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Purpose: To explore diagnostic deep learning for optimizing the prostate MRI protocol by assessing the diagnostic 
efficacy of MRI sequences. 
Method: This retrospective study included 840 patients with a biparametric prostate MRI scan. The MRI protocol 
included a T2-weighted image, three DWI sequences (b50, b400, and b800 s/mm2), a calculated ADC map, and a 
calculated b1400 sequence. Two accelerated MRI protocols were simulated, using only two acquired b-values to 
calculate the ADC and b1400. Deep learning models were trained to detect prostate cancer lesions on accelerated 
and full protocols. The diagnostic performances of the protocols were compared on the patient-level with the 
area under the receiver operating characteristic (AUROC), using DeLong’s test, and on the lesion-level with the 
partial area under the free response operating characteristic (pAUFROC), using a permutation test. Validation of 
the results was performed among expert radiologists. 
Results: No significant differences in diagnostic performance were found between the accelerated protocols and 
the full bpMRI baseline. Omitting b800 reduced 53% DWI scan time, with a performance difference of + 0.01 
AUROC (p = 0.20) and − 0.03 pAUFROC (p = 0.45). Omitting b400 reduced 32% DWI scan time, with a per
formance difference of − 0.01 AUROC (p = 0.65) and + 0.01 pAUFROC (p = 0.73). Multiple expert radiologists 
underlined the findings. 
Conclusions: This study shows that deep learning can assess the diagnostic efficacy of MRI sequences by 
comparing prostate MRI protocols on diagnostic accuracy. Omitting either the b400 or the b800 DWI sequence 
can optimize the prostate MRI protocol by reducing scan time without compromising diagnostic quality.   

1. Introduction 

The increasing diagnostic accuracy of AI allows for studying its 
usefulness beyond assisting diagnosis [1–3]. With AI able to perform at 
an expert level, it can also assist in other tasks that the human expert 
performs, including comparing the efficacy of different imaging pro
tocols. Expert-level AI can quantify and rank different diagnostic im
aging protocols by their performance in a clinical task [2]. This 
underexplored ability could help speed up many diagnostic workflows in 
radiology by identifying and helping to omit redundant, diagnostically 

irrelevant MRI sequences. 
Prostate MRI protocol efficiency has recently become critical due to 

changes in the European triage guideline for clinically significant pros
tate cancer (csPCa), putting prostate MRI scans first in the diagnostic 
pathway [4,5]. The increasing demand for prostate MRI is part of a 
bigger trend of a strong increase in radiological examinations. Faster, 
optimized imaging protocols could help keep up with the vastly 
increasing demand for MRI and imaging in general. Deep learning is 
currently studied as an acceleration method using MRI k-space reduc
tion [6–9]. Instead, this paper focuses on automatically identifying 
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redundant sequences for clinical tasks using diagnostic deep learning, 
which could achieve an even higher acceleration than k-space reduction 
and can also be applied to other imaging modalities. 

The current protocol for prostate MRI is based on the Prostate Im
aging Reporting and Data System (PI-RADS) [10]. PI-RADS recommends 
that when using biparametric prostate MRI (bpMRI), a T2-weighted 
image, a computed high b-value diffusion-weighted imaging (DWI), 
and a derived apparent diffusion coefficient (ADC) map should be ac
quired. The T2 image is essential for morphology assessment, including 
lesion encapsulation [9]. High b-value DWI is recommended to improve 
the conspicuity and detect subtle, clinically significant cancers [11–13]. 
ADC map values have been reported to correlate inversely with histo
logic grades [14]. However, there is disagreement in the literature about 
how many and which DWI b-values to acquire for calculating high b- 
value DWI and ADC maps [9,15–19]. Solving this disagreement through 
reader studies is not feasible because scoring a sufficiently large sample 
of scans in different protocols is highly time-consuming. This problem is 
exacerbated by the high reader variability [4,5,20–22]. In contrast, deep 
learning can easily handle larger study sets and is more reproducible. 

This study explores the use of deep learning to optimize the prostate 
MRI protocol by objectively assessing the diagnostic efficacy of MRI 
sequences. We developed a novel framework to compare the diagnostic 
performances of MRI protocols with deep learning. This framework was 
applied to prostate MRI to investigate an optimized detection protocol 
for PI-RADS 4 and 5 lesions. The study is a proof of concept for using AI 
as an independent expert reader in tasks other than assisting in 
diagnosis. 

