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Abstract

Neural networks are prone to learn easy solutions from
superficial statistics in the data, namely shortcut learn-
ing, which impairs generalization and robustness of mod-
els. We propose a data augmentation strategy, named
DFM-X, that leverages knowledge about frequency short-
cuts, encoded in Dominant Frequencies Maps computed
for image classification models. We randomly select X%
training images of certain classes for augmentation, and
process them by retaining the frequencies included in the
DFMs of other classes. This strategy compels the mod-
els to leverage a broader range of frequencies for clas-
sification, rather than relying on specific frequency sets.
Thus, the models learn more deep and task-related seman-
tics compared to their counterpart trained with standard
setups. Unlike other commonly used augmentation tech-
niques which focus on increasing the visual variations of
training data, our method targets exploiting the original
data efficiently, by distilling prior knowledge about de-
structive learning behavior of models from data. Our ex-
perimental results demonstrate that DFM-X improves ro-
bustness against common corruptions and adversarial at-
tacks. It can be seamlessly integrated with other augmenta-
tion techniques to further enhance the robustness of mod-
els. Codes are available at https://github.com/
nis-research/dfmX-augmentation.

1. Introduction

Neural networks are subject to shortcut learning, namely
a tendency to relying on simple solutions to optimization
problems, based on spurious correlations between data and
ground truth. Shortcut solutions are thus one of the factors
that negatively affect generalization and robustness perfor-
mance of trained models [8, 22]. Mitigating shortcut learn-
ing was shown to be beneficial for enhancing the general-
ization performance and robustness of models [18, 2]. By
enforcing models to learn from deeper task-related seman-
tics instead of shallow correlations between data and ground
truth that facilitate easy predictions during training, shortcut
learning can be effectively addressed [15, 7, 14, 16, 17]. Ex-
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Figure 1: DFM-X exploits the original data efficiently, us-
ing model-distilled knowledge about shortcut learning be-
havior that impairs the generalization and robustness of
models, rather than directly adding visual variations to the
images like commonly used augmentation techniques.

isting methods to mitigate the learning of shortcut features
include identifying and imitating shortcut features in the
other class to reduce their specificity for classification [15],
as well as measuring the amount of shortcut information
present in the training data [7, 14, 16, 17]. However, these
approaches are often limited to visually observable shortcut
features (e.g. color patches and lines) or complex training
strategies to learn image representations containing fewer
shortcut features. Imitating or inducing shortcut features
in the images of other classes [15] is a type of data aug-
mentation. Commonly used data augmentation techniques,
e.g. AugMix [10] and AutoAugment [5], do not usually
take shortcut learning into account, but focus more on di-
rectly increasing data variety to bridge the distribution gap
between training and testing data, improving the generaliz-
ability of models.

In this work, we propose a data augmentation method
called DFM-X. It is based on prior knowledge about fre-
quency shortcuts [21, 23], which are identified as small
sets of specific frequencies that contribute to achieving
high-accuracy classification. We compute Dominant Fre-
quency Maps (DFMs) for each class of a previously trained
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model [21], and use them as prior knowledge of where de-
structive learning behavior happens in existing models to
perform targeted data augmentation. Our work shares a
similar idea with imitating shortcut features, like including
color patches specific for a certain class [15], in the images
of the other class. In this work, we imitate frequency short-
cut features to reduce the reliance of models on specific fre-
quency sets for classification, thus enforcing models to learn
from a wider range of frequencies. We leverage the algo-
rithm proposed in [21] to measure the dominant frequencies
that play a crucial role in classifying each class, resulting
in dominant frequency maps (DFMs). We utilize DFMs in
our augmentation approach as prior knowledge (distilled by
models from the data) to avoid unwanted learning behavior.
This improves the generalizability and robustness of models
to common corruptions and adversarial attacks in computer
vision. We demonstrate the difference between DFM-X and
other commonly used augmentation techniques in Figure 1.
Compared with AugMix and AutoAugment, DFM-X makes
an effort to exploit the original data in an efficient way, us-
ing the model-distilled knowledge about learning behavior
that impairs the generalization and robustness of models,
rather than directly adding variations to the images. Our
contributions are:

• We propose a novel augmentation method called
DFM-X to improve the generalization and robustness
of models against common corruptions and adversar-
ial attacks without sacrificing their performance on the
original test images.

