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Abstract: In recent years, deep learning models have led to improved accuracy in industrial defect
detection, often using variants of YOLO (You Only Look Once), due to its high performance at a low
cost. However, the generalizability, fairness and bias of their outcomes have not been examined, which
may lead to overconfident predictions. Additionally, the complexity added by co-occurring defects,
single and multi-class defects, and the effect on training, is not taken into consideration. This study
addresses these critical gaps by introducing new methodologies for analyzing dataset complexity
and evaluating model fairness. It introduces the novel approach of co-occurrence impact analysis,
examining how the co-occurrence of defects in sample images affects performance, and introducing
new dimensions to dataset preparation and training. Its aim is to increase model robustness in the face
of real-world scenarios where multiple defects often appear together. Our study also innovates in the
evaluation of model fairness by adapting the disparate impact ratio (DIR) to consider the true positive
rate (TPR) across different groups and modifying the predictive parity difference (PPD) metric to
focus on biases present in industrial quality control. Experiments demonstrate by cross-validation
that the model trained on combined datasets significantly outperforms others in accuracy without
overfitting and results in increased fairness, as validated by our novel fairness metrics. Explainability
also provides valuable insights on the effects of different training regimes, notably absent in prior
works. This work not only advances the field of deep learning for defect detection but also provides
a strategic framework for future advancements, emphasizing the need for balanced datasets and
considerations of ethics, fairness, bias and generalizability in the deployment of artificial intelligence
in industry.

Keywords: deep learning; fairness; bias; generalizability; computer vision; explainability; industrial
defect detection; metal sheet defect detection; YOLO

1. Introduction

In the industrial manufacturing sector, the issue of surface defects on metal products
presents a significant challenge. The repercussions of these defects are far-reaching, with fi-
nancial implications and risks to company reputation being paramount. The first quarter
of 2023 alone saw a dramatic increase in product recalls due to manufacturing defects in
the US, with a 34% rise from the last quarter of 2022, amounting to 83.3 million units [1].
This alarming trend, highlighted in the “U.S. Product Safety And Recall Index” report by
Sedgwick, underlines the critical nature of effective defect detection.

Traditionally, defect detection in manufacturing has relied heavily on human inspec-
tion, a method now increasingly recognized as error-prone. Studies, including those by
Drury and Fox (1975), show human error contributes substantially to inspection inaccura-
cies, ranging between 20% and 30% [2]. The evolution of deep learning models for defect
detection has marked a transformative shift in this domain, with recent deep learning
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models [3–8] increasingly used for industrial inspection to automate the identification of
specific defect classes, provide valuable insights into production process issues, and allow
for timely interventions that can prevent costly machine or process shutdowns.

Despite these advances in automating defect detection, there persists a notable gap in
the investigation of the generalizability of such solutions, their fairness and the presence of
bias, which may adversely affect the reliability of results. Moreover, the literature has not
examined the role of the number, uniqueness and co-occurrence of defects in datasets and
their effect on training, augmentation and final outcomes. Images of metal surfaces may
either contain a single or multiple classes of defects, in some cases co-occurring: e.g., an
image may contain multiple defects (referred to hereafter as “multi-class”), amongst which
some may also appear uniquely in other images (referred to hereafter as “single-class”).
This may confound training and complicates our understanding of the distinct impacts of
data augmentation techniques on single-class versus multi-class image datasets. Common
augmentation strategies, including rotation, scaling, flipping, cropping, and adjustments in
brightness or contrast, are typically applied uniformly across datasets. However, the uni-
form application of augmentation techniques may not be optimally effective for datasets
with diverse characteristics, especially including both single and multi-class images with co-
occurring defects. If certain defects co-occur in single and multi-class images, their number
of instances is likely to increase in an unbalanced manner after the application of uniform
data augmentation. This is likely to lead to overconfident predictions, biased and unfair
performance and lack of generalizability, even when otherwise high-performing optimized
models are deployed. For example, 30% of the widely used GC10-DET dataset [3–5,8],
also examined in this work, comprises multi-class images with varying co-occurrence
defects. This disparity raises a crucial question about the adequacy of current augmentation
methods used in recent papers and the potential need for more tailored approaches to
enhance dataset stratification and thereby improve model performance.

This study, therefore, embarks on a comprehensive, systematic investigation of the nu-
anced impact of diverse training regimes on unbalanced, real-world datasets, with a focus
on generalizability, fairness and bias. It introduces a novel framework of co-occurrence im-
pact analysis, examining in depth how the presence of single or multiple classes of defects in
the same image and the co-occurrence of defects influence detection performance. It applies
tailored augmentation and balancing strategies, leading to truly balanced and fair training
datasets, which are shown to lead to improved, generalizable performance. Explainability
methods are used to demonstrate that our proposed approach of fair and balanced training
allows models to focus on the actual defect areas more effectively than commonly used
augmentation solutions, resulting in robust and accurate outcomes. The use of explain-
ability not only enhances the transparency of the defect detection models but also aids
in identifying potential areas for further bias mitigation and model improvement. This
work also redefines fairness and bias metrics, namely the disparate impact ratio (DIR) and
positive parity difference (PPD), by concentrating on true positive rates (TPR). It thus shifts
the focus of fairness and bias metrics to the accurate detection of defects in real-world
datasets, with under-represented and co-occurring defects in single and multi-class im-
ages. Thus, our work contributes to the field by providing an in-depth examination of
the effect of dataset bias through co-occurring or under-represented defects, the effect of
diverse data balancing approaches and the re-definition of fairness and bias metrics for
industrial applications.

In order to objectively assess the effect of training strategies, fairness, bias and general-
izability, it examines a fixed model to ensure consistency across the experimental conditions.
As the focus of this work is not the development of a new defect detection model, it uses
a variant of the commonly deployed YOLOv5 model. A large number of recent works
use YOLOv5 as their basis [3,5–10], and more recently YOLOv7 [4]. Although YOLOv7
outperforms YOLOv5 in terms of performance, this is only possible on high-performance
GPUs, which may not be easily accessible to industry. For this reason, and the fact that the
majority of recent works use YOLOv5 due to its appropriateness for real-world conditions,
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we fix our model to the more computationally efficient YOLOv5s. The resulting conclusions
regarding training balancing strategies and dataset management are expected to apply to
all models used for defect detection, as they concern dataset management, preprocessing
and experimental setup. The overarching objectives and contributions of this research
are multi-fold:

• Analyze the impact of training data diversity by comparing the performance of models
trained on single-class images with those trained on multi-class images, to investigate
how data representation influences model performance.

• Systematically explore the effectiveness of transfer learning and fine tuning in enhanc-
ing model performance for specific scenarios with mismatched datasets, i.e., when a
pre-trained model is trained on data that is different from the testing data.

• Investigate model bias and fairness by a critical and quantitative assessment of fairness
and bias in models trained on different data types to detect various defects.

• Bridge theory with practical application in industrial quality control by offering a
practical framework and insights into how DL can be practically applied in industry,
providing best practices for industrial quality assurance.

This paper is structured as follows: Section 2 presents recent works on metal surface
defect detection. Section 3 presents the dataset that is examined in depth in this work.
The methods used for the detection of defects are presented in Section 4: the systematic
exploration and preparation of the datasets to be used in our experiments is detailed in
Section 4.2, while Section 4.3 describes the model used. Section 4.4 presents the methods
used for the measurement of fairness, bias and explainability in the proposed experiments.
The experimental setups and results are presented in Section 5, while Section 6 focuses on
their outcomes in terms of generalizability, fairness, bias and the role of explainability. An in-
depth discussion of all experimental outcomes takes place in Section 7, while conclusions
are drawn in Section 8, along with plans for future work.

2. Related Work

The recent advancements in machine learning for metal surface defect detection are
marked by diverse approaches and significant results. Xiaoming Lv et al. [3] combined the
SSD framework with hard negative mining, introducing a robust method for defect detec-
tion on metallic surfaces, showing notable accuracy improvements. Yang Wang et al. [4] en-
hanced YOLOv7 for steel strip surface defects, focusing on small targets with enhanced fea-
ture pyramid and attention mechanisms, achieving remarkable precision. Ping Liu et al. [11]
optimized Faster R-CNN for mechanical design products, improving feature extraction and
pooling algorithms, demonstrating increased defect detection efficiency. Kun Wang et al. [5]
improved YOLOv5 using data augmentation and an asymmetric loss function, specifically
targeting small-scale defects, and observed substantial accuracy gains. F. Akhyar et al.’s [6]
forceful steel defect detector combined Cascade R-CNN with advanced techniques, exhibit-
ing superior defect detection capabilities in complex environments. Ling Wang et al. [9]
enhanced YOLOv5 with a multi-scale block and spatial attention mechanism that excelled
in real-time defect detection. Yu Zhang et al.’s [7] integration of the CBAM mechanism
into YOLOv5s specifically addressed bottom surface defects in lithium batteries, offering
significant detection improvements. Manas Mehta’s model based on YOLOv5 [10], incor-
porating ECA-Net and BiFPN, showcased enhanced real-time steel surface defect detection.
Lastly, Chuande Zhou et al. [8] improved YOLOv5s with CSPLayer and GAMAttention
and effectively detected small metal surface defects, marking a leap in detection sensitivity.

The reviewed papers collectively emphasize the critical role of surface defect detec-
tion in materials like steel, metal [3–6,8–11] and lithium batteries [7] for industrial quality
control, primarily through the use of advanced deep learning models, particularly con-
volutional neural networks (CNNs). This shift towards AI-based approaches is evident
in their experimentation with YOLO (You Only Look Once) and R-CNN (region-based
convolutional neural networks) model variants [4–6,8–11], affirming their effectiveness in
object detection. Notably, each study introduces enhancements to models such as YOLOv5,
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Faster R-CNN, or YOLOv7, focusing on increasing accuracy and detection speed, especially
for small defects [4,5,8]. The incorporation of attention mechanisms and feature fusion
techniques [4,6–8,10] is a common strategy to improve performance on challenging defect
types. Moreover, these papers frequently utilize standard benchmarking datasets like
NEU-DET and GC10-DET [3–6,8–10] for training and benchmarking, employing metrics
such as mean average precision (mAP), precision, recall, and accuracy for evaluation.

