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Abstract—Deep learning-based face recognition systems produce templates that encode sensitive information
next to identity, such as gender and ethnicity. This poses legal and ethical problems as the collection of biometric data
should be minimized and only specific to a designated task. We propose two privacy constraints to hide the gender attribute
that can be added to a recognition loss. The first constraint relies on the minimization of the angle between gender-centroid
embeddings. The second constraint relies on the minimization of the angle between gender specific embeddings and their
opposing gender-centroid weight vectors. Both constraints enforce the overlapping of the gender specific distributions of
the embeddings. Furthermore, they have a direct interpretation in the embedding space and do not require a large number
of trainable parameters as two fully connected layers are sufficient to achieve satisfactory results. We also provide extensive
evaluation results across several datasets and face recognition networks, and we compare our method to three state-of-
the-art methods. Our method is capable of maintaining high verification performances while significantly improving privacy
in a cross-database setting, without increasing the computational load for template comparison. We also show that different
training data can result in varying levels of effectiveness of privacy-enhancing methods that implement data minimization.

Index Terms—Privacy-enhancing techniques, soft-biometric privacy, gender classification, face recognition.

✦

1 INTRODUCTION

Deep learning has been revolutionary for face recog-
nition. CNNs in particular, have enabled the training
and convergence of algorithms with large complexity
allowing the learning of features that are highly
discriminative for the face recognition task. This break-
through resulted in face recognition systems that were
progressively more effective at recognizing faces even
in challenging scenarios, including changes in lighting,
pose, and expression [1], [2], [3], [4]. Next to containing
information that is highly useful for the face verifica-
tion and identification tasks, the features learned by
deep-learning based face recognition systems entangle
a variety of other information auxiliary to identity.
Previous studies have shown that features extracted
from the last layers of face recognition networks can
be transferable to other tasks, such as gender, age or
ethnicity classification [5], [6] as well as the classifica-
tion of other fine-grained attributes such as hairstyle or
the shape of eyebrows [7]. This entanglement between

identity and auxiliary soft biometric attributes present
in the facial templates poses privacy risks. For instance,
in the event that such templates or their source model
are exposed, an adversary can train classifiers that
would undertake profiling of subjects based on demo-
graphic or other highly sensitive information. This can
be problematic as the subject may have not consented
to the processing of their biometric information for
profiling tasks. We illustrate this risk in Figure 1. From
a legal perspective, the disclosure of such information
stemming from a face recognition model poses a
potential issue to both the model developer and the
party responsible for storing the templates. This is
due to the fact that such information leakage runs
counter to the data minimization principle outlined
in the General Data Protection Regulation (GDPR)1.

The correlation between soft biometrics and identity

1. The data minimization principle states : ”Personal data shall
be: adequate, relevant and limited to what is necessary in relation to
the purposes for which they are processed”.
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Fig. 1: Threat illustration: Face recognition features contain discriminative information on gender and can be
used to train a gender classifier.

can also contribute to the demographic unfairness of
biometric systems, which is a topical research problem
[8], [9]. Face recognition systems are biased toward
demographic categories, meaning they produce more
errors for certain categories than others. This is usually
due to skewed distributions of different categories
in the training data [8] which cause the neural
networks to overfit on the dominating category. The
entanglement between demographic attributes and
identity can further exacerbate this issue. In fact, if the
embeddings for face verification are easily separable
by a demographic attribute, they can potentially form
significantly different distributions for different cate-
gories of the attribute. This makes the verification step
prone to generating different error rates by category.

To remediate the aforementioned issues, a few works
emerged that apply privacy-enhancing techniques
at the template level. While some require a training
procedure [10], [11], [12], others are training-free and
rely on the shuffling of information in the templates
rather than removing the sensitive information [13].
However, finding an optimal trade-off between
privacy and face verification performance remains
a difficult challenge. As an additional observation,
previous studies often lack sufficient assessment of
the generalizability of their approaches as they do not
conduct evaluations on diverse, independent datasets
from the training set. In some cases, the evaluation data
for privacy-preserving approaches comes from the
same source as the training data [10], [11] which does
not allow for a real-life scenario evaluation. We present
a more detailed overview of such works in Section 2.

In this paper, we focus on protecting the gender2

attribute as it is easily learned from facial templates [6],
[14]. Our proposed method takes advantage of the hy-
perspherical nature of the feature space used in many
face recognition systems [4], [15], [16], [17]. We fine-
tune a face recognition model by passing the feature
vectors through a shallow network that projects them
onto an unbiased feature space. We introduce angular
constraints that when added to a recognition loss, con-
sist in overlapping the distributions of the gender cate-
gories while maintaining the verification performance.

The advantages of our method are that it is
geometrically interpretable, easy-to implement,
effectively transforms gender-discriminative features
to gender-neutral representations while upholding
an acceptable verification performance with the same
dimensionality. A fundamental point of distinction
from prior methods involving finetuning [11], is that
we do not depend on a given gender classifier during
training which lowers the computational burden of
training of our method and makes it independent of
a specific decision boundary. We make the source code
of our implementation publicly available3.

We summarize our contributions as the following:
1) We propose light-weight and geometrically

interpretable constraints to enhance the privacy of
face recognition systems.

2) Our method is designed to align gender
distributions, thus fortifying the templates against

2. What we refer to as gender is the perceived gender
expression ”masculine” or ”feminine” that is attributed to facial
images by annotators of the cited datasets.

