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A B S T R A C T   

Purpose: This review provides an overview of the current state of artificial intelligence (AI) technology for 
automated detection of breast cancer in digital mammography (DM) and digital breast tomosynthesis (DBT). It 
aims to discuss the technology, available AI systems, and the challenges faced by AI in breast cancer screening. 
Methods: The review examines the development of AI technology in breast cancer detection, focusing on deep 
learning (DL) techniques and their differences from traditional computer-aided detection (CAD) systems. It 
discusses data pre-processing, learning paradigms, and the need for independent validation approaches. 
Results: DL-based AI systems have shown significant improvements in breast cancer detection. They have the 
potential to enhance screening outcomes, reduce false negatives and positives, and detect subtle abnormalities 
missed by human observers. However, challenges like the lack of standardised datasets, potential bias in training 
data, and regulatory approval hinder their widespread adoption. 
Conclusions: AI technology has the potential to improve breast cancer screening by increasing accuracy and 
reducing radiologist workload. DL-based AI systems show promise in enhancing detection performance and 
eliminating variability among observers. Standardised guidelines and trustworthy AI practices are necessary to 
ensure fairness, traceability, and robustness. Further research and validation are needed to establish clinical trust 
in AI. Collaboration between researchers, clinicians, and regulatory bodies is crucial to address challenges and 
promote AI implementation in breast cancer screening.   

1. Introduction 

Automated detection of breast cancer in mammography using com
puter algorithms is a decades-old topic of research, development, and 
clinical use [1]. These research and development efforts have been 
driven by the desire to assist radiologists during the challenging task of 
detecting early signs of breast cancer in a mammogram. Currently, 
whether using digital mammography (DM) or digital breast tomosyn
thesis (DBT), breast cancer screening still relies only on radiologist (for 
the most part) assessments, who, even at their best performance, still 
overlook some visible cancer lesions (false negative assessments) and 
decide to recall healthy women for further assessment (false positive 
assessments) [2]. In addition, screening programs come at an expensive 
workload, since the vast majority of exams are normal [3]. This is 

compounded in screening programs, where it is common for all exams 
are read by at least two radiologists, as is commonly the case in Europe. 
Therefore, screening programs still have room for improvement, and 
researchers are continuously looking into technological breakthroughs 
that can improve screening outcomes by increasing accuracy and/or 
reducing radiologist workload. Computer-aided detection (CAD) sys
tems for mammography using traditional machine learning (ML) arti
ficial intelligence (AI) techniques have been available since the 1990s 
[4]. These ML-based CAD systems automatically analyse the images and 
display suspicious areas on the mammogram. Radiologists used these 
systems as a second-look aid, to reduce the chances of overlooking er
rors. However, their high false positive rate was one of the reasons that 
led to a poor acceptance of these systems in European screening pro
grams [5]. More recently, new systems have been developed using deep 
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learning (DL) AI techniques, which have been proven to significantly 
enhance the breast cancer detection performance of radiologists [6,7,8]. 
Numerous articles have been published and dozens of conference talks 
have been presented, preaching how DL-based AI systems (hereinafter 
simply AI systems) are the technological breakthrough that will finally 
improve breast cancer screening programs, whether using DM or DBT 
[1,9]. Recent AI systems have been praised to be “as good as radiologists 
reading mammograms”, demonstrated to “help radiologists be more 
accurate detecting breast cancer”, as well as to be a solution that can 
“(partially) replace radiologists reading screening mammograms”. 
However, as with any promised technological improvement, more 
thorough research is required to ensure their successful implementation. 

This review article aims to provide an overview on the use of AI 
technology for automated detection of breast cancer in DM and DBT, 
including a discussion on relevant issues such as technology description, 
currently available AI systems for breast cancer screening, and the 
challenges and open questions still faced by the numerous AI systems in 
the market and the technology in general. 

2. Breast AI technology 

2.1. AI and DL: Concepts and differences with traditional CAD 

The role of AI in medical imaging has been expanded enormously in 
the last years [10] especially in the field of breast imaging [1]. This has 
been possible due to the rapid increase in affordable computer power 
(and availability of cloud computing resources), which allows for bil
lions of operations per second, the availability of digital data, and the 
capacity to store this digital information inexpensively. 

