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Abstract

The use of accelerated gradient flows is an emerging field in optimization, scientific com-
puting and beyond. This paper contributes to the theoretical underpinnings of a recently-
introduced computational paradigm known as second-order flows, which demonstrate signifi-
cant performance particularly for the minimization of non-convex energy functionals defined
on Sobolev spaces, and are characterized by novel dissipative hyperbolic partial differential
equations. Our approach hinges upon convex-splitting schemes, a tool which is not only piv-
otal for clarifying the well-posedness of second-order flows, but also yields a versatile array of
robust numerical schemes through temporal and spatial discretization. We prove the conver-
gence to stationary points of such schemes in the semi-discrete setting. Further, we establish
their convergence to time-continuous solutions as the time-step tends to zero, and perform
a comprehensive error analysis in the fully discrete case. Finally, these algorithms undergo
thorough testing and validation in approaching stationary points of non-convex variational
models in applied sciences, such as the Ginzburg-Landau energy in phase-field modeling and
a specific case of the Landau-de Gennes energy of the Q-tensor model for liquid crystals.

Keywords: non-convex functional, second-order flow, dissipative hyperbolic equation, convex-
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1 Introduction

Second-order flows is a concept proposed in [11], referring to certain dissipative second-order
hyperbolic PDEs, which serves as a compelling alternative to gradient flows for approaching
minimizers of variational problems. (Non-convex) variational models and partial differential
equations (PDEs) are central topics in scientific computing and applied mathematics, offering
useful mathematical tools to describe a variety of complex phenomena across multiple disciplines.
The current paper is motivated to develop robust and efficient optimization methods based on
second-order flows for a class of non-convex variational problems, e.g., the Ginzburg-Landau
energy in phase-field modelings and the Landau-de Gennes energy of the Q-tensor model for
liquid crystals.
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These variational models, while distinct in their physical contexts and implications, are
grounded in a common mathematical framework. Let H be a Hilbert space of the vector-valued
function u : Ω ⊂ R

d → R
N (d = 1, 2, 3), where Ω is a bounded domain. The goal is to find a

function ug ∈ H that minimizes an energy functional E, formulated as

Eg := E(ug) = min
u∈H

E(u), (1.1)

with the energy functional given by

E(u) =

∫

Ω

(
1

2
|∇u|2 + F (u)

)
dx, (1.2)

where ∇ denotes the gradient operator, and |∇u|2 =
∑N

i=1

∑d
j=1

(
∂ui
∂xj

)2
. This paper focuses on

a typical nonlinear potential F of the form

F (u) =
α

4
|u|4 −

β

2
|u|2 + γ

with constants α, β, γ all positive. The associated Euler-Lagrange equation for this variational
problem is

−∆u + f(u) = 0 in Ω, (1.3)

where ∆u represents the Laplacian of u, and f(u) = α|u|2u− βu is derived from the variation
of the nonlinear potential term F (u). The boundary conditions for the equation (1.3) are de-
termined by the specific characterization of the space H and the nature of the domain Ω. The
existence of a minimizer is a straightforward exercise using the direct method in the calculus of
variations, see, e.g., [46].

Gradient flow methods have been quite popular to tackle this type of problems [18, 19, 33,
34, 31, 10], owing to their obvious advantages: (i) only the gradient information (or first-order
variational derivative) of the objective functional E(u) is required, which enables easy imple-
mentation through various discretization strategies; (ii) the energy stability is often preserved
due to the dissipative mechanism. Notably, employing the L2-gradient flow of the energy (1.2)
leads to the derivation of a parabolic equation, which can be expressed as:

∂tu = ∆u− f(u), for x ∈ Ω, t > 0, (1.4)

subject to suitable boundary conditions on ∂Ω × {t | t ≥ 0}. This equation is reminiscent of
the well-known Allen-Cahn equation, a representative equation of phase field type models. The
Allen-Cahn equation arises from standard energetic variational approaches, e.g. the Onsager
maximum dissipation principle, primarily to describe the evolution of phase transitions and
interfacial dynamics in materials science [2, 13, 12, 39, 40]. We would like to point out that the
use of Allen-Cahn equation in modeling real-world phase transitions differs from its application
as a computational strategy for solving energy minimization problems. Another note is that, the
adoption of the H−1-gradient flow for the same energy functional, given its inherent property of
mass (concentration) preservation, leads to a different setting compared to the L2 gradient flow.
While our primary focus in this work remains on the L2-metric gradients of energy functionals,
the general methodology may be analogous to gradients with other metric in energy minimization.
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The idea of second-order flows is rooted in a recent topic in convex optimization. Considering
some cost function J : H → R for minimization, second-order dynamics of the following type
have been of high interest in the literature [20, 47, 4, 3]

ü + η(t)u̇ = −∇J(u), (1.5)

where η(t) > 0 is a damping coefficient. When J(u) is a convex function over finite dimen-
sional spaces, i.e., (1.5) is a system of ordinary differential equations (ODEs), such a formulation
is known to offer distinct advantages referring to the recent progress of second-order inertial
dynamics in optimization. This was mainly sparked by the work of Su et al. [47], which es-
tablished a connection between second-order ODEs and Nesterov’s accelerated gradient method
[37]. Subsequent research, including studies [4, 55, 38, 9, 3], has continued to explore the theo-
retical and practical aspects of these second-order ODEs. In this work we focus on second-order
flows particular for the PDE cases. The study of second-order flows faces additional complex-
ities, particularly in their theoretical understanding and numerical analysis, due to the fact
that ∇J(u) involves spatial differential operators, see, e.g., [16]. In a recent work [11], the au-
thors have introduced two distinct types of second-order flows as strategies for minimizing a
constrained non-convex energy given by the Gross-Pitaevskii functional, which is a fundamental
model for simulating the ground states of rotating Bose-Einstein condensates (BECs). The newly
introduced second-order flow methods, incorporating both explicit and semi-implicit temporal
discretizations, have demonstrated notable improvements over gradient flow type approaches in
terms of computational efficiency.

Investigating the analytical aspects, numerical methods, and application of second-order
flows for (non-convex) variational problems offers an intriguing and largely unexploited area of
research. Despite some of the initial treatment as explored in [16], and progress on numerical
efficiency made in the previous work [11], a comprehensive theoretical and numerical understand-
ing of second-order flows, especially in the context of non-convex variational problems, remains
a challenging open topic. That motivates the current work, where we try to go one step further
towards non-convex variational problems with second-order flows. In particular, we wish to es-
tablish some foundations for their numerical analysis and convergence to stationary points. A
full convergence analysis is particularly challenging with non-convex energies, where even in the
finite-dimensional setting the use of some form of  Lojasiewicz-type inequalities is required [8].
In the PDE setting, the adequate notion is that of  Lojasiewicz-Simon inequalities, which were
first introduced in [44] and have been applied to semilinear second-order dissipative equations in
[27], among others. However, for the specific energies (1.2) that we consider here, the vectorial
setting and strength of the nonlinearities prevent such methods from being directly applicable.

When taking H = H1
0 (Ω,RN ) and formulating a second-order flow to approach a minimizer

or stationary point of E(u) in (1.2), we are led to the following dissipative hyperbolic PDE:

∂ttu + η(t)∂tu = ∆u− f(u), x ∈ Ω, t > 0, (1.6)

with initial data u(·, 0) = u0 and ∂tu(·, 0) = v0 in Ω. For simplicity, we consider homogeneous
Dirichlet boundary conditions on ∂Ω×{t | t ≥ 0}. By the growth assumed for F and the Sobolev
embedding we have f(u) ∈ L2(Ω,RN ), which implies that E is Fréchet differentiable. Hence, we
denote by δu the Fréchet derivative and introduce the chemical potential µ corresponding to E,

µ := δuE = −∆u + f(u) ∈ H−1(Ω,RN ),
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to obtain that the damped hyperbolic PDE (1.6) can be reformulated as the system

∂tv = −µ− η(t)v. (1.7)

∂tu = v. (1.8)

Building on insights from [11], we note a fundamental distinction between the gradient flow (1.4),
which exhibits energy-decaying properties for the energy E, and the second-order flow (1.6) that
dissipates the following pseudo-energy:

E(u,v) = E(u) +
1

2
‖v‖2L2 . (1.9)

This is an easy exercise if we take a Lyapunov analysis to the pseudo-energy, see e.g. [4].
In our previous work [11], a semi-implicit scheme with a stabilization factor was applied to

discretizing second-order flows, achieving remarkable computational efficiency. However, this
approach lacks rigorous theoretical support, such as unconditional energy stability and conver-
gence analysis. The aim of this paper is to develop robust numerical schemes with theoretical
guarantees for second-order flows. One of the main challenges in the numerical analysis of these
nonlinear hyperbolic PDEs is due to the nonconvexity of the energy functional E : H → R.
The convex-splitting method is a relatively mature tool in this regard, renowned for its ability
to ensure energy stability and unique solvability, independent of the temporal and spatial step
sizes. This method was popularized by Eyre [22] and widely employed in various contexts, such
as phase field models [23, 15], thin film epitaxy models [43], phase field crystal models [29, 52],
and modified phase field crystal models [50, 6, 7].

Inspired by these successful examples in the literature, we adopt the convex-splitting ap-
proach in our study, representing a novel attempt in the numerical discretization of second-order
flows, more specifically, the hyperbolic PDEs described in (1.6). Comprehensive theoretical
and numerical analysis is provided. We start with a time-discrete, space-continuous first-order
convex-splitting scheme, proving its strict pseudo-energy decay and convergence (up to subse-
quences) to a stationary point of E. Next, by establishing of timestep-independent estimates, we
demonstrate that the solutions obtained from this scheme converge to solutions of the original
PDE in (1.6). Leveraging this convergence, we subsequently establish the unique existence of
global smooth solution for (1.6).

We then propose and analyze two distinct fully discrete convex-splitting schemes, both uti-
lizing the finite element method for spatial discretization: One with first-order accuracy in time,
and the other achieving second-order accuracy. Both schemes are proved to be unconditionally
energy stable and unconditionally uniquely solvable, regardless of the chosen temporal and spa-
tial step sizes. Furthermore, by utilizing a discrete Gagliardo–Nirenberg type inequality within
the finite element space, we establish uniform L∞(0, T ;L∞(Ω;RN )) boundedness for the nu-
merical solutions. These stability properties enable us to establish optimal error estimates for
the numerical solution. Notably, the second-order scheme presents additional challenges in en-
suring second-order convergence, which we address through a higher-order consistency analysis,
inspired by the work in [7]. This approach, featuring the introduction of an intermediate vari-
able for a more refined analysis, enables us to rigorously prove the temporal second-order error
accuracy of our scheme. In the end, the proposed numerical schemes are tested and verified
with our motivated non-convex variational models in applied sciences. These examples confirm
the accuracy and effectiveness of both schemes. Their performance particularly underscores the
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advantages of employing second-order flows as a minimization strategy for complex, non-convex
energy functionals.

During the preparation of the manuscript, we are aware of the viscous Cahn–Hilliard equa-
tion [24, 25, 53] and the MPFC model [45, 41, 50, 6, 7]. We would distinguish our model with
the established phase field ones in the literature, as the latter are tailored for simulating specific
physical processes. When η(t) in (1.6) is a constant, though it delivers some similarity to those
damped hyperbolic equations, the application context and objectives of our study are quite dif-
ferent. Precisely, our research employs second-order flows as artificial dynamics, targeting the
minimization of the energy functionals in (1.2). Moreover, while the existing models typically
incorporate higher-order spatial derivatives, exhibiting higher spatial regularity in the solutions,
our investigation into hyperbolic Allen-Cahn type equations, as represented by (1.6), confronts
the absence of such regularity, adding certain challenges to the analysis. Additionally, these mod-
els are designed to satisfy mass conservation properties, a feature not shared by the variational
problems considered in this paper. Thus, the distinction in both the mathematical structure and
the intended application underscores the unique contribution and novel perspective of our work.

The rest of the paper is structured as follows. Section 2 is dedicated to establishing the well-
posedness of this PDE using a first-order, time-discrete, and space-continuous convex-splitting
scheme. As a by-product, it is proven that these type of semi-discrete schemes lead to subsequen-
tial convergence to a stationary point of the nonconvex energy (1.2). Section 3 introduces two
fully discrete schemes, demonstrating their unconditional solvability and energy stability, and
provide error estimates under appropriate regularity conditions for the PDE solution. Section
4 presents numerical results to validate the efficiency and accuracy of our proposed schemes.
Finally, some concluding remarks are given in Section 5.

