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A new strategy is presented for the construction of high-order spatial discretisations extracted from a lower-order 
basic discretisation. The key consideration is that any spatial discretisation of a derivative of a solution can be 
expressed as the exact differentiation of a corresponding ‘filtered’ solution. Hence, each numerical discretisation 
method may be directly linked to a unique spatial filter, expressing the truncation error of the basic method. 
By approximately deconvolving the implied filter of the basic numerical discretisation an augmented high-

order method can be obtained. In fact, adopting a deconvolution of the implied filter of suitable higher order 
enables the formulation of a new spatial discretisation method of correspondingly higher order. This construction 
is illustrated for finite difference (FD) discretisation schemes, solving partial differential equations in fluid 
mechanics. Knowing the implied filter of the basic discretisation, one can derive a corresponding higher order 
method by approximately eliminating the implied spatial filter to a certain desired order. We use deconvolution 
to compensate for the implied filter. This corresponds to a ‘sharpening’ of numerical solution features before 
the application of the basic FD method. The combination will be referred to as Approximate Deconvolution 
Discretisation (ADD). The accuracy of the deconvolved FD scheme depends on the order of approximation of 
the deconvolution filter. We present the ‘sharpening’ of several well-known FD operators for first- and second-

order derivatives and quantify the achieved accuracy in terms of the modified wavenumber spectrum. Examples 
include high-order extensions up to new schemes with spectral accuracy. The practicality of the deconvolved FD 
schemes is illustrated in various ways: (i) by investigation of exactly solvable advection and diffusion problems, 
(ii) by tracking the evolution of the numerical solution to the Taylor-Green vortex problem and (iii) by showing 
that ADD yields spectral accuracy for the Burgers equation and for double-jet flow of an incompressible fluid.
1. Introduction

Numerical discretisation of derivatives in partial differential equa-

tions inherently introduces errors and hence a difference between the 
original formulation and the computational model that is achieved. As 
a result, numerical mathematics is concerned with the understanding, 
estimation and reduction of these errors. Different pathways can be 
distinguished. Adhering to structure-preserving discretisation in which 
important dynamic characteristics such as symmetries or conservation 
of key quantities is aimed at in the computational model [51,53], or, 
achieving high formal order of accuracy [2,5,38,45,54], are two impor-

tant strategies.

The novelty in this paper derives from the basic observation that 
the truncation error associated with a particular spatial discretisation 
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method can be expressed in terms of an induced convolution filter [15]. 
In turn, a low-order truncation error may be eliminated by appropri-

ately deconvolving the corresponding induced filter. So, rather than 
‘accepting’ that a basic discretization method comes with its truncation 
error, we investigate what benefits may be derived from an approx-

imated deconvolution discretisation (ADD) approach. We discuss the 
theoretical basis, the technical implementation as well as the computa-

tional consequences and illustrate the ADD approach for a number of 
important canonical flow problems.

In this paper, we develop approximate deconvolution of the low-pass 
filter implied by a particular spatial discretisation of a derivative. This 
enables to compensate for the implied filter and achieve a higher-order 
method for the derivative. The implied filter is unavoidably connected 
to a chosen discretisation method, and will hence reduce the high-
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wavenumber content of a signal, i.e., ‘blur’ the original solution by 
filtering. However, knowing this filter explicitly, as is the case, e.g., 
for finite differencing methods, one may approximately invert it via 
deconvolution and combine this inverse with the basic discretisation 
method to ‘sharpen’ the composite derivative operator. This is referred 
to as Approximate Deconvolution Discretisation (ADD). Although most 
findings are general, we developed the approach with fluid-mechanical 
applications in mind. The main results in this paper are (i) the develop-

ment of this framework, (ii) its application to the sharpening of basic 
finite differencing methods and (iii) the analysis of example flow pre-

dictions based on a particular sharpened method. The improvement of 
the formal order of accuracy is intimately connected to the accuracy 
with which the implied filter can be numerically approximated - it will 
be shown that even spectral-like accuracy may be achieved by appro-

priate deconvolution in periodic problems.

Inverse filtering is a general strategy that can be used to recre-

ate some of the small scales in a given signal [12]. A well-known 
method is through deconvolution. Applications to image reconstruc-

tion and data science [7] enjoy growing interest. Also in the field of 
reduced order modelling, the coarsened description of a particular prob-

lem may induce new challenges to the computational modelling that 
may be mitigated using filter inversion [4]. In turbulent flow simula-

tion, filter inversion has received ample attention for modelling of the 
sub-filter stress tensor in LES [13,35]. Also, models employing explicit, 
flow-dependent length-scale definitions received considerable attention 
recently [14,32,34]. Domaradzki and Saiki [9] developed a method to 
dynamically evaluate unresolved velocity fields based on kinematic ad-

justment of the resolved and unresolved fields. These approximately 
reconstructed fields could be included to evaluate the central closure 
problem in LES. Alternatively, Geurts [11] developed an approximate 
higher-order polynomial method for the direct inversion of the top-hat 
filter and proposed a generalized mixed similarity model. The inverse 
filtering of explicitly defined filters, in combination with the dynamic 
procedure was extensively tested on LES of the mixing layer by Kuerten 
et al. [23,65]. Stolz and Adams [42] proposed an alternative method of 
inversion which they called Approximate Deconvolution Model (ADM) 
based on repeated filtering according to the concept of Van Cittert [50]

inversion. The ADM approach was applied by Aniszewski et al. [1] for 
modelling the subgrid surface tension in LES of two-phase flows.

Combustion in turbulent flow poses additional closure problems in 
which approximate inversion of the LES filter is a key step to recon-

struct small-scale details of chemical species involved in the combus-

tion. Wang and Ihme [46] and Wang et al. [47] applied inverse filtration 
for turbulent combustion modelling. They applied ADM in combination 
with Wiener inverse filtering [48]. Nikolaou and Vervisch [30] applied 
the ADM approach while Domingo and Vervisch [10] used the differ-

ential filter for inversion in turbulent combustion LES modelling. Three 
deconvolution methods were tested in the context of turbulent com-

bustion modelling by Mehl et al. [29]: the approximate deconvolution 
method based on Van Cittert iterative deconvolution, a Taylor-based de-

composition method, and the regularised deconvolution method based 
on minimisation of a quadratic cost criterion.

Another important use of filter inversion, which we follow in this 
paper, is to adopt it for the sharpening of a given spatial differentiation 
operator, thereby increasing the formal order of accuracy of that basic 
discretisation. Rather than accepting artificial dissipation and discreti-

sation errors associated with a given numerical method as is pursued 
in Monotonically Integrated LES (MILES) [17] and quantified for chan-

nel flow in [22], we investigate the use of filter inversion to enhance 
the formal order of accuracy of the method. In fact, numerical differ-

entiation based on central differencing can be interpreted as the exact 
derivative of the function filtered with the top-hat filter [49].

The implied filter characteristic of a given spatial discretisation was 
generalized by Geurts and Van der Bos [15], who showed that finite 
differencing of an arbitrary order implies a filter composed of a series 
of local top-hat filters. The idea behind ADD is the following. In fact, 
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approximating the partial derivative of a function 𝑢 in the point 𝑥𝑖, i.e., 
𝜕𝑥(𝑢(𝑥𝑖)), using a finite difference method denoted by 𝛿𝑥(𝑢(𝑥𝑖)) then 
𝛿𝑥𝑢(𝑥𝑖) = 𝜕𝑥(𝐿(𝑢(𝑥𝑖))), where 𝐿 denotes the implied filter associated 
with the particular discretisation that was selected. The implied filter 
is related to the truncation error of the finite differencing method 𝛿𝑥 . 
Now, instead of taking this truncation error for granted, an alternative 
discretisation can be formulated in which 𝛿𝑥 is not applied directly to 
the function 𝑢, but to an inverse-filtered representation 𝐿−1

𝑁
(𝑢). Here, 

𝐿−1
𝑁

denotes an 𝑁 -th order approximate inverse [11] of 𝐿. Basically, 
this approximate removal of the implied filter corresponds to

𝐷𝑥(𝑢𝑖) ≡ 𝛿𝑥
(
𝐿−1
𝑁
(𝑢(𝑥𝑖))

)
= 𝜕𝑥

(
𝐿(𝐿−1

𝑁
(𝑢(𝑥𝑖))

)
≈ 𝜕𝑥(𝑢(𝑥𝑖)) (1)

Hence, to arrive at a higher-order method 𝐷𝑥(𝑢) ≡ 𝛿𝑥(𝐿−1
𝑁
(𝑢)) for the 

derivative, the primary task is to determine the implied filter of 𝛿𝑥 and 
to construct good approximations to its inverse. In the academic case in 
which the inverse of the implied filter is known exactly, the numerical 
discretisation applied to the inverse filtered or deconvolved solution 
would correspond exactly to the desired partial derivative. This hints 
at another use of the ADD approach, i.e., that of upgrading an existing 
‘legacy code’ [25] by systematic insertion of the approximate inverse of 
the implied filter of the given numerical differentiation.

The numerically implied filter will negatively influence the treat-

ment of marginally resolved scales in a solution. Such situations can 
occur when simulating high-Reynolds-number turbulent flow for which 
spatial resolution is easily compromised. In [15] the competition be-

tween the numerically implied filter of characteristic width equal to the 
mesh spacing ℎ, and the explicit LES filter, of characteristic width Δ
was shown to both influence the LES accuracy. The intricate interaction 
between discretisation and modelling errors was approached using the 
error-landscape framework [28] in which partial cancellation and ex-

change of numerical and subgrid dissipation [52] were main features. 
In this paper, we pursue a novel use of inversion of a filter as this could 
also improve the numerical discretisation by ‘sharpening’ the method. 
The present paper develops the improvement of classical finite differ-

encing schemes through inverse filtering of the implied filter associated 
with the basic discretisation method. An alternative to improving the 
accuracy of existing schemes using deconvolution was proposed earlier 
for finite differencing and finite volume methods [20,40].

Addressing the truncation error of a discretization method, as pur-

sued here, finds its context in the wider problem of predicting and 
controlling the overall accuracy of a method. In fact, various other 
sources of error, with their own interaction dynamics need to be reck-

oned with [59,62]. The total error dynamics associated with the dis-

cretization of a partial differential equation in space and time entails 
much more than truncation error alone [66,67]. Other aspects such as 
structure preservation [63], conservation principles, symmetry [64] and 
the interaction with modelling errors [61,60,58,34] make up the result-

ing computational dynamics that approximates the actual underlying 
problem. Improving a basic numerical method by explicitly accounting 
for the truncation error of that method can help to clarify the role of 
truncation error in the total computational dynamics. Moreover, it can 
yield an approach to handle so-called ‘legacy codes’ in which a given 
low-order implementation of a complex problem can be improved with 
modest interference with the underlying original code [25].

The organization of this paper is as follows. In Section 2 we present 
the foundation that underpins the sharpening of finite differencing 
methods. The filter implied by a specific numerical discretisation is 
considered in 3 and approximated inversion options are specified. The 
new schemes are analysed in terms of discretisation error and mod-

ified wavenumber. Simulation results obtained with the spectral-like 
enhanced FD method based on (i) central second order derivatives, 
(ii) Fourier integration of the implied filter and (iii) Wiener inversion 
for the deconvolution are discussed for the linear convection-diffusion 
equation, the Burgers equation, the Taylor-Green flow, and the double-

jet problem in Section 4. Concluding remarks are collected in Section 5.
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2. Sharpening finite differencing methods by inversion of the 
implied filter

In this section, we lay the foundation for the sharpening of a given 
spatial discretisation. We will establish that a numerical discretisation 
of a derivative is equivalent to applying the analytical derivative op-

erator to a corresponding filtered solution [15]. This links a numerical 
discretisation to a particular implied filter. Through approximate inver-

sion of this implied filter, the original (low-order) discretisation method 
can be converted into a higher-order method. The basic framework is 
presented in this section - examples of numerical implementations are 
discussed in section 3.