2. Materials and methods 

2.1. Data 

Adult patients who underwent prostate MRI scans at a Medical 
Center in 2016 were eligible for this study. The institutional ethics 
committee approved the retrospective scientific use of the data and 
waived the need for informed consent. Included patients had either 
elevated prostate-specific antigen (PSA) levels or other sources of clin
ical suspicion of prostate cancer, e.g., family history. Patients were 
excluded if they had a treatment history, poor scan quality, or incom
plete examinations. The study included a cohort of 840 scans of csPCa 
suspicious patients. All patients underwent bpMRI or multi-parametric 
MRI on a 3 T MRI system (Skyra or Prisma, Siemens Healthineers, 
Erlangen, Germany), and imaging protocols followed PI-RADS v2 
guidelines [10]. Technical specifications of the T2 weighted sequences 
were: 2D FSE with spatial saturation, TE 102 (97 – 104) ms, TR 5669 
(2020 – 9220) ms, slice thickness 3.6 ± 0.02 mm, in-plane resolution 
0.55 ± 0.05 mm, image dimensions 390x390x23, and 2.5 ± 0.9 aver
ages. Technical specifications for the DWI sequence were: 2D EPI with 
spatial saturation and phase-sensitive fat suppression, TE 64 (46 – 77), 
TR 3613 (3000 – 6700) ms, slice thickness 3.6 ± 0.02 mm, in-plane 
resolution 2 mm, image dimensions 128x120x23, and 4.2 ± 3.7, 8.3 
± 4.8, and 12.4 ± 7.2 averages for respectively b50, b400, and b800 
images. All cases were read as part of the clinical routine and evaluated 
by at least one of six experienced radiologists (4–25 years of experience 
with prostate MRI). To address possible variability in the labels, multi
disciplinary team meetings with urologists and technicians were avail
able to aid lesion characterization and risk stratification. Lesions were 
delineated by trained investigators under the supervision of an experi
enced radiologist (7 years of experience with prostate MRI). Detected 
lesions were scored according to PI-RADS guidelines. In line with the 
negative predictive value of PI-RADS, we considered all lesions with PI- 
RADS ≥ 4 as csPCa [23]. Patient characteristics for the patient cohort 
are presented in Table 1. 

2.2. AI system 

A deep learning algorithm based on an open-source published AI 
algorithm was trained to detect and outline PI-RADS 4 and 5 lesions on 
MRI scans on different inputs [3]. The proven performance in thorough 
tests and the public availability were the essence of choosing this deep 
learning algorithm [3]. The algorithm uses a 3D U-Net architecture, 
channel-wise squeeze-and-excitation modules, residual connections be
tween consecutive convolutional blocks, a binary cross-entropy loss 
function, and a LeakyReLU activation function [24,25]. Pre-processing 
involved resampling to uniform voxel spacing of 0.5 x 0.5 mm2 with 
3.6 mm slice thickness using linear interpolation, center cropping all 
scans to 96 x 96 x 86.4 mm, and z-score-normalization. Rotation 
(maximum 30-degree angle) and noise (maximum 0.1% multiplication 
from a uniform distribution) were applied as data augmentations to 
teach the network the desired invariance and robustness properties. All 
models finished within 48 h on a 32 GB Tesla V100 GPU Nvidia with an 
average of 1157 ± 211 epochs. An Adam optimizer with an initial 
learning rate of 0.0001, a batch size of 12 examinations, and early 
stopping after 50 epochs were used. Convergence was checked on the 
validation loss, and the model with the best performance was selected. 
This algorithm configuration has been extensively tested and demon
strated to outperform similar models and approach expert performance 
on PI-RADS 4 and 5 lesion detection [3,26,27]. The algorithm was 
retrained using three inputs: an axial T2-weighted scan, an ADC map, 
and a b1400 scan. The ADC map and b1400 scan were calculated using 
different (simulated) b-value DWI protocols for efficacy comparison. 
Unseen test cases were used to evaluate the performance. In five folds, 
the data was split into 672 (80%) training cases, 84 (10%) validation 
cases, and 84 (10%) test cases. A total of 420 individual test cases unseen 
to AI training were used in the performance assessment. The output of 
the trained AI model was a heatmap in which each voxel value 

