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A B S T R A C T   

Crop yield forecasts allow policy makers to anticipate market behaviour and regulate prices. Annual updates on 
which crops are grown where can improve crop yield forecast accuracy. Existing efforts to map crops across the 
European Union resulted in late-season map availability or short time series that do not meet forecasting re
quirements. We propose a new approach to retrieve annual winter crop maps and improve forecasting efforts by 
identifying pixels with dominant winter crop signals using moderate resolution imagery. These pixels are 
distinguished from summer crop signals based on their senescence date. When this date precedes the theoretical 
maturity date of a winter crop, expressed in GDD, the pixel is labelled as having a dominant winter crop signal. 
Our 2018 map accurately identified 77% and 83% of dominantly winter-crop area, when compared to farmers’ 
declaration data and a high-resolution crop map for Europe, respectively. While the resulting annual winter crop 
maps underestimated winter crop area, derived region-specific annual NDVI profiles better described winter crop 
phenology as compared to the use of static maps. Regression analysis between these regional NDVI profiles and 
statistical wheat yield data indicates that our annual maps help explain more yield variability than static maps, 
with an RMSE reduction of 3% for the EU27 as whole. The proposed approach is applicable to long historical 
timeseries and provides maps before the end of the agricultural season. Those maps positively impact crop yield 
description, notably in eastern, northern, and northeastern European regions.   

1. Introduction 

Crop yield forecasting systems (CYFSs) provide timely yield forecasts 
to predict crop production. This information helps policy makers to 
address market distortions from under- or overproduction. CYFSs 
require environmental timeseries long enough to provide robust corre
lation with crop yield statistics. Crop yield forecast accuracy relies on 
accurate information on crop distribution, particularly when remotely- 
sensed crop health indicators are used as predictors (Zhang et al., 
2019). As such, improvements in these underlying data will lead to 
improvements in CYFS accuracy. 

For an operational CYFS, crop maps need to meet four requirements: 
i) a complete spatial coverage; ii) a high classification accuracy; iii) 
within-season availability to timely obtain crop growth characteristics; 
and iv) a timeseries long enough to match the time-frame covered by the 
CYFS. Because crop distribution is not static, annual crop maps are 
preferable over static maps to effectively link remote sensing signals 

with the target crop. Three main approaches exist for annual crop 
mapping: i) assembling information from farmers on what is grown 
where; ii) classifying crop types from high-resolution satellite data; and 
iii) classifying dominant crop groups from low-resolution satellite data. 
We define crop group as crop types with a similar growing season (e.g., 
winter crop). For each approach we report mainly on EU-focussed 
studies because of its peculiar agricultural system with advanced agri
cultural management but relatively small field size compared to other 
relevant crop producing regions. A further motivation to focus on 
Europe is our ultimate aim, i.e., to improve the European Commission’s 
CYFS (EC-CYFS). At present, static crop maps are still used in the EC- 
CYFS (Lecerf et al., 2019) and in crop yield forecasting studies else
where (von Bloh et al., 2023; Meroni et al., 2021). 

First, annual field-specific information about which crop is culti
vated where is collected from farmers throughout the European Union 
(EU27) and stored in the LPIS (Land Parcel Information System). LPIS is 
composed of national systems with different information, availability, 
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and time coverage. Efforts to standardize LPIS are still limited 
(Schneider et al., 2023), new maps are seldomly disclosed before the end 
of the ongoing season, and time series are short for most countries. As 
such LPIS does not serve the needs of operational crop yield forecasting 
at the EU27 scale. 

For the second approach, i.e., obtaining crop type maps from high 
resolution satellite data, presently long timeseries of accurate, crop- 
specific maps are not freely available for the entire EU27. Outside 
Europe Landsat imagery was used in combination with in-situ data to 
produce large-scale yearly crop maps based on supervised classification; 
examples include the Cropland Data Layer in the US, which is available 
since 2008 (Johnson, 2019), and China- and Australia-wide maps for the 
years 2012–2015 (Teluguntla et al., 2018). Other Landsat-based studies 
relied on in-situ data to classify summer crop types from temperature and 
phenological metrics Landsat-based for a county in the US (Zhong et al., 
2014), while Tian et al.(2019) found that for north-eastern China the 
supervised classification of winter crops from the combined NDVI 
(Normalized Difference Vegetation Index) time series of Sentinel-2 and 
Landsat outperforms a classification based on a parametric model from 
NDVI MODIS time series. For individual European countries several 
efforts have provided single-year or short crop type timeseries through 
training of classification algorithms with LPIS and high-resolution sat
ellite data (Preidl et al., (2020) and Blickensdörfer et al. (2022) for 
Germany; Defourny et al. (2019) for Ukraine). d’Andrimont et al. (2021) 
made the only public crop type map for the whole European Union 
(EU27). They applied a random forest classifier to multi-temporal S1 
data from 2018 and validated the map with LPIS data for the same year. 
Their reported accuracy ranged from 40 %, at the beginning of the Eu
ropean crop growing season (February), to 83 % at the end (November). 
All these studies resulted in crop maps for a single year or at best a few 
recent years as they usually depend on high-resolution imagery with 
relatively short timeseries. In addition, mapping with high resolution 
data requires a large amount of training samples, well distributed over 
the years and among the observed regions, which is very difficult to 
collect for studies spanning large regions and multiple countries, such as 
the EU27. 

The third approach exploits low-resolution satellites, such as the 250 
m-resolution MODIS (Moderate-Resolution Imaging Spectroradi
ometer), providing timeseries with sufficient length (i.e., about 20 
years) to meet the needs for crop yield forecasting. While their use for 
crop type mapping in areas with large fields is possible (Wardlow et al., 
2007) for smaller field sizes, typical of Europe, the crop mix in a pixel 
makes specific crop type mapping difficult and the focus is moved to 
crop groups. 