3. https://github.com/ZohraRezgui/genderPrivacy
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Fig. 2: T-SNE visualizations on the original embeddings of ArcFace (first row) and after applying our method
with the loss 20Lp1+1Lp2 trained on the AgeDB dataset (second row). Every column corresponds to the source
dataset of the embeddings.

any potential exploitation to train a robust gender
classifier. It is specifically tailored to impede the
capacity of unforeseen classifiers to learn any
gender-related features.

3) Our method does not require a gender classifier
during training and focuses instead on the training
of a shallow network that imparts minimal
additional computational load to the initial face
recognition network.

4) We provide comprehensive cross-database results
using various face recognition models and evaluate
the effect of the training data on the performance
of the method to an extent that was rarely observed
in previous work.

2 RELATED WORK

Most of the privacy-enhancing techniques that focus
on the face modality are image-based. The earliest
methods rely on fusing specific parts of a face or
morphing faces from different categories of the soft
biometric attribute [18], [19], [20]. In [18], they deter-
mine the most gender-discriminant face components
and use image fusing to choose the closest facial
components from the opposing gender for a particular
subject. Likewise, [19] perform a transformation of
the gender expression of the facial image as a privacy
method. They use a spectrum of morphing parameters

to generate numerous versions of the input image
with varying gender confidence levels.

Other methods rely on adversarial perturbations to
fool gender classifiers into making wrong predictions
without fooling face recognition systems [20], [21]. For
instance, [21] show that gradient-based adversarial
attacks on a gender classifier are in some cases not
transferable to face recognition systems. Therefore,
the images are perturbed to result in a false gender
prediction of a gender classifier with imperceptible
distortion of the images and negligible decrease of
verification performance of face recognition systems.
Other works such as [22], [23], [24], [25], [26] use GANs
to alter the appearance of the facial image making it
imitate characteristics of a different category of the soft
biometric attribute. However, while these methods
perform well on facial images, they do not necessarily
work on the template level as shown in [11].

Therefore, a few works emerged that focus on
enhancing soft biometric privacy on the template
level [11], [12], [13], [14], [27]. The authors in [11]
finetune a face recognition model by training a
3-layer network with a modified triplet loss that
incorporates constraints aiming to fool an adversary
ethnicity or gender classification layer that is also
trained in parallel to the face recognition model. This
makes the representation learning dependent on
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the convergence state of the adversary classification
network in different stages of the training.

More recently, [13] proposed an approach based
on shuffling blocks of the information encoded in the
templates. At the moment of template comparison,
shuffled references and probes are realigned based
on the Hungarian algorithm. While this method
has a more general approach to privacy, it does
not tackle the learned bias in the face recognition
system that generates the templates and therefore is
considered a data protection approach instead of a
data minimization approach.

The methods in [14] and [12] implement data
minimization based on the identification then
suppression of sensitive information. They allow
control on which type of attribute to protect and the
amount of information that can be suppressed from
the templates. Both methods are easily reproducible,
are based on an intuitive approach and provide
competitive results on the privacy aspect.

While both data minimization and data protection
approaches aim to hinder the retrieval of soft biometric
information, the data protection approach does not
aim to eliminate such information from the templates.
Instead, it performs operations on the templates
to block the access to such information. On the
other hand, the data minimization approach aims to
effectively remove the sensitive information from the
stored templates [12], [28].

In this paper, we compare our method to [12], [14],
both data minimization methods like our solution.
Additionally, we compare to [13], a data protection
method. We describe these methods in detail in
Sections 2.1, 2.2 and 2.3 respectively.

2.1 IVE: Incremental Variable Elimination
The incremental variable elimination (IVE) algorithm
introduced in [10] is based on estimating feature impor-
tance for the classification of the targeted attribute. Fea-
ture importance is estimated with the decrease in node
impurity measures for tree-based classifiers. Following
that, the most important features for the classification
of the targeted attribute are iteratively eliminated.
The authors claim to suppress features that were
discriminative for gender as well as age. While the
method is intuitive, its main drawback is the significant
loss of information due to reducing the dimension of
the templates. This impacts negatively on the utility
of the templates for their intended verification task.
Indeed, in order to achieve an acceptable level of

sensitive attribute suppression, they report that 400 to
500 features had to be eliminated out of 512 features
resulting in an equal error rate (EER) 4 times higher on
the training data.

In this paper, we executed the IVE algorithm on
different datasets to suppress gender and we report
cross-database results for comparison to our method.

2.2 Multi-IVE
The authors in [12] propose an improvement on the
IVE algorithm. Instead of eliminating the features from
the original feature space of the face recognition model,
they first perform a transformation of the features
by projecting them on the domains generated from a
principal component analysis (PCA) or an independent
component analysis (ICA). This modification allows
maintaining the same dimension of the original embed-
dings. The feature suppression based on feature impor-
tance estimation is then performed on this new domain.
Finally, the feature vectors are projected back onto the
original domain with inverting the PCA or ICA. This
way, the dimension of the feature space remains the
same. They employed two settings when applying this
method. The first setting does not exclude any principal
component in the PCA/ICA from the elimination
process. The second setting tries to indirectly minimize
loss in verification performance by locking the first
k principal components k=(3,5). Furthermore, they
adapt the IVE algorithm to suppress three soft biomet-
ric attributes (gender, age and ethnicity) simultaneously.
However, to compare with our results, we run Multi-
IVE solely to suppress gender and we do not consider
the other attributes as it can bias the performance of
the algorithm on the gender suppression.