AI includes a wide ecosystem of techniques within the computer 
science field where machines are programmed to simulate human in
telligence, including the capacity to learn. AI covers many subfields, 
such as ML, and DL, among others (see Fig. 1). AI technology is found in 
countless devices, such as computers, mobile phones, smartwatches, 
cars, etc. Its applications are very wide, from management of junk 
emails, robotics, and voice processing, to clinical decision support 
systems. 

The first computer aided detection/diagnosis (CADe/CADx) tools 
appeared in the 1990s and used traditional ML strategies [4]. In these, 
known morphological, intensity, or texture image features were 
extracted and processed in a specific model (e.g., decision trees, support 

vector machines, etc.) in order to find patterns in the data that allowed 
performing a given task (prediction, detection, etc.). This type of 
approach has certain limitations, such as the need of a large amount of 
hand-crafted, structured training data or human supervision, since most 
of the learning is generally done in a supervised manner. 

DL-based CADe/CADx tools belong to a more recent and popular 
subtype of ML technique that uses one or more neural network (NN) 
architectures (see Fig. 2), similar to the neuron connections within the 
human brain, to create models capable of making accurate data-driven 
decisions. It differs from traditional ML since the features are not 
manually selected but learned and tuned at training time through a 
complex optimisation process better known as backpropagation [11]. 

DL algorithms come in many forms depending on the architecture 
employed, these include deep NN (DNN), recurrent NN (RNN), deep 
belief networks (DBN), and convolutional NN (CNN). CNNs are the most 
commonlyused algorithms for image segmentation and classification, 
although a more recent architecture called Transformer [12] is signifi
cantly improving upon the results of current state-of-the-art CNNs [13]. 
CNNs gained great interest after their excellent results in the ImageNet 
image (regular photos) classification competition in 2012. In this 
competition, the AlexNet CNN [14] outperformed all other techniques 
by a large margin. Since then, NNs have continued to progress and are 
now used for a variety of problems and types of datasets. This is because 
DL models have the ability to learn relevant features directly from 
datasets, enabling more effective analysis and interpretation. Recently- 
developed DNNs contain more neurons than previous networks and 
can have more complex ways of connecting these layers of neurons, 
resulting in more complex functions that can represent robust features 
for medical segmentation [15]. 

DL has had huge success in many research areas of medical image 
analysis, although its clinical implementation has been limited. For 
instance, there are reports of large performance improvements in breast 
cancer CADx and CADe systems by analysing and integrating diagnostic 
information [16,17]. In recent years, Rodríguez-Ruíz et al. [18] showed 
that NNs can achieve the detection rates of an average radiologist. More 
recently, Lång et al. reported on the first randomized screening trial, in 
which DL not only substantially reduced the radiologist workload, but 
also improved the sensitivity for cancer detection with no loss in spec
ificity [8,19]. In addition, NNs allow for the development of classifica
tion models to distinguish between malignant or benign lesions. This has 
the added benefit that the automated classification performed by NNs 
eliminates the variability that can exist among observers. 

Many AI examples can be found in the field of breast cancer detec
tion, mostly DL based, using such diverse imaging technologies as input 
signals such as DM [20,21,22], DBT [23,24], and breast MRI [25]. Since 
3D and 4D medical imaging are becoming routine in clinical practice, 
and with physiological and functional imaging capabilities increasing, 
medical imaging data is increasing in size and complexity. Therefore, AI 

Fig. 1. Diagram showing the artificial intelligence ecosystem with several of 
its subfields. 

Fig. 2. Diagram of a neural network. Each circle is a node (neuron or per
ceptron) that combines the data from prior layer (of nodes) with a set of co
efficients (or weights). 
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will play a key role in processing such vast amounts of data. In fact, 
although the majority of the current DL-based breast cancer detection 
tools described in the literature focuses on a single imaging modality and 
task, the current trend of AI is to combine multi-modal input data 
together with nonimaging data to arrive at more accurate outcomes. 

2.2. Training AI systems: The importance of having good data 

Currently, the value of data is such that it is sometimes referred to as 
the oil of the 21st century [26]. Similar to the need to refine oil for it to 
be useful, the raw data needs to be processed so it can be transformed 
into usable information, knowledge, and eventually, wisdom [27]. In 
fact, during the life cycle of data mining projects, data scientists have 
reported that up to 60 % of their time is spent in data cleaning and 
processing [28]. 

