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Recognition of Indoor Scenes Using
3-D Scene Graphs

Han Yue , Ville Lehtola , Hangbin Wu , George Vosselman , Jincheng Li, and Chun Liu

Abstract— Scene recognition is a fundamental task in 3-D scene
understanding. It answers the question, “What is this place?” In
an indoor environment, the answer can be an office, kitchen,
lobby, and so on. As the number of point clouds increases,
using embedded point information in scene recognition becomes
computationally heavy to process. To achieve computational
efficiency and accurate classification, our idea is to use an indoor
scene graph that represents the 3-D spatial structures via object
instances. The proposed method comprises two parts, namely:
1) construction of indoor scene graphs leveraging object instances
and their spatial relationships and 2) classification of these graphs
using a deep learning network. Specifically, each indoor scene is
represented by a graph, where each node represents either a
structural element (like a ceiling, a wall, or a floor) or a piece
of furniture (like a chair or a table), and each edge encodes the
spatial relationship between these elements. Then, these graphs
are used as input for our proposed graph classification network to
learn different scene representations. The public indoor dataset,
ScanNet v2, with 625.53 million points, is selected to test our
method. Experiments yield good results with up to 88.00%
accuracy and 82.30% F1 score in the fixed validation dataset
and 90.46% accuracy and 81.45% F1 score in the ten-fold cross-
validation method; moreover, if some indoor objects cannot be
successfully identified, the scene classification accuracy depends
sublinearly on the rate of missing objects in the scene.

Index Terms— Graph classification, indoor, point clouds, scene
graphs, scene recognition.

I. INTRODUCTION

WITH the rapid development and popularization of
3-D sensors, 3-D scene understanding has become a

hot research topic in recent years. Scene recognition as a
perception task of 3-D scene understanding is related to
applications in robotics [1], positioning, and navigation [2].
It answers the question, “What kind of place is this?” For the
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indoor environment, the answer equals the type of room, such
as an office, kitchen, or lobby.

Surprisingly, little attention has been given to perform-
ing indoor scene recognition based on 3-D data such as
point clouds, although indoor environments are inherently
3-D [3]. Instead, 2-D image-based methods for indoor scene
recognition have been investigated for many years [4], [5].
Point clouds of an indoor scene are not input into the net-
work directly because the number of points is too large,
making training computationally intractable. Consequently,
the first study based on 3-D data by Huang et al. [6]
explored two different options using point clouds as input
data: blocks and voxels. This trade-off comes with disad-
vantages. First, 1) splitting the scene into some blocks of
points will destroy the spatial relationships between objects
that may be essential for scene recognition, resulting in poor
accuracy. Second, although using voxel grids derived from
point clouds as input can preserve the spatial structures of
objects, 2) a lot of memory is required. The reason is that
grids need to be dense to get a good result. Last, 3) the
above methods only learn one decoration style (such as
color, or shape) and have limitations when they are used
in another environment with a different style but the same
function.

To address the above disadvantages 1)–3), we argue that
scene graphs constructed from objects instead of point blocks
or voxel grids may offer a better approach for large-scale
indoor 3-D scene recognition. It means our method is built on
top of computationally light object instances. These objects
can be derived from indoor point clouds by instance segmen-
tation or object detection methods. Then, a scene graph is an
abstract representation that organizes the entities of a scene in
a graph, where objects are nodes and their relationships are
modeled as edges. Such a representation is frequently used
in the image domain for higher level tasks such as image
retrieval [7] and image generation [8]. Recently, scene graphs
have started to emerge in 3-D. For example, scene graphs of
walls and obstacles have been used for navigation studies [9].
Armeni et al. [10] showed that it was plausible to construct
graphs for the whole buildings, including 3-D spatial relations
between rooms, major objects, camera views, and the relations
between these entities. These graphs can be further incorpo-
rated with dynamic elements such as moving humans [11] and
semantic relationships such as descriptors front, behind, and
standing on [12], [13]. Hence, 3-D scene graphs are becoming
more common and more complex, which also increases their
usability.
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In this article, we set out to study indoor scene recog-
nition based on 3-D scene graphs. Our inspiration comes
from biology, namely, classifying protein functions given their
structures [14]. Similarly, we classify the types of indoor
scenes given their structures. To be specific, each indoor scene
is represented by a 3-D scene graph, which captures the
semantic information and spatial adjacency relation between
elements that the scene contains. Then, these indoor scene
graphs are input into our proposed graph classification network
to classify scene types. The main contributions are summarized
as follows:

1) We present to recognize indoor scenes based on con-
structed 3-D scene graphs, addressing the above three
disadvantages. In this way, we (a) keep the spa-
tial structure of scenes complete and (b) drastically
reduce memory usage by storing objects in a graph as
abstractions. Specifically, our lightweight representation
allows the use of a global receptive field to model
long-range dependencies; moreover, this makes (c) the
scene graph invariant to decoration changes, and the
scene type is only determined with indoor 3-D scene
graphs.

2) We introduce the implementation of an indoor scene
graph classification network, which contains two mod-
ules: a spatial relations-based local feature aggregation
module (SR-LFAM) and an object attention-based
global feature aggregation module (OA-GFAM). In the
OA-GFAM branch, we design quantity encoding and
spatial position encoding to help capture long-range
dependencies to enhance the global graph representation.

3) We build an indoor 3-D scene graph dataset from
ScanNet v2 point cloud dataset to support the study of
indoor scene recognition. A comprehensive performance
analysis of these graphs demonstrated that the proposed
architecture achieves accurate and efficient indoor scene
classification.

The rest of the article is organized as follows. In Section II,
we review the related work about 2-D/3-D indoor scene
recognition and graph classification networks. In Section III,
our proposed method is introduced in detail. The experimental
results are reported in Section IV. The article is concluded in
Section V.