To illustrate the general framework for sharpening a numerical dis-

cretisation, we consider the simple second-order accurate central dis-

cretisation

𝛿𝑥(𝑢)(𝑥) =
𝑢(𝑥+ ℎ) − 𝑢(𝑥− ℎ)

2ℎ
(2)

to approximate the derivative of the function 𝑢 at the location 𝑥. Here, 
ℎ is referred to as the grid spacing. Equivalently, this discrete approxi-

mation may be rewritten as

𝛿𝑥(𝑢)(𝑥) = 𝜕𝑥
( 𝑥+ℎ

∫
𝑥−ℎ

𝑑𝜉
𝑢(𝜉)
2ℎ

)
= 𝜕𝑥(𝐿(𝑢)(𝑥)) (3)

The equivalence between (2) and (3) may be directly inferred from the 
Fundamental Theorem of Calculus [56]. The implied filter 𝐿 is identi-

fied as

𝐿(𝑢)(𝑥) =

𝑥+ℎ

∫
𝑥−ℎ

𝑑𝜉
𝑢(𝜉)
2ℎ

(4)

Related to the implied filter 𝐿, we define an approximate inversion 𝐿−1
𝑁

such that [11]

𝐿◦𝐿−1
𝑁
(𝑥𝑘) = 𝑥𝑘 ; 𝑘 = 0,1, ...,𝑁 (5)

Various methods to construct the approximate inversion 𝐿−1
𝑁

are avail-

able in literature, e.g., [11,42].

The approximate inversion operator can be combined with the dis-

crete derivative 𝛿𝑥 to yield our ‘sharpened’ derivative approximation,

𝐷𝑥(𝑢) ≡ 𝛿𝑥(𝐿−1
𝑁
(𝑢)) = 𝜕𝑥(𝐿◦𝐿−1

𝑁
(𝑢)) (6)

Here, use was made of (3). This example of sharpening the well-known 
central discretisation (2) will be extended to general finite differencing 
methods next, in which we also establish the formal order of accuracy 
of 𝐷𝑥 in relation to the accuracy of the inversion of the implied filter.

We consider the problem of numerically approximating the first-

order derivative of a function 𝑢 in one spatial dimension for an arbitrary 
finite differencing method on a uniform grid. The numerical derivative 
𝛿𝑥𝑢(𝑥) may be written as

𝛿𝑥(𝑢)(𝑥) =
1
ℎ

𝑚∑
𝑗=−𝑛

𝑎𝑗𝑢(𝑥+ 𝑗ℎ) (7)

where, at this stage, we allow for a continuous dependence on 𝑥 -

the specification to a discrete grid will be made below. We adopt a 
general discretisation on 𝑚 + 𝑛 + 1 nodes, defining the stencil [−𝑛, 𝑚]. 
The discretisation weights {𝑎𝑗} can be adapted to make the numerical 
derivative comply with certain design conditions, e.g., to achieve a de-

sired formal order of accuracy. This formulation can also be extended 
to non-uniform grids - this is not pursued here as it would entail only 
technical complications that could distract from the main point of this 
section.

Any finite differencing method can be characterized by its implied 
filter 𝐿, analogous to (3). In fact, 𝐿 can be related to the discretisation 
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weights {𝑎𝑗} and expressed as a weighted average of skewed top-hat 
filters [15] of width ℎ

𝐿(𝑢)(𝑥) =
𝑚∑

𝑗=−𝑛+1
𝑏𝑗

( 1
ℎ

𝑥+𝑗ℎ

∫
𝑥+(𝑗−1)ℎ

𝑢(𝜂)𝑑𝜂
)

(8)

where

𝑏𝑗 =
𝑚∑
𝑖=𝑗
𝑎𝑖, 𝑗 = −𝑛+ 1,… ,𝑚 (9)

The implied filter 𝐿 in (8) depends on the stencil [−𝑛, 𝑚] and the grid-

spacing ℎ of the finite differencing. We will not include this dependence 
explicitly in the notation of 𝐿 but rather assume it implicitly, for nota-

tional convenience.

The formal order of accuracy of the sharpened numerical derivative 
𝐷𝑥 defined in (6), will be determined next. Applying an approximate 
inverse filter 𝐿−1

𝑁
of order 𝑁 , it can be shown that the formal order of 

accuracy of 𝐷𝑥 is also of order 𝑁 . The proof requires three steps and 
is based on Taylor expansion alone. First, consider a solution 𝑢 to be 
sufficiently smooth, i.e., for every location 𝑥0 we have

𝑢(𝑥) = 𝑢(𝑥0) + 𝜕𝑥𝑢(𝑥0)(𝑥− 𝑥0) +
1
2
𝜕𝑥𝑥𝑢(𝑥0)(𝑥− 𝑥0)2 + ...

+ 1
𝑁!
𝜕𝑁𝑥 𝑢(𝑥0)(𝑥− 𝑥0)

𝑁

+ 1
(𝑁 + 1)!

𝜕𝑁+1
𝑥 𝑢(𝜁(𝑥,𝑥0))(𝑥− 𝑥0)𝑁+1 (10)

with explicit remainder written in terms of a smooth function 𝜁(𝑥, 𝑥0)
taking values between 𝑥 and 𝑥0. Here, the Lagrange form for the re-

mainder was adopted - one may also incorporate the equivalent Cauchy 
form (more details on the formulation of the remainder term may be 
found in [57]). Correspondingly, using (5), we can take the second step 
and have

𝐿◦𝐿−1
𝑁
(𝑢)(𝑥) =

𝑁∑
𝑘=0

1
𝑘!
𝜕𝑘𝑥𝑢(𝑥0)(𝑥− 𝑥0)

𝑘 +

+ 1
(𝑁 + 1)!

(
𝐿◦𝐿−1

𝑁

){
𝜕𝑁+1
𝑥 𝑢(𝜁)(𝑥− 𝑥0)𝑁+1

}
= 𝑢(𝑥)

+ 1
(𝑁 + 1)!

(
𝐿◦𝐿−1

𝑁
− 𝐼𝑑

){
𝜕𝑁+1
𝑥 𝑢(𝜁)(𝑥− 𝑥0)𝑁+1

}
(11)

where 𝐼𝑑 denotes the identity operator. Here, a characteristic contri-

bution appears in terms of the difference of 𝐿◦𝐿−1
𝑁

and the identity 
operator. If 𝐿−1

𝑁
were an exact inverse of 𝐿, the remainder term would 

be exactly zero for any smooth function 𝑢. More practically, for 𝑁 -th 
order filters designed according to (5), we verify (𝐿◦𝐿−1

𝑁
− 𝐼𝑑)𝑝 = 0 for 

any polynomial 𝑝 of order 𝑁 .

Finally, we can take the third step and show that the expression 
in (11) implies that the sharpened higher-order method 𝐷𝑥 defined 
above in terms of 𝐿−1

𝑁
is also of order 𝑁 . In fact,

𝐷𝑥(𝑢)(𝑥) ≡ 𝛿𝑥(𝐿−1
𝑁
(𝑢)(𝑥) = 𝜕𝑥(𝐿◦𝐿−1

𝑁
(𝑢)(𝑥))

= 𝜕𝑥𝑢(𝑥) +
1

(𝑁 + 1)!

(
𝐿◦𝐿−1

𝑁
− 𝐼𝑑

)
𝜕𝑥

{
𝜕𝑁+1
𝑥 𝑢(𝜁)(𝑥− 𝑥0)𝑁+1

}
= 𝜕𝑥𝑢(𝑥) +𝑂((𝑥− 𝑥0)𝑁 ) (12)

where use was made of the fact that 𝜕𝑥 commutes with 𝐿◦𝐿−1
𝑁

− 𝐼𝑑 as 
we work with a single fixed length-scale parameter ℎ. This enables to 
explicitly identify the remainder term in (12) of order 𝑁 as proposed 
above and completes the proof.

The above analysis shows that a higher-order method 𝐷𝑥(𝑢) ≡
𝛿𝑥(𝐿−1

𝑁
(𝑢)) for the first derivative can be obtained using ‘sharpening’. 

The main tasks in constructing such a method are to first determine 
the implied filter of 𝛿𝑥 and subsequently construct good approxima-

tions to its inverse. In literature, there are several methods that could 
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be used to construct approximate filter inversions. Apart from the poly-

nomial kernels as proposed in [11], also van Cittert deconvolution is 
directly applicable, as was pioneered for turbulence in [42]. Moreover, 
exact Wiener inversion [48] could be employed to create a high-order 
numerical point of reference. As an illustration, we investigate the ap-

plication of van Cittert’s approach next and quantify the quality of the 
sharpened discretisation in terms of the induced modified wavenumber.

The van Cittert method [50] to approximate the inverse of a filter is 
based on the formal equivalence

𝐿−1 = (𝐼 − (𝐼 −𝐿))−1 =
∞∑
𝑘=0

(𝐼 −𝐿)𝑘 (13)

by analogy with geometric series. Inspired by this we define

𝐿−1
𝑁

=
𝑁∑
𝑘=0

(𝐼 −𝐿)𝑘 (14)

Some low order examples are

𝑁 = 0 ∶ 𝐿−1
0 = 𝐼 (15)

𝑁 = 1 ∶ 𝐿−1
1 = 2𝐼 −𝐿 (16)

𝑁 = 2 ∶ 𝐿−1
2 = 3𝐼 − 3𝐿+𝐿2 (17)

These approximate inverses are readily verified to be normalized if 𝐿
is, i.e., 𝐿−1

𝑁
(𝑐) = 𝑐 if 𝐿(𝑐) = 𝑐 for any constant function 𝑐. Corresponding 

to these examples we infer 𝐷𝑥𝑢 = 𝛿𝑥(𝐿−1
𝑁
(𝑢)) as

𝑁 = 0 ∶ 𝐷𝑥,0(𝑢) = 𝛿𝑥𝑢 (18)

𝑁 = 1 ∶ 𝐷𝑥,1(𝑢) = 2𝛿𝑥𝑢− 𝛿𝑥(𝐿(𝑢)) (19)

𝑁 = 2 ∶ 𝐷𝑥,2(𝑢) = 3𝛿𝑥𝑢− 3𝛿𝑥(𝐿(𝑢)) + 𝛿𝑥(𝐿(𝐿(𝑢))) (20)

In case 𝑁 = 0 there is no sharpening, but for 𝑁 ≥ 1 explicit changes to 
𝛿𝑥 are induced by the sharpening.

The sharpening of the second-order accurate central discretisation 
of the first derivative (2) will next be illustrated for some low-order 
examples. The induced filter associated with (2) is the top-hat filter as 
mentioned in (4), which implies

𝐿(𝑥𝑘) ≡
𝑥+ℎ

∫
𝑥−ℎ

𝜉𝑘

2ℎ
𝑑𝜉 = 1

2(𝑘+ 1)ℎ

(
(𝑥+ℎ)𝑘+1 −(𝑥−ℎ)𝑘+1

)
; 𝑘 = 0,1,2, ...

(21)

We readily infer 𝐿(1) = 1, 𝐿(𝑥) = 𝑥 and 𝐿(𝑥2) = 𝑥2 + ℎ2∕3 showing 
that the discretisation is exact for functions 𝑢 = 1 and 𝑢 = 𝑥. Equiva-

lently, the implied filter 𝐿 leaves these functions invariant. The first 
monomial that is not invariant under 𝐿 is 𝑢 = 𝑥2. Using the 𝑁 = 2
van Cittert approximate inverse 𝐿−1

2 as defined above, we may verify 
that 𝐿◦𝐿−1

2 (𝑥𝑘) = 𝑥𝑘 for 𝑘 = 0, 1, 2. This illustrates that the van Cittert 
method generates 2-nd order approximate inverses satisfying require-

ment (5) for 𝑁 = 2.

Filters with higher values of 𝑁 can also be constructed. Important 
for the development of an ADD method of 𝑁 -th order is that the combi-

nation of the implied filter 𝐿 with the approximate 𝑁 -th order inverse 
filter 𝐿−1

𝑁
is such that 𝐿◦𝐿−1

𝑁
(𝑥𝑘) = 𝑥𝑘 for 𝑘 = 0, 1, 2, ..., 𝑁 . The con-

struction of an approximate inverse can be performed in various ways. 
Apart from the van Cittert method as outlined above, the paper by 
Geurts [11] presents the development of high-order filters of arbitrary 
order, using polynomial kernels. Further extensions to higher order fil-

ters in the context of computational aeroacoustics (CAA) may be found 
in earlier work of Bogey and Bailley [68].