The quality of the data is of utmost importance since AI algorithms 
will use such data to extract patterns and features that will be eventually 
used to provide outcomes. Thus data pre-processing strategies, which 
cover acquisition, data curation, annotation, and data storage (while 
maintaining patient privacy) is key. Pre-processing is also important in 
the medical imaging domain for the optimal performance of AI algo
rithms [29]. Also, a combination of imaging and non-imaging data is 
crucial for AI models to provide more clinically relevant results. 
Therefore, it is recommended to spend sufficient time and care in this 
stage to maximise the AI-powered results. However, a good pre- 
processing step does not guarantee success in the AI results, since 
model development and training is also critical. However, poor data 
quality cannot be simply overcome by more sophisticated models. 

Several types of learning paradigms are used by AI algorithms (see 
Fig. 3). The most common are supervised, unsupervised, semi- 
supervised (a mixture of supervised and unsupervised), and reinforce
ment learning, although other types of learning also exist. Once trained, 
AI models assign a weight to each node (e.g., image feature) to highlight 
its importance in the final task of the network (segmentation, detection, 

etc.). 
In supervised learning, the data is fully annotated. Therefore, there is 

a priori knowledge of the ground truth associated with each data item (i. 
e., label). For example, in the breast imaging domain, a mammogram 
can have a label of “cancer”/“no cancer” for the detection task, 
“benign”/”malignant” for classification purposes, or a bounding box 
around the edge of a lesion in case of segmentation/detection. Unsu
pervised learning models use untagged images where the algorithm tries 
to group data according to common patterns in the data. Semisupervised 
learning combines both supervised and unsupervised learning features. 
In other words, the AI model learns from labeled and unlabeled data. 
Reinforced learning uses an agent (e.g., cancer detector) to learn in an 
interactive environment (e.g., mammogram) by trial and error. This 
agent uses the feedback from its own actions and experiences to learn 
optimal behaviour. 

During the development of AI algorithms, the data is typically split 
into training, validation, and test datasets. Since many datasets are not 
large enough, several strategies can be used to increase the number of 
samples (i.e., data augmentation). Original data can be augmented by 
applying certain operations (e.g., rotation, scaling) that should not affect 
the expected decision from the algorithm. Also, synthetic data generated 
by adversarial networks are also used in cancer imaging for data 
augmentation, or even to populate the less frequent classes (e.g., rare 
cancer types, low or high dense breasts) [30,31,32,33,34,35]. Finally, 
transfer learning strategies are also commonplace, in which networks 
already trained with other data (with their corresponding weights) are 
used to train a new model with new, but less, data in a similar or 
different domain. This fine tuning typically requires a reduced training 
time since small adjustments are needed to achieve the desired output or 
performance for the new type of data. 

2.3. Validation of AI systems: independent, comprehensive, and 
generalisable 

AI tools, especially DL-based, are often perceived as black boxes, or 
grey in the best of cases, by many healthcare actors, where results seem 
magically generated. Although AI is generally accepted with excitement 
by the healthcare community [36,37,38], the lack of insight into this 
magical world of AI frequently reduces the confidence in its results and 
hinders its clinical implementation [39]. This also includes CE-marked 
AI products for clinical radiology, where a recent study found that 64 
% of the AI algorithms reviewed (n = 100) had no scientificallyproven 
evidence of their clinical efficacy [40]. 

In order to improve AI acceptance, the European Commission, 
through the European High-Level Expert Group on Artificial Intelligence 
(AI HLEG), published in 2020 the assessment list for (general) trust
worthy AI (ALTAI) [41]. However, these recommendations refer to AI in 
general and do not address the specific risks and challenges found in 
healthcare. 

Therefore, there are several international initiatives to provide 
checklists and guidelines for researchers and clinicians to improve the 
trustworthiness of AI in medical imaging: TRIPOD-AI/PROBAST-AI 
[42], CLAIM [43], MINIMAR [42] CONSORT-AI [44], CLEAR cit
ekocak2023checklist, metrics reloaded [45] or FUTURE-AI [46]. 

For example, the FUTURE-AI guidelines (https://future-ai.eu/) pro
vide six essential principles (Fairness, Universality, Traceability, Us
ability, Robustness, and Explainability) to increase the clinical trust and 
adoption of AI technology in medical imaging, as described below. 

Fairness. AI algorithms should maintain the same performance when 
applied to similar individuals (individual fairness) and across subgroups 
of individuals, including under-represented groups (group fairness). For 
example, the less frequently-encountered breast density groups in 
datasets could be mitigated through data augmentation strategies 
[35,34]. 