II. RELATED WORKS

A. Indoor Scene Recognition

Research on vision-based scene recognition has been inves-
tigated for many years and a lot of successful approaches
have been proposed [15], [16], [17], [18], [68]. Several
scene-centered datasets are available, such as MIT Indoor67
[5], SUN397 [20], and Places365 [21]. Early works used
statistics-based and handcrafted features for scene representa-
tion [22], [23], [24], [25], [26], [27]. Oliva and Torralba [22]
proposed a low-dimensional global feature descriptor to model
holistic spatial scene properties. Valiaya et al. [24] and
Serrano et al. [25] combined some low-level visual features,
such as color and edge, which can be trained by a sup-
port vector machine (SVM) classifier for scene recognition.
Lazebnik et al. [19] computed histograms of local features

found inside each subregion and aggregated them to get a
global scene representation. Xie et al. [26] introduced the
orientational pyramid matching model and concluded that the
3-D orientation of objects is a crucial factor in discriminat-
ing indoor scenes; nevertheless, these methods are based on
low-level features, which are inflexible and hard to design
for different images. These shortcomings limit the method’s
further applications.

The emergence of neural networks brought new oppor-
tunities to indoor scene recognition. Sun et al. [17] pre-
sented a comprehensive representation of scene images that
included object semantics, global appearance, and contex-
tual appearance. These features were extracted from different
deep-learning models and finally were fed to the SVM clas-
sifier. Song et al. [18] proposed two discriminative image
representations for scene recognition, namely, co-occurring
frequency of object-to-object relation and sequential represen-
tation of object-to-object relation. Yuan et al. [67] presented
an adaptive cross-modal GCN to model indoor scenes, where
the most distinctive features were selected for visual scene
representation. Miao et al. [5] proposed an object-to-scene
method, which extracted object features and learned object
relations to recognize indoor scenes by training an end-to-
end convolutional neural network; however, it is also an
image-based scene recognition method, which cannot encode
the spatial relationship of objects.

Deep learning methods based on 3-D point clouds mainly
focus on the understanding of the semantics and instances
of indoor objects rather than on the scene level. The
pioneering work on point cloud deep learning is Point-
Net [28]. After that, many networks were proposed to
capture local features and global features in different ways,
such as DGCNN [29], KPConv [30], RandLA-Net [31],
PointNeXt [32], and Swin3D [33], which obtained good per-
formance in semantic segmentation. At the same time, instance
segmentation methods have also received widespread atten-
tion [34], [35], [36], [37], [38], [39]. These methods segment
individual object instances from indoor scene point clouds and
predict their semantics. Various clustering algorithms (such as
Mean-Shift) are usually used in these networks. For example,
ASIS [34] and JSNet [35] proposed joint instance and semantic
segmentation of indoor point clouds with a mean-shift cluster-
ing algorithm for postprocessing. After that, PointGroup [36],
SoftGroup [37], SPFormer [38], and Mask3D [39] are pre-
sented to enhance the performance of instance segmentation.
Scene recognition using 3-D point cloud data, however, is yet
in its infancy.

Conducting indoor scene recognition in 3-D was started by
Huang et al. [6], who split or voxelized the original point
clouds in the data preprocessing stage. Specifically, two dif-
ferent options were explored for the encoder: the point-based
method and the voxel-based method. The point-based method
splits the original point clouds into blocks as input, destroying
the completeness and spatial relationship of the objects, while
the voxel-based network works with sparse voxel grids derived
from the input points with a lot of memory requirements.
In addition, the above networks only learn one decoration
style (such as color or shape) and have limitations when used
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in another environment with a different style but the same
function.

B. Graph Classification in Deep Learning

Graph neural networks (GNNs) are used to process unstruc-
tured data, such as social networks, chemical molecules, point
clouds, and so on. Recently, GNNs have drawn considerable
attention, including node classification [41], [42], link predic-
tion [43], [44], and graph classification [45], [46], [47]. As one
of the applications in GNNs, the goal of graph classification is
to learn a graph-level representation and then predict its label
by aggregating node features and graph structure information.
The learning process mainly includes two key steps: graph
convolution and graph pooling.

Inspired by the great success achieved by the convolu-
tional neural network on images, a graph convolution network
(GCN) is used to generalize convolution for graph-based
data. It can be divided into two categories: spectral [48],
[49], [50] and spatial [46], [51] approaches. Spectral-based
methods typically define the parameterized filters according
to graph spectral theory. Bruna et al. [48] first proposed to
define graph convolution in the Fourier domain based on
the Laplacian graph, which had the disadvantage of high
computational cost. Following this, some methods have been
proposed to address this challenge. Defferrard et al. [49] pre-
sented ChebNet and improved its efficiency by designing fast
localized convolutional filters on a graph through Chebyshev
expansion. GCN is further simplified by Kipf and Welling [41].
This network can encode both the local graph structure and
features of nodes. In contrast, spatial approaches define graph
convolution by directly aggregating the node’s neighborhood
information based on edge connections. In this way, each node
embedding can be updated from its neighbors. For example,
Hamilton et al. [51] proposed a framework called “GraphSage”
to generate embeddings by sampling and aggregating features
from a node’s local neighborhood. GAT [51] specified different
weights to different nodes in a neighborhood and aggregated
them to generate the central node embeddings.

Graph pooling is a critical step in the graph classification
task to scale down the size of inputs and then obtain a
graph-level representation from learned node embeddings. Pre-
vious works [52] and [53] used global pooling operations (such
as sum/average/max pooling) over the node representations,
which could lose a lot of structure information. In recent years,
the hierarchical graph pooling approach has emerged.