The higher-order filtering of an arbitrary smooth function 𝑢 can be 
developed on the basis of higher-order filtering of any 𝑥𝑘 . Approximat-

ing 𝑢 with its Taylor expansion enables higher-order filtering of any 
smooth function, i.e., |𝑢 −𝐿(𝑢)| =𝑂(ℎ𝑁 ) for an 𝑁 -th order filter 𝐿.
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The approximate inverses generated with the van Cittert method can 
be used to define possible sharpened discretisations. The characteristics 
of these methods can be represented in terms of the associated mod-

ified wavenumber. To that end we investigate the discrete derivative 
of a single Fourier mode 𝑢(𝑥) = sin(𝑘𝑥) as a function of 𝑘ℎ, where 𝑘
denotes the wavenumber of the mode. The focus on sin(𝑘𝑥) is not a 
restriction but rests on the fact that any smooth function 𝑢 can be ex-

panded in its Fourier series. Determining what the effect of a filter is 
on a single Fourier-mode is crucial for understanding how any general 
smooth function 𝑢 would be altered when the filter is applied to it. This 
also implies that the analysis of a single Fourier mode at general 𝑘 is 
relevant for non-periodic functions as well. In fact, for finite domains, 
a suitable (odd, even or otherwise) extension of the domain implies ad-

herence to specific non-periodic boundary conditions. These correspond 
to a particular selection of wavenumbers from the general Fourier se-

ries, which are acted upon by the filter. We may derive analytically for 
𝑢(𝑥) = sin(𝑘𝑥)

𝐿(𝑢)(𝑥) =

𝑥+ℎ

∫
𝑥−ℎ

𝑑𝜉
𝑢(𝜉)
2ℎ

= 1
2ℎ

𝑥+ℎ

∫
𝑥−ℎ

𝑑𝜉 sin(𝑘𝜉) =
( sin(𝑘ℎ)

𝑘ℎ

)
sin(𝑘𝑥) (22)

For convenience we write 𝐺(𝑘ℎ) = sin(𝑘ℎ)∕(𝑘ℎ). Likewise,

𝛿𝑥(sin(𝑘𝑥)) =
1
2ℎ

(
sin(𝑘(𝑥+ ℎ)) − sin(𝑘(𝑥− ℎ))

)
=
( sin(𝑘ℎ)

ℎ

)
cos(𝑘𝑥)

=𝐺(𝑘ℎ){𝑘 cos(𝑘𝑥)} (23)

These two explicit results enable us to analyse the sharpened discretisa-

tions defined above. In fact,

𝐷𝑥,0(sin(𝑘𝑥)) = 𝛿𝑥(sin(𝑘𝑥)) =
( sin(𝑘ℎ)

𝑘ℎ

)
{𝑘 cos(𝑘𝑥)} (24)

This establishes also the order of this discretisation since

𝐷𝑥,0(sin(𝑘𝑥)) =
(
1 − 1

3!
(𝑘ℎ)2 + 1

5!
(𝑘ℎ)4 − ...

)
{𝑘 cos(𝑘𝑥)} (25)

from which we infer second order accuracy, in view of the scaling of the 
error with (𝑘ℎ)2. Slightly more involved, we obtain for the next order 
sharpening

𝐷𝑥,1(sin(𝑘𝑥)) = 𝛿𝑥(𝐿−1
1 (sin(𝑘𝑥))) = 𝛿𝑥(2 sin(𝑘𝑥) −𝐺(𝑘ℎ) sin(𝑘𝑥))

= 2𝛿𝑥 sin(𝑘𝑥) −𝐺(𝑘ℎ)𝛿𝑥 sin(𝑘𝑥)

=
(
2 −𝐺(𝑘ℎ)

)(
𝐺(𝑘ℎ)

)
{𝑘 cos(𝑘𝑥)} (26)

Through cancellation of lower order terms, a higher-order accuracy is 
achieved, expressed by

𝐷𝑥,1(sin(𝑘𝑥)) =
(
1 − 1

3!
(𝑘ℎ)4 + ( 2

3!5!
− 1

7!
)(𝑘ℎ)6 − ...

)
{𝑘 cos(𝑘𝑥)} (27)

This establishes fourth-order accuracy. Likewise, 𝐷𝑥,2 can be proven to 
yield sixth-order accuracy.

This section considered the exact evaluation of the involved filters 
and their approximate inverses and showed that sharpening indeed 
may upgrade a lower-order discretisation into a method with high-

order accurate numerical differentiation. In actual implementations, the 
involved filters are not directly available and one should consider par-

ticular approximate quadrature rules instead. In the next section, we 
investigate the numerical implementation in more detail and present 
several spatial filters and the actual discretisation sharpening that may 
be achieved.

3. Numerical discretisation filter and approximate deconvolution

The numerical formulation of the spatial filters implied by finite dif-

ference discretisations of first-order (Subsection 3.1) and second-order 
(Subsection 3.2) partial derivatives will be presented. Several quadra-

ture rules can be selected to approximate the implied filter – here we 
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investigate the trapezoidal and the Cavalieri-Simpson rule [33,16] as 
well as the Fourier series approach [6]. The corresponding approximate 
deconvolution of these implied filters will be quantified. Next to van 
Cittert’s method as illustrated in the previous Section, also Wiener type 
inverse filtering is available for periodic problems [48]. In this section 
we will focus on the latter inversion method and discuss the achievable 
increase of the order of accuracy of the discretisation.

3.1. Approximation of first order derivative

The discrete representation of the implied filter determines the prop-

erties of the ‘sharpened’ high-order discretisation method 𝐷𝑥 on a given 
grid. To evaluate the implied filter, the integral in (8) should be approx-

imated. We start with the trapezoidal rule for the numerical integration, 
which yields the corresponding implied filter

𝐿𝑇𝑅(𝑢)(𝑥𝑖) =
𝑚∑

𝑗=−𝑛+1
𝑏𝑗
𝑢𝑖+𝑗−1 + 𝑢𝑖+𝑗

2
(28)

The superscript ‘𝑇𝑅’ emphasizes that this discrete filter corresponds to 
trapezoidal quadrature. Rearranging the summation, one obtains

𝐿𝑇𝑅(𝑢)(𝑥𝑖) =
1
2
𝑏−𝑛+1𝑢𝑖−𝑛+!

𝑚−1∑
𝑗=−𝑛+1

1
2
(𝑏𝑗 + 𝑏𝑗+1)𝑢𝑖+𝑗 +

1
2
𝑏𝑚𝑢𝑖+𝑚

≡
𝑚∑

𝑗=−𝑛
𝐺𝑇𝑅𝑗 𝑢𝑖+𝑗 (29)

where the discrete filter kernel is obtained as

𝐺𝑇𝑅−𝑛 = 1
2
𝑏−𝑛+1

𝐺𝑇𝑅𝑗 = 1
2
(𝑏𝑗 + 𝑏𝑗+1) for 𝑗 = −𝑛+ 1,… ,𝑚− 1 (30)

𝐺𝑇𝑅𝑚 = 1
2
𝑏𝑚

Trapezoidal integration of the implied filter over a width Δ =
(𝑚 + 𝑛)ℎ yields a particular discrete representation of the filter kernel 
as in (29). This representation can be combined with different options 
for its approximate inversion. Here, we restrict to periodic problems in 
the domain 0 < 𝑥 < 1, for which Wiener inversion is particularly well 
suited. This method of approximate inversion proceeds in a few steps. 
First, we consider the Fourier series of the discrete filter kernel over the 
computational domain

𝐺𝑇𝑅
𝑘

= 1
𝑁

𝑁−1∑
𝑖=0
𝐺𝑇𝑅𝑖 𝑒−2𝜋𝑖𝑘𝑥𝑖 ; 𝑘 = −𝐾,… ,𝐾 (31)

where 𝑖 =
√
−1 and 𝑁 = 2𝐾 + 1 is an odd number of mesh points. We 

will not explicitly denote the dependence of the Fourier coefficients on 
𝑛 and 𝑚 that define the filter but rather assume this implicitly for nota-

tional convenience. The Wiener-inverse filter kernel in Fourier space is 
defined as

𝑄̂𝑇𝑅
𝑘

= 1
𝐺𝑇𝑅
𝑘
𝑁2

(32)

and the Wiener-inverse filter kernel in physical space is found from the 
inverse Fourier transform

𝑄𝑇𝑅𝑖 =
𝐾∑

𝑘=−𝐾
𝑄̂𝑇𝑅
𝑘
𝑒2𝜋𝑖𝑘𝑥𝑘 ; 𝑖 = 0,… ,𝑁 − 1 (33)

With these definitions recalled, we next specify approximate decon-

volution discretisations associated with finite differencing methods. We 
quantify properties of the different methods by (i) specifying the actual 
discretisation error as function of the grid spacing in case of solutions 
consisting of a basic Fourier mode, and (ii) by determining the modified 
wavenumber associated with the sharpened method. It will be shown 
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that the order with which the implied filter is approximated is crucial 
for the achieved sharpening - we investigate the trapezoidal rule, Simp-

son integration and the spectral method.

The approximate deconvolution discretisation for central finite dif-

ferencing schemes can be elaborated in detail in case the implied filter 
is evaluated using the trapezoidal rule. These central schemes corre-

spond to 𝑚 = 𝑛, and have 𝑎0 = 0 and 𝑎−𝑗 = −𝑎𝑗 , 𝑗 = 1, … , 𝑛. In addition, 
there is symmetry in 𝑏−𝑗+1 = 𝑏𝑗 and 𝐺𝑇𝑅−𝑗 = 𝐺𝑇𝑅

𝑗
. Moreover, the coeffi-

cients for 𝑎𝑗 sum up to 0, while the coefficients for 𝑏𝑗 and 𝐺𝑇𝑅
𝑗

sum up 
to 1 for consistency and normalisation reasons. The schemes of 2𝑛𝑑 , 4𝑡ℎ
and 6𝑡ℎ order can be specified using (9) and (30) as follows (for 𝐺𝑇𝑅

𝑗
only the entries for 𝑗 ≥ 0 are listed as the above symmetries allow to 
read off the components for 𝑗 < 0)

• Second order accuracy (𝑛 = 1):

𝑎−1 = −1
2 𝑎1 =

1
2

𝑏0 =
1
2 𝑏1 =

1
2

𝐺𝑇𝑅0 = 2
4 𝐺𝑇𝑅1 = 1

4

• Fourth order accuracy (𝑛 = 2):

𝑎−2 =
1
12 𝑎−1 = − 8

12 𝑎1 =
8
12 𝑎2 = − 1

12

𝑏−1 = − 1
12 𝑏0 =

7
12 𝑏1 =

7
12 𝑏2 = − 1

12

𝐺𝑇𝑅0 = 14
24 𝐺𝑇𝑅1 = 6

24 𝐺𝑇𝑅2 = − 1
24

• Sixth order accuracy (𝑛 = 3):

𝑎−3= − 1
60 𝑎−2=

9
60 𝑎−1= − 45

60 𝑎1=
45
60 𝑎2= − 9

60 𝑎3=
1
60

𝑏−2=
1
60 𝑏−1= − 8

60 𝑏0=
37
60 𝑏1=

37
60 𝑏2= − 8

60 𝑏3=
1
60

𝐺𝑇𝑅0 = 74
120 𝐺𝑇𝑅1 = 29

120 𝐺𝑇𝑅2 = − 7
120 𝐺𝑇𝑅3 = 1

120

Fig. 1 shows the discrete kernels of the implied filters of the 2𝑛𝑑 , 4𝑡ℎ
and 6𝑡ℎ order central differencing schemes in which the implied filter 
is evaluated on the basis of trapezoidal integration. The corresponding 
Wiener inverses are also included, showing that the compact support 
of the implied filters is accompanied by non-local inverse filter kernels 
that take non-zero values across the entire computational domain.