Universality. This principle recommends the definition and appli
cation of (technical, clinical, ethical, and regulatory) standards during Fig. 3. Most common learning paradigms used to train AI models.  
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AI development, evaluation, and deployment. This will increase the 
interoperability and applicability of AI tools across clinical centres. 

Traceability. Medical AI algorithms should be developed with 
mechanisms for documenting and monitoring the development process, 
as well as be paired with methods to continuously or periodically 
monitor their functioning in the clinical environment. For example, 
monitoring tools to identify any discrepancy or drift from its expected 
behaviour, both in terms of accuracy and interaction with end users, and 
to plan maintenance interventions for nurturing the AI models. 

Usability. Medical AI tools should be usable, acceptable, and 
deployable for the real-world end users (i.e., physicians, radiologists, 
and other end users). For example, studies evaluating the usability of the 
algorithm in question should include all actors expected to use and 
interact with the system. 

Robustness. This principle refers to maintaining AI’s performance 
and accuracy when it is applied under the highly variable conditions 
that could be encountered in the real world, outside the controlled 
environment of the laboratory where the algorithm was built and 
initially tested. For example, development and validation of AI products 
should include the use of multi-centre and multivendor datasets. 

Explainability. Medical AI algorithms should be able to provide 
meaningful and actionable explanations of their predictions to the end 
users. Explainability provides insight into the algorithmic mechanisms 
behind the AI decision-making processes. 

Two key components to improve the clinical implementation of AI 
models are the development of independent and generalisable AI 
models, through training with good data and the production of AI- 
powered transparent or explainable results. 

On the one hand, the dataset used during training, testing, and 
validation should be fair and free of bias (e.g., based on ethnicity, 
country, manufacturer, etc.) to avoid potential unfair treatment of 
certain groups. This is why multicentre and multivendor datasets are 
highly recommended, resulting in a more generalisable AI model [47]. 
Despite this data requirement, privacy-related issues sometimes hinder 
the access of such broadlyencompassing data. Problems derived from 
ethical committees, (pseudo-)anonymisation, encrypted data transfer, 
and secure storage can make it difficult to build a good dataset for AI 
training and validation. However, novel techniques, such as federated or 
swarm learning, allow for the training of AI models within a clinical site 
without data sharing [48]. With federated learning, AI models are 
trained locally and the resulting model’s coefficients (i.e., weights) are 
sent outside the clinical site where they are combined/aggregated with 
models trained in other centres. This way, sensitive patient information 
never leaves the secure network of the clinical site where the data 
resides. 

On the other hand, AI-powered results should provide predictions 
that can be understood by both AI developers and clinical users. In order 
to achieve this, explainable AI (XAI) was born [49,50]. In general, AI 
models work with probabilities that are later thresholded to provide a 
decision (e.g., detection). Such a result may be difficult to believe if it is 
not supported or justified by further information. Interpretability 
models are vital to describe the AI results to healthcare professionals (e. 
g., radiologists), improve their trust in the algorithms, thus these could 
be incorporated into the decision-making process. Several strategies 
exist to explain AI-derived results, but the most common ones are based 
on visual explanations [51]. For example, attribution maps, such as 
Grad-CAM [52], use heat maps to highlight the pixels in the image with 
higher weights in the final decision and therefore considered most 
important by the AI model (Fig. 4).  

3. How can I use breast AI in screening? 

2.4. From (partially) replacing radiologists to being used for concurrent 
support 

AI systems can be used in different ways in breast cancer screening 

with DM or DBT. The different possibilities are driven by local needs 
and/or preferences and requirements of each screening program. Based 
on scientific literature, Table 1 presents the most important approaches 
that have been proposed for the implementation of breast AI in 
screening. 

As expected, the potential impact in screening is different depending 
on the specific implementation of breast imaging AI (Table 1). For 
example, some approaches can dramatically reduce screening workload 
without reducing sensitivity, while others can increase sensitivity but at 
the cost of also increasing false positives. It is yet to be demonstrated 
(with real-life evidence) if introducing breast AI in screening could bring 
a three-fold improvement in workload, sensitivity, and specificity, 
although Lång et al. seems to be getting us close [8,19]. 