While both methods are intuitive approaches, they
are not explicitly trained to maintain a high verification
performance. We instead train the embeddings with a
recognition loss and a privacy loss simultaneously. We
also note that we train and evaluate both the IVE and
Multi-IVE methods rigorously across multiple datasets
and report the results on datasets that are completely
independent from the training dataset unlike in [10].

2.3 PE-MIU
In [13], the authors introduce the privacy-enhancing
minimum information units method (PE-MIU). This
method does not require training. It is based on
partitioning a feature vector into several blocks that
are then randomly shuffled. The sensitive information
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is not removed from the templates but rendered
inaccessible due to the random order of the blocks. The
block size parameter controls the trade-off between
privacy and verification performance. The authors
report that using a block size of 16 features provides
nearly perfect privacy for gender while having
minimal effect on verification performance. During
comparison, the Hungarian algorithm is used to assign
an order to the blocks of the probe that is similar to the
blocks of the reference. For mated comparisons, the
block assignment is often successful and results in a
high similarity score. For non-mated comparisons, the
blocks are not assigned correctly but this often results in
a low similarity score which is suitable. Due to the step
of block assignment, the time needed for comparisons
is considerably longer than on unprotected templates.
We run this method across multiple datasets using
a block size of 16 features which results in 32 blocks
for every template. Furthermore, we include run-time
evaluations for all methods in Section 5.3 to assess
their suitability for real-world applications.

3 PROPOSED METHOD

The templates that are generated by state-of-the-
art face recognition systems suffer from a strong
entanglement between identity-relevant information
and gender information. In the first row of Figure 2,
a t-distributed stochastic neighbor embedding (T-SNE)
plot of the features obtained from an ArcFace model
[4] reveals a high gender separability across several
datasets. While in many ways the presence of gender
information can facilitate the identity verification, it is
prone to resulting in different distributions by gender
causing unfair decisions for one of the categories.
Furthermore, the presence of gender information can
be exploited by a privacy adversary to infer the gender
attribute on a large scale.

3.1 Adversary’s Knowledge
As illustrated in Figure 1, we consider the scenario
where the privacy adversary gains access to the
feature extractor that generated the templates and
has access to the templates. We also suppose that
the adversary has access to a large dataset of facial
images annotated with gender labels. The adversary
would then use this dataset to train a set of gender
classifiers that we describe in Section 4.3. Finally, they
would feed the templates to these classifiers in order
to retrieve the gender predictions. The goal of gender

privacy-enhancing methods on the template level is
to reduce the separability of the gender. The adversary
with the ability to create labeled templates, should
not be able to train a reliable gender classifier that can
be used to infer the gender from the stored templates.
Gender information in the templates is either removed
through data minimization or made inaccessible
through data protection after privacy-enhancing
methods are applied. In this case, the templates become
inadequate for accurate classification or for training an
effective gender classifier. Successful implementation
of the privacy-enhancing method should result in the
balanced accuracy of the gender classifier approaching
50%, equivalent to the performance of a random
binary classifier. We propose a training method that
is based on a constrained recognition loss. In the
following sections, we first introduce the trainable
parameters then the composition of the proposed loss.

3.2 Architecture and training parameters of the
gender privacy-preserving layers

For training our method, we feed the embeddings
extracted from a pre-trained face recognition network
into a shallow network consisiting of two fully
connected layers as presented in Figure 3 in order to
obtain the private features. We use a Leaky ReLU as
an activation function between these two layers to
allow for a non-linear projection of the embeddings.
Afterwards, the embeddings are passed into a last fully
connected layer to estimate the class identity weights
necessary to calculate the logits for the recognition
loss. This layer does not have any bias parameters
accordingly to the losses described in the Section 3.3.
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Fig. 3: Illustration of the trainable layers.

3.3 Composition of the training loss

The proposed loss has three components. The first
component is a normalized softmax loss that has an
objective of maintaining the recognition performance.
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The two other components are weighted privacy con-
straints minimizing angles between gender-centroid
features as well as angles between gender-centroid
features and their opposed gender-centroid identity
class weights. We dissect the formulation of these three
loss components in the following subsections.

3.3.1 Normalized softmax loss
This component takes the role of ensuring that the
recognition performance stays high despite the privacy
constraints. Following the modifications to the softmax
function outlined in [29], the feature vectors obtained
from the embedding layer of a face recognition
network preceding the calculation of the logits, lay
on a hypersphere. The aforementioned procedure is
accomplished by imposing that bias bj=0 in that layer
and l2−normalizing both the learnable class weights
||Wj|| = 1 as well as the feature vectors ||xi|| = 1 .
This step guarantees that the features lay on the unit
hypersphere of a given dimension d which in its turn,
allow a straightforward calculation of cosine similarity
between the feature vectors and their corresponding
identity class weights via their inner product.

In [30], the authors propose the following
improvement. The feature vectors are scaled to a
fixed number s after normalization. This loss is
equivalent to ArcFace [4] with margin m = 0. The
following equation describes the cross-entropy loss
to be minimized with this addition.