Skakun et al. (2017) used a region-specific Gaussian mixture model 
(GMM) to discriminate winter and summer crops in Ukraine and in 
Kansas (US) using MODIS NDVI at 250 m spatial resolution and accu
mulated growing degree days (GDD), for years 2000 to 2014. They 
expressed the time of NDVI in “thermal time” (i.e., GDD) to reduce its 
temporal variability from weather, and thus providing a more consistent 
link with crop phenology (McMaster, 1997). Their assumption is that 
high NDVI values in springtime are indicative of winter crops, as unlike 
summer crops, they green up shortly after winter. The GMM was set to fit 
the histogram of the NDVI frequency, at given time, with a bimodal 
distribution; labelling the class with larger NDVI mean as winter crop. 
The annual maps generated for Ukraine attained an accuracy of 94 % for 
2013 when compared against field data and explained 76 % of the 
winter crop area variability obtained from regional statistics. The maps 
could be produced up to two months before winter crop harvest. For 
Europe, Weissteiner et al. (2019) used 250 m-resolution MODIS NDVI 
timeseries to identify arable land pixels with pure winter or summer 
crop signals. They used a region-specific GMM, similar to Skakun et al. 
(2017), but labelled the GMM classes according to a priori regional agro- 
statistical knowledge. Winter and summer crops were separated using an 
empirical threshold on NDVI values (e.g., 0.4 for winter crops). Despite 
that > 72 % of winter crop pixels were correctly identified, based on 

LPIS data of one region in Spain, they classified only 11 % of the arable 
land pixels. The use of these maps improved the R2 (+0.15 on average) 
between the yield of the dominant winter crop of a region and NDVI, 
compared to the use of a static arable land map for 37 % of the 
considered regions (Ronchetti et al., (2023). 

For yield forecasting purposes, the winter crop maps should allow to 
extract an NDVI signal that effectively represents crop development 
throughout the season. Because Weissteiner et al. (2019) and Skakun 
et al. (2017) only consider the green-up phase, this requirement may not 
be met as the senescence phase is also crucial for yield formation (Porter 
and Gawith, 1999; Barlow et al., 2015). In fact, focusing on the timing of 
peak NDVI cannot unequivocally describe the winter crop signal, as 
confusion may arise with other vegetation peaking in spring. The 
method of Weissteiner et al. (2019) presents two other limitations: i) the 
classification is only available at the end of the season (e.g., in October), 
which prevents its use for yield forecasting at the end of the winter crop 
season in August, and ii) in some regions a very low number of pixels is 
retained, which may not effectively represent regional crop 
development. 

Long timeseries of spatially-explicit crop information are required to 
obtain better predictors of crop status and hence improve crop yield 
forecasts for Europe. While MODIS NDVI timeseries provide long 
timeseries, the existing approaches do not provide maps that guarantee 
the extraction of representative NDVI profiles that can effectively 
describe winter crop yield formation. To address this, we focused on 
three objectives:  

1. to develop a method to map winter crop areas using MODIS NDVI 
timeseries and temperature data;  

2. to assess the accuracy and the spatial and temporal consistency of the 
resulting winter crop maps;  

3. to evaluate if the use of our annual winter crop maps improves crop 
yield forecast accuracy. 

2. Materials and methods 

2.1. Study area 

This study focuses on the EU27, the 27 countries that constitute the 
European Union in 2023 (Table S1). Winter crops account for approxi
mately 70 % of the EU27 crop area but are often grown in the same 
region with summer crops and other cover types (e.g., temporary fallow 
land). For the third objective of this paper, i.e., to assess if crop yield 
forecasts can be improved using annual winter crop maps, we focus on 
soft wheat. This is because a compound winter crop yield would lack 
physical meaning due to the large differences in average yield values 
between different winter crops. Soft wheat (30 % of total crop area) is 
widely distributed in the EU27 (Fig. 1) and its regional statistics (i.e., 
yield, area, production) are complete while most other winter crops 
have only local presence and discontinuous statistics. Fig. 1 shows the 
study area and the administrative regions considered, following the 
Nomenclature of territorial units for statistics of the European Union 
(NUTS) regions of 2016. The selected NUTS level for each country 
corresponds to the finest spatial detail of available agricultural statistics 
(Table S2). 

2.2. Data 

2.2.1. Input data 
To describe the annual crop dynamics, we used a smoothed NDVI 

timeseries produced with a MODIS processing chain (Klisch and Atz
berger, 2016). It ingests 250 m resolution NDVI time series from MODIS 
Terra and Aqua (8-day composites, MOD09Q1 and MYD09Q1, Collec
tion 6.1) for the whole EU, applies a Whittaker smoothing filter (Eilers, 
2003), and resamples the timeseries to a 10-day timestep. We used the 
resulting 10-day NDVI composites for January 2002 to September 2020. 

L. Seguini et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observation and Geoinformation 130 (2024) 103898

3

We used GDD to compute the annual theoretical maturity date of 
winter crops. GDD were computed from the daily average temperature 
data provided by the Gridded Agro-Meteorological Data (GAMD) of the 
EC-CGMS (Toreti, 2014), covering geographical Europe at a 25 × 25 km 
spatial resolution. From the daily average temperature we computed the 
GDD using a base temperature for active crop development of 0 ◦C (i.e., 
daily accumulation of average temperature when the average temper
ature is above 0 ◦C) starting from 1 January, following Skakun et al. 
(2017) to 31 August. While winter crop sowing dates may differ by 
several weeks according to the region or crop considered, their impact 
on estimated maturity date is small. This is because our GDD accumu
lation that takes 1 January as the reference may miss out GDD from early 
sowing (e.g., in October), or add GDD in case of late sowing (e.g., in 
March). Because the October-March period represents relatively cold 
periods, the GDD will be small, whereas spring and summer tempera
tures affect the GDD sum most. For each grid cell, the theoretical 
maturity date was defined annually as the first day when the GDD sum 
exceeds 1800. We used winter soft wheat maturity time as proxy for all 
winter crops since it is one of the winter crops with the longest cycle 
(NDAWN, 2023). The base temperature and the GDD requirement for 
winter wheat maturity were based on literature (NDAWN, 2023; IPAS - 
FAD - USDA, 2023; Knott et al., 2017; Steduto et al., 2012; Porter and 
Gawith, 1999) and WOFOST-CGMS model parametrization (Ceglar 
et al., 2019). 