We delineate below the notation and definitions employed throughout this paper.
For matrices A,B ∈ R

m×n, the notation A : B referred to as the matrix dot product, is
defined as follows:

A : B
def
= trace(ATB) =

∑

1≤i≤m

∑

1≤j≤n

AijBij.

For vectors u,v ∈ R
N , their dot product is defined as

u · v
def
=

N∑

i=1

uivi.

We use (·, ·) to denote the standard L2-inner product for all u,v ∈ L2(Ω;RN ) as

(u,v) :=

∫

Ω
u(x) · v(x)dx.

Furthermore, a(u,v) :=(∇u,∇v) =
∫
Ω∇u(x) : ∇v(x)dx, where ∇u for a function u : Ω ⊂

R
d → R

N is defined as

∇u(x) =
(
∇u1(x),∇u2(x), . . . ,∇uN (x)

)T
∈ R

N×d.

For brevity, we will often omit the domain Ω and vector space R
N when referring to Bochner

spaces Lp(0, T ;X(Ω,RN )) throughout this paper. For instance, Lp(0, T ;X(Ω,RN )) will be de-
noted as Lp(0, T ;X). This notation assumes the domain and vector space are clear from the
context.
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2 Convergence to stationary points and well-posedness of the
PDE via a convex splitting scheme

In this section, we introduce a semi-discrete convex-splitting scheme and construct a sequence
based on the solutions derived from this scheme to approximate the solution of the hyperbolic
PDE as given in (1.6). First, by utilizing the properties of these time-discrete solutions, we prove
subsequential convergence of the semi-discrete trajectory of the second-order flows to a stationary
point of the energy. Then, by making the time-step converge to zero and taking initial values
u0,u1 ∈ H2(Ω,RN ), the well-posedness of the PDE solution they approximate is proved. Given
that our goal is a numerical scheme for approaching stationary points of some functionals, the
regularity of initial values is not an issue.

Throughout this section, we assume that Ω has a C2 boundary to apply H2 regularity re-
sults up to the boundary. This assumption could be relaxed to convex domains with Lipschitz
boundary by using more refined versions of such estimates (see, e.g., [26]).

2.1 A first-order semi-discrete convex-splitting scheme and its convergence

The scheme we introduce is based on the observation that the energy functional E can be
effectively decomposed into the subtraction of two convex functionals, namely E = Ec − Ee. A
typical decomposition is given by

Ec =

∫

Ω

(
1

2
|∇u|2 +

α

4
|u|4 + γ

)
dx, Ee =

β

2

∫

Ω
|u|2dx.

Building on this decomposition and fixing a timestep τ > 0 and a sequence of damping coefficients
ηk > 0, we introduce the following first-order convex-splitting scheme for (1.7)-(1.8):

vk+1 − vk = −τµk+1 − τηk+1vk+1, (2.1)

µk+1 = δuEc(u
k+1) − δuEe(u

k), (2.2)

uk+1 − uk = τvk+1. (2.3)

By taking the L2 inner product of (2.1) with vk+1 and of (2.3) with µk+1, and then combining
these results, the following pseudo-energy stability property arises:

E(uk+1,vk+1) − E(uk,vk) ≤
(
δuEc(u

k+1) − δuEe(u
k),uk+1 − uk

)
+
(
vk+1,vk+1 − vk

)

=
(
µk+1, τvk+1

)
+
(
vk+1,vk+1 − vk

)

= −τηk+1‖vk+1‖2L2 ≤ 0, (2.4)

where we use the convexity of Ec and Ee with respect to u and 1
2‖v‖

2
L2 with respect to v.

Similarly, we decompose F into Fc = α
4 |u|

4 + γ and Fe = β
2 |u|

2, and use the notation fc = F ′
c

and fe = F ′
e. To facilitate subsequent analysis, we recast the spatially continuous, temporally

discrete scheme (2.1)-(2.3) as

uk+1 − 2uk + uk−1

τ2
+ ηk+1u

k+1 − uk

τ
= ∆uk+1 −

(
fc(u

k+1) − fe(u
k)
)
. (2.5)

Here we set v0 ≡ 0, or equivalently, u−1 ≡ u0.
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Remark 2.1. For the sake of simplicity, we assume throughout this article that the initial value
of ∂tu in the PDE (1.6) is ∂tu(·, 0) = v0 ≡ 0. This assumption also ensures that the flow
trajectory is contained within the energy sub-level set {u ∈ H : E(u) ≤ E(u0)}, providing some
local stability for energy minimization. It is worth noting that the findings and conclusions drawn
in this article would remain valid if v0 6= 0 were chosen in appropriate spaces.

The forthcoming analysis, which ensures unique energy-stable solutions for the proposed
scheme, is summarized by the following theorem:

Theorem 2.2. (Unconditional unique solvability) Given any τ > 0 and initial conditions uk,uk−1 ∈
H1

0 (Ω,RN ), there exists a unique solution uk+1 ∈ H2(Ω,RN )∩H1
0 (Ω,RN ) for the scheme repre-

sented by (2.1)-(2.3) with vk := u
k−u

k−1

τ
, or equivalently, the scheme (2.5). This unique solution

ensures the following inequality related to pseudo-energy decay:

E(uk+1,vk+1) + τηk+1‖vk+1‖2L2 ≤ E(uk,vk), (2.6)

where E is the pseudo-energy defined in equation (1.9). Moreover, assuming that ηk > 0 is
bounded above, these solutions satisfy

‖uk+1‖H2 ≤ C(τ) for all k ≥ 1, (2.7)

with C(τ) independent of k.

Proof. Starting with uk,uk−1 ∈ H1
0 (Ω,RN ), we define

Gk(u) :=
ηk+1 + 1

τ

2τ
‖u− uk‖2L2 −

1

τ

(
u− uk,vk

)
+

1

2
‖∇u‖2L2 +

∫

Ω
Fc(u)dx −

(
u, fe(u

k)
)
.

This functional Gk is shown to be strictly convex and coercive on H1
0 (Ω,RN ), implying the

existence of a unique minimizer, denoted as uk+1 ∈ H1
0 (Ω,RN ). Furthermore, uk+1 is the unique

minimizer of Gk if and only if it is the unique weak solution to (2.5), i.e.,

(
uk+1 − 2uk + uk−1

τ2
, ξ

)
+ ηk+1

(
uk+1 − uk

τ
, ξ

)
= a(uk+1, ξ) −

(
fc(u

k+1) − fe(u
k), ξ

)
,

∀ξ ∈ H1
0 (Ω,RN ).

The energy stability property given in the inequality (2.6) follows from the calculations detailed
in (2.4). To show H2 regularity, let us rewrite (2.5) in strong form as

−∆uk+1 +

(
1

τ2
+
ηk+1

τ

)
uk+1 = −fc(u

k+1) + fe(u
k) +

2uk − uk−1

τ2
+ ηk+1u

k

τ

=: Rτ (η
k+1,uk−1,uk,uk+1),

(2.8)

with Rτ : R+ × (Rd)3 → R
d satisfying

∣∣Rτ (b,w1,w2,w3)
∣∣ ≤ Cb(τ)

(
|w1| + |w2| + |w3|

3
)

with Cb(τ) → +∞ as τ → 0 for fixed b ∈ R
+ and Cb(τ) bounded from above for fixed τ as b→ 0.

Moreover, by (2.4) and a Sobolev-Poincaré inequality for H1
0 (Ω,RN ) and since d ≤ 3 we have

for all k
‖uk‖L6 ≤ C‖∇uk‖L2 ≤ CE(uk,vk) ≤ CE(u0,v0) for all k ≥ 1,
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and there exist τ dependent constants C(τ) such that

∥∥Rτ (ηk+1,uk−1,uk,uk+1)
∥∥
L2 ≤ C(τ) for all k ≥ 1,

where again C(τ) → +∞ as τ → 0. Moreover, we also have

‖uk‖L2 ≤ CE(u0,v0) for all k ≥ 0.

With all this, we can consider (2.8) as an equation for uk+1 with fixed right hand side given as
Rτ (η

k+1,uk−1,uk,uk+1), which in fact also decouples it into N scalar equations. In that setting
noticing that the coefficient 1/τ2 + ηk+1/τ in (2.8) is positive and bounded above uniformly in
k for fixed τ , we can apply a standard H2 regularity theorem such as [21, Sec. 6.3.2, Thm. 4] to
arrive at (2.7).

We now prove a result of subsequential convergence of the solutions of (2.5) to a stationary
point of E = Ec + Ee, which aligns with the goal for introducing the second-order flows. The
strategy hinges on exploiting the pseudo-energy decay estimate (2.6), which becomes weaker the
smaller the damping coefficients ηk are chosen. In our result, we are able to handle the case in
which these converge to zero at a speed of O(1/k) or slower. This choice is particularly relevant,
because it corresponds to the choices in Nesterov’s accelerated gradient descent, see [47]. Such
acceleration and its time-continuous counterpart, when used for general convex energies, lead
to optimal convergence rates which are not guaranteed by either gradient descent or the heavy
ball method (i.e. with constant damping). In the time-continuous setting and for nonconvex
energies, stronger results of convergence of the whole trajectory to a stationary point typically
hinge on the use of  Lojasiewicz-Simon inequalities. A prominent example is the approach in [27,
Thm. 1.2] which in fact applies (if extended to the vector-valued setting) to global solutions of
(1.6), but only with d = 2 and constant damping coefficient η.

Theorem 2.3. (Subsequential convergence to a stationary point) For every fixed τ > 0, assume
that the damping coefficients ηk satisfy

ω

k
≤ ηk ≤ ω0 for some ω, ω0 > 0. (2.9)

Then, a subsequence of the uk converges strongly in H1(Ω,RN ) to a stationary point of E.

Proof. Rearranging (2.4) as

τηk+1‖vk+1‖2L2 ≤ E(uk,vk) − E(uk+1,vk+1) for all k ≥ 0, (2.10)

and summing over these for k = 0, . . . , ℓ− 1 for any ℓ ∈ N, we get

τ

ℓ∑

k=1

ηk‖vk‖2L2 ≤ E(u0,v0) − E(uℓ,vℓ) ≤ E(u0,v0).

The left hand side is an nondecreasing sequence of positive real numbers bounded above so it
must converge to some limit, that is,

∞∑

k=1

ηk‖vk‖2L2 < +∞. (2.11)
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Now, let us define a sequence of nonnegative numbers by

ck := ‖vk‖2L2 + ‖vk+1‖2L2 for all k ≥ 1,

and notice that by (2.9) we have

ck
k + 1

=
‖vk‖2

L2

k + 1
+

‖vk+1‖2
L2

k + 1
<

‖vk‖2
L2

k
+

‖vk+1‖2
L2

k + 1
≤
ηk

ω
‖vk‖2L2 +

ηk+1

ω
‖vk+1‖2L2 .

This estimate and (2.11) imply

∞∑

k=1

ck
k + 1

≤
2

ω

∞∑

k=1

ηk‖vk‖2L2 < +∞. (2.12)

We claim that lim infk ck = 0. If it was not the case, it would mean that there exist c > 0 and
k0 ∈ N such that

ck
k + 1

≥
c

k + 1
for all k ≥ k0,

but this would contradict (2.12), because the sequence 1/(k + 1) is not summable. Hence, we
obtain a subsequence kℓ such that

ckℓ = ‖vkℓ‖2L2 + ‖vkℓ+1‖2L2 −−−→
ℓ→∞

0, so ‖vkℓ‖2L2 −−−→
ℓ→∞

0 and ‖vkℓ+1‖2L2 −−−→
ℓ→∞

0,

implying that
vkℓ −−−→

ℓ→∞
0 and vkℓ+1 −−−→

ℓ→∞
0 strongly in L2(Ω,RN ). (2.13)

On the other hand, by (2.7) we have that the sequences ukℓ+1, vkℓ = (ukℓ − ukℓ−1)/τ and
vkℓ+1 = (ukℓ+1 − ukℓ)/τ are bounded in H2(Ω,RN ), so using the Banach-Alaoglu theorem and
the compact embedding H2(Ω,RN ) ⊂ H1(Ω,RN ) we can find a further common subsequence
kℓm and three limit functions u∞,v∞

0 ,v
∞
1 ∈ H2(Ω,RN ) ∩H1

0 (Ω,RN ) such that

ukℓm+1 −−−−→
m→∞

u∞, vkℓm −−−−→
m→∞

v∞
0 , and vkℓm+1 −−−−→

m→∞
v∞
1 strongly in H1(Ω,RN ),

(2.14)
which combined with (2.13) means that we must have v∞

0 = v∞
1 = 0. We can then pass to the

limit of this subsequence in the weak formulation of (2.1)-(2.3) or (2.5) (taking into account the
definition of vk), to end up with

∫

Ω

(
δuEc(u

∞) − δuEe(u
∞)
)
z dx

=

∫

Ω
∇u∞∇z + fc(u

∞)z − fe(u
∞)z dx = 0 for all z ∈ H1

0 (Ω,RN ),

which is the stationarity condition for E at u∞ with respect to perturbations in H1
0 (Ω,RN ).