Lr=−
1

N

N∑
i=1

log
escosθyi∑n
j=1e

scosθj
(1)

3.3.2 Our privacy constraints
Building on the improvements in [4], [30] for the
recognition loss, we formulate two angular constraints
to ensure that the gender distributions overlap. The
ensemble of the angles we minimize during training
is illustrated in Figure 4.

In order to confuse a gender classifier, the feature
distributions of each category have to be as similar
as possible. The first constraint Lp1 involves solely the
embeddings. The distance between the distributions
is approximated by the angle between the average
feature vectors in each category. Eventually, this
angular distance is minimized during training. For
every batch, we select separately the feature vectors
for each gender category. After l2− normalization, we
calculate the average feature vectors for the masculine
category xm and for the feminine category xf and

then perform l2− normalization. As a final step, we
calculate the angle θp1 between these two vectors via
the arccos function on their inner product. In order
to improve estimation of the mean vectors per gender,
the batches are gender-balanced. The pseudo-code to
calculate the following Lp1 is given in Algorithm 1.

Lp1 =θp1=arccos(⟨xf ,xm⟩) (2)
The second constraint Lp2 involves both the

embeddings and the weights of the identity classes.
As the normalized softmax loss Lr is minimized
during training, the identity class weights and the
embeddings are updated such that each embedding
forms the smallest angle possible with the identity
class weight vector corresponding to its ground truth
identity. The constraint Lp2 is added to guide the
updates of the identity class weights and the feature
vectors simultaneously by enforcing that the average
masculine identity vector gets as close as possible to
the average feminine feature vector and vice versa.

For every batch, we select separately the feature
vectors for each gender category and we also select
separately the l2− normalized weights of the identity
classes associated with each gender category. We
calculate the average identity weight vector for each
gender category and then l2−normalize it to bound
it to the surface of the unit hypersphere. Finally, we
compute the angles between every feature vector
and the average identity vector associated with its
opposite gender category. The averages of these angles
θp2 and θp3 are then minimized during training. We
provide the pseudo-code for calculating the following
constraint in Algorithm 2.

Lp2 =
1

nf

nf∑
i=1

arccos(⟨xif ,Wm⟩)

+
1

nm

nm∑
i=1

arccos(⟨xim,Wf⟩) (3)

The final loss to be minimized during training is given
in the equation below with α and β as hyperparame-
ters for increasing or decreasing the magnitudes of the
privacy constraints:

L=Lr+αLp1+βLp2 (4)

4 EXPERIMENT SETTINGS

4.1 Datasets
In [10] and [11], the authors use one dataset for training
and evaluating their privacy-preserving approach. In
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Gender
boundary

Fig. 4: 2D Illustration of the different angles on the
hypersphere that we minimize during training. xi
refers to the feature vector of a sample i, Wi refers
to the weight vector corresponding to its identity
class, Wm and W f correspond to the average weight
vectors for the masculine and feminine identity classes
respectively and xm and x f correspond to the average
feature vectors for each gender category respectively.

Algorithm 1 Calculate privacy constraint Lp1

Input:
im,if : male and feminine indices,
nm,nf : sizes of male and feminine samples,
X: feature matrix of shape (n,d) with n: batch size
and d: feature space dimension

Output:Lp1 =θp1 , the angle between the average femi-
nine feature vector and the average male feature vector.

1: xf← 1
nf

∑nf

i=1Xif·

2: xm← 1
nm

∑nm

i=1Xim·
3: xf← xf

∥xf∥2
4: xm← xm

∥xm∥2
5: Lp1 =θp1←arccos(⟨xm,xf⟩)
6: return Lp1

[12], the authors use separate datasets to train and
evaluate their method however, they do not evaluate
the verification task and the privacy task simultane-
ously on the evaluation dataset. Instead, they pick
one dataset to evaluate the gender suppression and
another to evaluate the verification performance. To
have a large overview of the generalization ability of
our method and the methods from [10], [12], [13] we
reproduce, we use four facial datasets. The following
datasets are alternated for training and evaluation and
all evaluations are performed simultaneously for the

Algorithm 2 Calculate privacy constraint Lp2

Input:
if ,im: Indices of feminine and masculine feature
vectors,
jf ,jm: Indices of feminine and masculine identity
weight vectors,
nf ,nm: Sizes of feminine and masculine samples
in the batch of feature vectors,
kf , km: Numbers of feminine and masculine
identities,
X: Feature matrix of shape (n,d) with n: batch size
and d: feature space dimension,
W : Identity class weight matrix of shape (m,d)
with m: number of identity classes and d: feature
space dimension

Output: Lp2 : Privacy constraint based on angles θp2
and θp3 between the feature vectors and the centroid
identity weight vector of the opposing gender category.

1: Wf← 1
kf

∑kf

j=1Wjf ·

2: Wm← 1
km

∑km

j=1Wjm·

3: Wf← Wf

∥Wf∥2
4: Wm← Wm

∥Wm∥2
5: θp2← 1

nf

∑nf

i=1arccos(⟨W
T
m,Xif·⟩)

6: θp3← 1
nm

∑nm

i=1arccos(⟨W
T
f ,Xim·⟩)

7: Lp2←θp2+θp3
8: return Lp2

verification and the privacy tasks: The Labeled Faces in
the Wild (LFW) dataset [31] consists of 13,233 images
in unconstrained conditions of 5,749 identities. AgeDB
[32] contains 16,516 images of 570 identities in uncon-
trolled conditions with a large variation in age. Color-
Feret [33] contains 11,338 images of 994 identities col-
lected under controlled conditions. We also randomly
select a gender-balanced sample of 15,000 images from
the VGGFace2 train set [34] of 5,000 identities.