In the context of real-time production, modified versions of the YOLO model, includ-
ing YOLOv5 and its derivatives, are lauded for their efficiency and high accuracy [4,5,7,8,10].
Optimized Faster R-CNN models also show promise [6,11], achieving a commendable
balance between detection speed and accuracy. Papers introducing custom architectures
or specific model enhancements, like AFF-YOLO [10] and FDD [6], demonstrate practical
effectiveness in real-time scenarios. Addressing the challenge of small surface defects, sev-
eral methods stand out. The integration of attention mechanisms, such as the convolutional
block attention module (CBAM), and feature fusion techniques [7] significantly enhance
the model’s capability to focus on small defects. Data augmentation and scaling techniques
aid in better representing and detecting minute defects [5]. Furthermore, optimizing model
architecture by adding specific layers or adjusting the network caters [5] more effectively to
small target detection. Lastly, tweaking the loss function to prioritize small-sized defects [4]
has also been shown to bolster detection accuracy.

The state-of-the-art (SoA) methods described above have significantly improved
the accurate detection of small defects on metal surfaces; however, the generalizability,
fairness and bias of these solutions have not been examined, nor the effect of diverse
training regimes on performance. This study aims to bridge that gap, by investigating the
intricacies of training machine learning models, focusing on the effects of class composition
diversity on model efficacy, bias, and fairness, while employing explainability to determine
the reliability of results. Such an investigation can a reveal lack of generalizability and
fairness, as well as biased performance for co-occurring or under-represented classes of
defects. A framework of systematic data balancing, taking into account the co-occurrence
of defects in single and multi-class images and the under-representation of others, has
the potential to provide truly balanced and varied training datasets. In addition to the
goal of dataset balance, data augmentations should reflect real-world conditions that occur
in industrial settings. Our work shows that the introduction of our new framework for
dataset preparation and model training, as well as the measurement of tailored fairness
and bias metrics, can address these issues effectively. This approach can thus set the basis
for improving the performance of any model, rendering it more fair, generalizable and
unbiased, aspects of great importance in applications such as industrial defect detection.

In order to provide results relevant to the recent SoA, the GC10-DET benchmarking
dataset [3] is examined (Section 3), as it is used in many of the related works. Moreover,
in order to obtain objective comparisons of fairness, bias and generalizability, these aspects
are investigated for one fixed model, namely YOLOv5s. This choice is made as models in
the YOLO family, and particularly YOLOv5, are most often encountered in the literature,
due to its appropriateness for industrial applications [3,5–10]. In this work, we use a
small version of YOLOv5, i.e., YOLOv5s, which has the same architecture but is more
computationally efficient. It should be emphasized that this work does not aim to provide
direct comparisons with one of the many YOLO variants from the literature mentioned
above, as its aim is to provide more general insights on fairness, bias and generalizability
on the family of YOLO models, rather than on one of its specific variants. The results of
this work regarding a novel training framework, new metrics for fairness and bias, and a
new paradigm for explainable, fair, defect detection, apply equally to any detection model,
as they concern dataset management and pre-processing. Thus, going beyond the SoA, this
work will examine:

• Generalization under different training regimes: How does generalization change
when training on data with single-class images compared to multi-class images?
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• Bias in training data analysis: Does training a DL model on a single class of defects
introduce significant bias towards that class in terms of prediction accuracy when
testing on images including multiple defects? How does the inclusion of multiple
defect classes in the training data influence bias towards images containing defects of
a single class?

• Fairness assessment: How fair is a machine learning model in classifying different
types of defects when trained on single- versus multi-class data, and tested on data
containing multiple classes? Can fairness in defect classification be improved by
diversifying the types of defects in the training dataset, and if so, to what extent?

• Comparative analysis: What are the key differences in terms of accuracy, precision,
recall, F1 Score when a model is trained on single- versus multi-class data? How does
the model’s ability to detect infrequent defects differ between the training approaches?

• Methodological exploration: What are the most effective strategies and metrics for
evaluating model generalization, bias and fairness in the context of defect detection?
How do different training strategies influence the generalization, bias and fairness?

• Practical implications: What are the practical implications of the findings for industrial
defect detection? How can the insights from this research inform the design and
training of more robust and fair DL models for defect detection in various applications?

3. Dataset Description

The GC10-DET dataset (Figure 1), introduced in [3], is a vital resource of metal sheet
defect images. Originating from a real industrial setting, it includes a diverse spectrum of
ten distinct surface defect types on steel sheets. These include punching (Pu), weld line
(Wl), crescent gap (Cg), water spot (Ws), oil spot (Os), silk spot (Ss), inclusion (In), rolled
pit (Rp), crease (Cr), and waist folding (Wf). The published dataset originally comprised
3482 images, including 1398 images augmented by horizontal flipping. Our study uses only
the 2084 original TrueColor images (640 × 640 pixels), since it aims to study the effect of
image augmentations in a controlled manner, depending on the number of classes present
in the images. For methodological transparency and technical accuracy [3], it is pertinent
to detail the equipment used in the dataset’s compilation. The image capturing device
is a Teledyne DALSA LA-CM-04K08A camera, renowned for its precision in industrial
applications. The lens employed is a Moritex ML-3528-43F. The images are corrected under
a direct current (DC) light source. The images in this dataset may contain one or more
instances of commonly encountered defects, described below. The presence of one or
multiple classes of labels in the training data is examined in depth in Sections 4.2 and 5, as it
affects training dataset balance and subsequently the performance of the examined model.

Figure 1. Sample images from the GC10-DET dataset with 2 examples of each defect: punching hole,
welding line, crescent gap, water spot, oil spot, silk spot, inclusion, rolled pit, crease, waist folding.
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4. Methods
4.1. Overview of the Proposed Framework

The main proposition and contribution of this work is a strategic bias mitigation
framework to support the fair, generalizable, unbiased implementation of DL models in
real-world applications. An overview of the framework is shown in Figure 2, and its
different stages are detailed in Sections 4.2–4.4. In order to achieve fair, generalizable,
unbiased detection of defects and other anomalies, it is recommended to split the data into
groups with the same and different multiple defect types. In the case of single-class defects,
the dataset can be balanced through typical data augmentation methods. In the case of
multi-class defects, attention should be paid to particular instances of defects that need to
be individually balanced. In the case of real-world conditions, such as those encountered in
industrial settings, we also recommend applying augmentations that mimic noise present
in the real world. The remaining steps of our pipeline follow the traditional steps of any
machine or deep learning implementation, with training, validation, testing split, modeling
and prediction steps. We also adapt fairness and bias metrics, and propose an in-depth
examination of results for fairness and bias through the related metrics and explainability
in order to adapt dataset management when needed.

Figure 2. The flowchart of our framework for bias mitigation in single-class and multi-class detec-
tion models.

4.2. Dataset Preparation, Analysis

In this section we describe the steps taken in order to create balanced datasets when
faced with co-occurring or infrequently occurring defects in single and multi-class im-
age data.

4.2.1. Balanced Datasets Creation

The flowchart of Figure 3 describes the systematic procedure we follow in preparing
our data for experimental analysis, detailed in this section.

The dataset contains a mix of single and multi-class images, with defects that may
co-occur in single and multi-class images, may appear uniquely in either case, or may be
rare. Some sample images of single and multi-class images are shown in Figure 4.

In addition to including rare and co-occurring defect classes, this dataset faces three
prevalent issues: misclassified or incorrect labels, missing labels, and inconsistent labeling,
so it is good practice to conduct a manual review and correction of the labels for each image
to ensure accuracy and consistency. After this meticulous process, the dataset is refined to
a total of 3243 instances, whose color labels are shown in Figure 5 and the resulting class
(defect) distribution in the “cleaned” dataset before data balancing is shown in Figure 6a.
Next, the dataset is split into two groups. Group 1 comprises 2265 instances with the
same type of defect (as in Figure 4a), with the distribution across the various defect classes
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illustrated in Figure 6b. In contrast, Group 2 consists of 978 instances, each containing
multiple, different defect types (as in Figure 4b), whose distribution is detailed in Figure 6c.
Group 1 started with 1660 images, while Group 2 with 424 images, but a methodical
balancing process augmented Group 1 from its original count to 8002 images, and Group
2 to 905 images. The distribution of instances in Group 1 and Group 2 after balancing
is illustrated in Figure 7a and Figure 7b, respectively. This significant augmentation is
achieved using horizontal flips, vertical flips, rotations at angles of 30, −30, 45, −45, 60,
−60, and 90 degrees, random crops, and adjustments to image brightness to simulate
darker conditions.

Figure 3. Flowchart for preparing image datasets for experimental use. Attention is paid to co-
occurring defects in single and multi-class images, as well as under-represented data. Data augmen-
tations also take place to mimic real-world industrial conditions.

Finally, both groups are modified by variations that mimic real-world conditions:
additive and multiplicative Gaussian noise, local brightness fluctuations, local contrast
adjustments, dodging and burning, and linear mapping to modulate brightness, are applied
to 15% of the instances within each class. These data augmentations are chosen among
those commonly used in the literature, as they best replicate real-world conditions. They
are described in detail in Appendix A. Figure 8a shows that these augmentations can
achieve perfect balance for single class images, while Figure 8b shows these augmentations



Processes 2024, 12, 456 8 of 32

improve dataset balance for Group 2, multi-class images, without achieving perfect balance
due to the high variability of class instances: some defect classes are rare, while others
occur or co-occur in different amounts in the data.

(a) (b)

Figure 4. Examples of images with (a) a single class and (b) multiple classes of metal defects.

Figure 5. Colors used to represent each class of the GC10-DET dataset.

(a) (b) (c)

Figure 6. (a) Distribution of the instances in the entire GC10-DET dataset after data verification and
correction, before balancing. (b) Distribution of the instances in Group 1 (Single-class images) after
data verification and correction, before balancing. (c) Distribution of the instances in Group 2 (multi-
class images) after data verification and correction, before balancing. There is high class-imbalance in
both single and multi-class images.