3.1.1. Implied filter based on trapezoidal integration

An insightful way of characterising the possible sharpening of a basic 
numerical discretisation method is obtained by considering the error of 
differentiating a given smooth function on a grid with mesh spacing ℎ. 
For this purpose we consider a basic Fourier mode

𝑢(𝑥) = sin(2𝜋𝑥) + cos(2𝜋𝑥) (34)

The discretisation error is defined as

𝜀𝑇𝑅 =
( 1
𝑁

𝑁−1∑
𝑖=0

[
𝐷𝑇𝑅𝑥 (𝑢)(𝑥𝑖) − 𝜕𝑥(𝑢(𝑥𝑖))

]2 )1∕2
(35)

where 𝐷𝑇𝑅𝑥 denotes the ‘sharpened’ discrete differentiation method 
based on central differencing on a stencil with 2𝑛 + 1 nodes. The trape-

zoidal rule was used to approximate the implied filter, i.e.,

𝐷𝑇𝑅𝑥 (𝑢) ≡ 𝛿𝑥(𝐿−1
𝑊
(𝑢)) (36)

Here, 𝐿−1
𝑊

is the Wiener evaluation to the inverse of 𝐿𝑇𝑅. Following 
the previous Section, here one might also consider alternative, approxi-

mate inversions. However, since the Wiener inverse would be exact, this 
would imply the highest possible accuracy of the sharpened discretisa-

tion, thus creating a clear point of reference. This is why we adhere to 
the Wiener filter for the sake of simplicity.
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Fig. 1. The kernels for 2nd (a, b), 4th (c, d) and 6th (e, f) order central differencing methods with implied filter evaluated using trapezoidal integration. On the left 
the implied numerical filters are shown (a, c, e) and on the right the corresponding Wiener inverse filter (b, d, f).
180
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Fig. 2. Error of differentiation of the first derivative using (a) 2nd, (b) 4th and (c) 6th order basic discretisation and trapezoidal quadrature to approximate the 
implied filter. The central discretisation 𝛿𝑥 on 3 (a), 5 (b) and (7) grid points and the sharpened discretisation 𝐷𝑇𝑅

𝑥
are compared against the theoretical predictions.
The discretisation error in the first derivative of the basic Fourier 
mode as a function of grid spacing, obtained with 2𝑛𝑑 , 4𝑡ℎ and 6𝑡ℎ or-

der central differencing, are shown in Fig. 2. It can be seen that for 2𝑛𝑑
order central differencing the ‘sharpened’ scheme (see Fig. 2a) slightly 
improves the accuracy compared to the case without trapezoidal sharp-

ening. The total method 𝐷𝑥 remains, however, of second order, i.e., 
similar to the basic unsharpened discretisation method 𝛿𝑥. For 4𝑡ℎ and 
6𝑡ℎ order central differencing, the use of trapezoidal integration in the 
evaluation of the implied filter does not yield any benefit. In fact, the 
complete ‘sharpened’ scheme remains second-order accurate irrespec-

tive of using the 4𝑡ℎ or 6𝑡ℎ order central differencing schemes as a point 
of departure. This illustrates that the order of accuracy of the ‘sharp-

ened scheme’ is determined by the order of accuracy with which the 
implied filter is approximated and not by the order of accuracy of the 
basic discretisation method that is considered. In this instance, we work 
with the second-order accurate trapezoidal quadrature, which turns all 
‘sharpened’ schemes second-order accurate as a consequence.

As a final characterisation of the sharpened schemes, we compute 
the modified wavenumber of the finite differencing schemes. A discrete 
function 𝑢 can be represented via its Fourier coefficients on 2𝐾 +1 =𝑁
grid points:
181
𝑢(𝑥) =
𝐾∑

𝑘=−𝐾
𝑢̂𝑘𝑒

2𝜋𝑖𝑘𝑥, 𝑥 ∈]0,1[ (37)

Following the notation proposed by Lele [26], it is convenient to intro-

duce a scaled wavenumber 𝑤𝑘 and scaled coordinate 𝑠 as

𝑤𝑘 = 2𝜋𝑘ℎ = 2𝜋𝑘
𝑁
, 𝑠 = 𝑥

ℎ
(38)

Using this notation the exact first derivative of 𝑢 can be expressed as

𝑑𝑢

𝑑𝑠
=

𝐾∑
𝑘=−𝐾

𝑖𝑢̂𝑘𝑤𝑘𝑒
𝑖𝑤𝑘𝑠 (39)

This can be compared to the corresponding expression resulting from 
the application of the numerical derivative. In fact, replacing the func-

tion 𝑢 by its Fourier series and inserting this into (7), we may write for 
the central finite differencing scheme on 2𝑛 + 1 grid points

𝛿𝑠(𝑢(𝑠𝑖)) =
𝑛∑

𝑗=−𝑛

(
𝑎𝑗

𝐾∑
𝑘=−𝐾

𝑢̂𝑘𝑒
𝑖𝑤𝑘𝑠𝑖+𝑗

)
=

𝐾∑
𝑘=−𝐾

𝑢̂𝑘

(
𝑛∑

𝑗=−𝑛
𝑎𝑗𝑒

𝑖𝑤𝑘𝑠𝑗

)
𝑒𝑖𝑤𝑘𝑠𝑖

(40)
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Fig. 3. Modified wavenumber for (a) 2nd, (b) 4th, (c) 6th order finite differencing (dashed) and the corresponding sharpened scheme based on an implied filter 
defined in terms of trapezoidal integration (solid).
=
𝐾∑

𝑘=−𝐾
𝑢̂𝑘𝑖

(
𝑛∑

𝑗=−𝑛
𝑎𝑗 sin(𝑤𝑘𝑠𝑗 )

)
𝑒𝑖𝑤𝑘𝑠𝑖 ≡

𝐾∑
𝑘=−𝐾

𝑢̂𝑘𝑖𝑊
𝛿
𝑘
𝑒𝑖𝑤𝑘𝑠𝑖

where

𝑊 𝛿
𝑘
=

𝑛∑
𝑗=−𝑛

𝑎𝑗 sin
(
𝑤𝑘𝑠𝑗

)
(41)

denotes the scaled wavenumber resulting from the numerical scheme. 
The latter wavenumber 𝑊 𝛿

𝑘
in general differs from the exact wavenum-

ber corresponding to the first derivative - it is referred to as the ‘mod-

ified’ wavenumber and the difference compared to the exact value is 
a measure for the order of accuracy of the scheme and its truncation 
error, also at high wavenumbers.

Following the same steps, it can be shown that the sharpened ap-

proximate deconvolution schemes can be expressed as

𝐷𝑥(𝑢(𝑠𝑖)) =
𝐾∑

𝑘=−𝐾
𝑢̂𝑘𝑖𝑊

𝐷
𝑘
𝑒𝑖𝑤𝑘𝑠𝑖 (42)

where

𝑊𝐷
𝑘

=𝑊 𝛿
𝑘

[
𝐾∑

2𝑄𝑇𝑅
𝑙

cos
(
𝑤𝑘𝑙

)
+𝑄𝑇𝑅0

]
(43)
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Fourier errors for the three central differencing schemes considered 
re shown in Fig. 3. One can see that the modified wavenumbers as 
 function of the scaled wavenumber are nearly identical, no matter 
he original scheme that was adopted. In order to also achieve higher-

rder sharpened discretisation, we proceed with investigating higher-

rder quadrature of the implied filter and consider Cavalieri-Simpson 
ntegration next.

.1.2. Implied filter based on Simpson integration

The implied filter 𝐿 of any basic discretisation method can be ap-

roximated with different numerical quadrature methods. Obviously, 
his will influence the overall order of accuracy that can be achieved 
ith the sharpening of that basic discretisation. In fact, with a per-

ect evaluation of the implied filter and its corresponding inversion 
−1, one may achieve analytically correct derivatives as 𝜕𝑥𝑢 = 𝛿𝑥(𝐿−1𝑢)
orresponding to (3). The order of accuracy that the numerically ap-

roximated sharpening of the basic discretisation could yield equals the 
rder of the quadrature method used to approximate the implied filter. 
he trapezoidal rule was shown to imply second-order accuracy of the 
harpened methods, irrespective of the order of accuracy of the basic 
iscretisation from which we started.

We elaborate on the characteristics of the sharpened methods that 
re obtained in case the implied filter is approximated using the 
igher-order Cavalieri-Simpson (CS) method [33]. For smooth solu-
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tions, fourth-order accuracy may be anticipated for the total sharpened 
discretisation. In the CS case, the implied filtration (8) can be approxi-

mated on the interval [𝑥𝑖 − 𝑛ℎ, 𝑥𝑖 +𝑚ℎ] of a uniform grid as

𝐿𝐶𝑆 (𝑢)(𝑥𝑖) =
1
ℎ

𝑚−1∑
𝑗=−𝑛+1
𝑗+𝑛 𝑜𝑑𝑑

⎡⎢⎢⎢⎣𝑏𝑗
𝑥𝑖+𝑗ℎ

∫
𝑥𝑖+(𝑗−1)ℎ

𝑢 (𝜂)𝑑𝜂 +𝑏𝑗+1

𝑥𝑖+(𝑗+1)ℎ

∫
𝑥𝑖+𝑗ℎ

𝑢 (𝜂)𝑑𝜂
⎤⎥⎥⎥⎦

=
𝑚−1∑

𝑗=−𝑛+1
𝑗+𝑛 𝑜𝑑𝑑

[
𝑏𝑗

( 5
12
𝑢𝑖+𝑗−1 +

2
3
𝑢𝑖+𝑗 −

1
12
𝑢𝑖+𝑗+1

)

+ 𝑏𝑗+1
(
− 1
12
𝑢𝑖+𝑗−1 +

2
3
𝑢𝑖+𝑗 +

5
12
𝑢𝑖+𝑗+1

)]
(44)

Rearranging this expression yields

𝐿𝐶𝑆 (𝑢)(𝑥𝑖) =
( 5
12
𝑏−𝑛+1 −

1
12
𝑏−𝑛+2

)
𝑢𝑖−𝑛 +

2
3
(
𝑏−𝑛+1 + 𝑏−𝑛+2

)
𝑢𝑖−𝑛+1

+
𝑚−2∑

𝑗=−𝑛+2
𝑗+𝑛 𝑒𝑣𝑒𝑛

[( 5
12
𝑏𝑗+1 −

1
12
𝑏𝑗+2

)
+
(
− 1
12
𝑏𝑗−1 +

5
12
𝑏𝑗

)]
𝑢𝑖+𝑗+

+
𝑚−2∑

𝑗=−𝑛+2
𝑗+𝑛 𝑜𝑑𝑑

2
3
(
𝑏𝑗 + 𝑏𝑗+1

)
(45)

+
[2
3
(
𝑏𝑚−1 + 𝑏𝑚

)|||| 𝑚+𝑛≠2
𝑒𝑣𝑒𝑛

+
(
− 1
12
𝑏𝑚−2 +

5
12
𝑏𝑚−1

)|||| 𝑚+𝑛
𝑜𝑑𝑑

⎤⎥⎥⎥⎦𝑢𝑖+𝑚−1
+
(
− 1
12
𝑏𝑚−1 +

5
12
𝑏𝑚

)|||| 𝑚+𝑛
𝑒𝑣𝑒𝑛

𝑢𝑖+𝑚

From this, we may infer the discrete filter kernel for the quadratic in-

terpolation as

𝐺𝐶𝑆−𝑛 = 5
12
𝑏−𝑛+1 −

1
12
𝑏−𝑛+2

𝐺𝐶𝑆−𝑛+1 =
2
3
(
𝑏−𝑛+1 + 𝑏−𝑛+2

)

𝐺𝐶𝑆𝑗 =

⎧⎪⎪⎨⎪⎪⎩

− 1
12 𝑏𝑗−1 +

5
12𝑏𝑗

+ 5
12𝑏𝑗+1 −

1
12 𝑏𝑗+2,

𝑗 + 𝑛 even

2
3

(
𝑏𝑗 + 𝑏𝑗+1

)
, 𝑗 + 𝑛 odd

𝑗 = −𝑛+ 2,… ,𝑚− 2

𝐺𝐶𝑆
𝑚−1 =

⎧⎪⎨⎪⎩
2
3

(
𝑏𝑚−1 + 𝑏𝑚

)
, 𝑚+ 𝑛 ≠ 2 𝑚+ 𝑛 even

− 1
12 𝑏𝑚−2 +

5
12𝑏𝑚−1, 𝑚+ 𝑛 odd

(46)

𝐺𝐶𝑆𝑚 = − 1
12
𝑏𝑚−1 +

5
12
𝑏𝑚, 𝑚+ 𝑛 even

In particular, discrete filter kernels for the central schemes for which 
𝑛 =𝑚 are quantified as (𝐺𝐶𝑆−𝑗 =𝐺𝐶𝑆

𝑗
):

𝑛 = 1

𝐺𝐶𝑆−1 = 1
6
, 𝐺𝐶𝑆0 = 2

3
, 𝐺𝐶𝑆1 = 1

6
(47)

𝑛 = 2

𝐺𝐶𝑆−2 = − 1
12
, 𝐺𝐶𝑆−1 = 1

3
, 𝐺𝐶𝑆0 = 1

2
, 𝐺𝐶𝑆1 = 1

3
, 𝐺𝐶𝑆2 = − 1

12
(48)

𝑛 = 3

𝐺𝐶𝑆−3 = 13
, 𝐺𝐶𝑆−2 = − 7

𝐺𝐶𝑆−1 = 107

720 90 720
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𝐺𝐶𝑆0 = 37
45

(49)

𝐺𝐶𝑆1 = 107
720

, 𝐺𝐶𝑆2 = − 7
90
, 𝐺𝐶𝑆3 = 13

720
Fig. 4 shows the kernels of the implied filters for 2𝑛𝑑 , 4𝑡ℎ and 

6𝑡ℎ order basic central differencing schemes in case the fourth-order 
Cavalieri-Simpson integration is used to approximate the implied filter. 
Again, the Wiener method is used for exact inversion in the periodic 
setting. The discrete kernels of the inverse filters are seen to be qualita-

tively different from the corresponding kernels obtained with the trape-

zoidal integration (cf. Fig. 1). In fact, while the filter kernels themselves 
remain localized as seen previously, only the Wiener inverse kernel for 
𝑛 = 2 shows a non-zero value across the domain. In case 𝑛 = 1, 3 the 
Wiener inverse kernel shows compact support instead.