2.2.2. Validation and comparison data 
Our results were validated against ground truth data and compared 

against an existing crop-type mapping product. While the validation 
exercise is limited to a number of countries, the comparison covers the 
whole EU. For the validation we used LPIS data available for 2018 
collected from the CHEAP (Common Harmonized European Agriculture 
Parcels) dataset (Claverie et al., 2024). The CHEAP dataset collected and 
homogenized crop distribution at field scale, as from the LPIS, from the 
EU27 countries that provided these distributions as public data. This 
information is stored in vector layers representing the field boundaries 
and the associated crop planted for each year covered by LPIS. The crop 
nomenclature of the CHEAP dataset is normalised to the EuroCrops 
legend (Schneider et al., 2023). From the EuroCrops legend we selected 
a subset of crops matching our definition of winter crop group (Table S4) 
and extracted the corresponding crop parcels from all the available 

regions (i.e. Austria, Belgium, Brandenburg (Germany), Denmark, Cat
alunya (Spain), France, Netherlands, and Portugal). This sample ac
counts for 27 % of the EU27 arable land. The winter crop polygons were 
converted into areal fraction images (AFIwinter_LPIS) using the 250 × 250 
m MODIS grid definitions indicating the share of winter crop in each 
pixel. Besides the validation using the CHEAP dataset, a comparison was 
performed against the crop-type map of d’Andrimont et al. (2021) for 
the year 2018, hereafter referred to as the EU2018 map. This map is 
considered suitable for the comparison as it covers the full EU and 
d’Andrimont et al. (2021) reported a high classification accuracy for the 
winter crop group (84 %) compared against ground data. From EU2018 
we computed six AFIs (AFIarable_land, AFIwinter_crops, AFIsoft_wheat, AFI
summer_crops, AFIdry_pulses, and AFIfodder_crops) each representing the share 
of the considered crop class (Table S4) per pixel. AFIarable_land is the sum 
of all the other classes with the exception of AFIsoft_wheat, which is a 
subclass of AFIwinter_crops. This definition of the arable land class includes 
only crop types and leaves out other agricultural cover types (e.g., 
grassland). 

Besides the 10 m-resolution crop map for Europe, we further 
compared our maps against winter crop area statistics. From the 
APRO_CPSHR database of Eurostat (2023) we obtained winter crop area 
for each EU27 country and for the EU27 as whole, as crop area statistics 
for smaller administrative regions are not readily available for all re
gions and would require substantial harmonization efforts to be pre
sented at the EU27 scale. Further details are provided in Tables S5 and 
S6. The total winter crop area was calculated as the sum of the area of 
each winter crop. 

To assess if our maps may help to improve yield prediction, we 
selected regional yield statistics for soft wheat for the EU27 regions 
(Fig. 1) at the finest spatial detail as from Ronchetti et al. (in prepara
tion). The target time window was 2002 to 2020 to overlap with the 
used MODIS data. For evaluation purposes, we only retained regions 
with yield timeseries of 10 or more consecutive years. 

2.3. Methods 

We aimed to detect MODIS pixels with a predominant presence of 
winter crops, namely that have a clear senescence before the expected 
maturity date, hence a significant fraction (>50 % for pixels with 100 % 
coverage of arable land) of the pixel is expected to have a winter crop in 

Fig. 1. The study area. Panel a) shows a normalized index (soft wheat coverage index) computed as the ratio between the total soft wheat production (tonnes) and 
the total land area of the corresponding region, using averaged data for 2002–2020. Panel b) shows the regional share of each administrative region to national 
production for soft wheat. 
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the considered year. Fig. 2 provides a graphical description of our 
approach. It consists of three parts: 1) the definition of season bound
aries; 2) the definition of maturity at 1800 GDD and 3) the definition of a 
clear NDVI senescence signal before maturity date. Regarding point 3, 
we assumed that if an arable pixel has a predominance of winter crops 
(Fig. 2a and Fig. 2b), its senescence period, characterised by a pro
nounced NDVI decline, should be observable before the date corre
sponding to 1800 GDD. On the contrary, if a pixel has no winter crop 
predominance no senescence should be observable by that date (Fig. 2c 
and Fig. 2d). 

The approach works pixelwise and considers for each season the 10- 
day MODIS NDVI data between 1 January and 31 August. We applied it 
to all the pixels where AFIarable_land is at least 1 %. The approach searches 
for the earliest observation in the timeseries (point M with coordinates 
TIMEM and NDVIM) satisfying three conditions: 1): TIMEM occurs before 
the time of 1800 GDD, and after the seasonal NDVI maximum (Max); 2) 
NDVIM has a maximum value of 75 % of the NDVI amplitude (i.e., Max – 
Min in Fig. 2); 3) point M is preceded by a point with a larger NDVI and 
followed by one with lower NDVI. The pixel is identified as having a 
dominant winter crop signal if all three conditions are met. The 75 % 
threshold was determined with a trial-and-error process on a large set of 
samples. Fig. 2b illustrates that no point would match the three condi
tions when using either a 25 % or 50 % threshold. 

We then applied our approach to every arable land pixel for all years 
of the timeseries, resulting in annual maps of arable land pixels with a 
dominant winter crop signal; these pixels may consist of pure winter 
crop or contain a significant proportion of winter crop (Fig. 2b). From 
here onward we refer to these maps as AFIwinter_MODIS, for which the 

pixel values remain the areal fractions of the original share of arable 
land (i.e., as derived from EU2018 based crop map, AFIarable_land). 