Table 1 
Characteristics of patients and PI-RADS assessment categories. The first category 
gives the median age in years with an interquartile range (IQR). The second 
category gives the median PSA levels in µg/l with IQR. The third category gives 
the number of patients with a certain PI-RADS as the highest lesion (e.g., 77 
patients have PI-RADS 3 as the highest lesion). The fourth category gives the 
number of lesions in the dataset for each PI-RADS score (e.g., within all patients, 
there are 134 PI-RADS 3 lesions). The last category gives insights into the po
sition of lesions (e.g., 62% of all reported lesions are located in the peripheral 
zone).    

Dataset 
N = 840 

Age 
(years) 

All patients 66 (IQR 9) 
Non-csPCa patients 65 (IQR 9) 
csPCa patients 67 (IQR 9) 

PSA 
(µg/l) 

All patients 8.0 (IQR 
6.0) 

Non-csPCa patients 8.0 (IQR 
6.0) 

csPCa patients 9.0 (IQR 
8.0) 

Highest PI-RADS score 
(patients) 

1 118 
2 360 
3 77 
4 143 
5 142 

Number of PI-RADS lesions (lesions) Total 1291 
1 36 
2 676 
3 134 
4 262 
5 183 

Lesion position (percentages of total 
lesions) 

Peripheral zone 62 
Transitional zone 26 
Central zone 7 
Anterior fibromuscular 
stroma 

5  
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represents the voxel level likelihood of PI-RADS 4 and 5 presence. 
Postprocessing and analysis of this heatmap were performed in line with 
the PI-CAI challenge, which provides an evaluation pipeline for csPCa 
detection AI [28]. First, the heatmap was condensed to a list of up to five 
PI-RADS 4 and 5 lesion candidates located automatically by iteratively 
selecting the connected components containing the highest prediction 
values [29]. The lesions provide more insight into the AI system decision 
and enable evaluation at lesion-level performance. Next, a lesion was 
considered a true positive with a minimum overlap of 10% (Dice score) 
with the reference segmentation [3]. False positives were defined as 
predictions with no or insufficient overlap. 

2.3. Accelerated protocols 

In line with the current discrepancy in the literature about how many 
and which DWI b-value to acquire for calculating high b-value DWI and 
ADC maps [9,15–19], we simulated three different DWI protocols to 
calculate the ADC and b1400 map with a mono-exponential decay 
model: 1) a baseline protocol including an axial T2-weighted sequence 
and b-values sequences b50, b400, b800 (6:19 min); 2) an accelerated 
protocol omitting the DWI b800 sequence (2.57 min); and 3) an accel
erated protocol omitting the DWI b400 sequence (4:17 min). 

2.4. Comparing protocols 

The diagnostic performance of each of the models was assessed on 
unseen data through 5-fold cross-validation. The diagnostic perfor
mances of accelerated bpMRI protocols were compared to the full 
baseline protocol based on the predicted AI diagnostic performance. The 
quantitative analysis compared the area under the receiver operating 
curves (AUROC) and the partial area under the free-response receiver 
operating characteristic curves (pAUFROC). The AUROC evaluates the 
diagnostic performance at the patient-level. The statistical comparison 
between different AUROC was made using DeLong’s test [30]. The 
pAUFROC assesses the diagnostic value of each protocol at the lesion- 
level. A statistical comparison between different pAUFROC was made 
using the permutation test between 0 and 1 false positive lesions. In both 
analyses, the 95% confidence interval (CI) was calculated using the 
standard deviations (SD) across cross-validation folds. P-values below 
0.05 were considered statistically significant. Statistical analysis was 
performed in R version 4.2.0 using the pROC package [31]. 