The samples from LFW, AgeDB, and VGGFace2
encompass a wide array of images taken in real-world
conditions, exhibiting substantial variability in terms
of pose, lighting, and demographic characteristics,
including age, ethnicity, and gender expression.

The faces of these images are detected and aligned
with an MTCNN face detection algorithm [35] and
finally they are resized to 112x112 pixels. We give
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in Table 1 the total number of images and gender
distribution for these datasets. We alternate using
these datasets to train the privacy-enhancing methods
and evaluate the performance on the remaining ones.
We note that in contrary to what is reported in [10] and
[11], whenever we use one of these datasets for training
a method, we do not include in the evaluation set to
avoid bias that might be resulting from overfitting.

4.2 Pre-trained face recognition models
We run our experiments on three state-of-the art face
recognition models, namely ArcFace4 [4], SphereFace5

[15], [17] and ElasticFace6 [16] that are trained
using distinct angular losses. The ArcFace model
used is trained on the VGGFace2 dataset [34] with
an IResNet50 architecture while the SphereFace
and ElasticFace models used are both trained on
the MS-Celeb-1M dataset [36] with an IResNet100
architecture. All of the models take images of 112x112
pixels and output 512-dimensional embeddings.

4.3 Gender classifiers
To evaluate the gender separability of the embeddings
before and after applying privacy-enhacing methods,
we use a 3-fold cross-validation setting. For each
dataset used for evaluation, we form 3 folds where
in each fold, the train set and the test set do not have
overlapping identities. For every fold, an ensemble
of gender classifiers is trained on the train set and
evaluated on the test set. This ensemble of gender
classifiers consist of two linear classifiers, namely
a linear SVM and a logistic regression, and one
non-linear classifier, an SVM with an RBF kernel. The
composition of the folds in terms of number of images
and number of identities is given in Table 1.

4.4 Evaluation metrics and model selection
We use the average balanced accuracy that we refer
to as ACCG of the gender classifiers across the 3-folds
to evaluate the gender classification performance. The
balanced accuracy is defined as:

ACCG=
1

2
(

TP

TP+FN
+

TN

TN+FP
) (5)

where the numbers TP,TN ,FP,FN refer to true

4. https://github.com/deepinsight/insightface
5. https://github.com/ydwen/opensphere
6. https://github.com/fdbtrs/ElasticFace

positive, true negative, false positive and false
negative predictions respectively. We report the details
regarding the partition of the folds in Table 1.

In order to have results that describe reliably the
impact of privacy enhancing techniques on verification,
all verification evaluations are performed following
the standard protocole 1 for benchmark on the LFW
dataset in [37] where 6,000 pairs (3,000 mated and
3,000 non-mated) are compared using the Euclidian
distance. The same procedure was used in [32] to
create age-invariant verification protocols. The most
challenging protocol is the one where the pairs have 30
years of age difference (AgeDB-30). This protocol is the
most widely used to report verification performance on
the AgeDB dataset [4] therefore we use it to guarantee
comparability. Similarily, we use the same protocol to
generate the verification pairs (6,000 pairs) for the other
datasets (ColorFeret and the sampled VGGFace2). We
choose the equal error rate (EER) to report verification
performance, that we refer to as EERV .

To select the models with the best trade-off between
the two tasks we use the privacy gain (PG) - identity
loss (IL) criterion (PIC ) introduced in [38]:

PIC=PG−IL (6)

with


PG =

(1−ACCG)−(1−ACC∗
G)

(1−ACC∗
G)

IL =
EERV−EER∗

V

EER∗
V

(7)

with the couples (ACC∗
G , EER∗

V ) and (ACCG ,
EERV ) designating the gender classification and
verification performances on the embeddings before
and after the privacy-enhancing method respectively.

The higher PIC gets, the better privacy-utility
trade-off we obtain. In the case where the identity
loss is greater than the privacy gain, this metric yields
negative values. We note however that this metric
calculates relative improvements in privacy and face
verification performances with regards to the original
embeddings. Therefore, if the original embeddings
are not highly discriminative for gender or obtain near
perfect verification performance, the metric is likely
to yield negative values even if the obtained privacy
and verification performances are satisfactory.

5 EXPERIMENTS

For IVE, we ran the method with various total number
of eliminations from the feature vectors and with
different training datasets. The total number of
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Dataset Total Train Test
Fold 1 Fold 2 Fold 3 Fold 1 Fold 2 Fold 3

ColorFeret N(% feminine) 11 286 (35.39) 7 524 (35.39) 7 525 (35.40) 7 523 (35.37) 3 762 (35.38) 3 761 (35.36) 3 763 (35.42)
Nids (% feminine) 994 (40.54) 663 (40.57) 663 (40.57) 662 (40.48) 331 (40.48) 331 (40.48) 332 (40.66)

LFW N(% feminine) 13 233 (22.42) 8 822 (22.42) 8 822 (22.42) 8 822 (22.42) 4 411 (22.42) 4 411 (22.42) 4 411 (22.42)
Nids (% feminine) 5 749 (17.13) 3 836 (25.78) 3 831 (25.68) 3 831 (25.71) 1 913 (25.72) 1 918 (25.70) 1 918 (25.72)