The differentiation errors associated with (34) for the new ‘sharp-

ened’ Cavalieri-Simpson schemes are shown in Fig. 5. The CS quadra-

ture indeed yields effective ‘sharpening’ of the second-order central 
differencing method, yielding a total method of fourth order. This is 
the first example of improved accuracy obtained from sharpening. The 
CS method does not yield higher order for the 4𝑡ℎ and 6𝑡ℎ order basic 
methods - instead, overall fourth-order accuracy is observed, consis-

tent with the expectations expressed above. Based on these examples, 
a clear framework for developing and analysing sharpened methods is 
obtained. This framework can be applied to higher-order central ap-

proaches as well as skewed upwind-biased discretisation. The latter is 
relevant for discretisation which adds numerical dissipation to the com-

putational model. These directions are left for future studies. Here, we 
next investigate the maximum accuracy of sharpened schemes using all 
points in the computational domain for the approximate quadrature of 
the filter kernel.

3.1.3. Implied filter based on Fourier integration

As considered here, the implied filtration can effectively be approx-

imated by its Fourier series for periodic problems. In fact,

𝐿𝐹𝑜(𝑢)(𝑥𝑖) =
1
ℎ

𝑚∑
𝑗=−𝑛+1

𝑏𝑗

𝑥𝑖+𝑗ℎ

∫
𝑥𝑖+(𝑗−1)ℎ

𝑢 (𝜂)𝑑𝜂

≈ 1
ℎ

𝑚∑
𝑗=−𝑛+1

𝑏𝑗

𝑥𝑖+𝑗ℎ

∫
𝑥𝑖+(𝑗−1)ℎ

( 𝐾∑
𝑘=−𝐾
𝑘≠0

𝑢̂𝑘𝑒
2𝜋𝑖𝑘𝜂 + 𝑢̂0

)
𝑑𝜂

= 1
ℎ

𝑚∑
𝑗=−𝑛+1

𝑏𝑗

[ 𝐾∑
𝑘=−𝐾
𝑘≠0

𝑢̂𝑘𝑒
2𝜋𝑖(𝑖+𝑗)ℎ (1 − 𝑒−2𝜋𝑖𝑘ℎ)

2𝜋𝑖𝑘
+ 𝑢̂0ℎ

]
(50)

where 𝑢(𝜂) was approximated over the interval [𝑥𝑖 + (𝑗 − 1)ℎ, 𝑥𝑖 + 𝑗ℎ]
by its Fourier series based on (2𝐾 + 1)-terms. Introducing the inverse 
Fourier transform into the last equation leads to

𝐿𝐹𝑜(𝑢)(𝑥𝑖) =
1
ℎ

𝑚∑
𝑗=−𝑛+1

𝑏𝑗

[ 𝐾∑
𝑘=−𝐾
𝑘≠0

𝑒2𝜋𝑖(𝑖+𝑗)ℎ
(
1 − 𝑒−2𝜋𝑖𝑘ℎ

)
2𝜋𝑖𝑘𝑁

×
𝐾∑

𝑞=−𝐾
𝑢𝑖+𝑞𝑒

−2𝜋𝑖𝑘(𝑖+𝑞)ℎ

+ ℎ

𝑁

𝐾∑
𝑞=−𝐾

𝑢𝑖+𝑞

]
(51)

=
𝐾∑

𝑞=−𝐾
𝑢𝑖+𝑞

𝑚∑
𝑗=−𝑛+1

𝑏𝑗

[ 𝐾∑
𝑘=−𝐾
𝑘≠0

𝑒2𝜋𝑖𝑘(𝑗−𝑞)ℎ
(
1 − 𝑒−2𝜋𝑖𝑘ℎ

)
2𝜋𝑖𝑘

+ 1
𝑁

]
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Fig. 4. The kernels for 2nd (a, b), 4th (c, d) and 6th (e, f) order central differencing methods with implied filter evaluated using Cavalieri-Simpson integration. On 
the left, the implied numerical filters are shown (a, c, e) and on the right the corresponding Wiener inverse filter (b, d, f).
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Fig. 5. Error of differentiation of the first derivative using (a) 2nd, (b) 4th and (c) 6th order basic discretisation and Cavalieri-Simpon quadrature to approximate the 
implied filter. The central discretisation 𝛿𝑥 on 3 (a), 5 (b) and (7) grid points and the sharpened discretisation 𝐷𝐶𝑆

𝑥
are compared against the theoretical predictions.
For the special case of central differencing where 𝑛 = 𝑚, the discrete 
filter kernel associated with the Fourier approximation can be inferred 
as

𝐺𝐹𝑜𝑞 =
𝑛∑

𝑗=−𝑛+1
𝑏𝑗

{ 𝐾∑
𝑘=1

1
𝜋𝑘

(
cos (2𝜋𝑘(𝑗 − 𝑞)ℎ) sin(2𝜋𝑘ℎ)

− sin (2𝜋𝑘 (𝑗 − 𝑞)ℎ) (cos (2𝜋𝑘ℎ) − 1)
)
+ 1
𝑁

}
(52)

Fig. 6 shows the kernels of the implied filters associated with the 2𝑛𝑑 , 
4𝑡ℎ and 6𝑡ℎ order central schemes and the kernels of the correspond-

ing inverse filters, in case of Fourier integration. The differentiation 
errors arising from the smooth function (34) are shown in Fig. 7 for 
the ‘Fourier-sharpened’ central methods. Clearly, in all cases, spectral 
accuracy is obtained. The accuracy of all the sharpened schemes is veri-

fied to be independent of the order of the original method since Fourier 
integration yields results at machine accuracy. This is also readily veri-

fied from the modified wavenumber which corresponds up to machine 
accuracy to the exact result. This is shown in Fig. 8. The solid line 
refers to the sharpened schemes derived from the basic 2nd, 4th, and 
6th order accurate finite differencing schemes. The use of the Fourier 
series interpolation of each of these basic finite differencing methods 
yields sharpened schemes with exact wave numbers for the first deriva-

tive. Consequently, the corresponding error dynamics of the sharpened 
scheme should be the same as in the case of the spectral scheme. It 
185
should be noted that if the Fourier series interpolation is replaced by 
a (high-degree) polynomial interpolation, a different method is gener-

ated, the characteristics of which will require global spectral analysis 
of the error dynamics. This study is subject of ongoing research, closely 
following the review in [55].

After having investigated the sharpening characteristics of different 
central differencing methods for approximating the first derivative, we 
next investigate the sharpening of the second derivative.

3.2. Approximation of second derivative

Very similar reasoning as presented above for the first derivative 
can be applied for ‘sharpening’ of the second derivative. To illustrate 
the approach, we consider an approximation of the second derivative 
using central differencing of second order accuracy

𝛿2𝑥
(
𝑢𝑖
)
=
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ2
(53)

This approximation can be decomposed into two first-order derivatives, 
i.e.,

𝛿2𝑥
(
𝑢𝑖
)
= 1
ℎ2
𝐷𝑥(𝑑𝑥

(
𝑢𝑖
)
) (54)

where

𝑑𝑥
(
𝑢𝑖
)
= 𝑢𝑖+1 − 𝑢𝑖
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Fig. 6. The kernels for 2nd (a, b), 4th (c, d) and 6th (e, f) order central differencing methods with implied filter evaluated using Fourier integration. On the left, the 
implied numerical filters are shown (a, c, e) and on the right the corresponding Wiener inverse filter (b, d, f).
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Fig. 7. Error of differentiation of the first derivative using (a) 2nd, (b) 4th and (c) 6th order basic discretisation and Fourier quadrature to approximate the implied 
filter. The central discretisation 𝛿𝑥 on 3 (a), 5 (b) and (7) grid points and the sharpened discretisation 𝐷𝐹𝑜

𝑥
are compared.
Fig. 8. Modified wavenumber for 2nd, 4th, and 6th order finite differencing 
and the corresponding sharpened scheme based on an implied filter defined in 
terms of Fourier quadrature.

𝐷𝑥
(
𝑢𝑖
)
= 𝑑𝑥

(
𝑢𝑖
)
− 𝑑𝑥

(
𝑢𝑖−1

)
(55)
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Using the method described in the previous subsection one can de-

termine the implied filters for both first derivatives in Eq. (54), i.e., 𝐿𝐷, 
𝐿𝑑 and their inverses 𝐿−1

𝐷
, 𝐿−1

𝑑
that suggest a potentially high-order ap-

proximation of the second derivative

𝐷2
𝑥

(
𝑢𝑖
) ≡ 1

ℎ2

(
𝐷𝑥◦𝐿

−1
𝐷

)
(𝑑𝑥◦𝐿−1

𝑑

(
𝑢𝑖
)
) ≈ 𝜕2𝑥𝑢𝑖 (56)

Numerous extensions of these discrete operators can be introduced for 
the 4th and 6th order central approximations of the second derivative. 
Here, we restrict to ‘sharpened’ schemes obtained with Fourier integra-

tion of the second-order scheme (53). The Fourier series approach was 
applied to derive the discrete kernels according to formula (52). The 
discrete filter kernels for the second derivative and their inverse coun-

terparts are shown in Fig. 9. An intricate pattern with non-zero values 
across the domain is obtained that yield nearly exact numerical second 
derivatives.

The error of second differentiation of the smooth function (34) is 
shown in Fig. 10. It is seen that similarly to the first derivative spectral 
accuracy is achieved also here. The slight increase of the error with in-

creasing resolution stems from round-off error. Spectral resolution by 
the sharpened scheme for the second derivative with Fourier series in-

terpolation is illustrated in Fig. 11. This matches the earlier result for 
the first derivative and establishes that spectral resolution can be re-

alised in combination with Fourier series interpolation.
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Fig. 9. The first-order kernels in the decomposition of the second order central differencing of the second derivative evaluated using Fourier integration: (a) induced 
numerical filter, (b) its Wiener inverse filter.

Fig. 10. Differentiation error for the second derivative, 2nd order central 
scheme, Fourier series used for interpolation.

Fig. 11. Modified wave number for the sharpened of the 2nd order cen-

tral scheme, Fourier series used for interpolation compared with the original 
scheme.

Summing up, all discrete convolution operations discussed above 
can be expressed in terms of matrix products, providing an alterna-

tive to the local formulation presented until now. Correspondingly, the 
sharpened differencing operators for the first - and second derivatives 
can be expressed as follows:

𝐃 = 𝚫𝐐 (57)

𝐃2 = 𝚫2𝐐𝐃𝐐𝐝 (58)

Here, the following notation was introduced: 𝐃 - sharpened scheme, 
𝚫 - finite differencing method and 𝐐 the inversion matrix for the first 
derivative. Likewise, for the second derivative 𝐃𝟐 denotes the sharp-

ened scheme, 𝚫𝟐 the finite differencing method and 𝐐𝐃, 𝐐𝐝 - inversion 
matrices of the operators in (56) for the second derivative. This matrix 
formulation is actually convenient for an efficient implementation of 
the ADD approach to sharpening a basic discretization method. Please 
note that in the formulation above 𝐃𝟐 refers to the second derivative 
and not the application of 𝐃 twice - this is in line with the chosen local 
notation above.