2.3.1. Consistency analysis 
To assess the quality of our AFIwinter_MODIS maps we examined their 

spatial and temporal consistency. The spatial consistency was assessed 
by comparing our map to the AFIwinter_LPIS and AFIwinter_crops map 
derived from the CHEAP dataset and d’Andrimont et al. (2021), all 
products referring to the year 2018. Using thresholds on winter crop 
fraction, AFIwinter_MODIS was used to derive three maps, AFIwinter_MODIS, 
AFIwinter_MODIS50, and AFIwinter_MODIS90, including pixels with at least 1 
%, 50 %, and 90 % of winter crop coverage, respectively. The same 
thresholding scheme was applied to AFIwinter_LPIS and AFIwinter_crop. Er
rors were then determined for the three thresholds. AFIwinter_MODIS was 
validated against AFIwinter_LPIS and compared against AFIwinter_crop. In 
addition, we also compared AFIwinter_crop against AFIwinter_LPIS to inde
pendently assess the accuracy of AFIwinter_crop as a reference for the EU27 
region. Standard metrics were employed for all the assessments, 
encompassing commission error (both absolute and relative to classified 
winter crop), and omission error (both absolute and relative to total 
winter crop as per the reference map). As accuracy metrics we included 
producer’s and user’s accuracy, which quantify correct detections rela
tive to total classified winter crop and to the reference winter crop map, 
respectively. Additionally, a map of simple difference (AFIwinter_MODIS 
minus AFIwinter_crop) was generated to assess how their spatial patterns 
match. Lastly, to assess the extent to which our MODIS maps erroneously 
assigned winter crop dominance to non-winter crop pixels we compared 
AFIwinter_MODIS to the reference non-winter maps of AFIsummer_crops90. 

Fig. 2. Example NDVI profiles of arable land pixels with different crop composition: pure winter crop (a); 70% winter crop and 30% summer crop (b); 50% winter 
crop and 50% summer crop (c); and pure summer crop (d). In (b) and (c) green and yellow lines represent the pure winter and summer crop NDVI profile, 
respectively, used to infer the linearly-mixed profile (grey). The blue lines correspond to different thresholds on the (compound) NDVI: 75% (dense dots), 50% and 
25% (loose dots). The red lines represent the minimum and maximum NDVI of the profile. The vertical line is the date when an accumulation of 1800 GDD occurred; 
M is the point that identifies the presence of a clear senescence before 1800 GDD and which is used to identify a pixel as winter crop. 
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The comparison against AFIfodder90, and AFIdry_pulses90, the two 
remaining classes of non-winter crops, is not reported Both approaches 
to compute winter crop area and winter crop profiles as they accounted 
for less than 0.2 % of the total number of AFIarable_land pixels. 

Temporal consistency was assessed in two ways. First, we compared 
the annual winter crop area obtained from AFIwinter_MODIS maps with the 
annual winter crop area from official statistics. This comparison was 
done at country and at EU27 level due to the limited availability of 
regional statistics of winter crops. The total winter crop area was derived 
from AFIwinter_MODIS maps using a latitude-corrected approximation of 
each pixel’s area. The quantitative assessment was done using the mean 
absolute percentage error (MAPE): 

MAPEr =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
AreaAFIwinter MODISi,r − AreaEUROSTATi,r

AreaEUROSTATi,r

⃒
⃒
⃒
⃒*100 (1)  

where r is the considered region, n is the total number of years and i is a 
given year for which the winter crop area from statistics (AreaEUROSTAT) 
and from AFIwinter_MODIS (AreaAFIwinter_MODIS) is compared. 

Second, we visually compared the inter-annual behaviour of the 
regional NDVI profiles derived from all computed AFI maps (i.e., AFI
winter_MODIS and the EU2018-derived AFIs). We qualitatively assessed if 
the regional NDVI profile from AFIwinter_MODIS corresponded to an ex
pected winter crop phenological cycle and to what extent it matched the 
regional NDVI profile extracted by the AFIs. Regional NDVI values for 
each AFI were computed using a weighted mean of the pixels in the 
region, with the share of crop or arable land contained in each pixel as 
the weight (Genovese et al., 2001). Both approaches to compute winter 
crop area and winter crop profiles have the advantage to down-weigh 
those pixels with lower winter crop presence and where more 

confusion could occur with other land covers present in the pixels (e.g., 
grassland). 

2.3.2. Annual winter crop maps to describe crop yield 
To assess if the use of the annual MODIS winter crop maps can better 

describe crop yield interannual variability, we performed linear 
regression between timeseries of soft wheat yields and regionally- 
aggregated NDVI from the annual AFIwinter_MODIS maps. The goodness 
of fit resulting from this analysis was compared with that obtained using 
NDVI aggregated with three static maps from EU2018 (i.e., AFIarable_land, 
AFIwinter_crop, AFIsoft_wheat). 

Per administrative region (i.e., NUTS) and year, we spatially aggre
gated 10-day NDVI values for 2002–2020 using the static EU2018-based 
AFIs, applied to the whole timeseries, as well as the annually-varying 
AFIwinter_MODIS for each corresponding year. Then, we used the 
approach of López-Lozano et al. (2015) to determine the best time 
period for NDVI accumulation. That is, we summed all possible combi
nations of consecutive 10-day NDVI values from 1 January to 31 August, 
for a total of 300 combinations. Each combination of aggregated NDVI 
timeseries (e.g., 1 January-10 January or 1 January-20 June) was used 
separately in a linear regression model, to describe the temporal yield 
variability of soft wheat at NUTS level. For each spatial aggregator (i.e., 
AFIwinter_MODIS AFIarable_land, AFIwinter_crop, and AFIsoft_wheat) we retained 
the predictor that attained the highest R2, and also calculated the 
associated significance value and RMSE (root mean square error). To 
evaluate if the use of our annual MODIS-derived maps better describes 
crop yield interannual variability, we compared the performance of 
models based on AFIwinter_MODIS (modelswinter_MODIS) with models based 
on AFIwinter_crop and AFIarable_land (modelswinter_crop and modelsarable_land). 

Fig. 3. Winter crop distribution in the EU27 countries for 2018 (AFIwinter_MODIS). Green colours indicate pixels that have a dominant winter crop signal. Darker green 
colours indicate pixels with a higher proportion of arable land. Orange pixels are arable land for which no winter crop presence is detected. White colours show non- 
arable land areas. 
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3. Results 

3.1. MODIS-based winter crop maps 

3.1.1. Spatial analysis 
Fig. 3 shows the AFIwinter_MODIS map for 2018, as an example. The 

map correctly identifies areas with a strong density of winter crops. For 
example, in southern Italy durum wheat and barley winter crops are 
predominant, and our maps show a majority of pixels detected as winter 
crops; whereas for northern Italy, where maize and soybean summer 
crops dominate, fewer pixels are identified as winter crops. Main pro
ducing regions for soft wheat, like north-east Germany and northern 
France, also have high AFIwinter_MODIS values. South-eastern Poland has a 
low AFIwinter_MODIS, which corresponds to a dominance of maize in that 
region. 