AgeDB N(% feminine) 15 698 (40.76) 10 436 (40.71) 10 462 (40.76) 10 498 (40.81) 5 262 (40.86) 5 236 (40.76) 5 200 (40.65)
Nids (% feminine) 567 (38.80) 377 (38.73) 379 (38.79) 378 (38.88) 190 (38.95) 188 (38.83) 189 (38.62)

VGGFace2 subset N(% feminine) 15 000 (50.00) 9 994 (50.85) 9 991 (50.87) 9 993 (50.86) 4 996 (50.86) 4 999 (50.83) 4 997 (50.85)
Nids (% feminine) 5 000 (50.00) 3 334 (52.97) 3 333 (52.99) 3 333 (52.99) 1 666 (53.00) 1 667 (52.97) 1 667 (52.97)

TABLE 1: Overview of the number of images N and identities Nids in total and in the folds setting used for
the evaluation of gender classification performance.

eliminations ranges from only 20 eliminated features
to 500. For each training set, we selected the resulting
elimination algorithm that provided the highest
PIC value. Across the training sets used, the highest
PIC values correspond to a total elimination of 500
features from the ArcFace templates compared to an
elimination of 400 to 500 features from ElasticFace
templates and 300 to 400 features from SphereFace
templates depending on the training set used.

Similarily for Multi-IVE, we varied the type of inter-
mediate transformation domain (PCA or ICA), the total
number of eliminations as well as the number of locked
principal components in the transformation domain
(k = 0, 3, 5). For each training set used, we select
parameters that correspond to the highest PIC value.
In all cases, the highest PIC value was associated to
a total of 120 eliminations in the PCA domain with
k=(3,5) for the ArcFace templates. For the ElasticFace
templates, the optimal number of eliminations ranges
from 276 to 432 eliminations in the PCA domain with
k=(3,5). As for the SphereFace templates, 81 to 354
eliminations are optimal in in the PCA domain with
k = (0,3,5) depending on the training set. For all
models, more eliminations come with an even higher
expense on the verification performance.

As for PE-MIU, we run it and report all the results
using a block size of 16 features resulting in templates
of 32 blocks. When it comes to our proposed losses,
we minimize them by training the privacy finetuning
layers for 100 epochs with a learning rate of 0.01. The
scale factor for the recognition loss Lr is set to s=64.
A batch size of 128 images is used with a roughly
balanced number of images per gender. When it comes
to the privacy weight factors α and β, we set α=20 as
it gives a magnitude to Lp1 that is comparable to that
of Lr and set β ∈ {0,1}. We note that higher values
of β resulted often in convergence problems. We also
varied the training sets, each of the datasets is used as

a training set and we also formed pair combinations of
datasets LFW, ColorFeret and AgeDB. When it comes
to model selection, we evaluate the performance of all
the saved parameters every 10 epochs and we select the
model that is associated with the highest PIC value.

Before applying any privacy-preserving technique,
we investigated the original embeddings when they
are extracted from different datasets. We see from
Figure 5 that the features obtained from images in the
VGGFace2 dataset are not linearly separable regardless
of the feature extractor used as ACCG does not exceed
71% for linear SVM and logistic regression classifiers
but are highly separable with a non-linear classifier
reaching an ACCG of 98.20% for SphereFace features.

AgeDB and ColorFeret are associated with more
linearily separable features, in particular ColorFeret
with an ACCG exceeding 80% using both linear
classifiers. The most linearly separable datasets are
ColorFeret, followed by AgeDB, then LFW and finally
VGGFace2. However, all of the datasets are easily
separable using an RBF kernel SVM classifier that
achieves a performance ACCG exceeding 80% in
all cases. We can speculate that the differences in
separability among the datasets are caused by the
different levels with which these dataset distributions
vary from the training data distributions of the face
recognition systems. In addition to disparities at the
dataset level, we also notice that ElasticFace seems
to result in less gender separable features across all
datasets compared to ArcFace and SphereFace.

These observations indicate that the gender separa-
bility of the embeddings vary from one dataset to an-
other as well as from one face recognition model to an-
other and depends on the type of classifier that is used.

5.1 Cross-database evaluation
We illustrate in Figure 6, the gender classification and
verification performances of all the methods with
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Fig. 5: Verification performance and gender classification performance using three classifiers (Linear SVM,
Logistic Regression and an SVM with an RBF kernel) on the original embeddings from the pre-trained face
recognition models. Zooming may be necessary for the best viewing of the plots..

various training sets on the evaluation sets. We exclude
the results where the training set of the privacy-
preserving method is the same as the evaluation set.

For features extracted using ArcFace, we notice
that our methods achieve a near ideal trade-off on
LFW and VGGFace2 datasets next to the PE-MIU
shuffling approach. On AgeDB and ColorFeret, PE-
MIU achieves the best trade-off withACCG lower than
55% and anEERV lower than 20%. On these datasets,
our methods have a much lower privacy with our best
ACCG of 69.15% on ColorFeret and of 79.67% on
AgeDB while maintaining in all cases a EERV less
than 17% . However, on all four datasets, Multi-IVE
and IVE result in either a worse privacy level with a
comparable verification performance to our methods
or a better privacy with a significantly deteriorated
verification performance. For instance, on the AgeDB
dataset, IVE achieves an ACCG of 60.84% but with an
EERV of 31.45% which is better than ours in terms of
privacy but hinders extremely the verification task.