Remark 2.4. For numerical computations, a straightforward first-order timestepping scheme
like (2.1)-(2.3) is clearly not the best possible choice. A more advantageous option is to use
second-order schemes providing better accuracy without a significant increase of computational
effort. This is the case for the fully discrete scheme (3.3)-(3.4), for which we prove improved error
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estimates in Section 3. The same scheme can also be formulated in the semi-discrete setting,
leading to

κτv
k+ 1

2 + ηk+
1
2vk+

1
2 − ∆uk+

1
2 + αχ(uk+1,uk) − βũk−

1
2 = 0,

vk+
1
2 = κτu

k+ 1
2 = 0,

where

κτz
k+ 1

2 =
zk+1 − zk

τ
, zk+

1
2 =

zk + zk+1

2
, z̃k−

1
2 =

3

2
zk −

1

2
zk−1,

χ(zk+1, zk) =
1

2

(∣∣∣zk+1
∣∣∣
2

+
∣∣∣zk
∣∣∣
2
)
zk+

1
2 , ηk+

1
2 =

ηk + ηk+1

2
.

Based on the continuous analogue of the energy stability property proved in Lemma 3.12 and
methods of H2 regularity and compactness analogous to those used in Theorem 2.3, one can also
obtain subsequential convergence of the iterates of this semi-discrete second-order scheme to a
stationary point of E.

2.2 Timestep-independent estimates

We now provide several elementary estimates that will be needed to recover solutions of the
hyperbolic PDE (1.6) by letting the timestep τ → 0.

Lemma 2.5. Let u ∈ H1
0 (Ω,RN ). Then, the following bounds for the energy functional E hold:

C ‖u‖2H1 + C⋆ ≤ E(u) ≤ C̃ ‖u‖4H1 ,

where C, C̃ > 0 and C⋆ ∈ R are constants depending only on Ω, α, β and γ.

Proof. The upper bound of E(u) is derived using the Sobolev inequality, which since Ω is bounded
provides us with ‖u‖L4 ≤ C ‖u‖H1 for some constant C > 0. For the lower bound, we employ
Poincaré’s inequality, which ensures ‖∇u‖L2 ≥ C ‖u‖H1 . Additionally, we can express the inte-
gral of F (u) over Ω as follows:

∫

Ω
F (u)dx =

∫

Ω

(
α

4
|u|4 −

β

2
|u|2 + γ

)
dx =

∫

Ω

α

4

(
|u|2 −

β

α

)2

+

(
γ −

β2

4α

)
dx.

By taking C⋆ =
(
γ − β2

4α

) ∫
Ω 1dx, we obtain the second inequality of the lemma, thereby con-

cluding the proof.

Lemma 2.6. Assume u0 ∈ H1
0 (Ω,RN ). Then, for all 1 ≤ k ≤ ℓ, it holds that

max
1≤k≤ℓ

(
‖uk‖H1 + ‖vk‖L2 +

∥∥∥∥
vk − vk−1

τ

∥∥∥∥
H−1

)
≤ C, (2.15)

where C > 0 is a constant independent of τ but dependent on
∥∥u0

∥∥
H1.

Proof. Applying Lemma 2.5 and using the non-increasing property of the pseudo-energy E and
the choice v0 ≡ 0, we establish the following inequalities:

C‖uk‖2H1 + C⋆ ≤ E(uk,vk) ≤ E(u0,v0) = E(u0) ≤ C̃‖u0‖4H1 ,
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from which the first bound on ‖uk‖H1 is obtained.
Employing the decay property given in (2.6) and recalling the definition of pseudo-energy E

and again the choice v0 ≡ 0 and Lemma 2.5, we deduce

1

2
‖vk‖2L2 ≤ E(u0) − E(uk) ≤ E(u0) ≤ C̃

∥∥u0
∥∥4
H1 ,

leading to the second bound on
∥∥vk

∥∥
L2 .

For the third bound, equation (2.5) and ηk being bounded above allows us to estimate

∥∥∥∥
vk+1 − vk

τ

∥∥∥∥
H−1

≤ ‖∆uk+1‖H−1 + α
∥∥|uk+1|2uk+1

∥∥
H−1 + β‖uk‖H−1 + ηk+1‖vk+1‖H−1

≤ ‖∇uk+1‖L2 + α
∥∥|uk+1|2uk+1

∥∥
L2 + β‖uk‖L2 + ηk+1‖vk+1‖L2

≤ C
(
‖uk+1‖H1 + ‖uk+1‖3H1 + ‖uk‖L2 + ‖vk+1‖L2

)
, (2.16)

thereby concluding the proof.

Lemma 2.7. Assume u0 ∈ H2(Ω,RN ) ∩H1
0 (Ω,RN ). Then, for all 1 ≤ k ≤ ℓ, it holds that

max
1≤k≤ℓ

(
‖uk‖H2 + ‖vk‖H1 +

∥∥∥∥
vk − vk−1

τ

∥∥∥∥
L2

)
≤ C(T ), (2.17)

where C(T ) > 0 is a constant independent of τ but dependent on ‖u0‖H2 and T .

Proof. We start by taking the inner product of equation (2.5) with −∆(uk+1−uk) ∈ L2(Ω,RN ),
which yields:

−
1

τ2

(
uk+1 − 2uk + uk−1,∆(uk+1 − uk)

)
−
ηk+1

τ

(
uk+1 − uk,∆(uk+1 − uk)

)

= −
(

∆uk+1,∆(uk+1 − uk)
)

+
(
fc(u

k+1) − fe(u
k),∆(uk+1 − uk)

)
. (2.18)

The first three terms can be handled as

−
1

τ2

(
uk+1 − 2uk + uk−1,∆(uk+1 − uk)

)

=
1

2

(
‖∇vk+1‖2L2 − ‖∇vk‖2L2 + ‖∇(vk+1 − vk)‖2L2

)
, (2.19)

−
ηk+1

τ

(
uk+1 − uk,∆(uk+1 − uk)

)
= τηk+1‖∇vk+1‖2L2 , (2.20)

and (
∆uk+1,∆(uk+1 − uk)

)
≥

1

2

(
‖∆uk+1‖2L2 − ‖∆uk‖2L2

)
. (2.21)

For the nonlinear terms, we have
(
fc(u

k+1) − fe(u
k),∆(uk+1 − uk)

)

≤ τ
(
α
(
|uk+1|2∇uk+1 + uk+1(uk+1)T∇uk+1

)
− β∇uk,∇vk+1

)

≤ Cτ‖uk+1‖4L∞‖∇uk+1‖2L2 + Cτ‖∇uk‖2L2 + τ‖∇vk+1‖2L2 . (2.22)
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Utilizing the Gagliardo-Nirenberg inequality ‖u‖L∞ ≤ C‖u‖θ
H2‖u‖

1−θ
L6 (see, for example, [1,

Thm. 5.9]) where θ = d
2(6−d) ≤

1
2 (d ≤ 3), we obtain

‖uk+1‖4L∞ ≤ C‖uk+1‖4θH2‖u
k+1‖

4(1−θ)
L6 ≤ C‖uk+1‖2H2‖u

k+1‖2H1 .

Incorporating this into (2.22), considering the uniform boundedness of ‖uk‖H1 and ‖uk+1‖H1 ,
and using the H2 regularity estimate

‖uk+1‖H2 ≤ C
(
‖∆uk+1‖L2 + ‖uk+1‖L2

)
,

we derive
(
fc(u

k+1) − fe(u
k),∆(uk+1 − uk)

)
≤ Cτ‖∆uk+1‖2L2 + τ‖∇vk+1‖2L2 + Cτ. (2.23)

Defining F k1 := 1
2‖∆uk‖2

L2 + 1
2‖∇vk‖2

L2 , and consolidating (2.18)-(2.23), we obtain

F k+1
1 − F k1 ≤ Cτ‖∆uk+1‖2L2 + τ‖∇vk+1‖2L2 + Cτ ≤ CτF k+1

1 + Cτ.

Summing over k and recognizing that F 0
1 ≤ C

∥∥u0
∥∥2
H2 (given v0 ≡ 0), we infer

F k1 ≤ C
(∥∥u0

∥∥2
H2 + T

)
+ Cτ

k∑

j=1

F j1 .

Utilizing the discrete Gronwall inequality (see, for example, [17, Lem. 100]) yields F k1 ≤ C(T ).
This substantiates the first two estimates in equation (2.17). The third estimate emerges from a
calculation analogous to that in (2.16).

2.3 Existence and uniqueness of the PDE solution

Armed with the foundational results in the last section, we are ready to prove the existence and
uniqueness of a global strong solution to the equation under consideration.

Theorem 2.8. Let u0 ∈ H2(Ω,RN ) ∩ H1
0 (Ω,RN ) and T ∈ R

+. Then with initial conditions
u(·, 0) ≡ u0 and ∂tu(·, 0) ≡ 0, there exists a unique

u ∈ L∞(0, T ;H2 ∩H1
0 ) ∩W 1,∞(0, T ;H1) ∩W 2,∞(0, T ;L2) (2.24)

which satisfies equation (1.6).

Proof. Existence: The proof of existence utilizes the basic idea of Rothe’s method [42], which
is based on constructing numerical solutions and leveraging the corresponding a priori estimates.

We denote ak = v
k−v

k−1

τ
and introduce uτ , vτ , and aτ as the piecewise affine interpolants

of the sequences {ui}, {vi}, and {ai}, respectively, defined over the time partition {iτ}. Fur-
thermore, γ̄τ and γ̂τ represent piecewise constant interpolants of the sequences {γi} and {γi−1}.

This leads to the relationships ∂−

∂t
uτ (·, t) = v̄τ (·, t) and ∂−

∂t
vτ (·, t) = āτ (·, t), where ∂−

∂t
denotes

the left-hand derivative.
Based on equation (2.5), we arrive at

∫

Ω

{(
∂−

∂t
vτ + η̄τ v̄τ + fc(ūτ ) − fe(ûτ )

)
· ϕ+ ∇ūτ : ∇ϕ

}
dx = 0, (2.25)

12



for all ϕ ∈ H1
0 (Ω;RN ), applicable for all τ > 0 and t ∈ (0, T ). Drawing upon Lemma 2.7, we

establish uniform boundedness as follows:

‖uτ (·, t)‖H2 + ‖vτ (·, t)‖H1 + ‖aτ (·, t)‖L2 ≤ C, (2.26)

‖ūτ (·, t)‖H2 + ‖ûτ (·, t)‖H2 + |η̄τ | ‖v̄τ (·, t)‖H1 + ‖āτ (·, t)‖L2 ≤ C, (2.27)

‖uτ (·, t) − ūτ (·, t)‖H1 + ‖uτ (·, t) − ûτ (·, t)‖H1 + ‖vτ (·, t) − v̄τ (·, t)‖L2

+
∥∥|uτ (·, t)|2uτ (·, t) − |ūτ (·, t)|

2ūτ (·, t)
∥∥
L2 ≤ Cτ, (2.28)

for all τ > 0, t ∈ (0, T ), and
∥∥uτ (·, t) − uτ

(
·, t′
)∥∥

H1 +
∥∥vτ (·, t) − vτ

(
·, t′
)∥∥
L2 ≤ C

∣∣t− t′
∣∣ , (2.29)

for all τ > 0, t, t′ ∈ (0, T ). Utilizing methods similar to those in the proof of Lemma 3 in [32],
we deduce the existence of a function u ∈ L∞(0, T ;H2) with

du

dt
∈ L∞(0, T ;H1),

d2u

dt2
∈ L∞(0, T ;L2),

such that

uτ → u in C(0, T ;H1), vτ →
du

dt
in C(0, T ;L2). (2.30)

Integrating equation (2.25) over the interval (0, t), we obtain

(vτ , ϕ) −
(
v0, ϕ

)
+

∫ t

0
(η̄τ v̄τ , ϕ) + a (ūτ , ϕ) +

(
α|ūτ |

2ūτ − βûτ , ϕ
)

dτ = 0.