• DFM-X exploits model-distilled prior knowledge from
data about frequency shortcuts, targeting the mitiga-
tion of destructive learning behavior which impairs
generalization, unlike commonly used augmentation
techniques that focus on increasing data variety di-
rectly but rarely consider implicit problems in the data.

2. Related works
We review existing research related to shortcut learning

mitigation and data augmentation in the frequency domain.

Shortcut learning mitigation. Avoiding learning short-
cuts in the data is a promising approach to improve gener-
alization and corruption robustness by encouraging models
to learn more meaningful task-related semantics. Existing
work has explored different strategies to address shortcut
learning and its impact on model performance.

One approach is to explicitly identify and manipulate
shortcuts present in the data. The authors in [15] identi-
fied shortcuts (i.e. color patches) in a class and induced
similar patches in the other class. This forces the models to
ignore spurious correlations between the color patches and

the class, thus effectively mitigating the influence of short-
cuts. Another line of research focuses on addressing short-
cut learning without explicitly identifying shortcuts. The
work of [16] proposed a regularization term that decouples
feature learning dynamics, allowing the networks to learn
from as many features as possible rather than a subset of
features that easily minimizes cross-entropy loss. Similarly,
[6] used an auxiliary network with low capacity to measure
the degree of shortcut information in images, because im-
age classes containing shortcuts are easier to learn in early
training stages and a low-capacity network is more prone to
shortcut learning than a high-capacity one. Leveraging this,
the target network with high capacity can selectively learn
less from images with high shortcut degrees. Other methods
use gradient-based scores [1] to measure the shortcut degree
of training samples or adversarial training [14, 17] to learn
image representations containing less shortcut information.

Existing methods mainly focus on mitigating learning
shortcut features that are visually observable. Our work, in-
stead, aims at the mitigation of shortcut implicit in the data
from a frequency perspective. We exploit the learned fre-
quency shortcuts as prior knowledge of unwanted learning
behaviors, and learn to avoid them by using the proposed
DFM-X augmentation strategy in the training.

Frequency-based data augmentation. Data augmenta-
tions applied to images are usually spatial transforma-
tions, such as flipping, rotation, and cropping. These are
commonly used in augmentation techniques such as Aug-
Mix [10], AutoAugment [5], AugMax [20], among oth-
ers. Inspired by the research analyzing the learning be-
havior in the frequency domain of neural networks (NNs),
there is a trend in developing frequency-based augmenta-
tion techniques. Chen et al. [4] discovered that enforcing
NNs to learn more from the phase spectrum than the ampli-
tude spectrum can improve model robustness toward com-
mon corruptions. Xu el al. [25] proposed amplitude-mixed
augmentation, where NNs are trained with phase-invariant
images with fused amplitude spectrum because the phase
information is considered to be robust to domain change.

Rather than mixing frequency information, the work
of [11] drops frequency components of images if their dis-
crete cosine transformation coefficients are below a ran-
domly selected threshold. Inspired by the work [27] which
demonstrates how noise consisting of different frequency
affect classification performance, Soklaski et al. [19] added
Fourier-basis noise to the operation candidate pool in the
AugMix framework [10]. The work in [24, 26] proposed
Fourier domain adaptation for segmentation tasks and deep
metric learning respectively, which replaces the low fre-
quency of target images with that of source images. As
low frequency contains shape information, the annotations
of the source images are used as ground truth for training.
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Figure 2: The scheme of DFM-X augmentation. For each training epoch, X% training images are randomly selected for
augmentation. A randomly chosen DFM serves as a mask to filter the Fourier spectrum of the images. If the DFM and the
image belong to the same class, the image is not processed. Thus, the images of class i are filtered with the DFM of class k
(i ̸= k). This reduces the specificity of the frequency sets to the classification of the corresponding classes, thus mitigating
frequency shortcut learning.