2.5. AI validation 

A saliency analysis and radiologist’s reader study were performed to 
validate the findings of our artificial expert reader. The saliency analysis 
compared the saliency maps of the different MRI protocols. The saliency 
maps were generated using the method described by Sundararajan et al. 
[32]. Saliency maps provide an explainable AI strategy that reveals the 
underlying patterns in the input images that contribute to the final 
predictions of the AI system [32]. Saliency mapping highlights the re
gions of the input images that influence the AI system’s output the most. 
A high value in the saliency maps indicates an important region for the 
final AI model prediction. This information provides valuable insights 
into the interpretability of the AI system’s predictions and can make the 
predictions more trustworthy (e.g., regions with high values are of more 
importance for the prediction). Here, the saliency analysis was per
formed to assess the importance of each input layer for the final pre
diction. In addition, a radiologist’s reader study was performed. 
Validation of diagnostic accuracy would require a large reader study, 
which is highly time-consuming. This reader study used 30 randomly 
selected patients from the included cohort to validate the visual 
appearance. Four experienced radiologists (6, 10, 13, and 16 years of 
experience in prostate MRI) were presented with two sets of bpMRI 
scans, one set calculated with the baseline protocol and one set calcu
lated with the accelerated protocol omitting the DWI b800 sequence. A 

forced-choice test was used to determine if the radiologists could iden
tify the baseline protocol [33]. In case of low recognition scores below 
50%, the radiologists do not outperform random guessing. Additionally, 
Cohen’s Kappa was calculated to determine the agreement among 
readers’ choice of preferred protocol [34]. 

3. Results 

The protocol comparison with AI showed non-significant diagnostic 
performance differences between the accelerated and the full protocol, 
as shown in Figures 1 and 2. 

At the patient-level, the baseline model with full bpMRI protocol 
reached an AUROC of 0.77 ± 0.06 (SD). The AUROC analysis showed a 
non-significant performance difference when omitting the b800 
sequence (AUROC 0.78 ± 0.03, p = 0.2) or when omitting the b400 
sequence (AUROC 0.76 ± 0.05, p = 0.65). 

At the lesion-level, the sensitivity difference compared to the full 
protocol (pAUFROC = 0.5 ± 0.03) was non-significant when omitting 
the b800 sequence (pAUFROC = 0.47 ± 0.07, p = 0.45) or omitting the 
b400 sequence (pAUFROC = 0.51 ± 0.05, p = 0.73). 

The saliency maps of the three bpMRI protocols did not reveal any 
differences. In each protocol, the high b-value image contained the most 
important information for the prediction. An accelerated DWI protocol 
does not affect the relative importance of high b-value in the bpMRI 
protocol for prostate cancer detection. Figures 3 and 4 show represen
tative examples of the saliency maps. 

The confirmatory reader experiment results were in line with the 
findings of the artificial reader. Expert radiologists could not distinguish 
the baseline from accelerated protocol ADC and High B-value images, 
underlining the redundance of the DWI b800 sequence. The probability 
of correct identification was 37%, 53%, 43%, and 67%. The corrected 
forced-choice recognition scores were below 50%. Additionally, Cohen’s 
Kappa analysis showed strong disagreement (k = 0.09), providing 
further evidence for protocol similarities. 

4. Discussion 

This study shows that deep learning can optimize the prostate MRI 

Fig. 1. Diagnostic accuracy for the detection of PI-RADS 4 and 5 lesions at 
patient-level for the baseline and accelerated protocols. The AUROC plots the 
false positive rate against the true positive rate. The derived bpMRI is based on 
DWI b50-b400-b800, b50-b800, and b50-b400 for the green, blue, and red 
curves, respectively. The shaded areas indicate 95% CIs. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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protocol by objectively assessing the diagnostic efficacy of MRI se
quences on a large data set. The results show that PI-RADS 4 and 5 lesion 
detection can be performed with fewer b-values without compromising 
diagnostic quality for the AI reader. The image similarity radiologist 
reader experiment provided further evidence for diagnostic similarities. 
Differences in diagnostic performance on patient and lesion levels when 
omitting the b400 or b800 sequence from the DWI protocol were not 
statistically significant while providing a decrease in DWI scan time. 
This time reduction could reduce the patient burden of a long scan time, 

allow more patients to be scanned, and reduce healthcare costs. The 
findings indicate that AI employed as an expert reader can be used for 
more than diagnosis and can objectively assess the diagnostic relevance 
of MRI sequences. 

The findings of this study shed new light on the discussion of optimal 
b-values by focusing on reducing scan time and using the largest cohort 
to date for optimal b-value selection. In agreement with the current 
literature, our method identified two instead of three b-values sufficient 
for PI-RADS 4 and 5 lesion detection [9,15–19]. In contrast to earlier 
findings, no evidence was found that agrees with PI-RADS v2 to use 
b800 instead of b400 [9]. A lower b-value has the benefit of a faster 
acquisition, a higher signal-to-noise ratio, and fewer artifacts [35]. 
Adapting the PI-RADS v2 guidelines to recommend b400 instead of b800 
would decrease the scan time by 31%. 