Ying et al. [47] proposed hierarchical graph representation
learning with differentiable pooling (DiffPool). This method
assigns nodes to a set of clusters (namely, subgraphs), and
each subgraph can be aggregated as a super node. These nodes
form a new coarsened graph with a full connection, which is
fed to the next GCN layer. After that, MxPool [14] enriched
the DiffPool method, which can adapt to different sizes of
graph data and select optimal coarsening ratio and feature
dimension based on the attention mechanism. SAGPool [54],
gPool [55], and AttPool [56] were all developed based on the
Top-K method. To be specific, an attention score is calculated
for each node in the graph, which is then sorted and the top

k nodes are selected to form a new subgraph, which will
be entered into the subsequent layer for the message-passing
process.

Recently, applying transformer model in graphs has gained
popularity in the field of graph representation learning [50],
[63], [64], [65]. These networks attempt to incorporate var-
ious encodings (such as positional encoding and structural
encoding) into self-attention mechanism to capture the local
and global information of graphs. Dwivedi and Bresson [63]
introduced transformer model into graph representation and
used Laplacian eigenvector as position encoder to learn graph
structures and extended this architecture to edge feature rep-
resentation. Chen et al. [64] proposed a new self-attention
mechanism by extracting a subgraph representation rooted at
each node before computing the attention. Our method is also
based on the self-attention module. We designed two simple
but effective encoding designs to help learn the indoor scene
graph representation well.

III. METHODOLOGY

A. Overview of the Method

The proposed method consists of two parts (shown in
Fig. 1): indoor scene graph construction (ISGC) and indoor
scene graph classification. The input is 3-D object instances
with coordinates and semantics like chairs, tables, and doors.
These objects can be derived from indoor point clouds by
manual labeling, instance segmentation, or object detection.
In this article, the ScanNet v2 dataset is adopted for scene
recognition, where all semantics and instances are already
provided. The output of the method is the predicted indoor
scene type, such as a conference room, an office, a hallway,
etc.

Indoor scene type is related to the objects it contains
and the mutual spatial relationship between these objects;
therefore, we first present ISGC method to create a graph
from object instances contained in an indoor scene. In the
construction phase, a graph representation is formulated by
our method, where connections are established depending on
the object-pair semantics and the geometrical distance between
the pair. After this, we propose an indoor scene classification
network, which learns different graph representations through
SR-LFAM and the OA-GFAM.

1) Problem Setting: We expect each scene to consist of a
single room. If a point cloud covers multiple rooms, a space
partitioning algorithm needs to be used to split the dataset
into one point cloud per room [60] and [61], given the point
clouds of such an indoor scene, where all 3-D objects are
with semantics and (x, y, z) coordinates. Then, create a set of
indoor scene graphs and classify them to predict scene types.

Let an indoor graph be represented as follows:

G = (V, E) (1)

where V is the set of nodes representing indoor objects (like
walls, chairs, etc.) and E is the set of edges, representing
the spatial relationships between nodes in a graph. A ∈ Rn×n

denotes the adjacency matrix of G and X ∈ Rn×d represents
the node feature matrix, where d is the dimension of node

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on April 29,2024 at 07:40:36 UTC from IEEE Xplore.  Restrictions apply. 



5703216 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 1. Illustration of the proposed method.

features. Specifically, Ai, j = 1 represents there is an edge
between nodes i and j , otherwise, Ai, j = 0. We suppose each
node belongs to one of the C indoor object classes. Then, let an
indoor graph dataset G indoor = {G1, G2, . . . , Gm}, where each
graph G i represents an indoor scene. The aim is to predict a
corresponding semantic label for each graph; therefore, these
graphs G indoor are fed into a graph classification network and
the scene types are predicted.

As shown in Fig. 1, given a set of graphs G =

{G1, G2, . . . , Gm} as input. The data shape is (B × N × D),
where B and N represent the number of graphs and
object nodes in a graph, respectively. D is feature vec-
tor at node vi . Then we feed different graph features
(B × N × L), (B × N × F) into subbranches to learn local
and global graph representations. L and F represent the dif-
ferent node feature dimension. Finally, contact local and global
graph embeddings and input it into multilayers perceptron
(MLP) to obtain predicted graph types (B × C), where C is
the number of scene types. In this way, the mapping from
indoor point clouds to indoor scene type is realized. The
method details are described in Sections III-B and III-C.

B. Indoor Scene Graph Construction

In this section, the ISGC method named ISGC is proposed
to represent an indoor scene by a graph from labeled 3-D point
clouds (all points with semantic and instance labels). There are
two key parts in this algorithm: graph node extraction and edge
connection.

1) Graph Node Extraction: The proposed method is based
on given object instances derived from indoor scene point
clouds. This means each point has its corresponding semantic

and instance label. Bounding boxes can, therefore, be detected
directly based on these indoor objects. The center of each
bounding box is considered an indoor object, that is, a node in
the graph. To be specific, each object instance Ii is represented
by node vi , with its semantic class li and the center coordinate
(xi , yi , zi ) of the object 3-D bounding box, as the node
features.

The process of extracting object nodes from labeled indoor
point clouds is shown in Fig. 2. The interior object nodes
contained in a scene can be divided into structural elements
(ceiling, floor, wall, etc.) and furniture elements (chair, table,
sofa, bookcase, etc.).

2) Graph Edge Connection: Edges E need to be created to
establish links between object nodes in set V (obtained from
Section III-B1). Each edge represents the spatial relationship
between two objects it connects. A complete indoor scene
graph is shown in Fig. 3. For visual clarity and verbal con-
venience, we explain the formation of edges in this graph by
using two subgraphs, namely the structural element subgraph
and the furniture element subgraph.

The structural element subgraph contains walls, ceilings,
and floors as nodes [see Fig. 3(a)]. Links are built based on
prior spatial adjacency knowledge. For example, the ceiling
and the floor nodes are usually connected to the wall nodes.
Different walls are usually connected if their 3-D bounding
boxes are intersected.