Employing (2.28) and (2.30), and passing to the limit as τ → 0, we have

(v, ϕ) −
(
v0, ϕ

)
+

∫ t

0
(ηv, ϕ) + a (u, ϕ) +

(
α|u|2u− βu, ϕ

)
dτ = 0. (2.31)

Differentiating equation (2.31) with respect to time t, we obtain equation (1.6). Notably, u0 =
uτ (·, 0) → u(·, 0) and 0 = v0 = vτ (·, 0) → ∂tu(·, 0), ensuring that the initial condition is satisfied.

Uniqueness: Let u(1) and u(2) be two strong solutions with the same initial data. Setting
ũ = u(1) − u(2), we substitute u(1) and u(2) into equation (1.6) separately and then subtract
the resultant equations to generate a new equation involving ũ. By taking the inner product of
this equation with the test function ṽ = ∂tũ, followed by integration by parts and constraining
the nonlinearity through uniform bounds, we reach a formulation which allows for applying
Gronwall’s inequality. Given that both ũ and ṽ start from zero, it dictates that ũ remains
identically zero throughout, thus proving the uniqueness. For the detailed steps and calculations
for this proof we refer to [49, Thm. 5.3], where similar arguments and techniques are employed
in a closely related context.

Remark 2.9. For initial values with lower regularity, such as u0 ∈ H1
0 (Ω,RN ), the methodology

can be adapted to prove the existence of a weak solution to equation (1.6). However, the direct
application of the uniqueness argument appears infeasible since the weak solution u lacks L∞

bound in this scenario. Instead, for the uniqueness analysis, the test function can be taken as
̺(t), defined by:

̺(t) =

{∫ s
t
ũ(τ) dτ if t0 ≤ t ≤ s,

0 if s ≤ t ≤ T.

This adjustment leads to a uniqueness proof given initial values of lower regularity.
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Remark 2.10. The theoretical analysis presented in this section and numerical analysis to follow
also hold for inhomogeneous Dirichlet boundary conditions. For these conditions, we consider
the solution space to be a linear manifold H = H1

0 (Ω,RN ) + M , where the set M comprises
functions that specifically satisfy the inhomogeneous boundary conditions on ∂Ω.

3 Fully discrete convex-splitting schemes and error estimates

In this section, we present two fully discrete convex-splitting schemes for the second-order flow
described by Equation (1.6). Specifically, we study two types convex-splitting schemes via tem-
poral discretization: a first-order scheme, previously utilized to establish the well-posedness of
the PDE, and a second-order scheme. For spatial discretization, we adopt a finite element ap-
proach. Error analysis for both schemes is provided to quantify their numerical accuracy. It is
noted that the following content assumes Ω to be a convex polygonal or polyhedral domain.

For spatial discretization, the finite element method is employed. Let 0 = t0 < t1 < · · · <
tℓ = T be a uniform partition of [0, T ], with τ = ti − ti−1, i = 1, . . . , ℓ. Suppose Qh = {K} is
a conforming, shape-regular, quasi-uniform family of triangulations of the domain Ω, where h
represents the maximum size of the elements in the mesh. For q ∈ Z

+, we define the sets Mh
q

and Mh
q,0 such that

Mh
q :=

{
ξ ∈ C0(Ω,RN ) ; ξ|K ∈ Pq(K), ∀K ∈ Qh

}
⊂ H1(Ω,RN ),

and Mh
q,0 := Mh

q ∩H
1
0 (Ω,RN ), and denote Mh

q,0 by Sh.
If the domain Ω is specifically rectangular or cuboidal, the use of tensor product elements re-

mains feasible and effective. The validity of key principles and methodologies, such as interpolant
and inverse estimates, extends to these configurations when using tensor product elements. Con-
sequently, all conclusions and analyses in this section retain their applicability for rectangular or
cuboidal domains when tensor product elements are utilized.

3.1 The two proposed fully discrete schemes and their error analysis

We now introduce two fully discrete schemes for robust and precise numerical solutions: a first-
order and a second-order temporal convex-splitting scheme, both integrated with finite element
spatial discretization.

The First-order Scheme: For all 0 ≤ k ≤ ℓ− 1, given ukh,v
k
h ∈ Sh, find uk+1

h ,vk+1
h ∈ Sh

such that:

(δτv
k+1
h , ξ) + ηk+1(vk+1

h , ξ) + a(uk+1
h , ξ) +

(
α
∣∣∣uk+1
h

∣∣∣
2
uk+1
h − βukh, ξ

)
= 0 ∀ξ ∈ Sh, (3.1)

(δτu
k+1
h , ζ) − (vk+1

h , ζ) = 0 ∀ζ ∈ Sh, (3.2)

where δτψ
k+1 = ψk+1−ψk

τ
. The initial conditions are set as u0

h = Rhu0 and v0
h ≡ 0. In this

context, Rh denotes the Ritz projection operator, as specified in Definition 3.2 that follows.
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The Second-order Scheme: For all 0 ≤ k ≤ ℓ − 1, given vkh,u
k−1
h ,ukh ∈ Sh, find

vk+1
h ,uk+1

h ∈ Sh such that

(κτv
k+ 1

2
h , ξ) + ηk+

1
2 (v

k+ 1
2

h , ξ) + a(u
k+ 1

2
h , ξ) +

(
αχ(uk+1

h ,ukh) − βũ
k− 1

2
h , ξ

)
= 0 ∀ξ ∈ Sh, (3.3)

(κτu
k+ 1

2
h , ζ) − (v

k+ 1
2

h , ζ) = 0 ∀ζ ∈ Sh, (3.4)

where

κτψ
k+ 1

2 =
ψk+1 − ψk

τ
, ψk+

1
2 =

ψk + ψk+1

2
, ψ̃k−

1
2 =

3

2
ψk −

1

2
ψk−1,

χ(ψk+1, ψk) =
1

2

(∣∣∣ψk+1
∣∣∣
2

+
∣∣∣ψk
∣∣∣
2
)
ψk+

1
2 , ηk+

1
2 =

η(tk) + η(tk+1)

2
.

The initial conditions are set as u−1
h = u0

h = Rhu0 and v0
h ≡ 0.

We state here the error estimates for both of the above convex-splitting schemes.

Theorem 3.1. Assume that the solution u of (1.6) satisfies

u ∈ L∞
(
0, T ;W 1,6

)
∩H2

(
0, T ;Hq+1

)
∩H3

(
0, T ;L2

)
. (3.5)

Then for all h, τ > 0 there exists a constant C(T ) > 0, independent of h and τ , ensuring that
for the First-order Scheme, the error is estimated by:

max
1≤k≤ℓ

∥∥∥u(tk, ·) − ukh

∥∥∥
L2

≤ C(T )
(
τ + hq+1

)
. (3.6)

Furthermore, when the solution of (1.6) additionally admits higher regularity as

u ∈ H4
(
0, T ;L2

)
, (3.7)

then for the Second-order Scheme, the error estimate improves to:

max
1≤k≤ℓ

∥∥∥u(tk, ·) − ukh

∥∥∥
L2

≤ C(T )
(
τ2 + hq+1

)
. (3.8)

The convergence analysis follows a similar strategy for both the first-order and second-order
schemes. We start by taking the inner product of the error equation with the discrete time
derivative of the numerical error. For the nonlinear error term, a discrete Gagliardo-Nirenberg
inequality is applied to bound the L∞ norms of the numerical error function. Summing from
k = 1 to ℓ and applying Gronwall’s inequality, we obtain the error estimates.

However, the analysis for second-order schemes inherently poses more challenges due to the
increased intricacy of nonlinear terms. Particularly for the second-order scheme presented in
this study, extending the analysis to ensure second-order accuracy in convergence is nontrivial.
While the first-order scheme allows for a straightforward unification of two equations for error
analysis, the second-order scheme demands a more nuanced approach. This complexity arises
primarily from the numerical error between the centered difference of u and the midpoint average
of v, potentially affecting temporal accuracy. To address these challenges, our methodology
incorporates a higher-order consistency analysis through asymptotic expansion tailored to the
second-order scheme. An intermediate variable is thus introduced for a more nuanced analysis:
a higher-order approximation of the Ritz projection Rh∂tu of ∂tu, denoted as Ih∂tu. Through
this refined analytical approach, we successfully prove temporal second-order error accuracy of
the scheme.
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3.2 Preliminaries

In this subsection, we introduce several definitions and lemmas crucial to our subsequent analysis.

Definition 3.2 (Ritz Projection). The operator Rh : H1(Ω,RN ) → Sh is referred to as the Ritz
projection and is defined by:

(∇(Rhψ − ψ),∇ξ) = 0, ∀ξ ∈ Sh,

where ψ ∈ H1
0 (Ω,RN ).

Lemma 3.3. The Ritz Projection Rh satisfies the following estimate for all ψ ∈ Hq(Ω,RN ) ∩
H1

0 (Ω,RN ),
‖ψ −Rhψ‖L2 + h ‖∇ (ψ −Rhψ)‖L2 ≤ Chq‖ψ‖Hq .

Proof. See Lemma 1.1 in [48].

Definition 3.4 (Discrete Laplacian). We define the discrete Laplacian, ∆h : Sh → Sh, as
follows: for all ψh ∈ Sh, with ∆hψh ∈ Sh we denote the unique solution to the problem

(∆hψh, ξ) = −a (ψh, ξ) , for all ξ ∈ Sh. (3.9)

In particular, setting ξ = ∆hψh in (3.9), we obtain

‖∆hψh‖
2
L2 = −a (ψh,∆hψh)

Lemma 3.5 (Discrete Gagliardo-Nirenberg Inequality). [28, 35]: For all ψh ∈ Sh, there is a
constant C > 0 such that for d = 2, 3

‖ψh‖L∞ ≤ C ‖∆hψh‖
d

2(6−d)

L2 ‖ψh‖
3(4−d)
2(6−d)

L6 + C ‖ψh‖L6 . (3.10)

Proof. The proof of this lemma can be found in Lemma 4.4 of [28] and Theorem 2.8 of [35].

3.3 Numerical analysis of the first-order scheme (3.1)-(3.2)

3.3.1 Unconditional unique solvability and a priori estimates

The fully discrete first-order convex-splitting scheme, given by (3.1)-(3.2), inherits several desir-
able properties from the semi-discrete scheme, which were discussed in Section 2. We summarize
these properties in the following lemmas:

Theorem 3.6 (Unconditional unique solvability). The fully discrete first-order convex-splitting
scheme (3.1)-(3.2) is uniquely solvable for all τ > 0 and h > 0.

Proof. Consider the functional Gkh on Sh defined as:

Gkh(uh) :=
ηk+1 + 1

τ

2τ

∥∥∥uh − ukh

∥∥∥
2

L2
−

1

τ

(
uh − ukh,v

k
h

)

+
1

2
‖∇uh‖

2
L2 +

α

4
‖uh‖

4
L4 −

β

2

(
uh, (u

k
h)2
)
, (3.11)

The unique solvability follows from the properties of Gkh, analogous to the arguments used in
the proof of Theorem 2.2. Specifically, Gkh inherits the coercivity and strict convexity from the
continuous functional Gk, and minimizing Gkh leads to the unique solution of (3.1)-(3.2).
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Lemma 3.7 (Unconditional energy stability). Let
(
uk+1
h ,vk+1

h

)
∈ Sh×Sh be the unique solution

of the scheme (3.1)-(3.2). Then the following pseudo-energy decay holds for all τ > 0 and h > 0:

E
(
uk+1
h ,vk+1

h

)
− E

(
ukh,v

k
h

)
≤ −τηk+1‖vk+1

h ‖2L2 , (3.12)

for all 0 ≤ k ≤ ℓ− 1, where E is defined in (1.9).

Proof. The proof can be established similarly to that of (2.6).