Table 1 provides a quantitative summary of the validation (AFI
winter_LPIS as reference) and the comparison (AFIwinter_crop as reference), 
expressed in terms of area for the selected threshold of 50 %. We 
observed low omission error (0.17) but higher commission error (0.23), 
while both producer (0.86) and user (0.77) accuracy are very high for 
our product AFIwinter_MODIS. The comparison against EU2018 presents 
similar results to the validation with AFIwinter_LPIS, but with a higher 
omission error (0.23), lower commission error (0.17), a similar producer 
accuracy (0.82), and slightly higher user accuracy (0.83). The compar
ison of AFIwinter_crop against AFIwinter_LPIS showed good accuracies and 
low commission errors (Table S7 – S9) supporting our choice to use 
EU2018 as a reference for the comparison with our product at conti
nental scale. 

We further observed that our commission error with almost pure 
summer crop pixels (AFIsummer_crop90) is low with only 5 % of these 
pixels classified as winter crop. The misclassification did not follow a 
specific spatial pattern, and could potentially be caused by mis
classifications in EU2018. 

We then assessed the difference between AFIwinter_MODIS for year 
2018 and the AFIwinter_crop from EU2018. Visual inspection (examples in 
Figure S2) shows that AFIwinter_MODIS correctly represents the main 
spatial patterns of winter crop distribution. Fig. 4 shows the difference 
between the two products. Three observations can be made: i) a large 
fraction of pixels have a very good correspondence between the AFI 
values (difference < 10 %), ii) underestimation (blue colours) is more 
frequent and intense towards eastern and northern regions of the EU27; 
iii) overestimation (red colours) occurs in southern and western regions. 

3.1.2. Temporal analysis 
The total winter crop area in EU27, derived from AFIwinter_MODIS, is 

consistently below the reference EUROSTAT area and shows an inter- 
annual variability different from the reference data (Fig. 5a). On 
average, the difference in winter crop area derived from AFIwinter_MODIS 
is about 19 % lower than that reported by EUROSTAT, ranging from 
approximately 10 % (2015, 2019, 2020) to 25 % lower (2002, 2010, 

2011). For the reference year 2018 only, the difference is about − 11 % 
considering AFIwinter_MODIS but + 2 % when considering AFIwinter_crop. 
Country-scale analysis reveals differences with years of over- and un
derestimation depending on the region (Fig. 5b and Figure S3). For 
example, for France (Fig. 5b), the main soft wheat producer in the EU27, 
AFIwinter_MODIS underestimates winter crop area in 2002 and 2007 but 
overall has an 11 % MAPE, indicating an accurate area estimation. Other 
relevant producers have a MAPE below (Spain, Italy, Bulgaria, and 
Denmark) or around (Germany) 20 %. These countries account, together 
with France, for more than 50 % of the soft wheat area in the EU27. All 
these countries also display the lowest interannual variability of winter 
crop area from AFIwinter_MODIS (Figure S3). Larger errors (between 30 % 
and 40 % MAPE) are found for Poland and Romania, accounting for 22 
% of the EU27 soft wheat area. MAPE analysis reveals spatial clusters 
(Fig. 5c); for example, in southern European countries (Cyprus, Italy, 
Spain, and Portugal, Figure S3), AFIwinter_MODIS overestimates winter 
crops area. The Netherlands, Belgium, and Ireland present a similar 
MAPE and area trend based on AFIwinter_MODIS, with the largest winter 
crop areas detected for the same years (2006 and 2018). Notably, the 
Netherlands’ overestimation in 2018 was nearly 70 % for AFIwinter_MODIS 
and 73 % for AFIwinter_crop: the EU2018 map also did not properly detect 
winter crop area for that year. The Baltic countries (Estonia, Latvia, 
Lithuania) present an increasing trend in detected winter crop area that 
peaked in 2020, 2017 and 2015. The year with the lowest winter crop 
area estimation from AFIwinter_MODIS is 2002 for most countries. 

To illustrate the effect of different crop maps on regional NDVI 
profiles, Fig. 6 provides representative examples based on different 
maps, i.e., AFIwinter_MODIS, AFIwinter_wheat, AFIwinter_crop, and AFIarable_land. 
These examples are generated for the reference year 2018, and the years 
with minimum and maximum difference in the EU27 winter crop area 
when compared to EUROSTAT (2002 and 2015 respectively). The re
gions selected are five main producing regions for winter wheat. In five 
cases the NDVI profiles are almost identical across all AFIs (i.e., panels e, 
g, h, i, and k): in those regions winter crops constitute the predominant 
crop group, leading to a consistent pixel selection for all AFIs. The NDVI 
profiles for year 2018 (panels a, d, j, and m) obtained from the AFIara

ble_land present later and slower green-up and senescence phases, with 
lower NDVI values around the seasonal peak, as compared to the other 
AFIs that behave almost identically. This suggests that winter crops 
developed earlier compared to the generic arable land profile. Most of 
the NDVI profiles derived from AFIwinter_MODIS for year 2002 and 2015 
(panels b, c, f, l, and n) show an earlier NDVI increase, as can be expected 
for winter crops, while the profiles from the other AFIs overlap, 
depicting a more generic arable land profile. We attribute this to crop 
rotation practices or other changes in land cover composition, which 
cannot be accounted for by static AFIs. This is evident in the NDVI 
profiles obtained for region RO411 for 2015 and 2002 (panels n and p): 
while the use of AFIwinter_MODIS always results in a recognizable NDVI 
profile of winter crops, the profiles derived from the other maps show 
late senescence and low NDVI peaks in 2015, and no green-up phase 

Table 1 
Results of the validation and comparison between AFIwinter_MODIS and the two reference AFIs, reported in total area (×103ha). Panel a) reports the total areas (×103ha) 
of winter crop detected in the validation (yellow cells) and comparison (blue cells) for year 2018, for the AFIs involved using a 50 % fraction threshold. The total area 
considered is smaller for the LPIS data than for EU2018, resulting in the differences in total AFI areas for the validation and the comparison. Panel b) reports the error 
and accuracy metrics for validation (yellow cells) and comparison (blue cells) for year 2018, for the AFIs involved.  

a) Area (£103ha) Validation Comparison 
AFIwinter_MODIS AFIwinter_LPIS AFIwinter_MODIS AFIwinter_crop  

10,360 9,322 35,803 36,466  

b) Metrics Error Accuracy 

Omission Commission Producer User 

Abs. (×103ha) Rel. Abs. (×103ha) Rel. 