Subsequently, Group 1 is partitioned, with 90% forming Dataset #1, while the re-
maining 10% is distributed evenly to create Datasets #2 and #3. For Group 2, a similar
stratification is suggested, with augmentations taking place, but also keeping the original
unmodified images in the dataset, in order to increase the number of instances. The defect
‘waist folding’ is unique in that it does not co-occur with other defect types, so it is absent
from Group 2, which comprises images with multiple defects. To address this, images
from Group 1 with ‘waist folding’ undergo augmentation, resulting in 252 instances of
this defect, which are then added to Group 2 for a more comprehensive representation of
defect types across both groups (Figure 8b). So, the number of images in Group 2 after
addressing real-world conditions is 1433. Subsequently, this group is partitioned, with 40%
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forming Dataset #6, while the remaining 60% is distributed evenly to create Datasets #4
and #5. This careful, detailed, pre-processing regimen is designed to prepare the data for
rigorous experimental testing and investigation of fairness, bias and generalization.

(a) (b)

Figure 7. Instance distribution in GC10-DET after data augmentations for balancing classes. (a) Single-
class images can be uniformly balanced. (b) Data balancing for multi-class images requires additional
attention to co-occurring and infrequently occurring defects.

(a) (b)

Figure 8. Instance distribution in GC10-DET after augmentations addressing real-world conditions
for (a) Group 1: single class images. The augmentations directly lead to a balanced dataset. (b) Group
2: multi-class images. The augmentations improve dataset balance but do not lead to a perfectly
balanced dataset due to the high variability in the occurrences and co-occurrences of class instances.

4.2.2. Data Exploration

In the realm of industrial manufacturing, understanding the intricate relationships
between different types of defects is crucial for enhancing quality control measures. This
study utilizes heatmap visualization (Figure 9) to dissect and comprehend the co-occurrence
patterns of various defects in a multi-class image dataset (Group 2), providing a compelling
visual summary of defect interdependencies.

A pronounced co-occurrence is thus revealed between crescent gap (Cg) and welding
line (Wl), as well as punching hole (Ph) and welding line (Wl), indicating these defects
frequently appear together within the same samples. This strong relationship suggests a
possible shared causal factor or a sequence in the manufacturing process that predisposes
the occurrence of one defect when the other is present. Other moderate co-occurrence
relationships are observed among different pairs of defects such as crescent gap (Cg) and
punching hole (Ph), inclusion (In) with both silk spot (Ss) and water spot (Ws), and oil
spot (Os) with silk spot (Ss), water spot (Ws), and welding line (Wl). These moderate
co-occurrences suggest that, while these defects are less frequently associated, there is still
a significant relational trend that warrants further investigation. The heatmap’s diagonal,
which reflects the frequency of each individual defect type, revealed high values. This
pattern is not only expected, but also vital for understanding the overall occurrence rate of
each defect within the dataset. An intriguing aspect of the findings is the isolated occurrence
of waist folding (Wf), which did not co-occur with any other defect type. This unique
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pattern highlights the distinct nature of waist folding (Wf) compared to other defects and
may prompt a specialized inspection process. This study also points to potential skewness
in the data. The disproportionate prevalence of certain defects, particularly welding
line (Wl), suggests that some are overrepresented. This imbalance can have profound
implications for training, as it may bias models towards overrepresented defects. Hence,
there is a need for strategic approaches such as data augmentation or a rebalanced sampling
technique to ensure a fair representation of all defect types.

Figure 9. A co-occurrence matrix of different classes labeled in Group 2 (before balancing stage).

4.3. Defect Detection by YOLOv5s

In the field of object detection, there are two prominent approaches: two-stage [12] and
single-stage deep learning models [13]. Single-stage models, exemplified by YOLO (You
Only Look Once) [7,13], achieve accurate and speedy online object detection the process
by combining object localization and detection into one unified model. In this work, we
will focus in depth on various aspects of the performance of metal defect detection on
GC10-DET using the YOLOv5 model, as it is frequently used in the field [3,5–10], due to its
very good balance of computational cost and performance, making it a leading choice in
scenarios where both factors are crucial. In this work, we examine YOLOv5s, which has the
same architecture as YOLOv5, but is smaller, in order to be more computationally efficient,
making it a realistic choice for industrial and other real-world applications.

YOLOv5 firstly comprises the Backbone, functioning as the core framework, which
employs the innovative New CSP-Darknet53 structure. This design is a refined adaptation
of the Darknet architecture, which was foundational in earlier iterations, signifying a
progressive evolution in its structural design. Secondly, the Neck serves as a critical
intermediary, seamlessly connecting the Backbone to the Head. In this capacity, YOLOv5
integrates the SPPF and New CSP-PAN structures, ensuring a fluid and effective transition
of data within the model. Lastly, the Head is pivotal for producing the final output,
employing the YOLOv3 Head mechanism. This strategic composition of the model’s
structure demonstrates a balanced fusion of proven and novel elements, culminating in a
robust and highly capable online object detection system.

In this work, YOLOv5 is used in various training regimes, both trained from scratch
and using transfer learning and fine-tuning. The core concept of transfer learning centers
around using a pre-trained model and adapting it to a different task. This adaptation is
achieved by selectively training only the uppermost layers of the model. In this structure,
the lower layers are dedicated to extracting features, while the upper layers focus on
classifying and detecting these features. The effectiveness of this approach is greater when
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the pre-trained model has been trained on a general enough dataset or when the original
and new tasks are closely related, aspects which are investigated in Section 5.

Performance Metrics: To evaluate experiments, we employ widely used performance
metrics, which are also a critical part of assessing bias and fairness in the context of
generalization. Here TP represents true positives, TN true negatives, FN false negatives
and FP false positives.

Recall measures the proportion of actual positives correctly identified by the model:

Recall =
TP

TP + FN
. (1)

Precision assesses the proportion of positive identifications that were actually correct:

Precision =
TP

TP + FP
. (2)

F1 Score combines precision and recall, providing a single measure of model accuracy
that offers a comprehensive view of the model’s performance in terms of both identifying
relevant instances and minimizing false alarms, with F1 from 0 (worst) to 1 (best):

F1 Score = 2 × Precision × Recall
Precision + Recall

. (3)

Mean average Precision (mAP) is calculated as the mean of the Average Precisions (AP)
for different object classes, considering Intersection over Union (IoU) threshold (overlap
between the predicted and actual target areas) from 0.5 to 0.95.

4.4. Generalization, Bias, Fairness, Explainability

Several approaches are used to gauge the generalizability of YOLOv5s for metal defect
detection by methodically evaluating their performance on previously unseen data.

Generalization: k-fold cross-validation, specifically a 5-fold cross-validation, is used to
assess the robustness and unbiased performance of the model across various data subsets.
This involves dividing the dataset into five equal parts, where each part is used as a
validation set while the remaining data serve as the training set. The model’s stability and
generalizability are thus rigorously evaluated using the outcomes from all five folds.

Bias: The presence of bias in training datasets can result in models that demonstrate
high performance on training data but significantly underperform when encountering
different data. This discrepancy arises because the model has learned patterns and associa-
tions that are overly specific to the training set, or over-represented groups in it, lacking
the necessary generalizability to handle diverse or novel data instances effectively. Several
approaches are employed to effectively identify bias and mitigate its effects.

Data distribution analysis: Evaluating the training data class distribution is essential
to identify potential biases, since unequal class distribution can lead to bias. As detailed in
Section 4.2, careful dataset splitting and augmentations can lead to more balanced datasets.

Confusion matrices reveal performance across different defects. A model biased to-
wards certain classes (e.g. over-represented or co-occurring defects) will show significantly
higher performance on them compared to others.

Class-wise performance metrics: Bias is also detected from recall, and F1 scores calcu-
lated separately for each class. Class-wise performance metrics can identify potential biases
towards certain defects, leading to more objective and accurate performance assessment.

Fairness: The Disparate Impact Ratio (DIR) is a widely acknowledged measure for
evaluating the fairness of predictions across different demographic groups [14]. It assesses
the proportionality of true positives (TP) without considering the accuracy of these predic-
tions [15]. However, certain contexts necessitate a fairness assessment based on the model’s
sensitivity, also known as true positive rate (TPR) particularly where false negatives carry
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significant consequences, such as in healthcare diagnostics or, in the case of this work,
quality control in manufacturing [16]. The TPR is essentially the same as recall, defined as:

TPR =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
. (4)

In our framework, we define a specialized DIR that focuses on TPR, to measure
equality of opportunity in the correct identification of positive instances in privileged
and unprivileged groups. Here, privileged groups refer to defects well represented in the
training data, and unprivileged groups represent defects with few samples. The specialized
DIR is:

DIRTPR =
TPR o f unprivileged group

TPR o f privileged group
. (5)

A DIR TPR value deviating from unity indicates a disparity in model sensitivity, which
may reflect a bias in detecting true positive instances between the compared classes. The in-
terpretation of the specialized DIR based on TPR, DIR TPR essentially reflects how well the
model identifies true positives in both privileged and unprivileged groups as follows:

Value of 1: A DIR TPR value of 1 suggests an ideal scenario where the model demon-
strates equal sensitivity towards both groups. It indicates that members of both groups have
an equal likelihood of being correctly identified when they are indeed positive cases. This
scenario reflects the achievement of equality of opportunity in terms of model performance.

Value greater than 1: A value greater than 1 implies that the model is more sensitive
towards the unprivileged group. This may suggest over-prediction or higher recall for the
unprivileged group compared to the privileged group.

Value less than 1: Conversely, a value less than 1 indicates that the model is less
sensitive towards the unprivileged group. This scenario reveals a potential bias against the
unprivileged group, suggesting that the model may not be detecting positive instances in
this group as effectively as it does in the privileged group.

Practitioners should aim for a DIR TPR value close to 1, signifying equal treatment
of all groups by the model in terms of correctly identifying positive instances. Values
deviating significantly from 1 warrant a deeper investigation into the model’s training data,
feature selection and potential inherent biases.