The furniture element subgraph contains the pieces of fur-
niture as nodes [see Fig. 3(b)]. We believe that indoor objects
are related to objects within a certain distance; therefore, a set
of nearest neighbors are found for each node with a physical
distance threshold and then connected to them. Here, detect-
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Fig. 2. Graph node extraction form labeled 3-D point clouds [Walls are removed for clarity in (b) and (c)]. (a) Indoor 3-D point clouds, (b) Object instances
and 3-D bounding boxes, and (c) Object nodes with labels and coordinates.

Fig. 3. Indoor scene graph. (For visual clarity purposes, show the graph
using two subgraphs.) (a) Structural elements (sub graph1) and (b) Furniture
elements (sub graph2).

ing the central node’s neighbors by calculating whether the
3-D bounding box buffers intersect instead of the k nearest
neighbors (K-NN) algorithm. This is because the size of indoor
scenes varies greatly; therefore, it is difficult to find a fixed k
to describe the neighbors of objects.

We merge the structural element subgraph and furniture
element subgraph to form the entire indoor scene graph by
introducing a link wherever the floor or wall is close to a
furniture element.

In this way, our graph can represent a complete indoor
scene structure by storing objects in a graph as abstractions
instead of directly processing point clouds. The node features
only contain object semantic li and coordinate (xi , yi , zi ). Its
advantage is to make the scene graph invariant to decoration
changes like color or shape.

C. Indoor Scene Graph Classification Network

In this article, indoor 3-D scene recognition is achieved by
an indoor scene graph classification task. Graph classification
aims to obtain a graph-level representation from learned node
embeddings. Two branches are, therefore, proposed to generate
different graph representations, namely the SR-LFAM and the
OA-GFAM.

1) Spatial Relations-Based Local Feature Aggregation Mod-
ule: In this module, a graph representation is obtained by
graph convolution and hierarchical graph pooling operation to

learn spatial relations between objects (see Fig. 4). To be spe-
cific, each node embedding can be updated from its neighbor
nodes based on edge connections (graph convolution), and then
we scale down the size of the graph by coarsen ratios (graph
pooling) until there is one graph node left.

a) Graph convolution: For each node, the features of its
neighbors are aggregated through GCN [41] to update the node
embeddings. The kth layer in GCN takes the graph adjacency
matrix A and the hidden representation matrix Hk as input,
then the next layer’s output will be generated as follows (a
single convolutional layer):

Hk+1 = σ
(

D̃−
1
2 ÃD̃−

1
2 Hk W k

)
(2)

where σ(·) is the nonlinear activation function and Hk+1 are
the node embeddings computed after k + 1 layers, Ã = A + I
is the adjacency matrix with self-connections. When k = 0,
H0 = X is the original graph’s node features, D̃ is the degree
matrix for graph G, i.e., a diagonal matrix containing the
number of edges connected to each node. W k is a trainable
weight matrix, and D̃−(1/2) ÃD̃−(1/2) is to normalize matrix A
and obtain a symmetric one.

In our module, multiple graph convolution layers are stacked
[see Fig. 4(a)] to learn multiple sets of node embeddings
{Z1, Z2, . . . , Zn

}. For each graph convolution layer l, Z (l)
=

GCN(A(l), X (l)) yields the embedding matrix. Here A(l), X (l)

are the adjacency matrix and node feature matrix, respectively.
X (0) is the one-hot coding of object labels as the initial node
features. Then, the merged Z (l) can be written as follows:

Z (l)
=

n∑
i=1

(
αi⊗GC N i,embed

(
A(l), X (l), di

))
(3)

where di is the output node feature dimension, and αi ,
a trainable weight matrix, represents the weight of different
node embeddings.

∑
indicates the concatenation operation of

n tensors.
b) Hierarchical graph pooling: After the convolution,

we perform the following pooling operation to shrink the
graph. Compared with global pooling methods (such as sum,
mean, and max pooling), hierarchical graph pooling can better
retain the local information of the graph structure.
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Fig. 4. Detail of graph convolution and graph coarsen module. (a) Graph convolution module, (b) Graph coarsen module.

Fig. 5. Diagram of hierarchical graph pooling. (a) Indoor scene graph G0, (b) Assigned subgraphs, (c) Coarsened graph 1, (d) Coarsened graph n, and
(e) Graph representation.

Here, an assigned matrix method, MxPool [14], is selected
as our hierarchical graph pooling operator. It divides a graph
into subgraphs by ratios, and each subgraph can be aggregated
as a super node. These nodes form a new coarsened graph with
full connections, which is fed to the next GCN layer.

Fig. 5 shows the process of coarsening graphs: Given an
indoor scene graph G0 with node features X0, adjacency
matrix A0 and coarsen ratio r0, we learn node embeddings
and downsample graphs with ratios using a GCN, until there
is only one node left, that is, the final graph representation.

The coarsening ratio should match the size of the graph.
In other words, a small ratio should be used for the small
graphs; therefore, to find the best coarsening ratio for each
graph, define the assignment matrix S(l)

= GCN(A(l), X (l))

and use multiple GCNs [see Fig. 4(b)] to learn n assignment
matrices {S1, S2, . . . , Sn

}. Then the merged S(l) is as follows:

S(l)
=

n∑
i=1

(
βi⊗GCNi,pool

(
A(l), X (l), ri

))
(4)

where ri is the coarsening ratio of graph G i , and βi represents
the weight of different assignment matrices.