Healthcare, in general, and MRI, in particular, is under tremendous 
pressure to improve its workflow without compromising diagnostic ac
curacy. As shown, deep learning can help to accelerate MRI by identi
fying redundant MRI sequences. Other technological improvements, 
such as compressed sensing and AI-based image reconstruction, have 
also shown the potential to accelerate MRI [36]. However, these 
methods can introduce misleading artifacts, are often only applicable to 
T2-weighted images, and the effect on diagnostic quality remains 
underexplored [35–37]. Our proposed framework applies to all se
quences and can accelerate any MRI protocol with a clearly defined 
diagnostic task without affecting diagnostic quality. 

Our study had limitations. The cohort of 840 patients poses a limit to 
the detectable accuracy differences. A larger dataset could have 
increased the accuracy of the AI models, possibly finding statistically 
significant differences in model performance between acquisition pro
tocols. However, we expect the differences will likely be equal or smaller 
than we observed, which renders them clinically irrelevant. Addition
ally, our data comes from a single center with a single vendor, which 
may limit the generalizability of our results. Furthermore, the AI per
formance depends on the conditions for marking detected lesions as true 
positive or false negative. Also, the interreader variability in radiolo
gists’ assessment might have introduced a label variability and affected 
the AI performance. A prospective study is needed to study performance 

Fig. 2. Diagnostic accuracy for the detection of PI-RADS 4 and 5 lesions at 
lesion-level for the baseline and accelerated protocols. The pAUFROC plots the 
false positive lesions per patient on a logarithmic scale against the lesion 
detection sensitivity. The derived bpMRI is based on DWI b50-b400-b800, b50- 
b800, and b50-b400 for the green, blue, and red curves, respectively. The 
shaded areas indicate 95% CIs. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Very similar AI saliency for the three DWI protocols in a 63-year-old 
patient with PSA 9 µg/l and a PI-RADS 5 and PI-RADS 4 lesion in the periph
eral zone. The DWI and ADC were calculated with three combinations: all b- 
values (b50, b400, and b800), omitting b800, and omitting b400. The predicted 
patient-level PI-RADS 4 and 5 lesion likelihood scores (range 0 to 1) were 0.99, 
0.98, and 0.97, respectively. The blue and red regions in the input images 
indicate areas of minor and major importance for the final prediction. The 
green area in the prediction is the reference segmentation. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 4. Slight variations in AI saliency with different DWI protocols in a 69- 
year-old patient with PSA 5 µg/l and two PI-RADS 4 lesions in the peripheral 
zone and transition zone. The DWI and ADC were calculated with all b-values 
(b50, b400, and b800), omitting b800, and omitting b400. The predicted 
patient-level PI-RADS 4 and 5 lesion likelihood scores (range 0 to 1) were 0.73, 
0.97, and 0.85, respectively. The blue and red regions in the input images 
indicate areas of minor and major importance for the final prediction. The 
green area in the prediction is the reference segmentation. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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across different populations or imaging settings and the effect of per
formance on PI-RADS 3 diagnosis. Moreover, AI as an artificial reader to 
identify redundant protocol steps should be tested on protocols of other 
disciplines to show generalizability. At last, our radiologists’ validation 
did not focus on diagnostic accuracy, which would require a highly time- 
consuming reader study. Our reader study does show high similarities in 
visual appearance between the protocols, indicating the presence of 
redundant MRI sequences and supporting the findings of the artificial 
reader. It would be interesting to look into the lesion-level segmentation 
quality of an artificial reader in a future study. We also recommend a 
multicenter study to validate the robustness of these results for gener
alizability to multiple centers. 

In conclusion, this study shows that deep learning can assess an MRI 
protocol’s efficacy. Omitting the b400 or b800 DWI sequence can reduce 
DWI scan time without compromising diagnostic quality. Adapting the 
PI-RADS v2 guidelines to recommend b400 instead of b800 would 
decrease the scan time by 31%. The outcome of this study shows the 
utility of deep learning for scan time reduction by assessing the diag
nostic efficacy of MRI sequences. 
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