It should be noted that the above-mentioned uses are not indepen
dent from each other, and therefore could be combined. Although the 
field of breast imaging AI has one of the largest bodies of evidence 
within radiological AI, the degree of evidence is still limited. Most of the 
studies are based on retrospective analyses of data, only the minority of 
commercially available AI systems are investigated, and often the 
studies are performed with limited data, acquired in a single site, or 
without enough heterogeneity in the data to be representative of 
screening programs worldwide. Other issues, such as the enrichment of 
datasets, especially in screening, the lack of consideration of how radi
ologists will change their behaviour when AI has a role in the inter
pretation, and the limited clinical relevance of results (e.g., indolence or 
aggressiveness of screen-detected cancers), are also common limitations 
in the current literature. 

Ultimately, the possible use of breast imaging AI technology is also 
constrained by the characteristics of each AI system, such as its actual 
intended use following regulatory clearance and its features and per
formance. For example, an AI system that has been cleared only for 
concurrent decision support for radiologists during mammogram inter
pretation is not regulatory approved to be used as a stand-alone reader 
of mammograms in screening, even if part of a double reading scenario. 

3. Challenges and prospects 

3.1. What AI system should I use? How do I know if I can use this product 
in my hospital? 

With currently over half a dozen breast imaging AI systems available 
in the market, the user may often be challenged with the question of 
which AI system to implement in their clinical setting. 

Although some commercial AI systems are more accurate than others 
as illustrated in the work by Salim et al. [67], other elements are equally 
important, such as the intended use of each system, the deployment 
possibilities, and the actual performance for the user’s specific popula
tion and equipment. 

It is recommended for users to perform periodic evaluations or audits 

Fig. 4. Breast MRI with a superimposed heatmap. The hottest region represents 
the pixels with higher influence used by an AI model to arrive at a prediction. 
Courtesy of Ms Smriti Joshi from University of Barcelona. 
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of their AI algorithms before and during implementation, to monitor 
that the system errors are not threatening the safety and effectiveness of 
the medical service. It is encouraged that AI developers provide acces
sible tools to the user to run a cohort of cases through their algorithms, 
to monitor performance, which promotes transparency and may help the 
user decide on whether to introduce a product into their clinical envi
ronment or not. 

Well-established guidelines and checklists accepted by the medical 
imaging community will be pivotal to improve the trustworthiness of 
future AI algorithms by radiologists. Traceability measures should be 
put in place together with mechanisms for documenting and monitoring 
the development and functioning of the AI tools in the clinical envi
ronment. The availability of information regarding the datasets used to 
train and validate an algorithm, for example, would increase the 
transparency and quality assurance of AI to help make decisions 
regarding the acquisition of a given product. Obviously, internal 

Table 1 
Overview of different strategies proposed for implementation of AI system in 
breast cancer screening with mammography or tomosynthesis and their 
measured impact.  

Strategy: Use AI as concurrent decision support 
Publication Study Type Modality Impact on 

Screening or 
Human 
Performance 

Impact on 
Workload 

Pacile et al.  
[53] 

Reader study DM Improved 
radiologist AUC 
from 0.769 
without AI to 
0.797 when 
reading with AI 
(P=.035). 

9–14% 
longer than 
reading 
time per 
case when 
using AI (P 
< .001). 

Conant et al. 
[23] 

Reader Study DBT Improved 
radiologist AUC 
from 0.80 
without AI to 
0.895 when 
reading with AI 
support 
(P<.01). 

53% faster 
reading 
time per 
case when 
using AI (P 
< .01). 

Rodriguez- 
Ruiz et al.  
[54] 

Reader Study DM Improved 
radiologist AUC 
from 0.87 
without AI to 
0.89 when 
reading with AI 
support (P 
=.002). 

Similar 
reading 
time per 
case when 
using AI (P 
=.15). 

Van Winkel 
et al. [55] 

Reader Study DBT Improved 
radiologist AUC 
from 0.83 
without AI to 
0.86 when 
reading with AI 
support (P 
=.003). 

12% faster 
reading 
time per 
case when 
using AI (P 
<.001). 

Pinto et al.  
[56] 

Reader Study DBT Improved 
radiologist AUC 
from 0.85 
without AI to 
0.88 when 
reading with AI 
support (P 
=.01). 

Similar 
reading 
time per 
case when 
using AI (P 
=.35). 

Kim et al.  
[57] 

Reader Study DM Improved 
radiologist AUC 
from 0.81 
without AI to 
0.88 when 
reading with AI 
support (P 
<.0001). 

Not 
reported. 