True positive rate differences (TPR Diff), i.e., the difference in TPR between privileged
and unprivileged groups, highlights disparities in TPR, i.e., model sensitivity. It is directly
linked to the principle of “equality of opportunity” in predictive outcomes [16,17]:

TPR Di f f = TPRUnprivileged group − TPRPrivileged group. (6)

Moreover, the interpretation of TPR Diff must be contextually grounded: in domains
like quality control, the cost of false negatives is high, so equitable TPRs are essential [18].

Predictive Parity Difference (PPD) is a fairness metric in the realm of multi-class
predictive modeling that assesses the balance in prediction precision between different
demographic groups. In a multi-class setting, this involves averaging the precision across
classes within each group before determining the disparity. PPD can thus measure the
disparity in precision between privileged and unprivileged groups across multiple classes.

Definition and calculation of PPD in multi-class context: Precision(P) for each class in
a multi-class setting is determined separately. In a group, the Average Precision (AP) for a
group, i.e., the mean of precisions calculated for each class within that group, encompasses
the likelihood of correct positive predictions across various classes. PPD is then computed
as the difference between average precision of the privileged and unprivileged groups:

PPD = Avg. PPrivileged group − Avg. PUnprivileged group. (7)

In multi-class models, PPD ensures that no group is consistently receiving less accurate
positive predictions across a range of classes. Significant PPD values indicate a skew in
precision, suggesting that one group’s positive outcomes might be systematically over-
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or under-predicted compared to another. Particularly in fields where classification spans
multiple categories (such as defect types in manufacturing), understanding PPD is vital to
ensuring that all classes are treated fairly across different demographic groups [15–17].

Explainability via Eigen Class Activation Mapping (Eigen-CAM): Eigen Class Ac-
tivation Mapping [19] is a model explainability tool tailored for convolutional neural
networks (CNNs), aiming to elucidate how models interpret visual data to make pre-
dictions. Eigen-CAM serves as a qualitative indicator of the training process, helping
determine the adequacy of training setups, the need for additional data augmentation,
and identifying potential focus errors in the model’s predictions. Eigen-CAM stands out for
its simplicity and easy integration, without the need for re-training or layer modifications.
It computes and visualizes the principal components of features from convolutional layers,
creating heatmaps overlaid on the input image, to highlight areas with the most significant
layer activations. These visualizations can vary, showing heatmaps from different layers
or a combined heatmap to underline the image’s overall focal points. Unlike class-specific
techniques such as gradient-weighted class activation mapping (Grad-CAM), Eigen-CAM
is a class-agnostic method that facilitates the visualization of features that CNNs leverage
to make decisions, regardless of the classification output [20]. This is especially pertinent
in our work, where multiple classes exist within single images, as it bypasses the need to
segment explanations by class. Furthermore, Eigen-CAM is beneficial in circumventing the
ambiguity that arises in multi-label scenarios where several defect classes may spatially
overlap or closely interact within an image. Class-specific techniques can yield convo-
luted insights that are challenging to disentangle, whereas Eigen-CAM sidesteps this issue,
providing a singular, coherent heatmap.

5. Experiments

Four different experimental setups take place to compare different training and data
balancing regimes, transfer learning, and assess fairness, bias and generalizability. The re-
sults of each experiment in terms of performance metrics (precision, recall, mAP, F1 Score)
are analyzed and discussed in each subsection that follows, including comparisons among
approaches. The discussion of the Experiment 3 results also examines fairness, bias and
generalizability, as these are the goals of that experiment, while an in depth discussion of
generalizability, fairness and bias, using confusion matrices and fairness and bias metrics,
respectively, follows in Section 6. The results are further discussed in detail in Section 7.

Data augmentation and hyperparameters throughout all experiments adhere to the
default data augmentation techniques and hyperparameters for the training of YOLOv5s
recommended by Jocher et al. in [13], with specific modifications to accommodate our
experimental design. The details of our experimental setup are listed in Table 1.

The HSV adjustments we made were: hue: 0.015, saturation: 0.7, value: 0.4. Our image
augmentations parameters were: rotation degrees: 0, translate: 0.1, scale: 0.5, shear: 0,
perspective: 0, flip up-down: 0, flip left-right: 0.5, mosaic: 1.0, mixup: 0.0, copy-paste: 0.0.
Our modifications included setting the batch size to 32 and the image resolution to 640× 640,
while the maximum number of epochs for fine-tuning was capped at 150. Such adjustments
were made to align the training process with our computational resources and the specific
requirements of our datasets.

5.1. Experiment 1: Baseline Model—Fine-Tuning Pre-Trained YOLO on Single-Class Images

The objective of Experiment 1 was to establish a foundational performance benchmark
for an object detection model trained exclusively on images containing single object classes
(Figure 10 Left). It aimed to assess the model’s ability to generalize from a training set
composed solely of single-class images to a testing set that includes both single and multi-
class images. The computational demands of training YOLOv5s were met by employing
an NVIDIA A100-SXM4-40GB with 40514MiB provided by Google Colab.
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Table 1. Experimental setup: YOLOv5s fixed hyperparameters.

Learning rate initial: 0.01, final: 0.01

Momentum 0.937

Weight decay 0.0005

Warmup epochs 3

Warmup momentum 0.8

Warmup bias learning rate 0.1

Box loss weight 0.05

Class loss weight 0.5

Class penalty weight 1.0

Box loss weight 0.05

Object loss weight 1.0

Object penalty weight 1.0

IOU threshold for objectness 0.2

Object penalty weight 1.0

Anchor threshold 4.0

Focal loss gamma 0.0

Dataset #1 (7201 single-class images) was used to fine-tune YOLOv5s pre-trained
on the COCO dataset for more robust feature extraction from the outset. To ensure the
model was not overfitting and to gauge its predictive robustness, five-fold cross-validation
was applied to the training data. Insights obtained from this process were critical in fine-
tuning the model’s parameters and preparing it for the final training phase. Subsequently,
the entire Dataset #1 was employed to fully train the model, exploiting the full spectrum
of data available post-cross-validation. This strategic approach aimed to maximize the
model’s performance by leveraging the insights gained during the cross-validation phase.
For the validation of the model’s hyperparameters, Dataset #2, containing 400 single-
class images, was used. The performance and generalizability of the model were then
tested using a combination of Dataset #3, with 401 single-class images, and Dataset #4,
comprising 430 multi-class images. This mix allowed for a comprehensive evaluation of
the model’s capability to detect objects across varied scenarios, which is paramount for
practical applications.

Experiment 1 Results (Baseline, 5-Fold Cross-Validation): The five-fold cross-validation
results from YOLOv5s for Experiment 1 in terms of precision, recall, F1 score, and mean
average precision (mAP) at different intersection over union (IoU) thresholds are summa-
rized in Table 2, where it can be seen that its performance remains consistent, indicating
that there is no overfitting. Average recall rates are slightly lower than precision, pointing
to a potential area for improvement in the model’s ability to detect all relevant instances.
Average mAP50-95 scores across a range of IoU thresholds also remain consistent; however,
they are lower than average mAP50, suggesting that the model struggles to maintain high
precision when stricter criteria for defect detection are applied.

A comprehensive view of the model’s performance in defect detection across the
different classes of defects is provided in Tables A1–A5 in Appendix B. One of the stand-
out observations is the model’s robust ability to detect specific types of defects, notably
crescent gap (Cg) and waist folding (Wf), which consistently show high precision, recall,
and F1 scores across all folds. Such performance suggests that the model has effectively
learned to identify the distinguishing features of these defects, possibly due to their distinct
characteristics or adequate representation in the training set. Other defects like crease (Cr)
and welding line (Wl) also exhibit commendable detection rates, although they display
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some variability across different folds. However, the model faces challenges with certain
defects, particularly inclusion (In) and silk spot (Ss), which consistently score lower across
all evaluation metrics. This could be attributed to their complexity, their resemblance to
non-defective areas, similarities with the background, variability within the class, difficulty
in distinguishing this class from others, or extremely small scale illustrated in Figure 11.
The variable performance with defects like oil spot (Os),punching hole (Ph), and rolled pit
(Rp) further suggests that, while the model is capable of detecting these defects to a certain
extent, there is notable room for improvement.

Figure 10. Flowchart of model training and evaluation experiments. Left: Experiment 1 baseline
model, with a pre-trained model and fine-tuning using single-class images. Right: Experiment 2,
exploring fine-tuning the baseline model using multi-class images.

Table 2. Average performance metrics values in 5-fold cross validation: precision, recall, F1 score,
mAP50, mAP50-95 all show there is no overfitting.

Defect Types Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Average Precision 0.875 0.861 0.859 0.839 0.838

Average Recall 0.828 0.817 0.835 0.808 0.796

Average F1 Score 0.851 0.838 0.847 0.823 0.816

Average mAP50 0.855 0.862 0.867 0.846 0.829

Average mAP50-95 0.573 0.559 0.554 0.534 0.519

Training, validation and testing performance losses and accuracy curves, as well
as precision, recall, mAP5 and mAP50-95, are estimated for different folds to examine
overfitting. They are represented with different colors for each fold, explained in Figure 12,
for the plots in Figures 13–17.

In terms of training losses, there is a consistent decrease across all folds, as demon-
strated in Figure 13. This trend, evident in the box, object, and class losses, signifies that
the model is effectively learning to minimize errors in various aspects of object detection,
including the accuracy of bounding boxes, detection reliability, and classification accuracy.
The validation losses across all folds show a decreasing or stable trend (Figure 14), indicat-
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ing that the model is not overfitting and is capable of generalizing well to unseen data. This
consistency suggests that the training of this object detection model is effectively tuned,
so the parameters for training models of each experiment will be fixed to the values used
for training: learning rate 0.01, batch size 32, image size 640 × 640, weight decay 0.0005,
momentum 0.937, and epoch 150 (Table 1).

Figure 11. The yellow box in each image shows different cases of challenging defects (from left to
right): Silk spot defect very similar to the background and other classes; Inclusion defects with high
intra-class variability, the one on the right also similar to the background and other defect classes;
Silk spot defect of an extremely small scale.

Figure 12. Different colors to represent the different folds in the 5-fold cross validation experiments
on generalizability.