For ElasticFace features, we notice a similar ideal
trade-off on the LFW dataset for PE-MIU and our
methods where the best of our methods achieves an
ACCG of 50.41% with an EERV of 0.5%. PE-MIU
achieves a similar level of privacy but with an EERV

of 0.46%. For the remaining datasets, our methods
are more effective than Multi-IVE in terms of privacy
and less effective than PE-MIU and IVE but tend to
achieve higher verification performance. For instance,
on ColorFeret, PE-MIU has a near total privacy with
an ACCG of 53.01% and an EERV of 16.65% which
is 3.47 times higher than the original EERV of 4.8%

while our best method achieves an ACCG of 63.41%
with an EERV of 10.29%. However, we note that
despite not being consistently the best at enhancing
privacy all our best methods achieve consistently
an ACCG less than 65% across all datasets while
maintaining an EERV equal or lower than 10.29%.

As for the SphereFace features, similarily to ArcFace
and ElasticFace features, our methods are as successful
in achieving an ideal trade-off on LFW as the data
protection approach PE-MIU. Both sets of methods
achieve nearly anACCG of 50%with only a negligible
deterioration of verification performance. On the other
hand, IVE and Multi-IVE best privacy results achieve
an ACCG of 69.38% and 63.28% respectively. In the
remaining datasets, our methods best results supersede
IVE and Multi-IVE while maintaining an EERV

equal or lower than 10% but they are superseded by
PE-MIU which in the case of ColorFeret, achieves an
ACCG of 55.61% but results in an EERV of 14.12%.
Nevertheless, our methods best results consistently
achieve an ACCG lower than 68% across all datasets.

The results on ColorFeret and AgeDB show that
for these two datasets, identity and gender tend to
be highly entangled, in particular for ColorFeret. It
is more difficult in the case of these datasets to remove
gender information without severely impacting the
verification performance. In contrary to the other
data minimization approaches, our method includes
a recognition loss term Lr in the training loss that
explicitly forces the network to retain the verification
performance from decreasing significantly. Multi-IVE
implicitly attempts to maintain the identity-relevant
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Fig. 6: The above plots summarize the effect of the training set with different methods on the privacy-utility
trade-off evaluated on different datasets. The training set appears in bold in the legend preceded by the loss
or method used. Each column corresponds to a distinct face recognition model. Zooming may be necessary
for the best viewing of the plots.
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Fig. 7: Figure showing the average performance per training set and method on the remaining evaluation sets.
Zooming may be necessary for the best viewing of the plots.

information in the embeddings by excluding a
number of principal components from elimination
in the transformed PCA or ICA domain. IVE only
executes the privacy-enhancement by suppressing
gender-related features. The recognition loss that is
included in our method could be the reason why the
gender classification performance does not always
decrease as drastically as with the other methods, due
to the high entanglement between gender and identity
for certain datasets such as ColorFeret.

We also note that overall, the choice of the training
data has an impact on the performance of the methods.
Using our methods, training on ColorFeret and AgeDB
has the tendency to produce better results on each other
while VGGFace2 seems to be the least suitable training
data for our methods in terms of privacy. Combinations
of datasets are in some cases beneficial as the
combination of LFW and AgeDB when evaluating on
the ColorFeret dataset or the combination of AgeDB
and ColorFeret when evaluating on VGGFace2 dataset
for the ArcFace features.

In Figure 7, we plotted the average verification per-
formance and gender classification on the evaluation
sets. We excluded the combination of training sets
used in our methods to guarantee that all methods
appearing in the figure share the same training set and
evaluation sets. For our methods, the gender classi-
fication performance varies from an averageACCG of
55.31% to 72.99%with an averageEERV consistently
below 10% ranging between 3.47% and 8.21% across
all feature extractors. When it comes to IVE, the
performances vary depending on the training sets with
a severe impact on verification performance. It achieves
an average ACCG ranging from 52.81% to 80.39%

with an average EERV from 3.7% to 22.47%. Multi-
IVE achieves worse results from a privacy point of view
but tends to have a higher verification performance
when using most training sets. Its achieves an average
ACCG ranging from 67.72% to 84.47% and an
average EERV ranging from 2.91% to 9.57%. Finally,
for PE-MIU, it achieves near optimal privacy results
with an average ACCG consistently below 55% and
its average EERV ranges from 7.02% to 8.67%.

We retain that our methods are able to minimize
the impact on the verification performance while
obtaining a significant privacy gain compared to
methods Multi-IVE and IVE. IVE only tackles the
privacy aspect and therefore, causes a substantial loss
in verification performance while Multi-IVE results
in limited privacy due to limiting the elimination of
a number of principal components in the PCA domain.
While PE-MIU supersedes our methods based on
the reported performances, it is crucial to note that
PE-MIU has a higher risk of being compromised due
to the fact that the sensitive information is not removed
as is the case in IVE, Multi-IVE and our methods.
Instead, the sensitive information is only shuffled.