4. Numerical benefits of sharpened discretisation

In the previous sections we formulated the framework for the sharp-

ening of low-order finite differencing to arrive at methods that can even 
yield spectral accuracy. In this section, based on classical second or-

der central discretisation schemes, we establish the benefits and costs 
associated with the sharpening. Throughout, we will use Fourier inte-

gration and Wiener inversion to define the sharpened schemes. The new 
method will be applied to a number of well-known benchmark cases 
in Computational Fluid Dynamics (CFD), i.e., 1D convection-diffusion 
and Burgers equation, as well as the 2D Taylor-Green and double jet 
flows. These problems are often used to verify both the stability and 
accuracy of numerical methods [41,21,27,5,39,36]. In all test cases dis-

cussed below, the time integration is performed using the sixth-order 
Runge-Kutta method proposed by Outlaw et al. [31] involving eight in-

termediate steps.

We set out to illustrate the improvements that can be achieved 
by the ADD approach. However, such improvements also introduce 
additional steps in the algorithm. Hence, the issue of computational 
overhead is of relevance as well. Regarding the computational cost 
of a particular discretisation scheme the main factor is related to the 
evaluation of derivatives. In the numerical code used in this study the 
derivatives are computed by matrix-vector multiplication, i.e., 𝐮′ = 𝐃𝐮
188
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and 𝐮′′ = 𝐃2𝐮, where 𝐮, 𝐮′ and 𝐮′′ are vectors composed of the val-

ues of 𝑢 on the computational mesh, and the corresponding 1st and 2nd 
derivatives. Moreover, 𝐃 and 𝐃2 are the matrix discretisation opera-

tors defined in (57)-(58). Assuming that for all discretisation methods 
adopted here, the matrices 𝐃 and 𝐃2 are calculated in a preprocessing 
step, the computational cost would be the same for all finite differenc-

ing discretisation methods.

However, sharpened finite differencing methods rely entirely on fast 
matrix-vector multiplications, which come at a definite costs. Alterna-

tives can be considered that in the end may be more effective. It is an 
open issue as to what method is finally the best. In fact, in the case of 
the 2nd order finite-difference method for which 𝐃 and 𝐃2 are narrow 
band matrices, the multiplication of matrices can be implemented such 
that the sparse structure of the matrix is exploited. Other methods can 
be considered which may in the end be more effective. We mention two 
of these:

1. When the 6th order compact difference method is used, the direct 
calculation of 𝐮′ = 𝐃𝐮 and 𝐮′′ = 𝐃2𝐮 can be replaced by solutions 
of equivalent three-diagonal systems of equations [26,43]. For suf-

ficiently dense meshes, this approach is more effective than direct 
multiplication of the involved matrices.

2. In the case of the pseudo-spectral method, the forward and back-

ward FFT procedure with intermediate calculations of the deriva-

tives in spectral space is also more effective than the finite differ-

encing method relying on direct multiplication of matrices.

Hence, from the point of view of the computational cost, the proposed 
sharpened scheme is the most expensive because of the reliance on 
matrix-vector multiplications. This argument applies to implementa-

tions on serial computers. These days, the usage of parallel computers 
is the standard, which may tip the balance again. For example, the solu-

tion of three-diagonal systems of equations or performing FFT requires 
extensive communication between processors. It may turn out that the 
use of specialized procedures for matrix-vector multiplication in the 
end will make the difference, taking into account both the ease of the 
implementation of the discretisation operators and its efficiency. This 
computational-costs issue can be settled only by focusing on actual im-

plementations and application to generic flow problems. This requires 
subtle investigation which is a subject of future research.

4.1. Linear convection-diffusion equation

As the first test case, we consider the 1D linear convection-diffusion 
equation given as

𝜕𝑢

𝜕𝑡
+ 𝑐 𝜕𝑢
𝜕𝑥

= 𝜈 𝜕
2𝑢

𝜕𝑥2
(59)

where 𝑥 and 𝑡 are the spatial and temporal coordinates respectively, and 
𝑐 and 𝜈 are a convection velocity and diffusion coefficient respectively. 
Simplicity of Eq. (59) and the availability of an analytic solution make 
this model equation very suitable as a benchmark problem, e.g., [39,

36,44]. For an unbounded domain the analytic solution takes the form 
of an evolving Gaussian pulse [39] defined by

𝑢(𝑥, 𝑡) =
√

𝜎

𝜎 + 4𝜈𝑡
exp

(
−
(𝑥− 𝑥0 − 𝑐 𝑡)2

𝜎 + 4𝜈𝑡

)
(60)

where 𝑥0 is the position of the pulse at 𝑡 = 0 and 𝜎 is a parameter in-

troduced to avoid a singularity at 𝑡 = 0. It also sets the initial width of 
the Gaussian pulse. Here, we take 𝜎 = 0.1. The computational domain 
spans [−2𝜋, 2𝜋] and is discretized by computational meshes consisting 
of 𝑁 = 33, 65, 129, 257, 513 and 1025 nodes. The width of the initial 
pulse is much smaller than the width of the domain to introduce a 
sharply peaked initial condition, clearly within the bounds of the fi-

nite domain that is adopted in the simulations. We work with periodic 
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conditions in the simulations - as long as the Gaussian pulse is well lo-

calized within the domain, this should be an adequate representation of 
the analytic solution in the unbounded domain.

We analyse the solution initially centred at 𝑥0 = 0 with 𝑐 = 10, 𝜈 =
0.01 and 𝜈 = 0.5, and integrate it up to the time 𝑡 = 0.2 with a fixed time-

step of Δ𝑡 = 1.0 × 10−4. On the densest mesh, the Courant-Friedrichs-

Lewy and von Neumann numbers (CFL = 𝑐Δ𝑡∕ℎ and VNN = 𝜈Δ𝑡∕ℎ2) are 
equal to CFL = 0.08 and VNN𝜈=0.01 = 0.0066, VNN𝜈=0.5 = 0.33. The sta-

bility condition for the first-order explicit Euler time integration scheme 
combined with second-order central finite difference spatial discretisa-

tion (denoted by 𝛿 ((ℎ2))) is VNN < 0.5 and CFL2 ≤ 2VNN [39]. In the 
simulations we will also consider a higher-order Runge-Kutta time inte-

gration. Since the stability region of Runge-Kutta methods is larger than 
that of the Euler scheme, the time-step Δ𝑡 = 1.0 × 10−4 allows stable 
computations on all the meshes and with all time integration methods 
adopted here. As will be shown, this holds also for reference simu-

lations performed applying different spatial discretisations, e.g., the 
sixth-order compact difference scheme (CD ((ℎ6))) [26], the pseudo-

spectral method [6], and the proposed sharpened approach (𝐷𝐹𝑜). We 
will investigate effects of changes in spatial discretisation and use the 
sixth-order Runge-Kutta method to ensure that the time integration 
error is much smaller than the spatial discretisation error. Test com-

putations performed at Δ𝑡 = 1.0 × 10−5 did not show any observable 
impact of the time-step on the solutions.

Fig. 12 displays the analytic and numerical solutions to the 
convection-diffusion equation for 𝜈 = 0.01 at 𝑡 = 0.2 on two meshes, 
𝑁 = 65 and 𝑁 = 257 nodes. At 𝑡 = 0.2 the evolved Gaussian pulse has 
become centred at 𝑥 = 2.0. The inset subfigures show enlarged regions 
of the centre of the pulse and its left branch. The grey lines in Fig. 12a 
present some intermediate solutions obtained applying 𝛿 ((ℎ2)) dis-

cretisation. On the coarse grid, the amplitude of the pulse significantly 
decreases and the solution exhibits significant and nonphysical oscil-

lations when using the 𝛿((ℎ2)) scheme. The solution is numerically 
stable but does not comply with the maximum principle in this setting. 
On the denser mesh (Fig. 12b) or when a more accurate discretisation is 
applied (CD ((ℎ6))) the oscillations are considerably less pronounced. 
When using the sharpened approach (𝐷𝐹𝑜) the oscillations do not occur. 
The maximum of the pulse on the mesh with 𝑁 = 65 is most accurately 
calculated using the 𝐷𝐹𝑜 method, however, its value is lower than 
the analytic result. On the finer mesh with 𝑁 = 257 grid points the 
solutions CD ((ℎ6)), 𝐷𝐹𝑜 and the analytic prediction are practically 
indistinguishable. While still slightly less accurate, the maximum value 
and the location where the maximum is attained are computed with 
good accuracy also using 𝛿 ((ℎ2)) at sufficiently high resolution.

The solution error as a function of the spatial resolution is analysed 
in more detail next using the 𝐿2 error norm defined as:

Error(𝑡) =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑢(𝑥𝑖, 𝑡) − 𝑢𝑎(𝑥𝑖, 𝑡))2 (61)

where 𝑢𝑎(𝑥𝑖, 𝑡) is the analytic solution at 𝑥𝑖 and time 𝑡 and 𝑁 is the 
number of nodes in the grid. The achieved order of accuracy 𝑝 of the 
applied discretisation methods (Error∼(ℎ𝑝)) is computed as

𝑝 =
log(Error1∕Error2)

log(ℎ1∕ℎ2)
(62)

where Error1,2 are the errors on two different meshes, with correspond-

ing nodal spacing of ℎ1 and ℎ2. Fig. 13 shows the 𝐿2 error norm as a 
function of the mesh spacing for 𝜈 = 0.5 and 𝜈 = 0.01, evaluating the 
solution at time 𝑡 = 0.2. The theoretical error reduction with increased 
spatial resolution for the 𝛿 ((ℎ2)) and CD ((ℎ6)) is represented by 
the bold black lines. The computed values of the 𝐿2 error and the cor-

responding orders of accuracy are given in Tables 1 and 2. It can be 
seen that when the number of nodes increases sufficiently the estimated 
accuracy orders asymptotically tend to the expected ones, establishing 
a well known text-book result. For the sharpened discretisation 𝐷𝐹𝑜, 
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Fig. 12. Solution to the convection-diffusion equation for 𝜈 = 0.01 at 𝑡 = 0.2 on two meshes, 𝑁 = 65 and 𝑁 = 257 nodes. The analytic solutions are compared 
with the 2nd-order central discretisation, the 6th-order compact difference scheme, and the sharpened method. In the insets zoomed impressions of the different 
solutions are shown, highlighting nonphysical oscillations on coarse meshes with some of the methods (Figure a) and general convergence at sufficiently high spatial 
resolution (Figure b).

Fig. 13. 𝐿2 errors (Eq. (61)) calculated for the convection-diffusion equation (𝜈 = 0.5 and 𝜈 = 0.01). The arrows indicate the number of nodes corresponding to 
a given 𝐿∕𝑁 . Second - and sixth order accuracy orders are clearly illustrated for 𝛿 ((ℎ2)) and CD ((ℎ6)). Spectral convergence is shown for both diffusion 
coefficients for the 𝐷𝐹𝑜 method.
the errors closely follow those seen when adopting the pseudo-spectral 
method. Errors are significant on meshes with 𝑁 = 33, 𝑁 = 65 grid 
points. Beyond 𝑁 = 129 mesh points the error level is at machine accu-

racy 𝑂(10−14). Small discrepancies for 𝜈 = 0.5 in the range 𝐿∕𝑁 < 0.07
(mesh with 𝑁 ≥ 513) are due to small round-off error effects.

Independently of the 𝜈 value, the minimum number of nodes be-

yond which the solutions of the convection-diffusion equation reach 
machine precision is 𝑁 = 129. To find the reason for such a behaviour 
we consider the Fourier transform of the analytic solution calculated on 
the mesh with 𝑁 = 1025 nodes. We note that the number of non-zero 
Fourier modes is independent of 𝜈, both for the initial solutions and at 
later times. Hence, we focus on the case with 𝜈 = 0.01. Beyond wave 
number index 𝑘 = 64 the amplitudes of the Fourier modes are of the or-

der 10−12 and lower. Fig. 14 shows the amplitude spectra (FFT(𝑢𝑎(𝑥))) 
computed at 𝑡 = 0.2 on the meshes with 𝑁 = 65 and 𝑁 = 129 nodes. The 
right axes show the error FFT(𝑢𝑎) − FFT(𝑢). One can see that it is partic-

ularly large for the method 𝛿 ((ℎ2)). On the mesh with 𝑁 = 65 nodes, 
it contaminates the solution over the entire wave number range. For 
the CD ((ℎ6)) scheme the error is much smaller and limited mainly to 
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wavenumbers beyond 𝑘 = 16. Similarly, the sharpened scheme and the 
pseudo-spectral method display nearly identical with overlapping lines; 
at 𝑁 = 65 errors can still be discriminated beyond 𝑘 = 24, while er-

rors are effectively 0 for 𝑁 = 129. The error FFT(𝑢𝑎) − FFT(𝑢) assumes 
negative values for 𝛿 ((ℎ2)) and CD ((ℎ6)), implying an amplifica-

tion of the solution compared to the analytic one. When the sharpened 
and pseudo-spectral methods are used at 𝑁 = 65 a pronounced error is 
seen only beyond 𝑘 = 24. This error is positive, implying that the am-

plitudes of the modes 𝑘 ≥ 24 are damped. In fact, even if in physical 
space at this coarse resolution, 𝑢 is not very accurate (see Table 2) it re-

mains smooth using 𝐷𝐹𝑜. On the mesh with 𝑁 = 129 nodes, the error 
of the solutions obtained with 𝛿((ℎ2)) and CD ((ℎ6)) is significantly 
reduced but still exhibits the tendency to (slightly) amplify the high-

frequency components of the solution. When using the sharpened and 
pseudo-spectral methods, the errors are seen to drop to the round-off 
level. The sharpened scheme also exhibits spectral accuracy in this FFT 
measure. In the next section, we verify whether this holds also for a 
non-linear convection-diffusion equation.
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Table 1

𝐿2 error and accuracy orders 𝑝 (in brackets) of the solution of the convection-diffusion 
equation at 𝜈 = 0.5. Calculations of accuracy orders are ill-conditioned when the error 
reaches machine precision.