(a) (b) (c)

Figure 13. Training (a) box, (b) class, (c) object losses in 5-fold cross validation, with each different
color corresponding to a fold as in Figure 12.

In contrast to the training and validation losses, there is consistent improvement in
precision, recall and mean average precision (mAP) metrics across all folds (Figure 15).
Precision generally shows an upward trend, indicating that the model becomes more
accurate in its predictions as training progresses. Recall, assessing the model’s ability to
correctly identify all relevant instances, also improves or shows significant variability across
different folds. This variability might point to a trade-off between precision and recall,
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a common occurrence in object detection. Both mAP50 and mAP50-95 scores in Figure 15
show consistent improvement, highlighting the model’s improving accuracy across a range
of intersection over union (IoU) thresholds.

(a) (b) (c)

Figure 14. Validation (a) box, (b) class, (c) object losses in 5-fold cross validation, with each different
color corresponding to a fold as in Figure 12.

(a) (b)

(c) (d)

Figure 15. Performance metrics (a) precision, (b) recall, (c) mAP50, (d) mAP50-95 across 5-fold
cross validation, with each different color corresponding to a fold as in Figure 12.

5.2. Experiment 2: Evaluating the Efficacy of Transfer Learning: Fine-Tuning YOLO Pre-Trained
on Single-Class Images for Multi-Class Image Detection

Experiment 2 aimed to offer critical insights into the versatility of YOLOv5s and eluci-
date the impact of transfer learning and fine-tuning on its capacity to handle multi-class
images (Figure 10 Right), following its initial training on single-class images. The experi-
mental hypothesis was that the baseline model (above), pre-trained on single-class images,
would, with appropriate fine-tuning, effectively adapt to and accurately classify multi-class
images. By evaluating the model’s performance across different levels of layer freezing,
this study aimed to determine the optimal balance between knowledge retention from
the pre-trained state and adaptability to new, complex detection scenarios. Training was
supported by the powerful Tesla V100-SXM2-16GB with 16151MiB available on Google
Colab, ensuring that the model’s fine-tuning was both rigorous and efficient.

For training, Dataset #6, a diverse collection of 573 multi-class images, was used,
along with the YOLOv5s model previously fine-tuned in Experiment 1 as the founda-
tion. The model’s ability to transfer its learned knowledge from single-class to multi-class
detection was the focal point of this phase. Validation was performed on a composite
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dataset—Dataset #2 (400 single-class images) and Dataset #5 (430 multi-class images)—to
ensure that the model did not lose its single-class detection accuracy while gaining multi-
class detection proficiency. The testing phase was aligned with that of Experiment 1, using
a mixed set of single-class and multi-class images from Datasets 3 and 4. This consistency
allowed for a direct comparison of the model’s performance across the experiments. The ef-
fectiveness of transfer learning was systematically assessed by freezing varying numbers
of layers within the model during the training process. Starting with no frozen layers,
the approach escalated through progressive levels of constraint by freezing layers from
the first up to the 5th, 8th, 11th, 14th, 17th, 20th, and finally, the 22nd layer out of the total
25 layers of the model. Notably, the first 10 layers constituted the backbone of the model,
which are generally responsible for extracting fundamental features from images.

Experiment 2 Results (Evaluating the Efficacy of Transfer Learning, Fine-Tuning: The
Precision results (Figure 16a), suggest that while the model exhibits the highest average
precision with no layers frozen, a nuanced approach to layer freezing is required to balance
all performance measures effectively. The recall results in Figure 16b indicate an enhanced
ability to capture true positive instances when the first eight layers are frozen, which is
unexpected given that a lesser degree of freedom in the model could potentially hinder
such performance. However, the F1 Score results (Figure 16c) provide further evidence
to advocate for freezing eight layers, as this configuration achieves the highest average
F1 Score of 0.769. This suggests that restraining the adaptability of the initial layers of
the model prompts a more balanced performance, possibly by leveraging the generic
features learned during pre-training and refining the model’s understanding of more
dataset-specific features in the subsequent layers. While the mAP50 and mAP50-95 results,
detailed in Figures 17a,b, respectively, generally favor the fully adaptable model (no layers
frozen), they do not significantly deteriorate when freezing eight layers. This indicates
that the model retains a substantial portion of its detection capabilities even with the
imposed constraints. The stable performance in mAP metrics, combined with the highest
F1 Score, underscores the efficacy of freezing eight layers in achieving a robust model that
not only predicts accurately but also ensures comprehensive detection coverage. Therefore,
the results of freezing eight layers in Experiment 2 will be further used for comparison
analysis with other experiments.

(a) (b) (c)

Figure 16. Evaluation of (a) precision, (b) recall, (c) F1 score of Experiment 2 show the performance
for different numbers of frozen layers with colors representing the different classes of Figure 5.

5.3. Experiment 3: Generalizability, Bias, Fairness Exploration by Combined Single-Class and
Multi-Class Training

Experiment 3 (Figure 18 Left) explored the model’s ability to generalize, i.e., achieve
accurate object detection results on testing data containing diverse multi-class images,
which deviate significantly from the training data. To achieve this, it uses a mixed training
regimen, integrating both single-class and multi-class images. Specifically, training was
conducted using single-class images from Dataset #1 and multi-class images from Dataset
#6. The distribution of the instances in the training dataset is shown in Figure 19a. This
approach aimed to provide the YOLOv5s model, which, as in Experiment 1, is pre-trained
on the COCO dataset, with broad and heterogeneous training data, under the assumption
this diversity in the training phase will contribute to a higher degree of adaptability and
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generalizability in the resulting model. The training was powered by the Tesla V100-SXM2-
16GB with 16151MiB, accessed via Google Colab. The validation phase was consistent with
that of Experiment 2, using a blend of single-class images from Dataset #2 and multi-class
images from Dataset #5 to ensure that the model retained its accuracy across both image
types. For testing, the same datasets as in Experiments 1 and 2 (Datasets #3 and #4) were
used, for direct comparability of results and the assessment of improvements or changes in
performance due to the mixed training data.

(a) (b)

Figure 17. Evaluation of (a) mAP50, (b) mAP50-95 metrics of Experiment 2 show the performance for
different numbers of frozen layers with colors representing the different classes of Figure 5.

Experiment 3 Results (Combined Single-Class and Multi-Class Training): The gen-
eralizability achieved by this training approach is evident in Table 3, which shows that
Experiment 3 demonstrates a substantial improvement over Experiments 1 and 2 in terms
of average precision, recall and F1 score. The detailed breakdown of results in Tables 3–6
shows comparable or improved results per defect type. Similarly, Tables 7 and 8 demon-
strate that Experiment 3 maintains high performance in terms of its mAP50 and mAP50-95
scores across varying IoU thresholds, emphasizing its ability to generalize to accurate
multi-class defect detection, while being trained on combined single and multi-class data.

Figure 18. Flowchart of training and evaluation. Left: Experiment 3 explores the effect of diverse
multi-class training data on generalizability, fairness and bias. Right: Experiment 4 examines the
effect of data augmentation on single-class images.

Bias refers to a model’s proclivity for uneven performance across different defect
types. The baseline model in Experiment 1 exhibits a high degree of bias, with significant
performance fluctuations among defect types (see Appendix B). This is evident from the
low precision and recall values for defects such as inclusion (In), suggesting a failure
to capture the features necessary for these defect types. Contrastingly, Experiment 3’s
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results, depicted across Tables 4 and 5, show minimal variation in performance across
defects, indicating a reduction in bias due to the broader range of features learned from the
combined single-class and multi-class images.

(a) (b)

Figure 19. Distribution of instances for metallic surface defect classes in (a) Experiments 3 and (b) 4,
with the color labels shown in Figure 5.

Table 3. Average precision, recall, F1 score of Experiment 1, 2, 3, 4. Experiment 3 consistently
outperforms the other experimental setups.

Exp 1 Exp 2 Exp 3 Exp 4

Average Precision 0.773 0.825 0.882 0.786

Average Recall 0.528 0.715 0.838 0.533

Average F1 Score 0.627 0.766 0.859 0.635

The assessment of fairness, i.e., the model’s equitable treatment of different defect
types, reveals that Experiment 3’s approach yields a fairer model. This is particularly
reflected in the F1 scores from Table 6, where the scores are not only higher on average but
also display less variability across different defect types. This uniformity suggests that the
combined dataset used in Experiment 3 promotes a fair learning environment where no
single defect type is overly represented or neglected.

When delving into the details of individual defect types, this study observes notable
trends. For instance, the precision for crease (Cr) detection consistently improves through
the experiments, reaching its peak in Experiment 3, as shown in Table 4. Inclusion (In),
highlighted as a challenging defect type with low scores in Experiment 1, sees marked im-
provement in Experiment 3 (Tables 4 and 5), underscoring the benefits of a diverse training
set. Similarly, oil spot (Os) and silk spot (Ss) defects exhibit significant improvements in
Experiment 3, suggesting enhanced model capability to identify these defects accurately.
One defect type, waist folding (Wf), stands out for maintaining high detection scores across
all experiments, indicating certain defect features may be inherently easier for the model
to learn. Also, waist folding is an isolated class shown in Figure 9. This is supported by
the consistently high mAP50 and mAP50-95 scores for waist folding in Tables 7 and 8,
respectively, across all experimental setups.

5.4. Experiment 4: Evaluating the Impact of Data Augmentation on Model Performance

Experiment 4 (Figure 18 Right) was designed to test the hypothesis that a model
trained on augmented single-class images could achieve performance metrics on par with
or superior to those of a model trained on a naturally varied dataset. The computational
backbone for the training was provided by the Tesla V100-SXM2-16 GB with 16, 151 MiB,
facilitated through Google Colab.
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Table 4. Precision of Experiment 1, 2, 3, 4. Experiment 3 outperforms the others for most defect classes.