Validation (AFIwinter_LPIS) 1,543 0.17 2,354 0.23 0.86 0.77 
Comparison (AFIwinter_crop) 8,503 0.23 6,027 0.17 0.82 0.83  
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during spring in 2002. Besides the examples in Fig. 6, we observed that, 
AFIwinter_MODIS effectively describes a winter crop phenology. Notably in 
northern regions (e.g., the Baltic countries, Finland and eastern Poland, 
Figure S4), the NDVI profiles derived from AFIwinter_MODIS show a shorter 
senescence period compared to the profiles derived from the other AFIs, 
which lack a distinct senescence phase. 

3.2. The use of annual winter crop maps to describe crop yield 

Fig. 7 presents the performances of the regional linear models 
(modelswinter_MODIS) computed using the timeseries of the accumulated 
NDVI and soft wheat yield statistics. The highest R2 values (Fig. 7a) are 
observed in eastern and northeastern regions and in regions of Germany 
and Spain. Those regions account for more than 30 % of their respective 
national production of soft wheat (Table S9). While modelswinter_MODIS 
explain more than half of the yield variance (R2 > 0.5) in 40 % of re
gions, no to little explanatory power (R2 < 0.3) is observed in 30 % of 
regions, mostly in western and southern Europe (e.g., France, western 
Germany, northern Italy). Among the 25 % largest wheat producing 
regions in the EU27, 13 out of 22 have an average R2 of 0.2 with mostly 
no significant models (p-value > 0.05, 8 out of 13) all located in 
northern France. The remaining nine regions feature R2 values between 
0.5 and 0.7 in five cases and exceeding 0.7 in the other four. The 
qualitative comparison of the R2 distribution shows similar results 
regardless of the base map used for the NDVI aggregation (i.e., AFI
winter_MODIS in Fig. 7a; AFIarable_land and AFIwinter_crops, in Figure S6). To 
assess if low R2 values could result from limited temporal variability in 
crop yield we regressed the regional-level R2 values against the corre
sponding coefficients of variation computed from regional yield times
eries, but this did not result in a significant relationship. 
Modelswinter_MODIS provided R2 > 0.5 for 42 % of the regions (44 % of the 

average EU27 soft wheat production), compared to 38 % for 
modelswinter_crop. 

Fig. 7b shows at administrative unit level how the modelswinter_MODIS 
based on the annually-updated AFIwinter_MODIS perform with respect to 
modelswinter_crop based on the static AFIwinter_crops from 2018. The 
dominance of light yellow to blue colours indicates that mod
elswinter_MODIS achieved a similar to better R2 as compared to mod
elswinter_crop. While modelswinter_MODIS provided better results in large 
areas of western and northern Europe, worse performances are observed 
in Greece, western Romania, southern Hungary, and northern Poland. 
We also found that modelswinter_MODIS provided significant models (p- 
value < 0.05) for 335 regions, 9 % more than that observed using 
modelswinter_crop; accounting for 6 % more of the EU27 soft wheat pro
duction explained through regression. Our analysis shows that the use of 
our year-specific winter crop maps overall provides a small, but 
consistent improvement to crop yield prediction based on linear 
regression with regionally aggregated NDVI. 

4. Discussion 

Our study correctly identified 90 % of arable land pixels with 
dominant winter crop, when compared to EU2018. The resulting maps 
provide a better description of soft wheat phenology, which improves 
the crop yield forecasting accuracy when compared to static maps. 

4.1. Winter crop maps 

The validation against the harmonized LPIS data, performed over 27 
% of the EU27 arable land, showed that our method is accurate in 
mapping winter crop. To further understand the composition of our 
errors and accuracy we extended the validation exercise to a total of four 

Fig. 4. Difference between AFIwinter_MODIS for year 2018 and AFIwinter_crop. Blue colours indicate an underestimation (AFIwinter_MODIS < AFIwinter_crop), red colours an 
overestimation (AFIwinter_MODIS > AFIwinter_crop), and light-yellow areas denote similar values (|AFIwinter_MODIS − AFIwinter_crop|<10 %). 
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classes with increasing winter crop coverage (i.e., classes with winter 
crop share 1–25 %, 25–50 %, 50–75 %, and 75–100 %) and observed 
that while error and accuracy remained high and almost similar for the 
first three classes (e.g., omission error 0.58, producer’s accuracy 0.42), 
they drastically improve for the purest class (e.g., omission error 0.19, 
producer’s accuracy: 0.81). This highlights that higher accuracies are 
obtained for pixels with high winter crop purity. 

The comparison between our winter crop map (AFIwinter_MODIS) and 
EU2018 (AFIwinter_crops) encompassed all EU27 arable land. The appro
priateness of using EU2018 as a reference was proven by its comparison 
against the LPIS data, resulting in a producer’s accuracy between 0.77 
and 0.93 and a user’s accuracy between 0.90 and of 0.92 (Table S9). 
Overall, the comparison between AFIwinter_MODIS and AFIwinter_crops 
showed an overestimation of winter crop area in Mediterranean regions. 
There, our algorithm attributes almost all arable land to the winter crop 
class as most crops share the same season. An example is sunflower that, 
despite being a summer crop, in Spain presents a winter growing cycle as 
it is planted in late winter. Conversely, underestimation of winter crop 
area occurred in all other countries, but mostly in northern and eastern 
regions where the summer crop area is small. In northern regions this 
may be caused by the presence of spring varieties of winter cereals (e.g., 
spring soft wheat), which are usually included in the same statistics as 
winter crops, but possibly having a later senescence than winter crops 
and thus not identified by our algorithm. In eastern countries underes
timation may be attributed to the fragmentation of arable land compo
sition and smaller farm sizes, which results in mixed pixels containing 
winter crops, summer crops, and natural vegetation. This is reflected by 
the average farm sizes that are smaller in eastern countries than in 
western countries. For example, in 2020, only 0.9 % of Romanian farms 
had an area > 50 ha while in France this was 46 % (Eurostat, 2022). The 
underestimation of winter crop area was expected as our approach does 
not recognize pixels with low crop presence, resulting in a mixed signal 
(Fig. 1d and Figure S1). 