∑
indicates the

concatenation operation of n tensors.
Finally, given the merged node embeddings Z (l) of (3)

and merged assignment matrix S(l) of (4) as inputs, the
adjacency matrix A(l+1) and cluster embeddings X (l+1) of
the new coarsened graph are generated by the two following

equations [47]:

X (l+1)
= S(l)T

Z (l) (5)

A(l++1)
= S(l)T

A(l)S(l). (6)

Note that the coarsened graph is fully connected [such as
Fig. 5(b) and (c)], and its size is the number of n clusters,
namely, one cluster corresponds to one super node in the new
graph. Where A(l+1) are a real matrix and each entry in A(l+1)

denotes the edge weight between two clusters. Then the cluster
embeddings X (l+1) and the coarsened adjacency matrix A(l+1)

will be entered in to the next GCN layer l+1. The above graph
convolution and graph pooling process is performed until a
graph representation is obtained.

2) Object Attention-Based Global Feature Aggregation
Module: In addition to learning spatial relations between
objects (local information), global information is required to
improve scene representation ability and recognition accuracy;
therefore, the OA-GFAM is proposed. Each node’s embed-
dings are updated by aggregating other nodes’ features based
on object attention scores. Then, the graph representation is
generated by the sum pooling operation, which describes the
global information of the indoor scene. The process of global
information aggregation is shown in Fig. 6.

In this module, we focus on learning the relative importance
score (called “object attention score”) for each node by the
global attention mechanism, which describes the weight of the
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TABLE I
STATISTICS OF INDOOR POINT CLOUD DATASET

Fig. 6. Diagram of global information aggregation. (a) Indoor scene graph
G0, (b) Updated node embeddings, and (c) Graph representation.

central node relative to others. To this end, Self-attention [66]
is used to capture attention scores between all nodes and
to update node embeddings. Specifically, we introduce two
simple but effective designs of encoding to help learn the graph
representation well (see Fig. 7). We elaborate on these designs
in the following:

a) Self-attention module: Self-attention mechanism is
first proposed by Vaswani et al. [66]. In this module, the input
node features X are first projected to query (Q), key (K ), and
value (V ) matrices through a linear projection, respectively.
The self-attention is then calculated as follows:

Output(Q, K , V ) = softmax
(

QK T

√
dk

)
V (7)

where Q, K , V , and output are all vectors and dk is the
dimension of keys, a scale parameter. Q, K , and V are first
initialized and assigned through different linear transforma-
tions. After that, Q and K are multiplied together to calculate
the correlation matrix of each node, and attention scores are
generated by the softmax function.

b) Quantity encoding: In (7), the attention score is usu-
ally calculated according to the semantic correlation between
object nodes. The object number of each class, which measures
how important these nodes are in the graph, is, however,
a strong signal for graph understanding. For example, if there
are twenty objects in a scene, including twelve chairs, two
doors, one ceiling, one floor, and four walls, the chair plays
an important role in this scene. To this end, the object number
is introduced as an additional signal to the neural network.

We design a quantity encoding, which assigns each node
two real-valued embedding vectors according to the object
number of each class and their proportion in all. As the quality
encoding is applied to each node, we simply add it to the node
features as the input

X0
i = xi + ncvi

+ pcvi
(8)

where xi represents initial node features, c is the object class
of node vi , n, and p are the object number of this class and
its proportion in all objects, respectively.

c) Spatial position encoding: The advantage of
self-attention is its global receptive field; however, it hard to
capture spatial features among objects. In fact, the different
distribution of objects in indoor space is a key factor to

distinguish similar scenes. Such information is neglected in
the current global attention calculation. And we believe it
should be a valuable signal.

We, therefore, present spatial position encoding, which
measures the spatial correlation between two objects. The
closer they are, the more relevant they are. Concretely, for a
graph G i , a function r(vi ,v j ) is considered to present the spatial
correlation between node vi and v j . In this article, the function
r is defined by the reciprocal of spatial distance between two
nodes in the graph. We incorporate spatial position encoding
via a bias term to the attention module

A(i, j) =
Qi K T

i
√

dk
+ r(vi ,v j )

r(vi ,v j ) =
1

s
(
vi ,v j

)
+ ε

(9)

where A(i, j), s are the attention score and the spatial distance
of node vi and v j . ε is a minimal scalar to avoid zero value.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset

The proposed method is tested on a public indoor 3-D
point cloud dataset, ScanNet v2 [57], which is the most
accepted and robust dataset in indoor 3-D scene recognition.
ScanNet v2 is an RGB-D dataset containing 1513 scans. It has
21 scene classes and 20 object classes and includes hundreds to
thousands of object instances already detected in point clouds
with semantics. Statistics of the dataset are summarized in
Table I. Figs. 8 and 9 show the point clouds for different
scene types and corresponding sample numbers.

B. Experiment Setting

1) Experiment Environment: The proposed indoor graph
classification network is implemented in Python language
and the Pytorch library [58] with a single RTX 2070Ti
GPU. We train the network for 300 epochs using Adam
Optimizer [59] with a learning rate of 0.0001 and set the batch
size to 64 for the ScanNet v2 dataset. The loss function is
Cross Entropy.

2) Accuracy Evaluation Method: Two evaluation methods
are adopted in the experiments, namely fixed training and
validation dataset and ten-fold cross validation. In experi-
ments, we use the same training and validation datasets as
in [6] to evaluate, compare, and test our method. In particular,
1013 scans for training and 500 scans for validation. The
relevant results are shown in Tables II, III, IV, VI, VII, VIII,
IX, and X.

The ten-fold cross-validation method is only adopted to
illustrate the average performance of our model and compare
it with existing methods objectively. The results are reported
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Fig. 7. Diagram of updating node embeddings based on object attention scores.

Fig. 8. Typical point clouds of 21 indoor scene types. (a) Apartment,
(b) Bathroom, (c) Bedroom, (d) Living room, (e) Classroom, (f) Conference
room, (g) Computer cluster, (h) Copy room, (i) Stairs, (j) Gym, (k) Misc
room, (l) Closet, (m) Bookstore, (n) Game room, (o) Hallway, (p) Storage,
(q) Kitchen, (r) Laundry room, (s) Dining room, (t) Lobby, and (u) Office.