Defect Types Exp 1 Exp 2 Exp 3 Exp 4

Cr 0.851 0.834 0.938 0.907

Cg 0.962 0.841 0.895 0.928

In 0.398 0.71 0.667 0.42

Os 0.631 0.756 0.864 0.552

Ph 0.932 0.913 0.953 0.897

Rp 0.683 0.785 0.896 0.746

Ss 0.633 0.794 0.766 0.714

Wf 0.965 0.871 0.982 0.974

Ws 0.846 0.871 0.899 0.857

Wl 0.831 0.88 0.959 0.864

Average 0.773 0.825 0.882 0.786

Table 5. Recall of Experiment 1, 2, 3, 4. Experiment 3 outperforms the others for most defect classes.

Defect Types Exp 1 Exp 2 Exp 3 Exp 4

Cr 0.426 0.728 0.957 0.415

Cg 0.581 0.836 0.86 0.597

In 0.393 0.584 0.703 0.37

Os 0.329 0.643 0.708 0.36

Ph 0.85 0.9 0.903 0.85

Rp 0.361 0.541 0.941 0.37

Ss 0.295 0.577 0.558 0.271

Wf 0.917 0.749 0.909 0.926

Ws 0.52 0.695 0.899 0.527

Wl 0.611 0.891 0.938 0.646

Average 0.528 0.715 0.838 0.533

Table 6. F1 score of Experiment 1, 2, 3, 4. Experiment 3 outperforms the others for most defect classes.

Defect Types Exp 1 Exp 2 Exp 3 Exp 4

Cr 0.568 0.777 0.947 0.569

Cg 0.724 0.838 0.877 0.727

In 0.395 0.641 0.685 0.393

Os 0.432 0.695 0.778 0.436

Ph 0.889 0.906 0.927 0.873

Rp 0.472 0.641 0.918 0.495

Ss 0.402 0.668 0.646 0.393

Wf 0.940 0.805 0.944 0.949

Ws 0.644 0.773 0.899 0.653

Wl 0.704 0.885 0.948 0.739

Average 0.627 0.766 0.859 0.635

Training employed an upsampled dataset derived from Dataset #1’s single-class
images. The upsampling process was augmented with a series of traditional data aug-
mentation techniques to artificially match the instance counts in Experiment 3 (Figure 19).
In Figure 19b, the dark grey segments atop each bar represent the amount of instances
increased through data augmentation. This method aimed to artificially induce the variety
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typically obtained from a mixed dataset without actually combining single and multi-class
images. The validation process mirrored that of Experiments 2 and 3, employing a mixed
set of single-class images from Dataset #2 and multi-class images from Dataset #5. The con-
sistency in validation across experiments was crucial to ensure comparability of results.
Testing employed Datasets #3 and #4, as with the previous experiments, to assess the
augmented model’s generalization and detection capabilities across a range of scenarios.

Table 7. mAP50 of Experiment 1, 2, 3, 4. Experiment 3 outperforms the others for most defect classes.

Defect Types Exp 1 Exp 2 Exp 3 Exp 4

Cr 0.664 0.811 0.977 0.677

Cg 0.779 0.887 0.911 0.78

In 0.353 0.656 0.715 0.385

Os 0.483 0.693 0.802 0.477

Ph 0.91 0.886 0.938 0.908

Rp 0.574 0.588 0.957 0.601

Ss 0.471 0.642 0.69 0.47

Wf 0.94 0.808 0.944 0.952

Ws 0.682 0.81 0.915 0.688

Wl 0.737 0.906 0.961 0.76

Average 0.659 0.769 0.881 0.67

Table 8. mAP50-95 of Experiment 1, 2, 3, 4. Experiment 3 outperforms the others for most de-
fect classes.

Defect Types Exp 1 Exp 2 Exp 3 Exp 4

Cr 0.486 0.61 0.824 0.499

Cg 0.616 0.615 0.706 0.61

In 0.135 0.377 0.391 0.164

Os 0.251 0.411 0.517 0.239

Ph 0.502 0.607 0.677 0.493

Rp 0.455 0.382 0.727 0.465

Ss 0.232 0.398 0.432 0.227

Wf 0.727 0.527 0.747 0.745

Ws 0.416 0.516 0.605 0.436

Wl 0.457 0.539 0.655 0.461

Average 0.428 0.498 0.628 0.434

Experiment 4 Results (Impact of Data Augmentation): Table 3 shows that, on average,
Experiment 4 does not outperform the other experimental setups, except baseline Exper-
iment 1, which only used single-class images, a trend that can be seen in more detail in
Tables 4–8. Data augmentation in Experiment 4 matched the instance counts used in Exper-
iment 3; however, these augmentations were not sufficient to match naturally occurring
variations in data, as demonstrated by these results. They can provide a small improvement,
compared to the baseline, by expanding the training dataset artificially, particularly when
access to naturally varied data is constrained.

6. Generalizability, Bias Fairness

This section describes in depth how generalizability, bias reduction and fairness are
assessed and achieved in the different experimental setups. It goes beyond the performance
metrics of Section 5, by examining the confusion matrices for generalizability, and the
fairness and bias metrics introduced in this work, focusing on the TPR, which is of interest in



Processes 2024, 12, 456 23 of 32

industrial applications. As detailed in the subsections that follow, the setup of Experiment
3 leads to improved generalizability and fairness, while reducing bias, validating our
hypothesis that careful dataset management and balancing is needed to achieve such results.

6.1. Generalizability, Bias Fairness from Confusion Matrices

The confusion matrices from Experiments 1–4 can provide more insights into the
generalizability, bias and fairness of these experimental setups. In terms of generalizability,
the confusion matrix of Experiment 1 (Figure 20a) reveals substantial off-diagonal activity,
signifying frequent misclassifications, which suggests a model with a limited capacity
to generalize. Conversely, the confusion matrix from Experiment 2 (Figure 20b) exhibits
improvements, as evidenced by heightened true positive rates for defects such as crescent
gap and punching hole. This indicates a model with enhanced generalization abilities,
although some defect types remain challenging for the model. The confusion matrix for
Experiment 4 (Figure 20d) still revealed disparities in performance across defect types:
although certain classes such as punching hole and waist folding were well-identified,
as evidenced by high true positive rates, others like oil spot and inclusion suffered from
lower accuracy and higher misclassification rates. These inconsistencies pointed to poten-
tial limitations in the model’s generalization when solely trained with augmented data.
The confusion matrix from Experiment 3 (Figure 20c) demonstrates the most proficient
generalization, with a significant portion of predictions correctly aligned along the diagonal,
indicating a robust model that accurately identifies the majority of defect types.

(a) (b)

(c) (d)

Figure 20. Confusion matrices of Experiments 1–4 (testing set). Experiment 3 has most predictions
along its diagonal, showing it most accurately identifies the majority of defects when tested on differ-
ent types of data, demonstrating its improved generalizability, reduced bias and improved fairness.

In reviewing bias, the confusion matrix for Experiment 1 (Figure 20a) displays pro-
nounced bias, with defects like waist folding being identified with high precision while
oil spot and inclusion are frequently confused with other defect types. Experiment 2
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(Figure 20b) shows a reduction in bias, with a more balanced prediction across defect types,
albeit oil spot continues to be a problematic class. Experiment 4 (Figure 20d) exhibited a
skewed performance with high false positives and negatives for specific classes, indicating
a bias that could be attributed to the limitations of data augmentation in capturing the
natural variance present in Experiment 3’s mixed-class training set. The confusion matrix
of Experiment 3 (Figure 20c) portrays a model with the least bias, as it achieves higher
accuracy across a diverse array of defect types with reduced misclassification rates.

Fairness, in this context, implies the model’s equitable performance across all defect
types. The confusion matrix from Experiment 1 (Figure 20a) indicates a lack of fairness,
with significant disparities in how different defects are classified—some classes are consis-
tently misclassified as others. The matrix from Experiment 2 (Figure 20b) depicts moderate
improvements in fairness, with a more balanced performance. However, certain defects,
such as silk spot and water spot, are still prone to being mistaken for Background (Bg).
The confusion matrix for Experiment 4 (Figure 20d) showed a lack of fairness, with certain
classes being more prone to misclassification than others, suggesting that the augmented
data may not provide the same level of representativeness for each class as the naturally
varied dataset used in Experiment 3. In stark contrast, the confusion matrix from Experi-
ment 3 (Figure 20c) shows a model that performs fairly across all defect types, with most
classes being accurately predicted and misclassifications evenly distributed without unduly
favoring or prejudicing any specific defect type.

The sequential analysis from Experiments 1 through 4 uncovers a trajectory of pro-
gressive improvement not only in terms of generalization but also in mitigating bias and
enhancing fairness in classification. The confusion matrix from Experiment 3, in particular,
underscores the efficacy of the combined training approach, which amalgamates single-
class and multi-class images, leading to a model that is robust in its predictive accuracy
and equitable across various defect types.

6.2. Fairness Measures

This study’s fairness assessment, pivotal in the domain of multi-class image predictive
modeling, utilized disparate impact ratio (DIR), true positive rate differences (TPR Diff),
and predictive parity difference (PPD) as metrics. To categorize data into two groups,
privileged and unprivileged, the concept of class co-occurrence relationships is used. This
approach identifies a strong co-occurrence between crescent gap (Cg), punching hole (Ph),
and welding line (Wl) in a multi-class image dataset illustrated in Figure 9. Consequently,
these defects are classified into the unprivileged group due to their frequent joint presence,
which significantly influences models trained without multi-class images. Conversely,
defects like crease (Cr), inclusion (In), oil spot (Os), rolled pit (Rp), silk spot (Ss), waist
folding (Wf), and water spot (Ws) are assigned to the privileged group.

The disparate impact ratio (DIR), adapted to focus on the true positive rates (TPR), re-
vealed notable differences across the experiments. The results are shown in Table 9, with the
best outcomes highlighted in bold. Experiments 1 and 4 reported DIR values significantly
greater than 1 (1.52 and 1.56, respectively), indicative of a model with heightened sensitivity
towards the unprivileged group, which encompasses defects that co-occur frequently. Ex-
periment 2 displayed a slight reduction in the DIR value (1.37), suggesting some mitigation
of this sensitivity. However, it was Experiment 3 that presented a DIR value (1.14) closest to
unity, signaling a more equitable sensitivity towards both the unprivileged and privileged
groups, aligning with the objective of equal opportunity in predictive modeling.