We further observed that the difference in interannual variability 
observed between winter crop area detected with our algorithm and 
winter crop area from EUROSTAT statistics (Figure S8) may be influ
enced by the interannual variability of crop phenology, despite the GDD 
normalization. For example, in Belgium, Ireland, and the Netherlands, 
our algorithm detected peaks in winter crop area for 2006 and 2018 
(Figure S3). The likely reason for these peaks is the high temperatures 
experienced during spring and summer of those years leading to earlier 
grassland mowing and silage maize harvest to prevent wilting. As 
consequence, the NDVI profiles of winter and summer crops overlapped 
more, showing a winter crop-like profile with early senescence, thus 
leading to more winter crop pixels detected in our maps. 

Compared to previous crop-group mapping exercises (Weissteiner 
et al., 2019; Skakun et al., 2017), our approach effectively addresses 
three limitations:  

i) We incorporate more information about crop development (i.e., 
senescence) relevant for crop yield forecasting, rather than 
relying on timing of maximum NDVI only. For example, Fig. 2c 
presents a profile characterised by an equal presence of winter 
and summer crop; here the timing of maximum NDVI (Weis
steiner et al., 2019) would identify a winter crop, whereas the 
mixed signal becomes clearer in the senescence phase, which we 
account for.  

ii) While Weissteiner et al. (2019)’s method leads to outputs at the 
end of the agricultural season (e.g., October) our maps can be 
produced a few weeks after winter crop flowering (e.g., July). 
Although possibly later than Skakun et al. (2017), this is still well 
before the end of the agricultural season, which is valuable for 
operational crop yield forecasting of winter crops. 

iii) We classify each arable land pixel using only information asso
ciated with the winter crop cycle, while Weissteiner et al. (2019) 

Fig. 5. Timeseries of winter crop area for EU27 (a) and France (b). Timeseries were computed from the annual map obtained with AFIwinter_MODIS 2002–2020 (yellow 
line), from AFIwinter_crop(green dot), and from EUROSTAT statistics (blue line). Panel c) displays the country-specific MAPE values. 
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only classify 11 % of the arable land pixels with the risk of having 
too few pixels per region, preventing robust statistical analysis. 

In addition, our results reported a higher user accuracy when 
compared to Skakun et al. (2017) (89 % vs 85 %) despite that they used a 

smaller validation sample (800 pixels vs more than 7 million for our 
validation) and focussed on Ukraine, where detection of pure winter 
crop pixels is easier compared to the EU27 because of the larger average 
farm size, which is 1,000 ha in Ukraine (FAO, 2023) against 17.4 ha for 
the EU27 (Eurostat, 2022). 

Fig. 6. Regional NDVI profiles computed for the five regions (rows) and three years (columns). Four AFIs are used to extract the signal: AFIwinter_MODIS (gold), 
AFIwinter_crop (dark green), AFIarable_land (dark grey), and AFIwinter_wheat (light blue). The left column displays the NDVI timeseries for the 2018 agricultural season (1 
October – 30 August), the central for 2015 and the right column for 2002. 
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Lastly we observed that the use of a static arable land mask for the 
entire time series had a minor impact as arable land distribution is 
relatively static over the years (0.5 % change in total arable land area 
between 2000 and 2018; European Environment Agency, 2023). How
ever it is necessary to exclude those pixels which have no probability to 
present winter crop (e.g., fully covered by forest) and to down-weigh for 
regional average those pixels with low arable land share and thus high 
probability to have confusion with other vegetation classes, such as 
grassland, that may have similar phenology with winter crops. 

4.2. The use of annual winter crop maps to model crop yield 

We demonstrated that spatial aggregation of NDVI for the MODIS- 
based year-specific maps resulted in a better performance of region- 
specific yield models for soft wheat, as compared to using a single 
high-resolution map. While significant error reduction is observed for 
regions of the Baltics, northern Germany, and Bulgaria, the reduction is 
smaller when all the EU27 regions are considered (RMSE decreased by 3 
%). We observed clear spatial patterns in the explained variance of crop 
yields with higher R2 values and predominance of regions with s sta
tistically significant regression (i.e., p-value < 0.05) in southwestern, 
eastern, northern and northeastern regions. 

This pattern is similar to that observed by López-Lozano et al. (2015), 
who used a static arable land map to extract regional satellite-derived 
fAPAR (fraction of Absorbed Photosynthetically Active Radiation) 
timeseries at 1 km resolution and correlated it with yield statistics at 
sub-national level for the period 1999–2012. Notably, we confirmed that 
in large areas of western Europe vegetation indexes can only partially 
explain soft wheat yield variability. Indeed crop yield is not only a 
function of green biomass (directly associated to NDVI) but of more 
factors including for example frost or heat stress (Barlow et al., 2015). 

Annual maps result in a higher R2 between aggregated vegetation 
indexes and yield compared to static maps in large areas of central and 
northern Europe (Fig. 7b), which confirms the findings by Ronchetti 

et al. (2023) on soft wheat. We observed this for 56 % (226 over 403) of 
the regions with significant correlation (p < 0.05), whereas Ronchetti 
et al. (2023) for 37 % (28 over 75). When all the regions are considered, 
the regression performed between yield and NDVI aggregated with our 
maps offers a slightly stronger average correlation (0.51 vs 0.45) even 
though Ronchetti et al. (2023)’s correlation is obtained using the yield 
time series of the predominant winter crop in each region, and not 
against soft wheat yield only, as in our case. This suggests that the use of 
our maps can result in better forecasting outcomes compared to those by 
Weissteiner et al. (2019), used by Ronchetti et al. (2023). 