TABLE II
RESULTS OF VARYING DIFFERENT BUFFER DISTANCE (%)

in Table VII. The dataset is split into two parts: 80% as a
training set and the remaining 20% as a validation set. This
random splitting process is repeated 10 times.

In this article, four evaluation metrics are used to evaluate
the performance of classification. They are accuracy, precision,
recall, and F1 score. The primary metric used on the ScanNet
v2 dataset is the accuracy [see (10)] of the model. It is a

Fig. 9. Sample distribution of 21 scene classes in ScanNet v2.

TABLE III
RESULTS OF VARYING DIFFERENT FEATURE DIMENSION (%)

TABLE IV
RESULTS OF VARYING DIFFERENT COARSEN RATIO (%)

good representation to describe the overall performance of the
classifier. The precision, recall, and F1 score [see (13)] are,
moreover, calculated for each indoor scene class. Precision and
Recall are calculated using (11) and (12), respectively, using
the true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) values

Accuracy =
TP + TN

TP + TN + FP + FN
(10)
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Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(13)

3) Parameter Selection: In our experiment, we set the
buffer distance to 0.2 m to generate indoor scene graphs.
The dimensions of Q, K , and V are the same as 64 by
linear transformations of input node features in the OA-GFAM
branch. In the SR-LFAM module, three GCN layers are
stacked to learn node embeddings with different dimensions,
and three GCN layers are used to learn assignment matrices
with different pooling ratios. To be specific, the dimensions
of node representations are set to [30,50,80], and the coars-
ening ratios are set to [0.1,0.15,0.2]. The reason why these
hyperparameters are selected is given in the following.

a) Selection of buffer distance: In the graph construction
algorithm (ISGC), the main principle is to find neighbors
around the object by buffer distance and then establish edge
connections to form an indoor scene graph. Table II shows
the impact of different distance settings on the result, and the
optimal buffer distance selected in this article is 0.2 m.

b) Selection of feature dimension and coarsening ratio:
Previous research has shown that different sizes of graphs are
suitable for different node feature dimensions and coarsening
ratios. For indoor scene graph classification, we select mul-
tiple node dimensions [30,50,80] and graph coarsening ratios
[0.1,0.15,0.2] through two comparative experiments.

Specifically, according to the node number contained in the
graph, the indoor scene graphs are divided to small graphs
[0, 20], medium graphs [21, 35], and large graphs [36, 132].
In the first experiment, we fixed the coarsening ratio to
0.1 and then changed the node feature dimension to observe
the result (see Table III). In the second experiment, we set
the node dimension to 50 and change the coarsening ratio, the
comparison result is shown in Table IV.

C. Indoor Scene Graphs Construction

Our proposed method is based on indoor scene graphs,
which are the input for the graph classification network. Indoor
3-D point clouds are, therefore, preprocessed to a set of scene
graphs by the ISGC method. We set the buffer distance of the
3-D bounding box to 0.2 m.

After that, 1513 scans of the ScanNet v2 dataset are
formed into corresponding 1513 graphs. Each graph represents
a scene containing object nodes and edges. The details of
these graphs are provided in Table V. Fig. 10 shows the
comparison between point clouds and graphs for some scene
types. From this figure, we can see that the ISGC method
can accurately convert an indoor 3-D scene from point clouds
to a graph by abstracting objects into nodes and representing
the spatial relationship between objects through edges. For
example, as shown in Fig. 10(c), there are floors, doors, walls,
windows, and tables surrounded by chairs in this classroom.
Our constructed graphs can distinguish these objects and detect
their neighbors to represent spatial layout by edges.

Fig. 10. Constructed indoor graph examples of different scenes. (a) Kitchen,
(b) Living room, (c) Classroom, (d) Apartment, (e) Bedroom, (f) Office,
(g) Conference room, and (h) Bathroom.

D. Indoor Graph Classification Performance

In this subsection, we give the performance of the proposed
method and select accuracy, precision, recall, and F1 score to
evaluate the results in two validation methods.The proposed
method can achieve the task of indoor scene recognition,
which further shows the effectiveness of our ISGC method
and the classification network.

The ten-fold cross validation is adopted to objectively report
the average performance of our model. We obtain an overall
accuracy of 90.46%. The average precision, recall, and F1
score are 82.91%, 80.04%, and 81.45%, respectively.

For the fixed training and validation dataset, our model
obtains 88.00% accuracy, 83.71% precision, 80.94% recall,
and 82.30% F1 score. Table VI reports the evaluation result
in detail, and the first row shows the number of samples for
each scene. According to this table, there are the following
observations:

1) As shown in Table VI, all 21 indoor scene types are
detected by our proposed method. From this table, it can be
seen that 12 scene classes are well recognized and their F1
score values are greater than 80%; moreover, among them,
there are eight scene classes, namely kitchen, bedroom, copy
room, bathroom, dining room, conference room, office room,
and game room, where their F1 scores are more than 90%.