The true positive rate differences (TPR Diff) metric further underpinned these findings,
with the best outcomes shown in bold fonts in Table 9. Experiments 1, 2, and 4 showed
relatively high TPR Diff values (0.24, 0.26, and 0.26) from Table 9, denoting a considerable
disparity in the model’s sensitivity and favoring the unprivileged group. Contrastingly,
Experiment 3 achieved a significantly lower TPR Diff value (0.11), which underscored a
model with a fairer distribution of sensitivity and a diminished disparity between groups.
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Table 9. Fairness measures results in Experiments 1, 2, 3, and 4 with the best outcomes shown in bold.
Experiment 3 leads to the most fair and unbiased outcomes in all cases, and the same outcome for
PPD as Experiment 2.

Experiments DIR TPR Diff. PP Diff.

1 1.52 0.24 −0.19

2 1.39 0.26 −0.08

3 1.14 0.11 −0.08

4 1.56 0.26 −0.17

The predictive parity difference (PPD), assessing precision equity between groups,
reinforced the narrative of Experiment 3’s superior fairness. In Table 9, Experiment 1
showed the largest negative PPD value (−0.19), implying a lack of predictive parity and
suggesting systematic underprediction for the privileged group. Experiments 2 and 3
demonstrated improvements, with similar lower negative PPD values (−0.08), indicating
strides toward achieving predictive parity. However, Experiment 4 regressed, with a PPD
value (−0.17) echoing the disparity observed in Experiment 1.

The comparative analysis of these fairness measures offers compelling evidence of
Experiment 3’s balanced approach. It stands as the most equitable model, with fairness met-
rics suggesting a fair and unbiased prediction across the board. This analysis underscores
the effectiveness of employing a naturally diverse training set, as seen in Experiment 3,
which included a balanced mix of single-class and multi-class images, thus facilitating a
fairer and more representative learning process. These insights are critical for the develop-
ment of unbiased multi-class predictive models, particularly in high-stakes sectors where
fairness is not just a metric but a mandate.

6.3. Explainability-Based Assessment of Decision-Making

We pursue explainability in our object detection framework using the Eigen Class
Activation Mapping (Eigen-CAM) methodology [19–21] to visualize the regions within the
image data that significantly inform the predictive models’ decision-making processes for
our four experimental setups. By extracting 2D activations from the penultimate layer—
specifically, layer number 23—of the YOLOv5s architecture, we generated heatmaps to
illuminate the areas that each model attends to when distinguishing between defect types.

The Eigen-CAM visualizations for Experiment 3 (Figure 21) demonstrated a high
degree of alignment with the actual defect areas, particularly in the context of multi-class
images where defect classes such as inclusion and oil spot present visually similar charac-
teristics. These heatmaps revealed distinct and precise activation regions, underscoring
the model’s ability to effectively learn and discriminate between the high-level features
of each class. This capacity for nuanced differentiation is indicative of a well-generalized
model that has been trained on a dataset rich in both single-class and multi-class images,
reflecting the diverse scenarios encountered in practical applications.

Conversely, the heatmaps from Experiments 1, 2, and 4 (Figure 21) displayed less
focused activations, occasionally overlapping or misaligned with the relevant defect areas,
particularly for the similar-looking inclusion and oil spot classes. This suggests that the
models from these experiments may have struggled to segregate the features of these classes
effectively. Such a struggle could stem from a less robust training regimen or, in the case of
Experiment 4, from potential limitations of data augmentation in adequately representing
the intricate variance between defect types.

Thus, the use of Eigen-CAM can play a pivotal role in evaluating and contrasting the
models’ performance across the experiments. For Experiment 3, the method corroborated
the model’s discernment capabilities, affirming that the activations were indeed representa-
tive of the defects it was trained to detect. In the case of contrast, the less precise activation
patterns from the other experiments pointed to a need for improved training approaches or
augmentation techniques to enhance the models’ interpretability and reliability.
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Figure 21. Eigen-CAM results of predicting 2 similar defects in Experiments 1, 2, 3, and 4. The red
square shows the captured predicted area and the red arrows denote erroneous predictions. It is clear
that the model successfully focuses on the relevant areas of test images for Experiment 3, while these
are largely missed by the other experimental setups.

7. Discussion

This study embarked on an in-depth exploration of defect detection using the YOLOv5s
model [13] under various experimental conditions. Through rigorous evaluation involv-
ing precision, recall, F1 scores, mAP measures [12], and fairness metrics, comprehensive
insights into each model’s performance nuances were gained. Experiment 3 emerged as a
frontrunner, striking a commendable balance between accuracy, generalization and fairness
in predictions.

As shown and discussed in detail in Section 5 and Tables 3–8, Experiment 3 out-
performed the other experimental setups in most cases, in terms of precision, accuracy,
recall, F1 Score and mAP. Section 5 also examines in depth specific defects that are under-
represented or co-occur in single and multi-class images, providing a clear understanding
of performance variations in those cases. The improved performance metrics of Section 5
confirm our hypothesis that the provision of diverse training data can allow the same
model (YOLOv5s) to more accurately identify a range of defect types, appearing in both
single and multi-class images in different ratios, sometimes co-occurring with other defects.
Moreover, the high mAP50 and mAP50-95 scores for Experiment 3 underscore the model’s
ability to maintain high accuracy across different thresholds, a key indicator of strong
generalization to real-world scenarios.

Generalizability, fairness and bias are assessed in depth in Section 6 by examining
confusion matrices, as well as our adapted fairness and bias metrics. Once again, the com-
parative analysis of the confusion matrices provides compelling evidence that the model
from Experiment 3, which was trained on a combination of single-class and multi-class
images, not only generalizes better to new data but also exhibits less bias and greater
fairness in defect classification. This underscores the importance of appropriately using
data augmentation to replicate the complex interplay of features found in a naturally varied
dataset. Fairness and bias metrics are also used to quantify the fairness and bias present
in each experimental setup in Section 6. These results, shown in Table 9, confirm that
the setup of Experiment 3 leads to the most equitable model, resulting in the most fair
outcomes, with the least bias, across the board. This analysis underscores the effectiveness
of employing a naturally diverse training set, as seen in Experiment 3, which included
a balanced mix of single-class and multi-class images, thus facilitating a fairer and more
representative learning process. These insights are critical for the development of unbiased
multi-class predictive models, particularly in high-stakes sectors where fairness is not just
a metric but a mandate.

Finally, the application of Eigen-CAM for explainability demonstrated that the setup
of Experiment 3 improved the model’s discernment capabilities [21]. The explainability
results offered visual evidence of the model’s attentiveness to relevant features for accurate
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defect detection, especially for challenging classes with similar appearances. This once
again confirmed our approach, which does not only perform data augmentations, but also
examines the co-occurrence of defects and their under-representation so as to carefully
create truly balanced training datasets. As a result, the model is provided with balanced
representations of all kinds of defects, enabling it to focus on the relevant areas of defect
images in order to classify them, improving its performance and reliability.

8. Conclusions and Future Work

This work emphasizes the need for ethical considerations in AI deployment, highlight-
ing the reduction of bias and enhancement of fairness as imperatives for responsible AI
application in real-world scenarios. To this end, it has introduced a strategic bias mitigation
framework, aiming at the deployment of deep learning models in real-world applications in
a way that ensures fair, generalizable and unbiased results. Extensive and in depth experi-
ments using a fixed model (YOLOv5s) for consistency demonstrate that the creation of truly
balanced datasets can lead to improved performance and also fairness and generalizability,
while reducing bias.

The broader implications of these results are substantial and multifaceted. They un-
derscore potential impacts on industrial quality control, the advancement of AI fairness,
guidance for future AI research, influence on policy and regulation, and the shaping of
public perception of AI. Our findings highlight the importance of creating truly varied
and balanced datasets to train object detection models, advocating for fairer, more gen-
eralized, and interpretable AI systems. They lay the groundwork for further studies by
establishing a comprehensive baseline for the performance of YOLOv5 performance in
metal defect detection.

Future work could explore the effects of data balancing and augmentation, taking into
account the under-representation and co-occurrence of classes in single and multi-class
images, for other low-cost, high performing models, such as newer variants of YOLO
(YOLOv7, YOLOv8) or others. Its aim would be to provide a comprehensive compari-
son of different models trained systematically according to our framework, in terms of
performance and also generalizability, fairness and bias.

Author Contributions: Conceptualization, A.B.; investigation, S.R.; methodology, A.B.; software,
S.R.; supervision, A.B.; validation, S.R.; writing—original draft, S.R.; writing—review and editing,
A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: A public benchmarking dataset GC-10 DET was used, downloaded from
https://github.com/lvxiaoming2019/GC10-DET-Metallic-Surface-Defect-Datasets?tab=readme-ov-
file accessed on 30 October 2023.

Acknowledgments: This work was carried out by the authors themselves as part of their educational
and research activities.

Conflicts of Interest: This work is carried out independently, with no external funding. The datasets
used are public benchmarking research datasets, freely available on the web. No funders had a role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results”.

Appendix A. Addressing Real-World Conditions Techniques

To effectively model the complex conditions found in industrial environments, this study
employs a suite of image processing techniques aimed at replicating the variable lighting and
noise interference typically encountered, described analytically in this appendix.

1. Local brightness fluctuation: This method is designed to emulate localized variations
in lighting, akin to the interplay of shadows or spotlights within a scene. Such

https://github.com/lvxiaoming2019/GC10-DET-Metallic-Surface-Defect-Datasets?tab=readme-ov-file
https://github.com/lvxiaoming2019/GC10-DET-Metallic-Surface-Defect-Datasets?tab=readme-ov-file
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fluctuations can be indicative of faulty lighting conditions, where certain regions may
appear anomalously dark or bright.

I′(x, y) = I(x, y)× (1 + M(x, y)) (A1)

where I is the original image, I′ is the modified image, and M is a mask function that
applies intensity fluctuations within the specified regions, with (x, y) representing
pixel coordinates.

2. Contrast adjustment in local areas: By locally manipulating the tonal range of the
image, this technique can simulate differential light reception across various sections
of the image, reflecting the nuanced effects of lighting on the observed subject matter.