Lemma 3.8. Let
(
uk+1
h ,vk+1

h

)
∈ Sh×Sh be the unique solution of the scheme (3.1)-(3.2). Then

the following estimates hold

max
0≤k≤ℓ

(
‖ukh‖H1 + ‖vkh‖L2

)
≤ C,

where C > 0 is independent of τ and h.

Proof. These estimates can be directly obtained from the analysis in Lemma 2.6 of Section 2.

Lemma 3.9. Consider the unique solution
(
uk+1
h ,vk+1

h

)
in Sh × Sh for the numerical scheme

represented by equations (3.1)-(3.2). The following estimates hold:

max
0≤k≤ℓ

(
‖∆hu

k
h‖L2 + ‖vkh‖H1 + ‖ukh‖L∞

)
≤ C(T ), (3.13)

where the constant C(T ) depends on T , but not on τ and h.

Proof. We begin by setting ζ = ξ = −∆h(uk+1
h − ukh) in equations (3.1) and (3.2). Combining

these equations and following the procedure outlined in the proof of Theorem 2.7, we arrive at
the first two estimates in equation (3.13). The third estimate is subsequently derived by applying
the Discrete Gagliardo-Nirenberg Inequality, as stated in equation (3.10).

3.3.2 Error Estimates for the Fully Discrete First-order Scheme

We define the following for all integer k ∈ [0, ℓ] that tk := kτ , uk := u (tk), and

δ2τψ
k+1 :=

ψk+1 − 2ψk + ψk−1

τ2
, σu,k+1

1 := δτRhu
k+1 − δτu

k+1, σu,k+1
2 := δτu

k+1 − ∂tu
k+1,

ςu,k+1
1 := δ2τRhu

k+1 − δ2τu
k+1, ςu,k+1

2 := δ2τu
k+1 − ∂2t u

k+1.

Then, the solution of PDE (1.6), evaluated at tk+1, satisfies for all ξ ∈ Sh,
(
δ2τRhu

k+1, ξ
)

+ ηk+1
(
δτRhu

k+1, ξ
)

+ a
(
Rhu

k+1, ξ
)

= −

(
α
∣∣∣uk+1

∣∣∣
2
uk+1 − βuk+1, ξ

)
+ ηk+1

(
σu,k+1
1 + σu,k+1

2 , ξ
)

+
(
ςu,k+1
1 + ςu,k+1

2 , ξ
)
,

(3.14)
where Rhu

−1 = Rhu
0. Restating the fully discrete first-order convex-splitting scheme (3.1)-(3.2),

for all ξ ∈ Sh, we have

(
δ2τu

k+1
h , ξ

)
+ ηk+1

(
δτu

k+1
h , ξ

)
+ a

(
uk+1
h , ξ

)
= −

(
α
∣∣∣uk+1
h

∣∣∣
2
uk+1
h − βukh, ξ

)
, (3.15)
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where u−1
h = u0

h = Rhu
0. Now, let us define the notation Du,k

h := Rhu
k − ukh and Du,k

a :=

uk −Rhu
k, we have that ‖Du,k

a ‖L2 ≤ Chq+1 ‖u‖Hq+1 based on the definition of Rh. Subtracting

(3.15) from (3.14) and setting ξ = δτD
u,k+1
h , we obtain the following system of equations for all

integer 0 ≤ k ≤ ℓ− 1,

(
δ2τD

u,k+1
h , δτD

u,k+1
h

)
+ ηk+1

∥∥∥δτDu,k+1
h

∥∥∥
2

L2
+ a

(
Du,k+1
h , δτD

u,k+1
h

)

= −α

(∣∣∣uk+1
∣∣∣
2
uk+1 −

∣∣∣uk+1
h

∣∣∣
2
uk+1
h , δτD

u,k+1
h

)
+ β

(
uk+1 − ukh, δτD

u,k+1
h

)

+ ηk+1
(
σu,k+1
1 + σu,k+1

2 , δτD
u,k+1
h

)
+
(
ςu,k+1
1 + ςu,k+1

2 , δτD
u,k+1
h

)
.

(3.16)

Lemma 3.10. Suppose that u is the solution of (1.6), with regularities (3.5). Then for all
h, τ > 0, there exists a constant C > 0, independent of h and τ and T , such that for 0 ≤ k ≤ ℓ−1

∥∥∥σu,k+1
1 + σu,k+1

2

∥∥∥
2

L2
≤C

(
h2q+2

τ

∫ tk+1

tk

‖∂su(s)‖2Hq+1 ds+ τ

∫ tk+1

tk

∥∥∂2su(s)
∥∥2
L2 ds

)
,

∥∥∥ςu,k+1
1 + ςu,k+1

2

∥∥∥
2

L2
≤C

h2q+2

τ

(∫ tk+1

tk

∥∥∂2su(s)
∥∥2
Hq+1 ds+ (1 − δ0,k)

∫ tk

tk−1

∥∥∂2su(s)
∥∥2
Hq+1 ds

)

+ Cτ

(∫ tk+1

tk

∥∥∂3su(s)
∥∥2
L2 ds+ (1 − δ0,k)

∫ tk

tk−1

∥∥∂3su(s)
∥∥2
L2 ds

)
,

where δn,m is the Kronecker delta.

Proof. The proof of each of the inequalities above is a direct application of Taylor’s theorem
with integral remainder. We suppress the details for the sake of brevity.

Proof of (3.6) in Theorem 3.1

Proof. To establish the error estimate (3.6), we begin by dissecting each term in (3.16). The
left-hand side components can be estimated as follows:

(
δ2τD

u,k+1
h , δτD

u,k+1
h

)
≥

1

2τ

(
‖δτD

u,k+1
h ‖2L2 − ‖δτD

u,k
h ‖2L2

)
,

ηk+1‖δτD
u,k+1
h ‖2L2 ≥ 0,

a
(
Du,k+1
h , δτD

u,k+1
h

)
≥

1

2τ

(
‖∇Du,k+1

h ‖2L2 − ‖∇Du,k
h ‖2L2

)
.

For the right-hand side, leveraging the regularity assumptions of u and L∞ boundedness of ukh,
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and invoking Cauchy’s and Young’s inequalities, we derive the estimates:

∣∣∣β
(
uk+1 − ukh, δτD

u,k+1
h

)∣∣∣ ≤ C

(
τ

∫ tk+1

tk

‖∂su(s)‖2L2ds+ h2q+2‖uk‖2Hq+1

)

+ ‖Du,k
h ‖2L2 +

1

2
‖δτD

u,k+1
h ‖2L2 ,

∣∣∣α
(
|uk+1|2uk+1 − |uk+1

h |2uk+1
h , δτD

u,k+1
h

)∣∣∣ ≤ Ch2q+2‖uk+1‖2Hq+1

+ C‖Du,k+1
h ‖2L2 +

1

2
‖δτD

u,k+1
h ‖2L2 ,

ηk+1
∣∣∣
(
σu,k+1
1 + σu,k+1

2 , δτD
u,k+1
h

)∣∣∣ ≤C‖σu,k+1
1 + σu,k+1

2 ‖2L2 +
1

2
‖δτD

u,k+1
h ‖2L2 ,

∣∣∣
(
ςu,k+1
1 + ςu,k+1

2 , δτD
u,k+1
h

)∣∣∣ ≤
1

2
‖ςu,k+1

1 + ςu,k+1
2 ‖2L2 +

1

2
‖δτD

u,k+1
h ‖2L2 .

We then define a modified energy functional for the error function as:

F k2 :=
1

2
‖δτD

u,k
h ‖2L2 +

1

2
‖∇Du,k

h ‖2L2 .

Utilizing the derived inequalities, we deduce:

F k+1
2 − F k2 ≤ τC

(
‖δτD

u,k+1
h ‖2L2 + ‖∇Du,k+1

h ‖2L2 + ‖∇Du,k
h ‖2L2

)
+Rk+1,

where

Rk+1 = C

(
τ

∫ tk+1

tk

‖∂su(s)‖2L2ds+ h2q+2
(
‖uk‖2Hq+1 + ‖uk+1‖2Hq+1

)

+‖σu,k+1
1 + σu,k+1

2 ‖2L2 + ‖ςu,k+1
1 + ςu,k+1

2 ‖2L2

)
.

Summing over k and applying the regularity assumptions of u and estimates from Lemma (3.10),
we obtain:

Cτ

ℓ−1∑

k=0

Rk+1 ≤ C(τ + hq+1)2.

Given F 0
2 = 0, we derive the bound for F k2 :

F k2 ≤ τC
k∑

j=1

(
‖δτD

u,j
h ‖2L2 + ‖∇Du,j

h ‖2L2

)
+ C

(
τ + hq+1

)2
.

Applying a discrete Gronwall inequality, we conclude: F k2 ≤ C(T )(τ + hq+1)2, where C(T ) is a
positive constant dependent on T but independent of h and τ . Therefore:

‖ukh − uk‖2L2 ≤ C
(
‖Du,k

h ‖2L2 + ‖Du,k
a ‖2L2

)
≤ CF k2 + Ch2q+2 ≤ C(T )(τ + hq+1)2,

finalizing the proof of the error estimate (3.6).
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3.4 Numerical analysis of the second-order scheme (3.3)-(3.4)

3.4.1 Unconditional unique solvability and a priori estimates

Lemma 3.11 (Unconditional unique solvability). The fully discrete second-order convex-splitting
scheme (3.3)-(3.4) is uniquely solvable for all τ > 0 and h > 0.

Proof. The proof proceeds similarly to that of Theorem 2.2, employing the nonlinear functional
Gkh defined for all uh ∈ Sh:

Gkh (uh) :=
1

2

∥∥∥uh − ukh

∥∥∥
2

L2
−

2

ηk+
1
2 + 2

τ

(
uh − ukh,v

k
h

)

+
τ

ηk+
1
2 + 2

τ

(
1

4
‖∇uh‖

2
L2 + β

(
uh,−ũ

k− 1
2

h

)
−

1

2
a
(
uh,u

k
h

)

+
α

4

(
1

4
‖uh‖

4
L4 +

1

3

(
|uh|

2
uh,u

k
h

)
+

1

2

(
|uh|

2 ,
∣∣∣ukh
∣∣∣
2
)

+

(
uh,
∣∣∣ukh
∣∣∣
2
ukh

)))
.

The coercivity and strict convexity of Gkh , along with the equivalence of minimizing Gkh to solving
(3.3)-(3.4), assure the unique solvability. The proof details, following a similar argument in
Theorem 2.2, are omitted for brevity.

Lemma 3.12. Let
(
uk+1
h ,vk+1

h

)
∈ Sh × Sh be the unique solution to the scheme (3.3)-(3.4).

Then for all τ > 0 and h > 0, the following modified energy stability holds:

Ẽ
(
uk+1
h ,ukh,v

k+1
h

)
+ τηk+

1
2

∥∥∥∥v
k+ 1

2
h

∥∥∥∥
2

L2

+
1

4

∥∥∥uk+1
h − 2ukh + uk−1

h

∥∥∥
2

L2
= Ẽ

(
ukh,u

k−1
h ,vkh

)
, (3.17)

where

Ẽ
(
uℓh,u

ℓ−1
h ,vℓh

)
:= E

(
uℓh,v

ℓ
h

)
+

1

4

∥∥∥uℓh − uℓ−1
h

∥∥∥
2

L2
.

Proof. We begin by defining the intermediate variable µk+
1
2 :

µk+
1
2 = ∆hu

k+ 1
2

h + αχ(uk+1
h ,ukh) − βũ

k− 1
2

h .

Then we set ξ = v
k+ 1

2
h in (3.3), which yields:

1

2

∥∥∥vk+1
h

∥∥∥
2

L2
−

1

2

∥∥∥vkh
∥∥∥
2

L2
+ τηk+

1
2 (v

k+ 1
2

h ,v
k+ 1

2
h ) + τ

(
µk+

1
2 ,v

k+ 1
2

h

)
= 0. (3.18)

Next, setting ζ = µk+
1
2 in (3.4), we obtain:

τ

(
v
k+ 1

2
h , µ

k+ 1
2

h

)
=

(
uk+1
h − ukh, µ

k+ 1
2

h

)

=
1

2
‖∇uk+1

h ‖2L2 −
1

2
‖∇ukh‖

2
L2 +

α

4

∥∥∥uk+1
h

∥∥∥
4

L4
−
α

4

∥∥∥ukh
∥∥∥
4

L4

−
β

2
‖uk+1

h ‖2L2 +
1

4
‖uk+1

h − ukh‖
2
L2 +

β

2
‖ukh‖

2
L2 −

1

4
‖ukh − uk−1

h ‖2L2

+
1

4
‖uk+1

h − 2ukh + uk−1
h ‖2L2 . (3.19)

By integrating (3.19) into (3.18) and considering the definition of Ẽ , we arrive at the modified
energy stability result (3.17). This completes the proof.
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Lemma 3.13. Let
(
uk+1
h ,vk+1

h

)
∈ Sh × Sh be the unique solution to the scheme defined by

Equations (3.3)-(3.4). Then the following estimates hold for all τ, h > 0:

max
0≤k≤ℓ

(
‖ukh‖H1 + ‖vkh‖L2

)
≤ C.

