths, we see a clear difference in performance
between methods. While the time taken to solve FOCS using
shortest_augmenting_path() seems to grow almost
linearly for instance sizes up to 400, solving times with
edmonds_karp() and dinitz() clearly increase non-
linearly. Finally, the preflow-push method behaves similarly
to shortest_augmenting_path().

If we compare this to the theoretical complexity of the
various maximum flow methods embedded in networkx
(see Table I), the most striking observation is that while
preflow_push() has the smallest theoretical runtime on
FOCS networks (O(n3)), the theoretically quartic runtime of
shortest_augmenting_path() (O(n4)) outperforms
the other tested methods. Edmonds_karp() shows the
highest theoretical complexity, and empirically is the second
slowest method, overtaken only by dinitz().

Overall, shortest_augmenting_path() appears to
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Fig. 5: Runtimes for solving only for quarterly granularity, comparing maxi-
mum flow algorithms applied in FOCS.

be the dominating method in our experiments with respect
to runtime. The experiments further indicate that the proper
choice of maximum flow method greatly increases the usabil-
ity of FOCS for EV scheduling.

C. Runtime comparison

In the following, we compare FOCS to the QP imple-
mentation for comparison with (commercial) optimization
tools already available for MPCs. The total runtime (i.e.,
the sum of the model building and solving), relative to
instance size n for the four time granularities is depicted
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in Figure 6. Note that for FOCS, we assume that the flow
method shortest_augmenting_path() is applied. All
instances are solved for the full day.

First, we note that across subfigures, the quadratic program
solved in Gurobi initially either outperforms FOCS or runs
at similar speed. However, we observe a gradually steeper
increase in runtime relative to instance size for QP compared
to the FOCS model. As a result, the median runtime of FOCS
outperforms QP starting from instance sizes of approximately
90, 120, 90 and 80 for time granularities of 1 minute,
15 minutes, 30 minutes and 1 hour respectively. Furthermore,
we observe a sudden steep increase in the runtime of the
QP implementation, at instance sizes from around 90, 130,
170 and 230 in Figures 6a, 6b, 6c and 6d respectively. This
behaviour possibly reflects that a certain memory threshold is
reached after which solving becomes more costly for Gurobi
due to swapping memory.

Overall, as expected, a finer time granularity for a given
instance size results in a larger runtime for both the QP and
FOCS. Notably, the slope of the runtime for FOCS seems to
be almost linear for the instance sizes considered, except in
Figure 6a. There, a non-linear increase can be observed. To
give an indication of this growth, the median runtimes for
FOCS and QP with instance size 400 under time granularity
1 minute are respectively 36 and 62 seconds.

In a next step, we disaggregate the runtimes into model
building and solving components (see Figure 7). Figure 7a
presents the results for FOCS, whereas Figure 7b presents
the results for QP. Both figures are stackplots, depicting the
total runtime as sum of the model building (bottom part,
orange shading) and solving (top part, blue shading). The
results correspond to experiments with time granularity of
15 minutes and shortest_augmenting_path() applied
within FOCS.

Notably, FOCS spends most of its computation time on
solving. The almost negligible contribution of model building
can be attributed to the mostly dictionary-based implemen-
tation of flows in the networkx package. For QP, on the
other hand, model building makes up a considerable portion
of the runtime. Moreover, Figure 7b clearly attributes the
earlier observed sudden steep increase in the runtime of the
QP (discussed above) to its solving. This can be seen in
the continued smooth increase in the bottom (orange) area,
whereas approximately at instance size 130 the contribution
of the solving time to the total runtime increases drastically.

V. DISCUSSION

In the previous section, we have presented the empirical
results of our experiments. Next, we want to shortly discuss
some of the limitations of this research, and put the results
in perspective to physical parking lots for EV charging with
MPC.

First, we consider the implementation of FOCS as used for
the experiments. While the overall FOCS method builds on
augmentation of flows, within the used implementation the
number of considered intervals is reduced between consecutive
iterations and a new maximum flow with the empty flow

as initialization is executed. A more efficient implementation
would use the flow from the previous iteration, and augment
on top of that. Especially if FOCS uses a maximum flow
method that relies on augmenting paths, this would speed up
the optimization.

Moreover, in MPC settings, both efficiency and quality of
the optimization are crucial. Therefore, it is important to
note that for the conclusions of Section IV-B we have not
considered the exact form of the found schedule but focused
solely on the runtime of the various flow methods. However,
in the setting of EV scheduling, the fairness, robustness and
user acceptability of the found schedule itself are of great
importance. To illustrate, consider the example in Figure 8.
Here, jobs 1 and 4 share the same properties. The example
provides two schedules. In the schedule on the left those two
jobs are scheduled consecutively in disjoint intervals, whereas
on the right they are scheduled in parallel. Both schedules
are optimal solutions to the problem with constraints (1)
minimizing objective function (3). One may argue, however,
that the schedule on the right is fairer to the users and more
robust to early departure of either job. Such considerations
were left out of scope of this work, but should be considered
in future work considering optimization in MPC settings.

Finally, in the comparison of FOCS to QP, we do not take
the adaptivity of the models in an MPC setting into account.
While the model building for QP takes considerable time,
Gurobi is known for efficiently altering and re-solving its
models, using previous results in its initialization. This was
left out of scope for the comparison. While we do recommend
future work in that direction, we first suggest to conduct
theoretical research on the efficient initialization of FOCS and
to implement the subsequent results to allow for a reasonable
comparison.

VI. CONCLUSION

This work investigated potential algorithms for an optimiza-
tion subroutine in model predictive controllers for EV schedul-
ing. To this end, we introduced a pre-mature stop feature for
FOCS, an algorithm suitable for this subroutine. The proposed
feature can decrease runtime in MPC settings. It is particularly
effective close to peak hours, for example around noon at an
office parking lot when parking lot occupancy is expected to be
at its peak. Using a 15 minute granularity, the proposed variant
of FOCS shows a median runtime improvement of on average
28% compared to the original unadapted version to calculate a
charging schedule at noon. Moreover, this work has illustrated
the considerable impact of the chosen maximum flow method
for FOCS. Finally, for large EV parking lots, the presented
runtimes show the competitiveness of FOCS with commercial
state-of-the-art optimization software.

Future work may dive deeper into the integration of FOCS
into an MPC, and into the properties of the found schedules
depending on the used maximum flow method.
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Fig. 6: Runtimes relative to instance size, for various time granularities, solved for the whole day and using shortest_augmenting_path().
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Fig. 7: Runtimes disaggregated into model building and solving for 15 m granularity.
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