Strategy: Use AI as an independent stand-alone 2nd reader of screening 
Publication Study Type Modality Impact in 

Screening or 
Human 
Performance 

Impact on 
Workload 

Dembrower 
et al. [58] 

Prospective Paired 
Study 
(ScreenTrustCAD) 

DM 4% higher CDR 
(P = 0.017) and 
4% lower recall 
rate (P < 0.05). 

50% fewer 
screening 
readings 
needed. 

Larsen et al.  
[59] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Same CDR and 
16% lower 
recall rate. 

50% fewer 
screening 
readings 
needed. 

Sharma et al. 
[60] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Non-inferior 
CDR and recall 
rate. 

30-45% 
reduced 
screening 
workload. 

Leibig et al.  
[61] 

Retrospective 
evaluation of a 

DM Lower CDR and 
higher recall 
rate. 

50% fewer 
screening  

Table 1 (continued ) 

large screening 
sample 

readings 
needed. 

Strategy: Use AI as triage tool, low risk exams are single read and high-risk 
exams are double read 

Publication Study Type Modality Impact in 
Screening or 
Human 
Performance 

Impact on 
Workload 

Lång et al.  
[8] 

Randomized 
Control Trial 
(MASAI) 

DM Trend for +20% 
CDR (P =
0.052) and 
same recall rate. 

44% fewer 
screening 
readings 
needed. 

Larsen et al.  
[59] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Same CDR and 
9% lower recall 
rate. 

35% fewer 
screening 
readings 
needed. 

Strategy: Use AI as triage tool, low risk exams are automatically labelled as 
normal and high-risk exams are double read 

Publication Study Type Modality Impact in 
Screening or 
Human 
Performance 

Impact on 
Workload 

Lång et al.  
[62] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Same sensitivity 
and recall rate. 

19% fewer 
screening 
readings 
needed. 

Raya- 
Povedano 
et al. [63] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Same sensitivity 
and 17% lower 
recall rate (P <
0.001). 

71% fewer 
screening 
readings 
needed. 

Raya- 
Povedano 
et al. [63] 

Retrospective 
evaluation of a 
large screening 
sample 

DBT Same sensitivity 
and 17% lower 
recall rate (P <
0.001). 

72% fewer 
screening 
readings 
needed. 

Larsen et al.  
[59] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Same CDR and 
19% lower 
recall rate. 

50% fewer 
screening 
readings 
needed. 

Lauritzen 
et al. [64] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Same sensitivity 
and 19% lower 
recall rate. 

63% fewer 
screening 
readings 
needed. 

Dembrower 
et al. [65] 

Retrospective 
evaluation of a 
large screening 
sample 

DM Potential 
additional CDR 
of 71 per 1000 
examinations. 

60% fewer 
screening 
readings 
needed. 

Shoshan 
et al. [66] 

Retrospective 
evaluation of a 
large screening 
sample 

DBT Noninferior 
sensitivity (P 
=.002), and 
25% lower 
recall rate (P =
.002). 

40% fewer 
screening 
readings 
needed. 

CDR = Cancer Detection Rate. DM = Digital Mammography. DBT = Digital 
Breast Tomosynthesis. 
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validation should be performed using local data to detect error or biases 
(e.g., images trained with systems from a single vendor) that could have 
been present during training of the algorithm. 

3.2. What are the next technological improvements that are needed to 
make AI even closer to acting as a radiologist in breast cancer screening? 

Most of the AI-based algorithms for breast cancer detection described 
in the literature employ a single DM or DBT image (or even patches of 
images) from a single time point to make predictions. However, in real 
clinical scenarios, radiologists also consider other sources of radiological 
information that are extracted from prior images, contralateral images, 
or even other data from the patient medical record. Future AI-based 
decision-making algorithms should take into account all relevant 
multi-source data. This fact will require further effort to compile such a 
large amount of data and information, but it is key to allow software 
tools to make more accurate predictions. 

This requires more clinical data being available for training the al
gorithms and patient privacy-preserving strategies, such as federated 
learning or synthetic data generation, will play an important role in the 
future development of AI algorithms. 

3.3. How to keep up to date with the evolving field of AI? 

Although there is a plethora of information on AI developments in 
each radiology journal issue and conference, there is a gap between the 
information available in peer-reviewed publications, usually based on 
experiments performed under strict controls, and real-life use. The true 
impact of AI under real-world clinical conditions is harder to gauge, 
quantify, compile, interpret, and communicate. Methods to aggregate 
and publicise performance benchmarks of AI in actual clinical use, of the 
type similar to that achieved by the Breast Cancer Surveillance Con
sortium [68] for regular screening and diagnostic work, could go a long 
way in providing the community with information on the actual impact 
of these new algorithms. 