Despite that the use of AFIwinter_MODIS allows to depict a more real
istic NDVI winter crop trajectory as compared to those obtained by the 
two benchmark AFIs (AFIwinter_crop, AFIarable_land), this is not always 
translated into a better description of the soft wheat yield variance. One 
reason is that the main winter crop cultivated was not soft wheat and 
thus the winter crop trajectory does not describe soft wheat canopy 
conditions, such as in northern Spain, where the dominant crop is 
barley. A second reason is that the selected pixels with winter crops 
dominance were not representative for winter crops in the region, as in 
Hungary and its southern bordering regions. In fact, these regions have a 
limited presence of pixels with winter crop dominance and a large 
number of pixels with a mix of winter and summer crops (e.g., Fig. 2c). 
Therefore, the detected winter crop pixels are only those with a distinct 
early senescence (Figure S5), but may not effectively represent soft 
wheat phenology, as soft wheat may be predominantly found in mixed 
pixels. Similarly, both Ronchetti et al. (2023) and López-Lozano et al. 
(2015) also achieved poor correlations for these Hungarian regions. 

4.3. Outlook 

Two limitations of the proposed approach limit its use in an opera
tional crop yield forecasting context: the uncertainty in the GDD esti
mation, and the late timing of mapping. For GDD, we used a fixed season 
start date (1 January) despite the fact that winter crop sowing dates vary 

Fig. 7. a) r2 of the best regression performances obtained at NUTS level with modelswinter_MODIS, computed for each region, using the associated timeseries of 
accumulated NDVI values from AFIwinter_MODIS aggregation, against the timeseries of soft wheat yields. b) Difference in R2 between the results from modelswinter_MODIS 
and those obtained from modelswinter_crop: positive values (blue colours) indicate a better performance of annual modelswinter_MODIS. 
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by year and location, because no accurate information is available on 
precise location- and year-specific sowing dates for winter crops. To 
reduce this uncertainty linked to GDD estimation a different approach 
may use only the GDD requirements for the period flowering-maturity 
instead of sowing-maturity. Indeed, flowering date is strongly associ
ated with the time of maximum NDVI, and as such easily detectable at 
pixel level, while the GDD requirements between flowering and matu
rity are well-known from literature. 

With our method the winter crop map can only be derived once a 
reasonably complete NDVI profile is present (at least until 1800 GDD or 
31 August); this limits its use for crop yield forecasting purposes to later 
stages of the winter crop season The late time of mapping could be 
improved defining as winter crop those pixels that reach the date of 
maximum NDVI within the GDD requirements for flowering. Such an 
approach would provide winter crop maps around the flowering date 
with a relevant gain for policymakers who aim to have accurate crop 
yield forecasts well before harvest. 

Our study used a simple regression approach to assess whether 
annual MODIS-derived winter crop maps can be useful for yield pre
diction. More complex approaches that combine multiple predictors 
could be applied to further enhance the accuracy of yield forecasts. This 
could for example be achieved through the use of non-linear approaches, 
such as machine learning, which besides remotely-sensed vegetation 
status could also incorporate meteorological data. 

Finally our method has the potential to be applied with different 
remote sensing data and in various geographical settings. Beyond the 
use of NDVI, the method could equally be implemented with time series 
of other vegetation indexes and biophysical variables (e.g., the 
Enhanced Vegetation Index, EVI or the fraction of absorbed photosyn
thetically active radiation, FPAR) and to sensors or vegetation products 
with different spatial resolution. For example, we expect a similar ac
curacy when applying our method to Copernicus timeseries of bio
physical parameters (Wolfs et al., 2022) as they are based on Sentinel-3 
and Proba-V sensors, with a similar resolution (300 m) as the MODIS 
data used in this study. If applied to timeseries of vegetation indexes 
with higher spatial resolution (e.g., Sentinel-2′s 10 m NDVI) the accu
racy would likely increase as in that case mostly pure arable land pixels 
would be present, removing disturbances caused by non-arable land in 
the mixed pixels, even if the temporal resolution of the data could 
become problematic in areas/periods with significant cloud cover 
(Whitcraft et al., 2015). Applying the method to timeseries with coarser 
spatial resolution (e.g.,MODIS’s 500 m FPAR, (Myneni, 2020) would 
likely yield lower accuracy as winter crop pixels would be more mixed 
with other land cover types. This may not necessarily have a negative 
effect when using the resulting maps in crop yield forecasting as our 
algorithm would still select pixels with winter crops dominance. We 
would anyhow expect a smaller number of pixels detected with pre
dominance of winter crops, notably in regions where the method is 
already prone to misdetection (e.g. northeastern EU27). Application in 
other geographical settings (i.e. outside the EU27) is possible, particu
larly if winter and summer crops in those settings have similar temporal 
growth patterns (Hao et al., 2020) as in EU27. Potentially, it may require 
however a new parametrization of the GDD threshold, adapted to the 
winter crop varieties dominant in those areas, especially if the regions 
have substantially different climate characteristics, crop varieties, and 
season definitions from those in the EU27. 

5. Conclusions 

This study presented a novel approach using moderate-resolution 
satellite and temperature data to identify pixels with a dominant 
winter crop NDVI signal. We used location-specific growing degree day 
accumulations to identify the annual date of theoretical maturity of a 
winter crop, and evaluated for each pixel if NDVI displays a clear 
decrease before that date. Applied to the year 2018 the resulting map 
showed good correspondence with data from farmers’ declaration (LPIS 

data from Claverie et al., 2024) and with an existing high-resolution 
crop map for Europe (d’Andrimont et al., 2021). The advantage of our 
approach over high-resolution crop mapping is its applicability to long 
historical timeseries, and the generation of consistent annual maps 
sufficiently early in the season to be of use for yield prediction before the 
end of the agricultural season. Despite the limited stability in area es
timates between the years considered, the annual selection of pixels with 
dominant winter crop signal positively affected yield forecast accuracy, 
particularly in eastern, northern, and northeastern European countries. 
The simple yield modelling presented in this paper serves to demon
strate that annual winter crop maps can provide useful input to yield 
forecasting. 
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