Mesh SPECTRAL 𝐷𝐹𝑜 𝛿 CD

33 7.48 × 10−4 (—) 7.48 × 10−4 (—) 4.92 × 10−2 (—) 2.22 × 10−3 (—)

65 1.12 × 10−10 (23.1) 1.12 × 10−10 (23.1) 1.59 × 10−2 (1.66) 2.85 × 10−5 (6.42)

129 0.96 × 10−14 (13.6) 0.93 × 10−14 (13.7) 4.13 × 10−3 (1.96) 4.21 × 10−7 (6.15)

257 0.94 × 10−14 (—) 0.96 × 10−14 (—) 1.04 × 10−3 (2.00) 6.57 × 10−9 (6.04)

513 3.91 × 10−14 (—) 0.99 × 10−14 (—) 2.61 × 10−4 (2.00) 1.03 × 10−10 (6.01)

1025 5.17 × 10−14 (—) 1.47 × 10−14 (—) 6.54 × 10−5 (2.00) 1.61 × 10−12 (6.00)

Table 2

𝐿2 error and accuracy orders 𝑝 (in brackets) of the solution of the convection-diffusion 
equation at 𝜈 = 0.01. Calculations of accuracy orders are ill-conditioned when the error 
reaches machine precision.

Mesh SPECTRAL 𝐷𝐹𝑜 𝛿 CD

33 2.10 × 10−2 (—) 2.10 × 10−2 (—) 1.61 × 10−1 (—) 6.31 × 10−2 (—)

65 9.68 × 10−5 (7.94) 9.68 × 10−4 (7.94) 1.13 × 10−1 (0.52) 8.99 × 10−3 (2.87)

129 6.65 × 10−14 (30.7) 6.64 × 10−14 (30.7) 5.08 × 10−2 (1.17) 1.48 × 10−4 (5.98)

257 3.01 × 10−14 (—) 2.95 × 10−14 (—) 1.48 × 10−2 (1.78) 2.09 × 10−6 (6.17)

513 3.17 × 10−14 (—) 2.91 × 10−14 (—) 3.79 × 10−3 (1.97) 3.21 × 10−8 (6.04)

1025 3.06 × 10−14 (—) 3.72 × 10−14 (—) 9.52 × 10−4 (1.99) 5.01 × 10−10 (6.01)

Fig. 14. Amplitude spectra of the solutions to the convection-diffusion equation (𝑢𝑎(𝑥) and 𝑢(𝑥)) for 𝜈 = 0.01 computed at 𝑡 = 0.2 on the meshes with 𝑁 = 65 (a) and 
𝑁 = 129 (b) nodes.
4.2. Burgers equation

The Burgers equation is the non-linear form of the convection and 
diffusion equation analyzed in the previous section. This model system 
has been used frequently to qualitatively understand flow dynamics and 
the role numerical methods play in simulations. Mainly because the 
convection and diffusion terms appear in a divergence form in much 
the same way as in the Navier-Stokes equation. The Burgers is given as 
[3]

𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢
𝜕𝑥

= 𝜈 𝜕
2𝑢

𝜕𝑥2
(63)

The scalar variable 𝑢 is often interpreted as a velocity component. In 
the periodic domain [0, 2𝜋[ an analytic solution to the Burgers equation 
is obtained through the Cole-Hopf transformation [19,8]. This solution 
reads
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𝑢(𝑥, 𝑡) = − 2𝜈
𝜙(𝑥, 𝑡)

𝜕

𝜕𝑥
𝜙(𝑥, 𝑡) + 𝑐 (64)

where 𝑐 is an arbitrary constant, here taken to be 𝑐 = 4, and the function 
𝜙(𝑥, 𝑡) is given as

𝜙(𝑥, 𝑡) =
∞∑

𝑛=−∞
exp

(
−(𝑥− 𝑐𝑡− 2𝑛𝜋)2

4𝜈(𝑡+ 1)

)
. (65)

We analyse the solutions with 𝜈 = 0.02 and 𝜈 = 0.5 integrated up 
to the time 𝑡 = 0.01 with a fixed time-step of Δ𝑡 = 1.0 × 10−5. The 
integration time is long enough to reveal spatial discretisation errors 
without the influence of the time integration error. To verify the inde-

pendence of the solutions on the time-step, test computations have been 
performed at Δ𝑡 = 1.0 × 10−6. As in the previous section, the meshes 
consisted of 𝑁 = 33, 65, 129, 257, 513 and 1025 nodes.

The high value of 𝜈 represents strongly dissipative dynamics, while 
the low value of 𝜈 corresponds to low dissipation and the well-known 
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Fig. 15. Solution to the Burgers equation for 𝜈 = 0.02, 0.5 at 𝑡 = 0.01. The analytic solutions (a) are compared with the 2nd order central discretisation and the 
6th-order compact difference scheme (b), the sharpened method (c) and pseudo-spectral discretisation (d).
appearance of a region with high gradient in the solution. The ana-

lytic solutions in the entire computational domain are presented in 
Fig. 15a. Comparisons with numerical solutions in the vicinity of the 
gradient are shown in the remaining subfigures, they were obtained 
on a grid with 𝑁 = 129 nodes. The solution obtained using the sharp-

ened method (𝐷𝐹𝑜) is included in Fig. 15(c) for which, for clarity of the 
presentation, the pseudo-spectral reference solution [6] is presented in 
a separate subfigure (Fig. 15(d)). In the case with 𝜈 = 0.02 the basic 
method (𝛿𝑂(ℎ2)) shows large oscillations near the sharp gradient. Sim-

ilar oscillations occur when the CD-𝑂(ℎ6) scheme is used. In the case 
of the sharpened and the pseudo-spectral method the amplitudes of the 
oscillations are much reduced but the oscillations spread over all mesh 
points (Fig. 15(c,d)). This is very well seen in Fig. 16(a) presenting 
differences between the analytic and numerical solutions in particular 
points. The situation changes for the case with 𝜈 = 0.5 for which the so-

lution is smoother and can be captured accurately on the selected mesh 
with 𝑁 = 129 nodes with any of the adopted numerical methods. In this 
case, the sharpened method shows highly competitive predictions com-

pared to the solutions obtained using 𝛿((ℎ2)) and CD ((ℎ6)) schemes. 
The analysis of the errors presented in Fig. 16(b) shows that its accuracy 
is comparable with the accuracy obtained using the spectral method. 
All methods included here show reduced oscillations in case the spa-

tial resolution is further increased. This establishes correct convergence 
at high resolution, despite the significant oscillations at more practical 
numbers of grid points.
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The solution errors are shown in Fig. 17. For 𝜈 = 0.5 (Fig. 17(a)) con-

vergence is well-established for 𝛿((ℎ2)) and CD ((ℎ6)) at the expected 
theoretical rates of 2 and 6 respectively. For the scheme 𝐷𝐹𝑜 the error 
is reduced in the same way as for the pseudo-spectral method. In both 
cases, machine precision is reached already on the mesh with 𝑁 = 129
nodes. Further increase of the number of mesh points does not improve 
the solution accuracy as the round-off errors significantly affect the re-

maining error in the solution. However, unlike in the case of the linear 
convection-diffusion equation, this time the sharpened scheme 𝐷𝐹𝑜 ap-

pears much more resistant to this type of simulation error compared to 
the pseudo-spectral method. Most likely because of different round-off 
error dynamics caused by the non-linear convection terms.

The solutions obtained for 𝜈 = 0.02 are significantly less accurate 
on the range of selected spatial resolutions. The schemes 𝛿((ℎ2)) and 
CD ((ℎ6)) manifest their expected convergence rates only on the dens-

est meshes included in this study. The very pronounced gradient in 
the solution near the centre of the domain also makes itself known in 
terms of the range of resolutions for which the asymptotic convergence 
sets in. Regarding the method 𝐷𝐹𝑜 and the pseudo-spectral method the 
computed errors are virtually identical to each other and much lower 
compared to the error reported for CD ((ℎ6)), although the difference 
is not as pronounced as for the case with 𝜈 = 0.5. Also for these meth-

ods, the asymptotic convergence sets in only at more refined meshes, 
compared to the case 𝜈 = 0.5.

To further quantify the convergence characteristics, in Table 3 and 
Table 4 we show the errors and computed orders of accuracy. The 
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Fig. 16. Local solution errors to the Burgers equation for 𝜈 = 0.02 (a) and 𝜈 = 0.5 (b) at 𝑡 = 0.01.

Fig. 17. 𝐿2 errors (Eq. (61)) calculated for the Burgers equation (𝜈 = 0.5 and 𝜈 = 0.02).

Table 3

𝐿2 errors and 𝑝-orders (in brackets) of the Burgers equation (𝜈 = 0.5).

Mesh SPECTRAL 𝐷𝐹𝑜 𝛿 CD

33 3.21 × 10−4 (—) 3.21 × 10−4 (—) 8.43 × 10−3 (—) 6.03 × 10−4 (—)

65 6.62 × 10−8 (12.5) 6.62 × 10−8 (12.5) 2.27 × 10−3 (1.93) 7.24 × 10−6 (6.52)

129 6.07 × 10−14 (20.2) 5.02 × 10−14 (20.5) 5.83 × 10−4 (1.98) 1.02 × 10−7 (6.21)

257 1.36 × 10−13 (—) 7.89 × 10−14 (—) 1.47 × 10−4 (1.99) 1.58 × 10−9 (6.04)

513 3.63 × 10−13 (—) 1.16 × 10−13 (—) 3.70 × 10−5 (1.99) 2.48 × 10−11 (6.01)

1025 1.60 × 10−12 (—) 9.30 × 10−14 (—) 9.27 × 10−6 (1.99) 4.17 × 10−13 (5.90)

Table 4

𝐿2 errors and 𝑝-orders (in brackets) of the Burgers equation (𝜈 = 0.02).

Mesh SPECTRAL 𝐷𝐹𝑜 𝛿 CD

33 3.02 × 10−1 (—) 3.02 × 10−1 (—) 2.08 × 10−1 (—) 2.81 × 10−1 (—)

65 3.18 × 10−1 (-0.07) 3.18 × 10−1 (-0.07) 3.00 × 10−1 (-0.53) 3.47 × 10−1 (-0.31)

129 1.65 × 10−1 (0.95) 1.65 × 10−1 (0.95) 4.41 × 10−1 (-0.56) 2.98 × 10−1 (0.22)

257 4.37 × 10−2 (1.93) 4.37 × 10−2 (1.93) 1.59 × 10−1 (1.47) 7.62 × 10−2 (1.97)

513 2.05 × 10−3 (4.42) 2.05 × 10−3 (4.42) 4.71 × 10−2 (1.76) 3.31 × 10−3 (4.53)

1025 8.16 × 10−6 (7.98) 8.16 × 10−6 (7.98) 1.02 × 10−2 (2.20) 5.98 × 10−5 (5.79)
193
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Fig. 18. Initial vorticity contours in the Taylor-Green flow with the parameter 𝑇𝑣 = 4 (a) and 𝑇𝑣 = 8 (b).
pseudo-spectral and sharpened discretisation correspond very closely 
to each other in terms of 𝐿2-norm of the error. These results illustrate 
that only at sufficiently high spatial resolutions one can benefit from 
the formal spectral convergence rate.