Most augmentation approaches focus on increasing data
variety to bridge the distribution gap between training and
testing data, or enforcing specific characteristics that benefit
the performance. However, they do not consider shortcuts
in the data during training. We develop an augmentation
strategy based on prior knowledge about frequency short-
cuts that we gain by analyzing models trained for image
classification. We devise a form of augmentation, in which
the models are induced to exploit a larger amount of fre-
quency components and avoid learning shortcut solutions,
thus improving model robustness against common corrup-
tions and adversarial attacks.

3. Methods

As discovered in [21], convolutional neural networks can
use small, specific sets of frequencies, i.e. frequency short-
cuts, to classify images of certain classes. Because short-
cuts harm the generalization of models, we aim to develop
an augmentation technique, to improve model robustness
and generalization performance by mitigating the learn-
ing of frequency shortcuts (prior knowledge distilled from
data). We achieve this by reducing the reliance of models
on specific frequency sets for the classification of shortcut-
affected classes. The models thus rely on a wider range of
frequencies to classify images and are induced to learn more
semantics. We further evaluate the benefits on corruption
robustness and adversarial robustness of models.

3.1. DFM-X augmentation

CNNs can be biased toward specific sets of frequencies
to achieve classification [21]. Our goal is to reduce such

bias and enforce the models to learn more semantics, by
inducing the use of larger sets of frequencies. Hereby, we
design a DFM-based augmentation technique.

Obtaining DFMs: model-distilled prior knowledge.
DFMs record the importance of each frequency to the clas-
sification of a certain class. They can carry knowledge of
shortcuts in the data which are learned by a model. We
use them as priors in our augmentation approach to avoid
unwanted shortcut learning behavior, exploiting data more
efficiently and resulting in robust models.

The algorithm in [21] computes DFMs by evaluating
the importance of frequencies from images based on the
degradation of classification performance. To compute the
DFM of a certain class, they iteratively remove an individ-
ual frequency from the Fourier spectrum of images of the
class in the test dataset, and measure the loss in classifica-
tion. If the degradation is above a certain threshold, the fre-
quency is considered important to the classification of the
class and it is kept in the Fourier spectrum of images for
the following iterations. Otherwise, less important frequen-
cies are removed. We limit the performance degradation to
be within 30% when the models classify the images of the
class retaining only the dominant frequencies, compared to
the standard performance. One can obtain DFMs after the
importance of each frequency of the images of the corre-
sponding classes is measured, which are in the form of bi-
nary masks demonstrating the specific sets of frequencies
possibly used as shortcuts for classification (see examples
of DFMs in Figure 2). Through leveraging the information
contained in the DFMs, we guide the learning behavior of
models, aiming to reduce their reliance on specific sets of



frequencies associated with shortcut learning.

Augmentation strategy. We show the schematic of our
augmentation strategy in Figure 2. Given a dataset contain-
ing images {xc

m} where c is the class of the mth image
in the dataset, we compute the DFM of each class for a
model f . We use the DFMs as priors to guide the train-
ing of new models, as they can carry information about un-
wanted learning behavior. We randomly select X% training
images to be augmented. This helps to control the impact
of augmentations by adjusting the number of images being
augmented. The selected images are augmented by retain-
ing the dominant frequencies of other classes. That is, we
use the DFMs as masks to filter the Fourier spectrum of the
images:

x̂i
m = F−1[F [xi

m]⊙DFMk] (i ̸= k),

where xi
m is the mth image in the dataset of class i, DFMk

is the dominant frequency map of a randomly selected class
k, F and F−1 indicate the Fourier transform and the in-
verse transform, and x̂i

m is the augmented version being fil-
tered by the DFM. We apply element-wise multiplication of
the Fourier spectrum of xi

m and DFMk (the process of fil-
tering), and obtain the augmented image x̂i

m through com-
puting the inverse Fourier transform of the filtered Fourier
spectrum of xi

m. Note that, i is not equal to k. This en-
forces that the models learn from the dominant frequencies
of class k to classify the images of class i. To sum up,
DFM-X augmentation mitigates frequency shortcut learn-
ing by highlighting features or visual cues across the whole
dataset that are originally specific for certain classes.