To qualitatively assess the performance of our
method, we show in Figure 2 the t-distributed
stochastic neighbor embedding (T-SNE) 2-D
visualizations of our feature vectors after training
our method with α=20 and β=1. We used the best
model with the ArcFace backbone trained on the
AgeDB dataset as it gives the best average trade-off on
all the remaining datasets. We can see from the Figure
that the overlap of the gender distributions is apparent
in the second row compared to a clear separation of
the gender distributions in the first row.
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5.2 Sensitivity analysis of the privacy factor α

α 11 14 17 20 23 26 29

Linear SVM 0.8532 0.1544 0.0016 - 0.5347 8.0052e-06 0.0575
LogReg 0.4926 0.5104 0.0396 - 0.0023 5.1781e-08 0.0172
RBF SVM 0.4671 0.0878 0.0098 - 0.5614 8.7602e-04 0.0529

ACCG (%) 81.55 81.82 82.79 81.50 81.09 80.46 81.14

TABLE 2: Sensitivity analysis of the α privacy factor.
The values in the rows 1-3 correspond to the p-value of
the Wilconxon signed test with the null hypothesis that
the predictions from the classifiers are not different
when α=20 and when α taking the values presented
in the column headers. The last row corresponds to
the ACCG averaged across the classifiers.

To see the impact of the α parameter on the privacy
gain, we performed a sensitivity analysis with α
∈{11,14,17,23,26,29}. We did a Wilcoxon signed test
to compare the performance of the gender classifiers
when α=20 and when α takes values from the set.

The statistical test compares the predictions of
the gender classifiers on the AgeDB dataset with
ArcFace features. We chose to perform this experiment
on AgeDB as it is the most challenging dataset in
terms of privacy gain for ArcFace features. All the
models generating the features are trained on the
same dataset ColorFeret. We report the p-values of
the Wilcoxon signed per classifier and value of α as
the ACCG averaged across all classifiers in Table 2.
We notice that the differences are significant for α=17
and α=26 with p-values < 0.05. The ACCG is the
highest for α=17 and is the lowest for α=26. This
shows that α is a sensitive parameter despite not
consistently resulting in a significant privacy gain
when it increases. This could be explained by the fact
that the composed loss has two main components; the
recognition component and the privacy component
that are two tasks competing against each other.

5.3 Computational time analysis
We assess the suitability of the aforementioned
methods in a real-world situation by quantifying the
computational time required for generating privacy-
enhanced templates and executing comparisons. The
template generation step includes pre-processing
for the facial image, the running the original feature
extractor and applying the privacy enhancement
method to obtain the final template. The comparison
step refers only to the computation of the Euclidian
distance between two templates.

These runtime measures are performed on the
ArcFace features, using consistently the best model for
each privacy-enhancing method. We note that for IVE,
the privacy-enhanced template has only 12 features.
We report such measures in Table 3 where we can
see that the average time to generate the template is
approximatively the same for all methods, except for
Multi-IVE where it is roughly 2.3 times slower than
the other methods. This is due to the complicated steps
in Multi-IVE that require at least three different steps
next to the generation of the pre-privacy template,
namely a projection onto the transformed domain,
elimination of sensitive features (120 eliminations) in
the transformed domain then a reverse projection onto
the original domain.

We note that despite the additional layers that we
train on top of the initial templates, our method does
not add a significant computational burden in order
to obtain the privacy-enhanced templates. When it
comes to the time needed for computing one-to-one
comparisons using Euclidian distance, we see that
PE-MIU stands out as a substantially heavy method.
Comparison between IVE templates is slightly faster
than comparison between original templates due to
the reduced size of the templates after IVE.

While the remaining methods have similar compu-
tational time for template comparison to that of the
original templates, PE-MIU is 1444 times slower. This is
largely due to the assignment of the blocks between the
reference and the probe, which is a crucial part to cal-
culate reliable comparison scores, especially for mated
pairs. However, due to its significant computational
load during comparison, it is unlikely that PE-MIU
can be implemented in a practical application. This is
especially true in situations where one-to-many com-
parisons are necessary for the purpose of identification.

6 CONCLUSION

In this paper, we finetune a face recognition system
with the aim to enhance gender privacy in facial
templates. We propose two constraints that act on both
the gender-specific feature vectors and the learnable
identity class weights. These constraints are intuitive
and take advantage of the hyperspherical nature of
the feature space in state-of-the-art face recognition
systems and are effective for training a shallow
network on top of the embedding layer of a pre-trained
face recognition model. Our findings demonstrate
that the inclusion of said constraints significantly
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Method Template generation Comparison score

IVE 67.4 0.0073

Multi-IVE 155 0.0106

PE-MIU 67.4 14.3

Ours 67.5 0.0101

Original 67.4 0.0099

TABLE 3: Average computational time in milliseconds
(ms) of privacy-enhancing methods using ArcFace as
the pre-privacy feature extractor. Runtime is estimated
with the timeit Python module and is averaged over
1000 iterations. These measures are run on an Intel®
Core™ i7-10750H CPU with 2.60GHz.

improves privacy while preserving the face verification
performance with no additional computational burden
unlike other methods. We also highlight the impact of
the choice of the training data for privacy-enhancing
techniques. Additionally, we provide an extensive
evaluation protocole that emphasizes the importance
of performing the evaluations on several datasets
that were not used for training the privacy-enhancing
method. Future work is required to assess further the
impact of the separability of the training data on the
effectiveness of privacy-enhancing techniques.
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