Proof. Using the identity in (3.17), the results can be proved similarly as in Lemma 2.6.

Lemma 3.14. Let
(
uk+1
h ,vk+1

h

)
∈ Sh × Sh be the unique solution to the numerical scheme

defined by Equations (3.3)-(3.4). Then, for every τ, h > 0, the following estimates hold:

max
0≤k≤ℓ

(
‖∆hu

k
h‖L2 + ‖vkh‖H1 + ‖ukh‖L∞

)
≤ C(T ), (3.20)

where C(T ) is a constant dependent on T but independent of τ and h.

Proof. We begin by taking ξ = −∆h

(
uk+1
h − ukh

)
in (3.1) and ζ = −∆h

(
vk+1
h − vkh

)
in (3.2).

By combining these equations and utilizing the definition of the discrete Laplacian from (3.9),
we obtain the following expression:

−

(
vk+1
h − vkh,∆hv

k+ 1
2

h

)
−
ηk+1

τ

(
uk+1
h − ukh,∆h

(
uk+1
h − ukh

))
−

(
∆hu

k+ 1
2

h ,∆h

(
uk+1
h − ukh

))

=

(
1

4

(∣∣∣uk+1
h

∣∣∣
2
uk+1
h + 3(uk+1

h )2ukh + 3uk+1
h (ukh)2 + (ukh)3

)
,∆h

(
uk+1
h − ukh

))

−

(
3

2
ukh −

1

2
uk−1
h ,∆h

(
uk+1
h − ukh

))
. (3.21)

We then follow a methodology analogous to that employed in the proof of Lemma 3.9 to derive
the desired estimates.

3.4.2 Error estimate of the second-order scheme

We define the following notations: for all real number k ∈ [0, ℓ],

tk := kτ, uk := u (tk) , vk := ∂tu (tk) , Du,k
a := uk −Rhu

k, Ihv
k := Rh∂tu

k −
τ2

12
Rh∂

3
t u

k.

And for all integer k ∈ [0, ℓ− 1],

ς
k+ 1

2
1 := κτ Ihv

k+ 1
2 −

(
κτv

k+ 1
2 −

τ2

12
κτ∂

3
t u

k+ 1
2

)
, ς

k+ 1
2

2 := κτv
k+ 1

2 −
τ2

12
κτ∂

3
t u

k+ 1
2 − ∂tv

k+ 1
2 ,

ς
k+ 1

2
3 := κτRhu

k+ 1
2 − Ihv

k+ 1
2 , σ

k+ 1
2

1 := κτRhu
k+ 1

2 − κτu
k+ 1

2 , σ
k+ 1

2
2 := κτu

k+ 1
2 − ∂tu

k+ 1
2 ,

σ
k+ 1

2
3 :=

1

2
uk+1 +

1

2
uk − uk+

1
2 , σ

k+ 1
2

4 := χ
(
uk+1,uk

)
−
(
uk+

1
2

)3
.

Here we continue to use the notations σ and ς as defined previously, which now pertain to the
error terms in the second-order analysis. Then the solution of PDE (1.6), evaluated at the
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half-integer time steps tk+ 1
2
, satisfies

(
κτIhv

k+ 1
2 , ξ
)

+ ηk+
1
2

(
κτRhu

k+ 1
2 , ξ
)

=

(
ς
k+ 1

2
1 + ς

k+ 1
2

2 , ξ

)
+ ηk+

1
2

(
σ
k+ 1

2
1 + σ

k+ 1
2

2 , ξ

)

− a

(
1

2
Rhu

k+1 +
1

2
Rhu

k, ξ

)
+ β

(
uk+

1
2 , ξ
)

− α
(
χ
(
uk+1,uk

)
, ξ
)

+

(
∆σ

k+ 1
2

3 , ξ

)
+ α

(
σ
k+ 1

2
4 , ξ

)
,

(3.22)
(
κτRhu

k+ 1
2 , ζ
)
−
(
Ihv

k+ 1
2 , ζ
)

=

(
ς
k+ 1

2
3 , ζ

)
, (3.23)

for all ξ, ζ ∈ Sh. Restating the fully discrete splitting scheme, (3.3)-(3.4), we have, for allreal
number k ∈ [0, ℓ− 1], and for all ξ, ζ ∈ Sh,
(
κτv

k+ 1
2

h , ξ

)
+ ηk+

1
2

(
κτu

k+ 1
2

h , ξ

)
= −a

(
u
k+ 1

2
h , ξ

)
−

(
αχ
(
uk+1
h ,ukh

)
− βũ

k− 1
2

h , ξ

)
, (3.24)

(
κτu

k+ 1
2

h , ζ

)
−

(
v
k+ 1

2
h , ζ

)
= 0. (3.25)

Now let us define the following additional error terms,

Du,k
h := Rhu

k − ukh, Dv,k
h := Ihv

k − vkh, Du,k := uk − ukh,

σ
k+ 1

2
5 := χ

(
uk+1
h ,ukh

)
− χ

(
uk+1,uk

)
, σ

k+ 1
2

6 := uk+
1
2 − ũ

k− 1
2

h = uk+
1
2 −

3

2
ukh +

1

2
uk−1
h .

Subtracting (3.24)-(3.25) from (3.22)-(3.23) and setting ξ = κτD
u,k+ 1

2
h , and ζ = κτD

v,k+ 1
2

h , and
combine together yields, for k ∈ [0, ℓ− 1],

(
κτD

v,k+ 1
2

h ,D
v,k+ 1

2
h + ς

k+ 1
2

3

)
+ ηk+

1
2

∥∥∥∥κτD
u,k+ 1

2
h

∥∥∥∥
2

L2

+
1

2
a

(
Du,k+1
h + Du,k

h , κτD
u,k+ 1

2
h

)

=

(
ς
k+ 1

2
1 + ς

k+ 1
2

2 , κτD
u,k+ 1

2
h

)
+ ηk+

1
2

(
σ
k+ 1

2
1 + σ

k+ 1
2

2 , κτD
u,k+ 1

2
h

)

+

(
∆σ

k+ 1
2

3 , κτD
u,k+ 1

2
h

)
+

(
ασ

k+ 1
2

4 + ασ
k+ 1

2
5 + βσ

k+ 1
2

6 , κτD
u,k+ 1

2
h

)
. (3.26)

Proof of (3.8) in Theorem 3.1.

Proof. To prove the error estimate (3.8), we begin by analyzing (3.26) using Cauchy’s and
Young’s inequalities, resulting in:

1

2τ

(∥∥∥Dv,k+1
h

∥∥∥
2

L2
−
∥∥∥Dv,k

h

∥∥∥
2

L2

)
+

1

2τ

(∥∥∥∇Du,k+1
h

∥∥∥
2

L2
−
∥∥∥∇Du,k

h

∥∥∥
2

L2

)

≤
∥∥∥Dv,k+1

h

∥∥∥
2

L2
+
∥∥∥Dv,k

h

∥∥∥
2

L2
+

∥∥∥∥ς
k+ 1

2
1 + ς

k+ 1
2

2

∥∥∥∥
2

L2

+

∥∥∥∥η
k+ 1

2

(
σ
k+ 1

2
1 + σ

k+ 1
2

2

)∥∥∥∥
2

L2

+

∥∥∥∥∆σ
k+ 1

2
3

∥∥∥∥
2

L2

+

∥∥∥∥ασ
k+ 1

2
4 + ασ

k+ 1
2

5 + βσ
k+ 1

2
6

∥∥∥∥
2

L2

+ 4

∥∥∥∥D
v,k+ 1

2
h

∥∥∥∥
2

L2

+
C

τ2

∥∥∥∥ς
k+ 1

2
3

∥∥∥∥
2

L2

(3.27)
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Introducing a modified energy functional for the error function: F k3 = 1
2‖D

v,k
h ‖2

L2+1
2‖∇Du,k

h ‖2
L2 ,

and noting that F 0
3 = 0, we apply the regularity assumptions and error estimates from Lemmas

A.1 and A.2 to obtain:

F k3 ≤ Cτ
k∑

j=0

(
‖∇Du,j

h ‖2L2 + ‖Dv,j
h ‖2L2

)
+ C

(
τ2 + hq+1

)2
.

Applying a discrete Gronwall inequality, we deduce: F k3 ≤ C(T )
(
τ2 + hq+1

)2
, where C(T ) is

a positive constant dependent on T in an exponential manner, but independent of h and τ .
Therefore:

‖Du,k‖2L2 ≤ C
(
‖Du,k

h ‖2L2 + ‖Du,k
a ‖2L2

)
≤ CF k3 + Ch2q+2 ≤ C(T )

(
τ2 + hq+1

)2
.

This completes the proof of the error estimate (3.8) in Theorem 3.1.

4 Applications and numerical results

We test in the second-order flows framework with applications which motivate our work, to
verify the effectiveness and efficiency of the proposed numerical algorithms. These experiments
were exclusively conducted on 2D square domains, employing bilinear elements for spatial dis-
cretization. The computational tests were performed on a workstation equipped with a 2.0GHz
CPU (X86-2A2) with 8 cores. All codes were written in MATLAB language without parallel
implementation.

In every iteration, we solve a coupled nonlinear system using Newton’s method. The initial
guess for the k-th iteration in Newton’s method is set as 2uk−uk−1, and the iteration terminates
when the residual dropped below 10−10.

To ensure consistency in our comparisons across different numerical schemes, the same ter-
mination criteria are applied. The iterative process halts when both the following conditions are
concurrently met:

1. Euler-lagrange equation residual:

‖∆hu− f(u)‖∞ < εr. (4.1)

2. Discretized velocity:

∥∥unh − un−1
h

∥∥
∞

τ
< εv. (4.2)

Here both 0 < εr ≪ 1 and 0 < εv ≪ 1 are small numbers. These criteria are grounded
in the energy decay properties outlined in (3.12) and (3.17)). They ensure that the discretized

modified energy decay rate, given by 1
τ

(
E
(
uk+1
h ,vk+1

h

)
− E

(
ukh,v

k
h

))
, approaches almost 0 using

the thresholds.

4.1 Ginzburg-Landau free energy

In the first subsection of our numerical experiments, our goal is to validate our second-order flow
algorithms through comprehensive testing. We start with the case of scalar-valued functions.
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To this end, we examine a minimization problem governed by the scalar Ginzburg-Landau free
energy functional, expressed as follows:

E(u) =

∫

Ω

(
1

2
|∇u|2 +

1

4ǫ2
(u2 − 1)2

)
dx, (4.3)

where ǫ > 0 represents a potentially very small parameter. In this context, our second-order flow
model takes the form:





∂ttu+ η(t)∂tu = ∆u− 1
ǫ2

(u3 − u), in [0, T ] × Ω,

u(0) = u0, ∂tu(0) = 0, in Ω,

u = 0 on [0, T ] × ∂Ω.

(4.4)

Example 4.1. We verify the convergence rates of the two proposed schemes. Our chosen domain
is Ω = [0, 1] × [0, 1], the initial condition is specified as u0(x, y) = x · (1.0 − x) · y · (1.0 − y), and
the final time is set as T = 1. For our parameters, we select η = 3/t and ǫ = 0.1.

For the first-order convex-splitting scheme (3.1)-(3.2), we define the time step refinement as
τ = 0.1h2. For the second-order convex-splitting scheme (3.3)-(3.4), it is set as τ = 0.002h.
These refinement paths are chosen independently of CFL-type stability constraints because the
schemes are proved to be unconditionally stable. Note that the expected global error for both
methods should align with D (T ) = O

(
h2
)
. The fine details can be found in [29, 43, 6]. The

essential idea is to compare solutions at successively finer resolutions: h = hc represents a coarser
resolution, while h = hf indicates a finer one.