3.4. Do we have to wait for the results of prospective clinical trials? 

So far, most of the evidence evaluating the impact of AI systems in 
breast cancer screening is based on studies simulating the use of AI in 
retrospectively collected data cohorts, or in laboratory environments 
studying AIhuman interaction. The paucity of evidence based on reallife 
AI use is one of the biggest barriers to the widespread adoption of AI in 
breast cancer screening. Nevertheless, the first results from a prospective 
trial have been recently published. MASAI [8] was a randomised control 
trial evaluating the impact of using AI to triage DM exams that require 
single reading from those needing double reading. Latest results pre
sented at ECR 2024 showed a 28 % higher CDR (P = 0.002) and similar 
recall rate (2.1 % (2.02.2) vs 1.9 % (1.8–2.1)). The impact on interval 
cancer detection rates will also be evaluated and reported after all the 
women are followed-up. The ScreenTrustCAD [58] study also gave some 
indication of what can be expected when AI acts as an independent 
reader in a double reading setting with DM. Results showed 4 % higher 
CDR (P = 0.017), 21 % higher arbitration rate (relative proportion 1⋅21 
(1⋅18–1⋅24)) and 4 % lower recall rate (relative proportion 0⋅96 
(0⋅94–0⋅97)). This was achieved reducing by 50 % the number of screen 
readings. 

The results from these trials validate the promising results seen in 
retrospective evaluations of AI in breast cancer screening. 

According to clinicaltrials.gov, there is another ongoing prospective 
clinical trial aiming to evaluate the impact of AI when implementing it in 
real-life screening with DM and DBT. The AITIC trial (Artificial Intelli
gence in Breast Cancer Screening Programs in Cordoba) is evaluating the 
hypothesis that AI can be used in a partially autonomous strategy, 
removing the need for humans to read up to 70 % of the most likely 
normal screening exams (either DM or DBT), without reducing the 

cancer detection rate. Preliminary results presented at ECR 2024 after 
including 24,000 women demonstrate that this strategy is safe and 
effective and could lead to a future where lowrisk screening exams are 
automatically labeled as normal. In their study, CDR increased by 1.0/ 
1000 from 6.2/1000 reading 100 % of screening exams without AI to 
7.2/1000 when reading only the 35.6 % most suspicious exams with AI 
support, without a decrease in the recall positive predictive value. 

An open question is whether countries and screening programs will 
leverage prospective evidence from other regions, or each will want to 
conduct their own trial to evaluate the use of AI according to their local 
needs, thus delaying the introduction of the potential benefits of AI in 
screening. On the other hand, many hospitals are already implementing 
AI in institution-based screening, highlighting the fact that local clinical 
needs are one of the main drivers to determine how and when to use AI 
for breast cancer screening. 

4. Conclusions 

The use of AI technology for automated detection of breast cancer in 
mammography has shown significant progress and holds great potential 
for improving screening programs. Traditional CAD systems using ma
chine learning techniques have been available for decades, but their 
high false positive rate limited their acceptance in screening programs. 
However, recent advancements in DL-based AI techniques have 
demonstrated improved performance in breast cancer detection, sur
passing the capabilities of radiologists in some cases. 

The application of DL-based AI systems in breast cancer screening, 
whether using DM or DBT, has been widely researched and discussed. 
These AI systems have been praised for their ability to assist radiologists 
in detecting breast cancer more accurately and reducing false negative 
and false positive assessments. They have even been suggested as a 
potential replacement for radiologists in reading screening mammo
grams, although further research is needed to ensure successful 
implementation. 

Training AI systems requires high-quality data, and data pre- 
processing is crucial for optimal performance. Supervised, unsuper
vised, semi-supervised, and reinforcement learning paradigms are used, 
with data augmentation techniques and transfer learning strategies 
being employed to overcome limited data availability. Validation of AI 
systems is essential to ensure their trustworthiness and clinical efficacy, 
and international initiatives are providing guidelines and checklists for 
researchers and clinicians to improve transparency and reliability. 

Adhering to these initiatives will contribute to the increased accep
tance and adoption of AI tools in clinical practice. While AI shows great 
promise in improving breast cancer detection, further research, collab
oration, and validation efforts are needed to ensure its successful inte
gration into routine screening programs. 
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