3.2. Evaluation of corruption robustness

Common image corruptions are visual transformations
applied to images and might affect the ability of models to
extract semantic features (e.g. Gaussian noise and defocus
blur [9]), thus negatively influencing model robustness. We
utilize the mean corruption error (mCE) and the relative
corruption error (rCE) to evaluate the corruption robustness
of models on datasets containing sub-datasets, e.g. CIFAR-
C that are corrupted by one corruption [9], computed as:

mCE =
1

|C|
∑
c∈C

∑5
s=1 CE

f
s,c∑5

s=1 CE
baseline
s,c

,

rCE =
1

|C|
∑
c∈C

∑5
s=1(E

f
s,c − Ef

clean)∑5
s=1(E

baseline
s,c − Ebaseline

clean )
,

where CEf
s,c is the classification error of model f on a test

set corrupted by c (e.g. defocus blur and shot noise) with
severity s ∈ {1, 2, 3, 4, 5}. The higher the severity, the more
influence the corruption effect has on the images. C is the

set of corruptions in the entire test set and baseline is the
baseline model for comparison. The mCE measures the rel-
ative classification performance of a model normalized by
that of the baseline. The rCE additionally measures the per-
formance degradation of model f on corrupted images w.r.t.
their clean version. When mCE and rCE are less than one,
this indicates that model f is more robust than the baseline,
as it has less classification error in general. Additionally,
we use standard accuracy (SA) to evaluate the performance
of models on the original test dataset. The robust accuracy
(RA), instead, is the average accuracy of the models tested
on the corrupted versions of the test set.

3.3. Evaluation of adversarial robustness

We evaluate the accuracy of models under FGSM and
PGD attacks. These attacks usually have a bias toward high-
frequency. As shown in [3], inducing low-frequency bias to
models during training can improve adversarial robustness.
Differently, our augmentation approach enforces models to
learn from a wider range of frequencies with the model-
distilled prior knowledge from data, which might be benefi-
cial for adversarial robustness. We use L∞-norm bounded
perturbation ϵ ranging from 1/255 to 10/255. For the PGD
attack, we use 10 steps and set the step size 2.5ϵ/10 to en-
sure that the boundary of the ϵ-ball is reached.

4. Experiments and results
4.1. Datasets

We use CIFAR-10 [12], which contains 10 classes of
50000 training images and 10000 testing images. For the
evaluation of corruption robustness, we use its corrupted
variant CIFAR-C [9], which includes 19 corrupted subsets.
The 19 corruptions are categorized into four groups, includ-
ing noise (Gaussian, impulse, shot, speckle), blur (defocus,
glass, Gaussian, motion, zoom), weather (brightness, fog,
frost, snow, spatter), and digital transformation (contrast,
elastic, JPEG compression, pixelate, saturate). For each
corruption, there are five levels of severity. High severity
indicates a high impact of corruption on images.

4.2. Training setup

We train ResNets for 200 epochs on the CIFAR-10
dataset. The initial learning rate is 0.01, reduced by a
factor of 10 if the validation loss does not decrease for
10 epochs. We use batch size 64 and an SGD optimizer
with momentum 0.9 and weight decay 10−4. Note that,
low-capacity models are more prone to shortcut learning
than high-capacity models [6] and shortcuts in the data are
supposed to be architecture-agnostic. Thus, we compute
the DFMs of ResNet18, a relatively low-capacity model,
in DFM-X augmentation. To compare DFM-X with other
commonly used augmentation techniques, we train mod-
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Figure 3: An image of truck is augmented by AugMix (the
first row), AutoAugment (the second row), and DFM-X (the
third row). The fourth row demonstrates the corresponding
DFM used to obtain the images in the third row.