I′(x, y) = α × (I(x, y)− µ) + µ (A2)

where α is the contrast adjustment factor, µ is the mean luminance of the local region,
and I and I′ represent the original and modified images, respectively.

3. Dodging and burning: Borrowed from traditional darkroom practices, dodging and
burning are digital techniques for selectively brightening (dodging) or darkening
(burning) image regions, thus mimicking the variegated effects of light exposure.
For dodging:

I
′
dodge = I(x, y) + (255 − I(x, y))× s (A3)

For burning:
I
′
burn = I(x, y)− I(x, y)× s (A4)

where s is the effect strength, and I and I′ are the original and modified images.
4. Linear mapping (brightness adjustment): This operation scales the pixel values across

the image to adjust brightness, creating the perception that the image was captured
under more or less intense light.

I′(x, y) = I(x, y)× f (A5)

where f is the scaling factor for brightness adjustment.
5. Gaussian noise addition: The injection of Gaussian noise into the image serves to

replicate the random intensity fluctuations that are often a byproduct of camera sensor
noise.

I′(x, y) = I(x, y) + G(µ, σ2) (A6)

where G(µ, σ2) represents the Gaussian noise function with mean µ and variance σ2.
6. Multiplicative Gaussian noise: This noise model is proportional to the image intensity,

typically used to represent physical phenomena such as speckle in imaging systems.

I′(x, y) = I(x, y)× N(1, σ2) (A7)

where N(1, σ2) denotes the Gaussian noise centered around 1, indicative of no change
on average.

Appendix B. Detailed Breakdown of Performance Metrics across All Folds for the
Baseline Experiment 1

This appendix contains the detailed breakdown of the performance metrics across all
folds, for Experiment 1, summarized in Section 5.1.

Experiment 1: 5-fold Cross Validation: Table A1, which details the precision of the
model, shows that the model exhibits high precision in identifying crescent gap (Cg) and
waist folding (Wf), with scores consistently above 0.94 across all five folds. However,
the model struggles with inclusion (In) and silk spot (Ss), where precision is notably lower.
This indicates a higher rate of false positives for these defect types.
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Table A1. Precision result of validation in 5-fold cross validation.

Defect Types Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Cr 0.963 0.938 0.944 0.93 0.939

Cg 0.981 0.979 0.983 0.97 0.988

In 0.602 0.648 0.688 0.578 0.532

Os 0.76 0.746 0.788 0.739 0.765

Ph 0.905 0.863 0.906 0.87 0.869

Rp 0.889 0.95 0.903 0.913 0.955

Ss 0.8 0.738 0.638 0.767 0.715

Wf 0.983 0.95 0.952 0.944 0.944

Ws 0.908 0.882 0.913 0.835 0.874

Wl 0.963 0.915 0.876 0.844 0.796

Average 0.875 0.861 0.859 0.839 0.838

Table A2 shows the model demonstrates commendable performance in detecting
crease (Cr), crescent gap (Cg), and welding line (Wl), with most recall rates being above 0.9.
The lower recall rates for inclusion (In) and silk spot (Ss) indicate that the model tends to
miss a significant number of these defects, which is a concern for overall detection reliability.
The recall rates are slightly lower than precision rates, with averages ranging from 0.796
to 0.835, pointing to a potential area for improvement in the model’s ability to detect all
relevant instances.

Table A2. Recall result of validation in 5-fold cross validation.

Defect Types Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Cr 0.972 0.922 0.932 0.9 0.924

Cg 0.963 0.942 0.949 0.975 0.966

In 0.651 0.599 0.656 0.561 0.519

Os 0.717 0.698 0.715 0.684 0.693

Ph 0.793 0.826 0.879 0.824 0.839

Rp 0.891 0.928 0.986 0.94 0.887

Ss 0.571 0.601 0.535 0.549 0.519

Wf 0.892 0.85 0.877 0.859 0.853

Ws 0.874 0.878 0.873 0.845 0.839

Wl 0.953 0.925 0.951 0.938 0.925

Average 0.828 0.817 0.835 0.808 0.796

The F1 score results in Table A3 demonstrate strong performance in detecting crescent
gap (Cg) and waist folding (Wf), with F1 scores consistently high across all folds, particu-
larly notable for Cg with scores above 0.96. In contrast, the model struggles with inclusion
(In) and silk spot (Ss), indicated by their notably lower F1 scores, aligning with the trends
observed in precision and recall. Other defect types like crease (Cr), welding line (Wl),
oil spot (Os), punching hole (Ph), and rolled pit (Rp) show moderate performance with
some variability across folds. The average F1 scores, ranging from 0.816 to 0.851, suggest a
relatively consistent performance across different data subsets, though with a slight decline
in later folds. This table reinforces the findings from previous tables, highlighting the
model’s strengths in certain defect types and underscoring areas needing improvement,
particularly for defects where both precision and recall are lower.
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Table A3. F1 score result of validation in 5-fold cross validation.

Defect Types Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Cr 0.967 0.93 0.938 0.915 0.931

Cg 0.972 0.96 0.966 0.972 0.977

In 0.626 0.623 0.672 0.569 0.525

Os 0.738 0.721 0.75 0.71 0.727

Ph 0.845 0.844 0.892 0.846 0.854

Rp 0.89 0.939 0.943 0.926 0.92

Ss 0.666 0.662 0.582 0.64 0.601

Wf 0.935 0.897 0.913 0.899 0.896

Ws 0.891 0.88 0.893 0.84 0.856

Wl 0.958 0.92 0.912 0.889 0.856

Average 0.851 0.838 0.847 0.823 0.816

Table A4 presents the model’s performance in terms of mAP50, which is a crucial
metric in object detection. Here, the model again shows high scores in detecting crescent
gap (Cg), waist folding (Wf), and welding line (Wl), consistent with the high precision and
recall rates observed earlier. The lower mAP50 scores for inclusion (In) and silk spot (Ss)
reinforce the challenges faced by the model in accurately identifying these defect types.
Notably, the average mAP50 demonstrates consistency from folds 1 to 5, which implies
that the model can generalize well across different data samples within the same dataset.

Table A4. mAP50 result of validation in 5-fold cross validation.

Defect Types Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Cr 0.967 0.954 0.97 0.944 0.954

Cg 0.984 0.969 0.983 0.979 0.98

In 0.601 0.613 0.696 0.571 0.478

Os 0.746 0.745 0.765 0.759 0.745

Ph 0.819 0.859 0.896 0.824 0.871

Rp 0.934 0.964 0.989 0.961 0.94

Ss 0.647 0.688 0.563 0.69 0.606

Wf 0.972 0.952 0.958 0.943 0.935

Ws 0.915 0.916 0.906 0.886 0.875

Wl 0.968 0.958 0.943 0.907 0.902

Average 0.855 0.862 0.867 0.846 0.829

Table A5 sheds light on the model’s performance across a range of IoU thresholds
(mAP50-95). The scores here are generally lower than those for mAP50, reflecting the
increased difficulty of maintaining high precision at higher IoU thresholds. The model’s
performance on inclusion (In) and silk spot (Ss) is particularly affected at these stricter
thresholds, with significantly lower scores. The overall lower mAP50-95 scores across all
defect types suggest that the model may struggle to maintain high precision when stricter
criteria for defect detection are applied.

The analysis of the YOLOv5s model’s performance shows that this model, trained
on a substantial dataset of 5760 images, demonstrates significant capabilities in certain
aspects, while also highlighting potential limitations that could be addressed for enhanced
performance. One of the standout observations is the model’s robust ability to detect specific
types of defects, notably crescent gap (Cg) and waist folding (Wf). These defect types
consistently show high precision, recall, and F1 scores across all folds in the cross-validation
process. Such performance suggests that the model has effectively learned to identify the
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distinguishing features of these defects, possibly due to their distinct characteristics or
adequate representation in the training set. Other defects like crease (Cr) and welding
line (Wl) also exhibit commendable detection rates, although they display some variability
across different folds.

Table A5. mAP50-95 result of validation in 5-fold cross validation.

Defect Types Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Cr 0.744 0.716 0.711 0.685 0.686

Cg 0.744 0.737 0.722 0.682 0.715

In 0.274 0.236 0.287 0.241 0.194

Os 0.399 0.364 0.365 0.347 0.332

Ph 0.581 0.590 0.616 0.570 0.560

Rp 0.724 0.701 0.732 0.715 0.684

Ss 0.264 0.310 0.215 0.309 0.271

Wf 0.704 0.674 0.689 0.635 0.605

Ws 0.603 0.605 0.592 0.550 0.557

Wl 0.694 0.653 0.607 0.605 0.586

Average 0.573 0.559 0.554 0.534 0.519

However, the model faces challenges with certain defects, particularly inclusion (In)
and silk spot (Ss). These types consistently score lower across all evaluation metrics, indi-
cating difficulties in accurately detecting them. This could be attributed to the complexity
of these defects, their resemblance to non-defective areas, similarities with the background,
variability within the class, or difficulty in distinguishing this class from others, or extremely
small scale illustrated in Figure 11. The variable performance with defects like oil spot (Os),
punching hole (Ph), and rolled pit (Rp) further suggests that while the model is capable of
detecting these defects to a certain extent, there is notable room for improvement.

The consistency in the model’s performance, despite a slight decline in average scores
across different folds (especially in F1 scores), indicates a general robustness. This suggests
that the model’s effectiveness is not overly sensitive to specific data partitions, a crucial
aspect for practical applications. However, the observed variability points to potential
differences in the difficulty of detecting certain defects in different data subsets, highlighting
the importance of a well-rounded and diverse training dataset. An important insight from
this analysis is the need for a balance between precision and recall, which varies across
defect types. In some cases, higher precision coupled with lower recall suggests a cautious
approach by the model, potentially leading to missed defects. On the other hand, higher
recall than precision in certain defects could imply over-identification, resulting in false
positives. The model’s lower performance in mAP50-95 compared to mAP50 across defect
types is indicative of a decline in accuracy at stricter IoU thresholds. This highlights a
need for enhancing the model’s robustness and precision, especially in more challenging
detection scenarios.
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