2) Some scene types, like hallway and music room, however,
cannot be classified effectively; here, the F1 scores are lower
than 60%. Compared with sample numbers, we can see that
the sample numbers of these two scene types are 32 and 35,
respectively. They are smaller than office room, conference
room, bedroom, etc. The gym, however, has only five samples,
and it can also be detected with a high F1 score of 80.00%.
We can, therefore, observe that these scene graphs do not have
specific objects and spatial structures, similar to other classes.
In other words, they are hard samples, which cannot be learned
easily in the training process.
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TABLE V
STATISTICS OF CONSTRUCTED INDOOR GRAPHS

TABLE VI
EVALUATION RESULTS FOR 21 INDOOR SCENE TYPES

TABLE VII
COMPARED RESULTS OF DIFFERENT METHODS

TABLE VIII
COMPARISON OF DIFFERENT INDOOR GRAPH CONSTRUCTION (%)

E. Comparisons

In this subsection, we compare previous methods for the
indoor 3-D scene recognition task, including point-based
methods (PointNet [28] and DGCNN [29]) and voxel-based

TABLE IX
RESULTS OF VARYING DIFFERENT DROPPING RATE (%)

TABLE X
COMPARED RESULTS OF USING STRUCTURAL ELEMENTS (%)

methods (Resnet [40] and multitask [6]), as mentioned in the
introduction. Specifically, the point-based method works by
dividing original point clouds into blocks as input and then
learning local or global features per point in different ways.
The voxel-based method feeds sparse voxel grids derived
from point clouds and then obtains features through sparse
convolution. In addition, we also compare our method against
the Bag of Words (BoW) model [62] and various graph classi-
fication networks (like GCN [41], DiffPool [47], MxPool [14],
SAT [64] GraphGPS [65] and Graph Transformer [63]). These
methods use indoor objects identified from raw point clouds,
which can be named an object-based method.

Here we use the BoW model combined with machine
learning methods to classify indoor scenes. For our indoor
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recognition task, for a scene, ignoring the spatial relationship
between objects and counting the object number of each type
in the room, a BoW model of the indoor scene can be built.
Then using machine learning methods such as SVM, Decision
Tree (DT), or Random Forest (RF) to do scene classification.

The overall accuracy and model parameters compared for
21 scene types are displayed in Table VII. Two results are
reported. One is based on a fixed training and validation
dataset, represented by Acc_1. In this experiment, our method
is compared with all methods (point-based methods, voxel-
based methods, and object-based methods). The other is the
result of ten-fold cross validation, represented by Acc_2.
We only compare our method with object-based methods.
The reason is that point-based and voxel-based methods are
not suitable for ten-fold cross validation. The input of these
methods is millions of points. Hence, they have extremely high
time complexity.

From this table, it can be seen that our method is more
computationally efficient than the methods that use point
or voxel embeddings and better in terms of accuracy than
the BoW and graph classification methods. Concretely, our
method achieves much better results, with 88.0% overall
accuracy, than point-based methods and Resnet. Although
the accuracy of our model is lower than the voxel-based
multitask method, it only has 0.21 million parameters, which
is 100 times smaller than that of the multitask method. This
means that our model can save a lot of memory space during
computation.

Compared to BoW methods, our method is the best one
in accuracy because we use spatial relationships to describe
the scene rather than only object semantics and numbers.
It indicates spatial information is an important factor in scene
recognition. The comparison of graph classification networks
is also shown in Table VII. Our method is superior than others,
regardless of the accuracy evaluation method used.

We also conducted ablation experiments to demonstrate the
impact of two encodings. In terms of Acc_1, the accuracy will
decrease by 1.80%, 1.00% without using quantity encoding
and spatial position encoding, respectively.

F. Analysis

1) Impact of Different Scene Graph Construction: In this
subsection, the effectiveness of the proposed indoor graph
construction (ISGC) method is tested. Two other algorithms
namely K-NN and fully connected are selected to construct
different indoor scene graphs.

K-NN finds a set of k nearest neighbors for each node
in Euclidean space, which is a very common algorithm to
describe local spatial relationships. To create indoor scene
graphs, each object node is taken as the center to search
for the nearest k neighbor points to establish edges with the
central node. Here, the parameter k is set to 9, which is
the best empirical value through many experiments. While
the fully connected method is that each node is connected to
its remaining nodes, which preserves the relationship between
all nodes in the graph.

In this experiment, in order to make a fair comparison,
we set the same model parameters and used the fixed training

and validation dataset to learn graph representation for differ-
ent graph structures. Fig. 11 vividly shows indoor scene graphs
constructed by different algorithms for the same indoor scene.
The compared quantitative results of scene recognition are
shown in Table VIII. From this result, we find that our ISGC
method has achieved the best performance on four evaluation
metrics with 88.00% accuracy, 83.71% precision, 80.94%
recall, and 82.30% F1 score, which shows the effectiveness
of our ISGC.

2) Impact of Missing Indoor Objects: In previous exper-
iments, ScanNet v2 is used, which is a perfect dataset.
It means all indoor objects are detected successfully in 3-D
point clouds. In practical applications, however, robots cannot
completely and accurately identify all objects; for example,
dynamic objects (person, etc.) inevitably bring occlusion in
point clouds; therefore, in this subsection, we simulate the
actual situation manually, that is, randomly dropout 5%, 10%,
20%, 30%, and 40% indoor objects in the validation set, and
then observe their changes in results. These compared results
are reported in Table IX.

It is expected that the average classification accuracy
degrades due to information loss caused by increased occlu-
sion, i.e., having fewer detected indoor objects. When 5%
of objects are discarded, the accuracy decreases by no more
than 5%. With a drop rate of 30%, the accuracy is, moreover,
almost similarly affected by 20.33%. This result shows that the
scene classification accuracy depends sublinearly on the rate
of dropped objects in the scene. It also means our method is
robust to common scanning artifacts such as occlusion and
noise, and to common instance segmentation artifacts such as
class imbalance. The average precision, recall, and F1 score
are detailed in Table IX.

3) Impact of Indoor Specific Objects: The type of indoor
scene is related to interior objects and their spatial struc-
tures. Specific objects may play a key role in indoor scene
recognition. For example, a room with beds is likely to be a
bedroom or an apartment, bathtubs belong to the bathroom,
and bookshelves to bookstores. To check the influence of
specific objects on scene types, object classes are removed
from the validation dataset in turn, and then the change in
results is observed. Here, the removed object classes are only
furniture elements (such as chairs, tables, beds, etc.), because
structural elements are common in each indoor scene type and
there is a subset of 15 classes given (scene classes with less
than five samples in the validation have been removed). The
reason for this is that the number of samples is too small to
be universal, resulting in extreme values.