Model SA RA mCE (%) rCE (%)

ResNet18 92.15 77.49 100 100
+ DFM-30 92.11 80.43 87.94 75.92
+ DFM-50 92.10 81.4 86.61 78.73
+ DFM-70 92.27 81.2 85.36 76.74

+ AugMix 93.39 83.47 76.42 72.71
+ AugMix + DFM-30 91.44 83.65 80.68 58.18
+ AugMix + DFM-50 91.99 84.56 77.33 62.58
+ AugMix + DFM-70 91.08 84.2 80.3 57.19

+ AutoAugment 93.47 82.78 75.81 65.86
+ AutoAugment + DFM-30 92.43 83.29 78.28 64.72
+ AutoAugment + DFM-50 92.72 84.37 73.23 59.48
+ AutoAugment + DFM-70 91.39 83.65 79.97 59.45

ResNet34 93.02 79.84 90.16 93.34
+ DFM-30 93.75 82.32 78.65 80.76
+ DFM-50 93.51 81.57 80.59 79.07
+ DFM-70 92.7 81.93 81.7 72.26

+ AugMix 92.18 83.71 79.69 66.63
+ AugMix + DFM-30 93.49 86.42 65.81 54.1
+ AugMix + DFM-50 92.74 85.77 70.06 54.1
+ AugMix + DFM-70 93.28 85.45 69.27 58.14

+ AutoAugment 94.08 83.66 72.97 70.32
+ AutoAugment + DFM-30 93.71 85.72 66.38 57.58
+ AutoAugment + DFM-50 93.46 85.55 67.42 56.36
+ AutoAugment + DFM-70 93.35 85.96 67.53 57.06

Table 1: Performance of ResNets on CIFAR-10 and CIFAR-
C. The best values of each group of models are in bold and
the best values for ResNet18 and ResNet34 are underlined.

els with AugMix or AutoAugment. Example images aug-
mented by AugMix, AutoAugment and the proposed DFM-
X are shown in Figure 3.

4.3. Robustness against common corruption

We report the results of the models trained with different
augmentation strategies in Table 1. The best values of mod-
els with the same architecture trained with namely DFM-
X, AugMix + DFM-X and AutoAugment + DFM-X, are
highlighted in bold, and the best values for ResNet18 and
ResNet34 are underlined.

DFM-X benefits corruption robustness. ResNets
trained with DFM-X augmentation are more robust against
common corruptions than ResNets trained without DFM-X.
They have higher or comparable standard accuracy than
ResNets trained without DFM-X, as well as higher robust
accuracy. This indicates that DFM-X benefits the robust-
ness of models to common corruptions without impairing
their performance on the clean dataset. We conjecture that
DFM-X enforces models to learn from a wider range of
frequencies with the prior knowledge provided, and thus
more meaningful and task-related semantics is used by the
models, benefiting their corruption robustness.

Comparison with existing augmentations. We compare
DFM-X to existing and largely-used augmentation tech-
niques like AugMix [10] and AutoAugment [5]. The mod-
els trained with DFM-X, AugMix, and AutoAugment have
similar SA and RA, while the model trained with DFM-X
has higher mCE than the models trained with AugMix or
AutoAugment. The rCE of models trained with DFM-X is
also higher than that of models trained with AutoAugment
or AugMix. We attribute this to the fact that other aug-
mentation techniques focus on increasing data variety to re-
duce the distribution gap between training and testing data,
and may use augmentations that are visually similar to the
corruptions in CIFAR-C. Our approach, instead, focuses on
exploiting as much information as possible from the clean
training data without additionally overlaying corruption-
like variations, learning more meaningful and task-related
semantics. We thus investigate the effectiveness of com-
bining DFM-X with another augmentation technique, as
they augment images differently (DFM-X exploits data ef-
ficiently while the others increase data variety by adding
corruption-like variations).

Boosted robustness with a complementary technique.
We apply DFM-X together with either AugMix or Au-
toAugment during training, and observe that this con-
tributes to further improving corruption robustness (Ta-
ble 1). For example, ResNet18 trained with Aug-
Mix/AutoAugment and DFM-50 augmentations generally
achieve higher robust accuracy than the models trained
with only AugMix or AutoAugment. Moreover, they have
lower or comparable values of mCE and rCE, compared to



those trained with AugMix or AutoAugment only. When
ResNet34 is trained with DFM-30 and AugMix or Au-
toAugment augmentations, the models demonstrate more
robustness than those trained with only one of the augmen-
tation techniques. This indicates that combining augmenta-
tion techniques that are complementary can further benefit
corruption robustness. For the future design of augmenta-
tion techniques, we should focus on inspecting data itself
and exploiting it more efficiently, rather than directly in-
creasing the variety of data by adding visual variations.