4.3. Taylor-Green flow

For the investigation of the sharpened discretisation method in two 
spatial dimensions we consider the well-known Taylor-Green flow. We 
consider the 2D problem and describe the flow in the vorticity–stream 
function formulation (𝜔, 𝜓) that is often used in CFD to test the accuracy 
and stability of numerical schemes [2,38,37,54,5]. It is defined as

𝜕𝜔

𝜕𝑡
+ 𝑢𝜕𝜔
𝜕𝑥

+ 𝑣𝜕𝜔
𝜕𝑦

= 𝜈
(
𝜕2𝜔

𝜕𝑥2
+ 𝜕

2𝜔

𝜕𝑦2

)
(66)

𝜕2𝜓

𝜕𝑥2
+ 𝜕

2𝜓

𝜕𝑦2
= −𝜔 (67)

where 𝑢 = 𝜕𝑦𝜓 , 𝑣 = −𝜕𝑥𝜓 are the velocity components, and 𝜈 is the 
kinematic viscosity, which we set 𝜈 = 0.001 to create a challenging case 
with low dissipation and a wide range of dynamical scales. In two di-

mensions the vorticity is given by 𝜔 = 𝜕𝑥𝑣 −𝜕𝑦𝑢. The (𝜔, 𝜓) formulation 
inherently fulfils the requirement that the velocity field (𝑢, 𝑣) should be 
divergence-free. The Poisson equation (67) is solved using the matrix 
diagonalization technique [6,43]. In all analyzed cases we set the time-

step Δ𝑡 significantly lower than the stability limit

Δ𝑡 < 𝛼Δ𝑡𝑠 ; Δ𝑡𝑠 = 𝐶
ℎ

max𝑖.𝑗 (|𝑢𝑖,𝑗 |+ |𝑣𝑖,𝑗 |) + 2𝜈∕ℎ
(68)

with 𝐶 = 1.8∕𝜋 [18] ensuring stable computations for the pseudo-

spectral method, which from the point of view of the time-step limit 
is the most restrictive. The factor 𝛼 = 0.1 is adopted to reduce residual 
errors associated with the time integration method - here, we are in-

terested in errors due to the spatial discretisation and therefore in the 
simulations largely eliminate errors due to time integration.

The Taylor-Green flow is one of a few problems for which an ana-

lytic solution of the Navier-Stokes equations is available. Thus, this test 
case enables a precise examination of the accuracy of CFD algorithms 
and discretisation schemes. Among others, it was used as the bench-

mark case in [24,27,43]. In terms of the horizontal and vertical velocity 
components (𝑢, 𝑣) the analytic solution is given by
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𝑢(𝑥, 𝑦, 𝑡) = −sin (𝑇𝑣𝑥) cos (𝑇𝑣𝑦) × exp
(
−2𝜈𝑇 2

𝑣 𝑡
)

𝑣(𝑥, 𝑦, 𝑡) = cos (𝑇𝑣𝑥) sin (𝑇𝑣𝑦) × exp
(
−2𝜈𝑇 2

𝑣 𝑡
)

(69)

where 𝑇𝑣 denotes the number of vortices in the periodic domain. The 
larger it is the smaller the vortices, and thus, their accurate numerical 
solution becomes more demanding. Here, we adopt 𝑇𝑣 = 4 and 𝑇𝑣 = 8
to define different test cases. The initial solutions in a square domain 
𝐿 = [−𝜋, 𝜋]2 are presented in Fig. 18. For 𝜈 equal to zero the vor-

tices should not be decaying at all, provided that the numerical method 
is dissipation-free. Here, we assume 𝜈 = 0.001 which leads to a very 
slow temporal decrease of the initial amplitude of the vortices. The 
computations are performed up to time 𝑡 = 0.1, which is sufficient to 
reveal accuracy differences between particular discretisation methods. 
The computational meshes consist of 𝑁2 = 652, 972, 1292, 1932, 2572
nodes. The time-step equals Δ𝑡 = 1 × 10−4 and we checked that lower-

ing Δ𝑡 does not change the results in any significant way. The solution 
error in 2D is defined analogously to (61).

For both 𝑇𝑣 values, the coarsest mesh ensures a resolution with 
at least 8 grid cells per vortex, to capture all initial flow structures 
with accuracy. This spatial resolution remains adequate as the Taylor-

Green vortices only dissipate and smaller scale flow features do not 
emerge. Hence, based on the analysis of the convection-diffusion equa-

tion in spectral space, one could expect that using the sharpened and 
pseudo-spectral methods should (nearly) coincide with the exact solu-

tion. Indeed, this is what is found in Fig. 19 showing the error of the 
𝑢-velocity component as function of the number of nodes. On all meshes 
the error of the sharpened and pseudo-spectral methods coincide at ma-

chine accuracy level and agree to within the round-off error. As in the 
1D cases, the round-off error slightly grows when ℎ decreases. The er-

rors in the solutions obtained with 𝛿 ((ℎ2)) and CD ((ℎ2)) decrease 
perfectly in line with the corresponding discretisation orders. The er-

ror values at 𝑇𝑣 = 8 are slightly larger when applying 𝛿 ((ℎ2)) and 
CD ((ℎ2)) in the higher wavenumber range (see Figs. 8, 11) - this is 
due to lower spatial resolution per vortex in this case.

4.4. Double-jet flow

Finally, we turn to the double jet problem, the dynamics of which 
results from the interactions of small and large flow structures. The 
double-jet flow is an excellent test case for verifying the accuracy of 
the discretisation method. This flow is characterized by a wide range 
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Fig. 19. 𝐿2 errors calculated for the Taylor-Green flow with the parameter 𝑇𝑣 = 4 (a) and 𝑇𝑣 = 8 (b).
of length - and time scales. Similarly, as for the Taylor-Green flow, we 
assume a doubly-periodic domain [0, 2𝜋] × [0, 2𝜋]. The initial velocity 𝑢
in the horizontal direction is defined as

𝑢(𝑥, 𝑦,0) =
⎧⎪⎨⎪⎩

tanh
(
𝑦−𝜋∕2
𝛿

)
for 𝑦 ≤ 𝜋

tanh
(
3𝜋∕2−𝑦
𝛿

)
for 𝑦 > 𝜋

(70)

and the initial vertical velocity component 𝑣 is taken as

𝑣(𝑥, 𝑦,0) = 𝜖 sin(𝑥) (71)

The strength of the initial velocity disturbance is determined by 𝜖. 
Moreover, the parameter 𝛿 is the shear layer thickness. Here, similarly 
as in [21] we take 𝜖 = 0.05 and 𝛿 = 𝜋∕15. The initial velocity field 
forms two parallel shear layers, the upper one with negative vorticity 
and the lower one with positive vorticity. An illustration of the evolv-

ing vorticity field is provided in Fig. 20). For these simulations the new 
sharpened spatial discretisation method was adopted. At the start of the 
simulation, the growing initial perturbation leads to the roll-up of these 
shear layers and the formation of large vortices. As time passes, the 
shear layers between these vortices stretch and become thinner. At low 
viscosity values, as selected here, small flow structures occur and the 
representation of the solution on meshes that yield feasible simulations 
requires a highly accurate discretisation method. Hence, this test-case 
is well suited for the assessment of the new sharpened discretisation 
method.

The simulations were performed on two meshes with different reso-

lution, i.e., a relatively coarse mesh with 1292 nodes (mesh M1) and a 
considerably finer mesh with 5132 nodes (mesh M2). The time step is 
taken as Δ𝑡 = 5 × 10−4 on both meshes. The vorticity contours initially 
develop shear layers with a wavy shape (time 𝑡 = 1.0 − 3.0). This wavy 
pattern grows with time and the vortices fully roll up in between 𝑡 = 7.0
and 𝑡 = 9.0. After this roll-up phase, the structures in the flow remain 
quite similar over a long time as the flow gradually decays under the 
influence.

The double-jet test case has no known analytic solution. Therefore, 
to measure the error induced by a particular discretisation method, we 
focus on the palinstrophy ((𝑡)). This quantity is defined as

(𝑡) = 1
2

2𝜋

∫
0

2𝜋

∫
0

(∇𝜔(𝑥, 𝑦, 𝑡))2d𝑥d𝑦 (72)

The error induced by one of the discretisation methods is quantified 
by comparing the predicted palinstrophy to the results obtained using 
the pseudo-spectral method on the same mesh, i.e.: (𝑡) −𝑃𝑆 (𝑡). This 
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measure accounts for both the velocity components and their gradi-

ents over the whole domain. Additionally, the maxima of the velocity 
components (MAX(𝑢𝑖,𝑗 (𝑡)), MAX(𝑣𝑖,𝑗 (𝑡))) are compared with the values 
obtained using the pseudo-spectral method to further classify the accu-

racy.

Fig. 21 shows the temporal evolution of the palinstrophy and the 
maxima of the velocity components obtained on the mesh with M1. 
During the initial stages of the simulation 𝑡 ≲ 4 the vorticity gradient de-

creases, which manifests itself by a lowering of (𝑡). During this phase, 
a rapid increase of the vertical and horizontal velocity components is 
observed, which continues until the maximum value in velocities as well 
as palinstrophy is reached around 𝑡 = 9.0. Beyond this time, the vortical 
structures are fully rolled-up. It can be seen that the errors are con-

siderable for the basic scheme 𝛿((ℎ2)). In the case of the CD ((ℎ6))
scheme, the errors are much reduced and their maximum values oc-

cur in the roll-up phase 5 < 𝑡 < 10. Evolutions of the solution error of 
palinstrophy on the meshes M1 and M2 are shown in Fig. 22(a,b). In-

creasing the number of nodes four times (M1→M2) reduces the errors 
approximately 16 and 4096 times for the 2nd and 6th order scheme, re-

spectively. Hence, the errors in the simulations with CD ((ℎ6)) scheme 
are very small, and in fact, the obtained solution is close to the pseudo-

spectral one. Regarding the accuracy of the sharpened method (𝐷𝐹𝑜) 
the solutions correspond very closely to the ones obtained using the 
pseudo-spectral method. The errors that are virtually equal to zero re-

gardless of the mesh density and the flow phase. This confirms that the 
𝐷𝐹𝑜 scheme provides the same accuracy as the pseudo-spectral method.

5. Conclusions

A new method to construct discretisation schemes was presented. 
The philosophy behind this construction is to anticipate discretisation 
errors that occur with any standard finite differencing method and cor-

rect for these as integral part of the new method. This is referred to 
as ‘sharpening’ in which the implied filter of associated with a basic 
differencing method is approximately inverted.

The construction proceeds in a few steps. Knowing the explicit form 
of the implied filter [15], first, its discrete form is calculated, after 
which its inverse form can be approximated. In the present paper, van 
Cittert and Wiener type inverse filters were considered. In simulations 
of flow in periodic domains the Wiener inversion was preferred as it 
yields the exact inverse filter kernel corresponding to the discrete im-

plied filter on a given mesh.

It was shown that the accuracy of the new scheme is determined by 
the form of the discrete implied kernel. To improve the accuracy of the 
‘sharpened’ scheme relative to the original scheme, the quadrature of 
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Fig. 20. Vorticity contours in the double jet flow. The colour scale ranges from -5 (blue) to 5 (red).
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Fig. 21. Palinstrophy (a) and maximum velocity evolutions (b) on the mesh M1.

the implied filter must be of higher order than the order of accuracy of 
the basic differencing method. Using the Fourier series for the quadra-

ture the new ‘sharpened’ scheme shows spectral accuracy comparable 
to the pseudo-spectral approximation.

The new scheme using the Fourier series quadrature was tested 
for the linear convection-diffusion equation, the Burgers equation, the 
Taylor-Green flow, and for double-jet flow predicted by the Navier-

Stokes equations. The results were compared with standard second-

order differences, compact differences of sixth-order and the Fourier 
pseudo-spectral method. The results confirmed that the new scheme 
has spectral accuracy.

The current implementation of the proposed numerical scheme ap-

plies to periodic problems. More general boundary conditions can be 
considered, replacing the Wiener inverse filter with a van Cittert proce-

dure and high-order (Cavalieri-Simpson) quadrature. This will no longer 
show spectral accuracy, but will enable application of the sharpening 
method to general non-periodic problems. Current research is dedicated 
to this extension.

Data availability

Data will be made available on request.
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Fig. 22. Evolution of the solution error of palinstrophy on the meshes M1 (a) 
and M2 (b).
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