The change in the recall is shown in Fig. 12. From this
figure, it is obvious that there are pronounced drops for the
bedroom when removing the beds, and for the conference
room and classroom when removing chairs. On the contrary,
the laundry room class benefits greatly from removing toilets
or sinks. In the following, we give the confusion matrices after
removing beds, chairs, and toilets, respectively, and compare
them with the original results.

Fig. 13(a) is the initial result, and Fig. 13(b) is the matrix
with removing bed nodes. The red rectangles mark the com-
parison of the bedroom. It is obvious that when all bed nodes
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Fig. 11. Indoor graphs’ visualization of different algorithms. (a) Kitchen, (b) Bathroom, and (c) Classroom.

Fig. 12. Change of recall per scene type after removing all nodes with a
certain object class.

are removed from the validation set, the classification results
of the bedroom will be greatly affected. Most of them are
mistakenly divided into an office and storage. From Fig. 13(c),
we find that when removing the chair nodes, the result of
the conference room changed significantly (circled by green
rectangles). All conference rooms cannot be recognized and
are, therefore, classified as a living room, hallway, copy room,
etc., incorrectly. It illustrates the importance of specific objects
in the scene recognition task. Beds and chairs appear to be the
key objects for bedrooms and conference rooms, respectively.

What surprised us is that when we removed the toilet nodes,
the accuracy of the laundry room, however, improved. The

yellow rectangles mark the comparison results of the laundry
room, as shown in Fig. 13(a) and (d). Before removing the
toilets, the laundry room is often mistaken for the bathroom,
but now it is distinguished. Seemingly, this prevents confusion
with other scene types. We observed the object distribution of
the laundry room in the training and validation dataset and
found that there are no toilet objects in all the training sets and
only two samples with toilets in the validation set; therefore,
when removing the toilets, these two samples can be classified
successfully, which leads to increased accuracy.

In addition, from Fig. 13, most scenes are affected by
three or more object classes, such as living room, lobby,
storage, etc., and bookshelves and bathtubs will not seriously
affect the classification results of bookstores and bathrooms,
which is different from our previous expectations. It also
illustrates that indoor scene recognition is not only the search
for specific objects but also exploits more complex patterns
such as co-occurrence and spatial layout of objects.

4) Impact of Indoor Structural Elements: As mentioned in
Section III-B, the interior objects contained in a scene can be
divided into structural elements (ceiling, floor, wall, etc.) and
furniture elements (chair, table, sofa, bookcase, door, window,
etc.). They are key objects to preserving the indoor spatial
structure completeness.

Structural elements are common in each scene, which may
bring noises for our task. Hence, we added an additional
experiment to illustrate the impact of structural elements
on the result. Concretely, we reconstruct the indoor scene
graphs, removing structural elements and their edge con-
nections. To get a fair comparison, the fixed 1013 scans
for training and 500 scans for validation are used in this
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Fig. 13. Confusion matrices showing object counts. (a) Initial result is without dropping any objects. (b) Beds removed. (c) Chairs removed. (d) Toilets
removed.

experiment, which is consistent with our method. The compar-
ison result of four metrics is shown in Table X. From this table,
the accuracy decreases by 4.80% if we do not use structural
elements, which indicates they are necessary elements in our
constructed indoor scene graphs.

V. CONCLUSION

Scene recognition is a fundamental task in 3-D scene
understanding. Aiming at the problems existing in the current
methods, namely computational efficiency, spatial structure
completeness, and decoration style consistency, we present a
new approach for indoor scene recognition based on a set of
3-D scene graphs to balance the above shortcomings. These
graphs are constructed from 3-D objects derived from indoor
point clouds, where objects are considered as nodes and edges
describe the spatial relationships between the nodes. Then,

we present a novel indoor scene classification network to
learn different graph representations at local and global levels.
It includes SR-LFAM and OA-GFAM.

Experiments with the ScanNet v2 point cloud dataset yield
good results with up to 88.00% accuracy and 82.30% F1
score in the fixed validation dataset and 90.46% accuracy
and 81.45% F1 score in the ten-fold cross validation method;
moreover, we analyzed the robustness of the proposed method
thoroughly. Increasing the percentage of random missing
objects in the input data reduces the F1 score with a close
to linear dependence, indicating sufficient robustness against
random incompleteness in data (see Section IV-F2). Picking
out specific labeled objects from the data yields expected
results with the method not being highly sensitive to the
removal, except in a few understandable cases, e.g., bed and
toilet (see Section IV-F3). This illustrates that the proposed
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method not only searches for specific objects but also exploits
more complex patterns such as co-occurrence and spatial
layout of objects. It is sufficiently robust against noise of input
data.

Compared to the state-of-the-art (SOTA), our method sig-
nificantly reduces the number of parameters for training and
inference (see Table IV), which leads to more computational
efficiency than what is offered by the current point-based and
voxel-based deep learning methods. Related to this, we are
quite confident that our model architecture can handle even
larger datasets than ScanNet v2 because the approach that
inspired us has been originally tested on big protein data [14].
In addition, our method offers higher classification accuracy
than the traditional BoW-based classifiers and other graph
classification networks, because it leverages embeddings of
object semantic, quantity and spatial relationship.

In the future, scene graphs are likely to become more
common and more complex, and the proposed method will
likely gain more importance. Our approach is based on indoor
scene graphs composed of object instances, and therefore,
its result is affected by these objects detected from point
clouds by instance segmentation. If a large number of objects
are undetected or identified incorrectly, it will lead to a
decrease in performance. Additionally, our model has not been
tested in various indoor large-scale scenarios, which is another
limitation and is also our future work to focus on.
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