Intriguingly, when ResNet18 and ResNet34 are trained
with AugMix, both models show similar corruption robust-
ness, though ResNet34 has a larger model capacity than
ResNet18. ResNet34 + AugMix even has a slightly worse
mCE than ResNet18 + AugMix. However, when models
are trained with AugMix + DFM-X, ResNet18s have worse
mCEs than that trained solely with AugMix. ResNet34
trained with AugMix + DFM-30, instead, demonstrates sig-
nificantly improved corruption robustness (mCE equal to
65.81). As low-capacity models are more prone to shortcut
learning than high-capacity models, DFM-X together with
AugMix might not be enough to mitigate shortcut learning
in ResNet18 but benefits the robustness of ResNet34. We
conjecture that for low-capacity models, there needs ex-
tra regularization to overcome shortcuts. Moreover, Aug-
Mix results in displacement effects that are visually similar
to those in some DFM-augmented images (see Figure 3).
Thus, there is an partial overlap in the augmentation ef-
fects. When combining DFM-X with other augmentation
techniques, it is important to consider what kinds of opera-
tion are appropriate and complementary to DFM-X.

The choice of X. Our results show that the percentage
of training images subject to augmentation via DFM-X
does not influence significantly on the corruption robust-
ness when the models are trained with DFM-X solely (they
have close RA, mCE and rCE). However, when DFM-X is
incorporated with AugMix or AutoAugment, models with a
different capacity might perform better as a different value
of X is chosen. For instance, ResNet18 prefers DFM-50
while ResNet34 prefers DFM-30. We attribute this to model
capacity. As a relatively low-capacity model, ResNet18 suf-
fers more from shortcut learning than ResNet34, and thus it
needs more regularization during training. The more im-
ages are augmented, the more regularization is imposed on
the training process.

Robustness against different corruption types. In Ta-
ble 2, we present a detailed overview of the robustness of
ResNet18 trained with different augmentation techniques
against the four corruption categories in CIFAR-C, namely
noise, blur, weather conditions, and digital transformation.
The best results of ResNet18 trained with DFM-X, AugMix

Model Noise Blur Weather Digital

ResNet18 100 100 100 100
+ DFM-30 88.75 91.6 85.2 86.6
+ DFM-50 78 94.6 84.8 87.2
+ DFM-70 86.5 91 84 79.7

+ AugMix 62 86.2 75.2 79.8
+ AugMix + DFM-30 53.5 92.2 85.6 86.2
+ AugMix + DFM-50 50.75 91 79.6 82.6
+ AugMix + DFM-70 50.5 95.4 83.8 85.8

+ AutoAugment 72.75 85.4 63.8 80.8
+ AutoAugment + DFM-30 62 95.8 73.4 78.2
+ AutoAugment + DFM-50 61.75 89 68.6 71
+ AutoAugment + DFM-70 61.5 97.8 77.4 79.8

Table 2: The corruption error (CE) (%) of ResNet18s
trained with different augmentation techniques on each cor-
ruption type (Baseline: ResNet18). The best values in each
group are highlighted in bold.

+ DFM-X and AutoAugment + DFM-X are highlighted in
bold respectively. Observed from values in bold, models
trained with DFM-X demonstrate better robustness against
all types of corruption than the models trained without
DFM-X. Among the four corruption types, the improve-
ment in the robustness toward blur corruption is relatively
lower than that of the other three types. As demonstrated
in [27], blur corruptions, such as defocus blur and Gaus-
sian blur, have energy highly concentrating on middle-high
frequencies. Our augmentation technique enforces models
to look into a wider range of frequencies for classification,
and thus, the models are relatively less robust to corrup-
tions having a specific energy concentration in the Fourier
spectrum than those having a rather even energy distribution
over the spectrum, e.g. Gaussian and shot noise.

4.4. Robustness against adversarial attacks

We evaluate the adversarial robustness of the models
trained with different augmentations under FGSM and PGD
attacks. We select ResNet18 + AugMix/AutoAugment +
DFM-50 and ResNet34 + AugMix/AutoAugment + DFM-
30, as models with a different capacity prefer a different
percentage of images to be augmented. We report the clas-
sification accuracy of the models under the FGSM and PGD
attacks in Tables 3 and 4, respectively.