We select mesh spacings as h = 1
16 ,

1
32 ,

1
64 ,

1
128 , and

1
256 , where each subsequent spacing is half

the size of the previous one. From Table 1, the scheme (3.1)-(3.2) showcases time-accuracy of
the first order, that is, D1 (T ) = O(τ) + O

(
h2
)
. In contrast, as shown in Table 2, (3.3)-(3.4)

exhibits a time-accuracy of the second order, specifically, D2 (T ) = O
(
τ2
)

+ O
(
h2
)
.

Table 1: Convergence results for the first-order convex-splitting scheme (3.1)-(3.2) with parame-
ters ǫ = 0.1, η = 3/t, and T = 1. Time step sizes follow the quadratic refinement path τ = 0.1h2.
The tests confirm the predicted global error of O(τ) + O

(
h2
)

= O
(
h2
)
.

hc hf
∥∥uhf − uhc

∥∥
L2 Rate

1/16 1/32 8.9666 × 10−5 -
1/32 1/64 2.3159 × 10−5 1.953
1/64 1/128 5.9011 × 10−6 1.9725
1/128 1/256 1.4823 × 10−6 1.9931

Example 4.2. We adopt the same initial conditions and parameters specified in Example 4.1,
and set the spatial size h = 1/64, to compare various numerical schemes for computing the ground
state solution. In addition to our primary focus on the two convex-splliting schemes, we compare
with four alternative schemes: two first-order schemes, namely Forward Euler (B.1)-(B.2) and
Backward Euler (B.3)-(B.4), as well as two second-order schemes, the Semi-Implicit (B.5) and
Crank-Nicolson method (B.7)-(B.8) . Detailed formulations of these alternative schemes are
provided in B.1.

For all the schemes, we employ a uniform stopping criterion (4.1)-(4.2) with εr = 10−3 and
εv = 10−3. The maximum allowed termination time is set to T = 500, correspondingly, the
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Table 2: Convergence results for the second-order convex-splitting scheme (3.3)-(3.4) with pa-
rameters ǫ = 0.1, η = 3/t, and T = 1. Time step sizes follow the linear refinement path
τ = 0.002h. The tests confirm the predicted global error of O(τ2) + O

(
h2
)

= O
(
h2
)
.

hc hf
∥∥uhf − uhc

∥∥
L2 Rate

1/16 1/32 6.7595 × 10−3 -
1/32 1/64 1.8272 × 10−3 1.8873
1/64 1/128 4.6997 × 10−4 1.9590
1/128 1/256 1.2048 × 10−4 1.9638

maximum number of iterations is set to 500/τ . Table 3 and Table 4 summarize the perfor-
mances of the first-order and second-order schemes, respectively. These tables detail the number
of iterations (iter), the average number of inner iterations (iters) (i.e., the average number of
iterations required to solve the nonlinear equations at each time step), the computed energy, and
the consumed CPU time (cpu).

Numerical observations indicate that the Forward Euler scheme maintains stability only with
very small time steps (τ = 0.001) and fails to converge when larger steps are applied. We have
not displayed this limitation in Table 3. In contrast, both the Backward Euler and the first-
order convex-splitting schemes exhibit robust stability over a diverse range of time step sizes.
Notably, the first-order convex splitting scheme shows its unique advantages over the backward
Euler scheme. As evidenced in Table 3, for time step sizes τ = 1 and τ = 10, although the
backward Euler scheme reaches the stopping criteria, it converges to a solution with a higher
energy. This discrepancy arises because the Backward Euler method does not guarantee the decay
of pseudo energy, as depicted in Figure 1a. Conversely, the first-order convex-splitting method
consistently ensures the decay of pseudo energy (refer to Figure 1b), aligning with the theoretical
results presented in Lemma 3.7.

Furthermore, Table 4 underscores the superior performance of the second-order convex split-
ting scheme when compared to both the Crank-Nicolson and Semi-Implicit schemes. This superi-
ority stems from the unconditional unique solvability and unconditional energy stability inherent
in the convex splitting schemes—a contrast to the Crank-Nicolson scheme, which does not as-
sure unconditional unique solvability, and the Semi-Implicit scheme, which becomes unstable with
larger time steps.

These findings underscore the distinctive benefits of convex-splitting schemes, particularly
their simultaneous achievement of unconditional unique solvability and unconditional energy sta-
bility, highlighting their significance over other numerical methods.

In the following two examples of this subsection, we compare the numerical efficiency of the
proposed second-order flow methods with those of the gradient flow methods. The gradient flow
and its corresponding convex-splitting schemes are provided in B.2.

Example 4.3. We consider a computational domain of [0, 2π] × [0, 2π] with an initial value
u0(x, y) = tanh(x − 2y) · sin(x) · cos(x). Notably, this initial value is distinct from the ground
state. We select a parameter value of ǫ = 0.05 and adhere to the previously mentioned stopping
criteria (4.1)-(4.2), where both εr and εv are fixed at 10−3. Four distinct computational strategies
are employed in this experiment: the first-order and second-order convex-splitting schemes for
gradient flow (GF-CS-1st and GF-CS-2nd, respectively) and for second-order flow (SF-CS-1st
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Table 3: Results for First-order schemes: Example 4.2.

scheme τ iter(iters) energy maxres cpu(s)

Backward Euler 10 3 (3.33) 25.0000 1.41 × 10−7 0.40
Convex-splitting 1st 10 12 (4.22) 15.6982 2.39 × 10−5 1.02

Backward Euler 1 18 (3.17) 24.9979 3.13 × 10−7 1.49
Convex-splitting 1st 1 13 (3.62) 15.6982 1.60 × 10−5 1.82

Backward Euler 0.1 28 (2.82) 15.6982 2.19 × 10−6 2.24
Convex-splitting 1st 0.1 32 (2.81) 15.6982 1.48 × 10−6 2.44

Backward Euler 0.01 251 (1.99) 15.6983 1.94 × 10−5 17.52
Convex-splitting 1st 0.01 257 (1.99) 15.6982 1.12 × 10−5 16.66

Forward Euler 0.001 2763 15.6982 3.23 × 10−6 85.32
Backward Euler 0.001 2766 (1.61) 15.6982 3.17 × 10−6 155.40

Convex-splitting 1st 0.001 2768 (1.61) 15.6982 2.83 × 10−6 153.69

Table 4: Results for Second-order schemes: Example 4.2.

scheme τ iter(iters) energy maxres cpu(s)

Convex-splitting 2nd 10 18 (4.67) 15.6982 3.63 × 10−5 1.56
Crank-Nicolson 10 50 (7.56) 15.7947 1.95 × 10−3 7.22

Convex-splitting 2nd 1 36 (4.00) 15.6982 2.63 × 10−5 3.30
Crank-Nicolson 1 500 (4.96) 15.7031 8.16 × 10−4 54.76

Semi-Implicit 0.1 5000 15.6982 3.53 × 10−4 166.43
Convex-splitting 2nd 0.1 37 (3.16) 15.6982 4.34 × 10−6 3.86

Crank-Nicolson 0.1 32 (3.31) 15.6982 7.27 × 10−6 2.90

Semi-Implicit 0.01 277 15.6982 3.78 × 10−6 8.95
Convex-splitting 2nd 0.01 277 (2.13) 15.6982 3.83 × 10−6 16.69

Crank-Nicolson 0.01 277 (2.16) 15.6982 3.69 × 10−6 16.99

Semi-Implicit 0.001 2767 15.6982 3.49 × 10−6 91.46
Convex-splitting 2nd 0.001 2767 (2.00) 15.6982 3.49 × 10−6 166.78

Crank-Nicolson 0.001 2767 (2.00) 15.6982 3.48 × 10−6 144.14

and SF-CS-2nd, respectively). The time step size is chosen to be τ = 0.1 for second-order
schemes and τ = 0.01 for first-order schemes, with a spatial grid size of h = 1/128.

As depicted in Figure 2, we implement the first-order and second-order convex-splitting
schemes to the gradient and second-order flows, respectively, and assess their impact on the
rate of energy decay. It was observed that the second-order flow methods exhibits certain advan-
tage over the gradient flow methods in terms of energy decay rate, although gradient flow methods
have already been quite efficient in this scenario.

Example 4.4. We consider an anisotropic variant of the original Ginzburg-Landau energy (4.3).
The anisotropic energy functional, Eaniso(u), is defined by:

Eaniso(u) =

∫

Ω

(
1

2

(
kx(∂xu)2 + ky(∂yu)2

)
+

1

4ǫ2
(u2 − 1)2

)
dx. (4.5)

In this formulation, we set kx = 1
100 and ky = 1 to have a clear anisotropy. All other parameters

are aligned with those used in Example 4.3. The experiment compare the rate of energy decay
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Figure 1: Pseudo-energy decay comparison: Backward Euler scheme (B.3)-(B.4) vs. First-order
Convex-splitting scheme (3.1)-(3.2) for τ = 1 in Example 4.2.
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Figure 2: Comparison of energy evolution (left column) and energy level convergence (right
column) over iterations for Example 4.3 (an isotropic case) using Gradient Flow (GF-CS-1st &
GF-CS-2nd) and Second-order Flow (SF-CS-1st & SF-CS-2nd) methodologies. Within the fig-
ures, E denotes the calculated energy, while E⋆ signifies the minimum energy achieved throughout
the iterations.

between the Gradient Flow and Second-order Flow. Given the lower computational efficiency
and higher computational cost of the first-order schemes observed in example 4.3, in this more
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Figure 3: Comparison of energy evolution (left column) and energy discrepancy (right column)
over iterations for Example 4.4 (an anisotropic case) using Gradient Flow (GF-CS-2nd) and
Second-order Flow (SF-CS-2nd) methodologies.

complex scenario, we only compared the results of the second-order schemes and did not evaluate
the first-order schemes.

As depicted in Figure 3, the trajectories clearly indicate the superior performance of a second-
order flow method over its gradient flow counterpart. The energy reduction pace is notably faster
than the gradient flow method, underlining the enhanced efficiency of the second-order flow,
especially in an anisotropic context.

Remark 4.1. This anisotropic term reduces the uniform convexity of the quadratic term in
the energy functional, which makes gradient flow methods not so efficient as in the isotropic
case. This example highlights the advantages of the second-order flows, which accelerate the
minimization algorithm when the convexity of the energy functional is challenged. Notice that
the theoretical results established in this paper are also valid for the anisotropic form energy
functional.

4.2 Landau–de Gennes (LdG) model

The LdG model is widely recognized for its role in characterizing liquid crystal ordering, treating
the free energy as a functional of the Q-tensor field, as detailed in various studies [10, 30, 51, 54].
For two-dimensional nematic liquid crystals, the LdG free energy functional is delineated as
follows [54]:

J(Q) =

∫ {
1

2
|∇Q|2 + ϑF (Q)

}
dr,

where ϑ is a positive parameter, and the one-constant approximation [5] has been assumed, lead-
ing to the isotropic term |∇Q|2. The Q-tensor at a point r = (x, y) represents the orientational
order of the liquid crystals and is characterized by a 2 × 2 traceless and symmetric matrix:

Q =

(
p1 p2
p2 −p1

)
.
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The square of the Frobenius norm of ∇Q is computed as |∇Q|2 = 2
(
|∇p1|

2 + |∇p2|
2
)
. The bulk

free energy, or Landau function F (Q), is most often taken to be of the general form [36]:

F (Q) =
a

4
tr
(
Q2
)
−
b

6
tr
(
Q3
)

+
c

8

(
tr
(
Q2
))2

,

in which a signifies the reduced temperature difference, b ≥ 0 and c > 0. For our experiments,
we consider the particular case

F (Q) =
a

4
tr
(
Q2
)

+
1

8

(
tr
(
Q2
))2

=
a

2
(|p1|

2 + |p2|
2) +

1

2
(|p1|

2 + |p2|
2)2.

We then introduce u =

[
p1
p2

]
, with the magnitude |u| =

√
|p1|2 + |p2|2. Consequently, the energy

functional in terms of u is expressed as:

E(u) =

∫

Ω

{
|∇u|2 + ϑ

(
a

2
|u|2 +

1

2
|u|4

)}
dr. (4.6)

It follows that J(Q) is equivalent to E(u). The objective is to find stable liquid crystal configu-
rations by minimizing the energy functional E(u), subject to certain boundary conditions. This
problem formulation aligns with the energy minimization problem described in Equation (1.1).
After a steady state solution is found, the generally nonuniform, undiagonalized Q(r) can be
analyzed by computing its eigenvalues,

S(r)/2 = ±
√
p1(r)2 + p2(r)2.

A nematic region has |S(r)|/S0 = 1 and isotropic state |S(r)|/S0 = 0. The nematic field director
is given by the eigenvector of Q(r) (for example, corresponding to the positive eigenvalue),

n(r) =
(√

1/2 + p1(r)/|S(r)|, σ(r)
√

1/2 − p1(r)/|S(r)|
)
,

with σ(r) = 1{p2≥0}(r) − 1{p2<0}(r) and 1 the indicator function.

Example 4.5. To ensure the system in the nematic phase, we select a low temperature setting
with a = −1.672. The domain Ω = [−1, 1] × [−1, 1] is selected for square confinement. For the
Dirichlet boundary conditions, we impose

u(x, y = ±1) =

√
2|a|

2

(
1 0
0 −1

)
, u(x = ±1, y) =

√
2|a|

2

(
−1 0
0 1

)
.

The chosen boundary conditions for the Q-tensor, aligning the nematic director parallel to the
square boundary lines, represents a common approach in the modeling of liquid crystals confined
within geometries [14]. To compute the stationary points of the LdG free energy, the second-
order flow method is applied, utilizing the scheme outlined in equations (3.3) to (3.4). We select
a time step size of τ = 0.1, initiate our simulations with random initial conditions, and specify
the tolerances for the stopping criteria in (4.1)-(4.2) as εr = 10−10 and εv = 10−10. The results
depict stable liquid crystal configurations for varying values of ϑ. Specifically, for ϑ values of 5,
15, and 50, we use a grid size of h = 1/64, while for ϑ values of 100, 200, and 500, we opt for
a finer grid size of h = 1/128. The computed configurations are presented in Figure 4.

29



Figure 4: Stable liquid crystal configurations at varying ϑ values (5, 15, 50, 100, 200, 500),
computed via the second-order flow method. The color gradient indicates the relative intensity
of directional ordering, quantified as |S(r)|/S0. The white bars depict the directional vectors of
the nematic field, n(r).

5 Conclusion

In this paper, we have strived to develop numerical analysis for the recently proposed computa-
tional framework of second-order flows for non-convex variational problems. As an initial step
in this direction, we have established a convergence analysis of numerical discretizations via
convex-splitting schemes, which we have used to define two different numerical schemes, with
first and second order timestepping respectively. Starting with semi-discrete formulations, we
have proved their subsequential convergence to a stationary point of the original non-convex
energy and, by making the timestep vanish, used them to establish well-posedness of the ensuing
second-order flows. On the fully discrete level, we have proved convergence and error estimates
with the expected rates for both numerical schemes.

Through several illustrative numerical examples, we have verified the accuracy and conver-
gence of both schemes. Notably, the two schemes exhibit unconditional pseudo-energy stability
and unconditional unique solvability simultaneously, highlighting their advantages over other
numerical schemes. Furthermore, we have again witnessed that second-order flows, as the min-
imization strategy for non-convex variational problems, show their efficiency especially notable
when dealing with functional of increased complexity and non-convexity. Their versatility has
also been affirmed through the application to the tensor-valued Landau–de Gennes model.

This investigation, however, is not conclusive; it rather paves the way to deepen our explo-
ration along this direction. Interesting aspects from the optimization point of view, like the
convergence of complete trajectories and associated convergence rates to stationary points, are
on the agenda of our next steps.
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A Error estimates of quantities for the second-order scheme

Lemma A.1. Suppose that u is the real solution of (1.6), with regularities (3.5) and (3.7).
Then, for all h, τ > 0, there exists C > 0, independent of h and τ , such that for 0 ≤ k ≤ ℓ− 1

∥∥∥∥σ
k+ 1

2
1

∥∥∥∥
2

L2

≤ C
h2q+2

τ

∫ tk+1

tk

‖∂su(s)‖2Hq+1 ds, (A.1)

∥∥∥∥σ
k+ 1

2
2

∥∥∥∥
2

L2

≤ Cτ3
∫ tk+1

tk

∥∥∂3su(s)
∥∥2
L2 ds, (A.2)

∥∥∥∥ς
k+ 1

2
1
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2

L2

≤ C
h2q+2

τ

∫ tk+1

tk

∥∥∂2su(s)
∥∥2
Hq+1 ds+ Cτ3

∫ tk+1

tk

∥∥∂4su(s)
∥∥2
L2 ds, (A.3)

∥∥∥∥ς
k+ 1

2
2

∥∥∥∥
2

L2

≤ Cτ3
∫ tk+1

tk

∥∥∂4su(s)
∥∥2
L2 ds, (A.4)

∥∥∥∥ς
k+ 1

2
3

∥∥∥∥
2

L2

≤ Cτ5
∫ tk+1

tk

∥∥∂4su(s)
∥∥2
L2 ds, (A.5)

∥∥∥∥
1

2
uk+1 +

1

2
uk − uk+

1
2

∥∥∥∥
2

L2

≤ Cτ3
∫ tk+1

tk

∥∥∂2su(s)
∥∥2
L2 ds, (A.6)
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k+ 1

2
3

∥∥∥∥
2

L2

≤ Cτ3
∫ tk+1

tk

∥∥∂2s∆u(s)
∥∥2
L2 ds, (A.7)
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1

2
(uk+1)2 +

1

2
(uk)2 − (uk+

1
2 )2
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2

L2

≤ Cτ3
∫ tk+1

tk

∥∥∂2su2(s)
∥∥2
L2 ds, (A.8)

and for 1 ≤ k ≤ ℓ− 1

∥∥∥∥u
k+ 1

2 −
3

2
uk −

1

2
uk−1

∥∥∥∥
2

L2

≤ Cτ3
∫ tk+1

tk−1

∥∥∂2su(s)
∥∥2
L2 ds. (A.9)

Proof. The proof of each of the inequalities above is a direct application of Taylor’s theorem
with integral remainder. We suppress the details for the sake of brevity.

Lemma A.2. Suppose that u is the real solution of (1.6), with regularities (3.5) and (3.7).
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Then, for all h, τ > 0, there exists C > 0, independent of h and τ , such that for 0 ≤ k ≤ ℓ− 1
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2

L2
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tk
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L2 +
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L2 ds, (A.10)
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)
, (A.11)
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+ C
∥∥∥Du,k

∥∥∥
2

L2
+ (1 − δ0,k)C

∥∥∥Du,k−1
∥∥∥
2

L2
, (A.12)

where δn,m is the Kronecker delta.

Proof. Proof of estimate (A.10).
By utilizing the triangle inequality and Young’s inequality, we obtain
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.

Using the assumed regularities (3.5) and (3.7) of the PDE solution, and invoking the truncation
error estimates (A.6) and (A.8), the result follows.

Proof of estimate (A.11).
We commence by expanding the expression in detail as follows:

4σ
k+ 1

2
5 =4χ

(
uk+1
h ,ukh

)
− 4χ

(
uk+1,uk

)
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h

)2
+
(
ukh

)2
+
(
uk+1
h + uk+1

)(
uk+1 + uk

)}(
uk+1
h − uk+1

)

+

{(
uk+1
h

)2
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)2
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)}(
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)
.

Next, invoking the assumed regularities (3.7) of the PDE solution, and utilizing the properties
of f , we obtain, for k = 0, 1, . . . , ℓ,,
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Proof of estimate (A.12).
For k = 0, we have
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≤
∥∥∥
(
u

1

2 − u0 −
τ

2
∂tu(0)

)∥∥∥
2

L2

+
∥∥(u0 − u0

h

)∥∥2
L2

≤ Cτ3
∫ t 1

2

t0

∥∥∂2su(s)
∥∥2
L2

ds+ C
∥∥Du,0

∥∥2
L2
.

For 0 6 k 6 ℓ− 1, using the truncation error (A.9), we obtain

∥∥∥∥σ
k+ 1

2
6

∥∥∥∥
2

L2

≤ Cτ3
∫ tk+1

tk−1

∥∥∂2su(s)
∥∥2
L2 ds+C

∥∥∥Eu,k
∥∥∥
2

L2
+ C

∥∥∥Eu,k−1
∥∥∥
2

L2
.
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B Other numerical methods

B.1 Additional numerical schemes for second-order flow

Forward Euler Scheme

(vk+1
h − vkh, ξ) + τηk(vkh, ξ) + τ

(
a(ukh, ξ) + (f(ukh), ξ)

)
= 0, ∀ξ ∈ Sh, (B.1)

(uk+1
h − ukh, ζ) − τ(vk+1

h , ζ) = 0, ∀ζ ∈ Sh, (B.2)

with initial conditions u0
h = Rhu0 and v0

h ≡ 0.

Backward Euler Scheme

(vk+1
h − vkh, ξ) + τηk+1(vk+1

h , ξ) + τ
(
a(uk+1

h , ξ) + (f(uk+1
h ), ξ)

)
= 0, ∀ξ ∈ Sh, (B.3)

(uk+1
h − ukh, ζ) − τ(vk+1

h , ζ) = 0, ∀ζ ∈ Sh, (B.4)

with initial conditions u0
h = Rhu0 and v0

h ≡ 0.

Semi-implicit Scheme

(uk+1
h − 2ukh + uk−1

h , ξ) +
τηk+

1
2

2
(uk+1

h − uk−1
h , ξ)

+ τ2

(
a

(
uk+1
h + uk−1

h

2
, ξ

)
+ (f(ukh), ξ)

)
= 0, ∀ξ ∈ Sh, (B.5)

with the initial conditions u0
h = Rhu0 and v0

h ≡ 0. For the first step, the scheme is given by

(u1
h, ξ) = (u0

h, ξ) −
τ2

2

(
a(u0

h, ξ) + (f(u0
h), ξ)

)
, ∀ξ ∈ Sh. (B.6)

Crank-Nicolson Scheme

(vk+1
h − vkh, ξ) + τηk+

1
2 (v

k+ 1
2

h , ξ)

+ τ

(
a(u

k+ 1
2

h , ξ) +

(
F (uk+1

h ) − F (ukh)

uk+1
h − ukh

, ξ

))
= 0, ∀ξ ∈ Sh, (B.7)

(uk+1
h − ukh, ζ) − τ(v

k+ 1
2

h , ζ) = 0, ∀ζ ∈ Sh, (B.8)

with initial conditions u−1
h = u0

h = Rhu0 and v0
h ≡ 0.

B.2 Gradient flow and its convex-splitting schemes

In this section, we describe gradient flow methods for computing the ground state solution defined
in (1.1).





∂tu = ∆u− f(u), in [0, T ] × Ω,

u(0) = u0, in Ω,

u = 0, on [0, T ] × ∂Ω

. (B.9)

Likewise, for the gradient flow (B.9), we introduce a first-order and a second-order fully discrete
convex-splitting scheme respectively as follows:
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First-order Convex-splitting scheme for Gradient Flow

Given ukh,v
k
h ∈ Sh, find uk+1

h ,vk+1
h ∈ Sh such that:

(uk+1
h − ukh, ξ) + τ

(
a(uk+1

h , ξ) + (fc(u
k+1
h ) − fe(u

k
h), ξ)

)
= 0 ∀ξ ∈ Sh, (B.10)

Here, τ > 0 is the time step size, and the initial conditions are given by u0
h = Rhu0.

Second-order Convex-splitting scheme for Gradient Flow

Given ukh,v
k
h ∈ Sh, find uk+1

h ,vk+1
h ∈ Sh such that:

(uk+1
h − ukh, ξ) + τ

(
a(u

k+ 1
2

h , ξ) +

(
χ(uk+1

h ,ukh) − fe(ũ
k− 1

2
h ), ξ

))
= 0 ∀ξ ∈ Sh, (B.11)

where

χ (φ,ψ) =

∫ 1

0
fc(θφ+ (1 − θ)ψ)dθ =

Fc(φ) − Fc(ψ)

φ− ψ
and ũ

k− 1
2

h =
3

2
ukh −

1

2
uk−1
h .

The initial condition is setting as u−1
h = u0

h = Rhu0.
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