Learning from more frequencies improves robustness.
We observe that ResNets trained with DFM-X show im-
proved adversarial robustness to the FGSM and PGD at-
tacks. Unlike PGD and FGSM adversarial training which
sacrifices performance on natural images [13], DFM-X
maintains high model performance on the original test set
while improving the robustness of models to both FGSM
and PGD attacks. We attribute this to the wider learning
range of frequencies, when compared to models trained
with standard setups. DFM-X augments images based on



Model L∞-norm bounded perturbation of size ϵ
1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

ResNet18 86.47 75.66 64.03 54.3 46.46 40.05 35.04 31.83 28.92 26.47
+ DFM-50 87.71 78.97 69.43 60.7 53.05 46.55 41.04 37.18 34.09 31.61

+ AugMix 88.02 79.27 69.28 60.38 52.52 46.03 41.17 36.93 33.57 30.69
+ AugMix + DFM-50 88.29 79.97 71.07 62.41 55.23 48.75 43.38 38.92 35.03 31.67

+ AutoAugment 87.72 76.13 65.26 55.7 48.99 43.85 39.91 36.64 33.97 32.15
+ AutoAug + DFM-50 87.7 78.51 69.03 60.68 54.03 48.33 43.94 40.66 37.8 35.43

ResNet34 87.7 77.53 67.61 58.12 50.71 45.21 40.32 36.69 33.52 30.91
+ DFM-30 88.45 79.17 70.48 63.14 57.32 52.96 48.88 46.03 43.72 41.81

+ AugMix 88.71 79.56 70.14 60.99 52.62 45.78 40.12 35.58 31.85 28.72
+ AugMix + DFM-30 88.8 81.16 72.23 63.34 55.37 48.41 42.17 37.45 33.55 30.35

+ AutoAugment 87.39 76.76 65.98 57.06 50.48 45.3 41.04 38.05 35.55 33.68
+AutoAugment + DFM-30 89.23 81.96 74.92 68.34 63.01 58.81 54.93 51.64 49.13 46.94

Table 3: Accuracy (%) of models under FGSM attack. The best values of ResNet18 and ResNet34 are highlighted in bold.

Model L∞-norm bounded perturbation of size ϵ
1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

ResNet18 85.39 70.79 53.5 38.43 26.09 18.13 12.98 9.95 7.98 6.96
+ DFM-50 86.93 75.4 60.63 45.88 33.61 24.8 18.51 14.15 11.16 9.09

+ AugMix 87.36 74.91 58.75 43.35 30.54 21.49 15.52 11.57 9.07 7.41
+ AugMix +DFM-50 87.71 76.86 63.81 51.01 38.22 29.99 22.95 17.3 13.63 11.14

+ AutoAugment 86.08 67.37 46.96 32.17 21.48 15.03 11.29 8.63 7.01 6.1
+ AutoAugment + DFM-50 86.45 71.45 54.86 40.13 28.75 20.79 15.79 12.27 9.89 8.15

ResNet34 86.85 73.35 57.26 42.31 30.72 21.72 15.42 11.55 8.74 7.38
+ DFM-30 87.94 75.03 58.78 44.29 33.2 25.45 20.16 16.35 13.87 11.72

+ AugMix 88.18 76.39 62.5 48.74 36.88 27.59 20.52 15.6 12.17 9.8
+ AugMix + DFM-30 88.25 78.38 65.2 51.62 39.6 29.55 22.58 17.35 13.69 10.93

+ AutoAugment 86.05 68.98 49.95 34.35 24.14 17.62 13.11 10.42 8.69 7.39
+ AutoAugment + DFM-30 89.41 76.97 61.64 46.6 35.1 26.33 20.89 16.94 14.32 12.35

Table 4: Accuracy (%) of models under PGD attack. The best values of ResNet18 and ResNet34 are highlighted in bold.

the prior knowledge of the reliance of models on specific
frequencies, with the aim of reducing it during training.
Thus, the frequency bias of models associated with their
vulnerability to adversarial noise is reduced, benefiting ad-
versarial robustness.

DFM-X vs. AugMix. In Figure 4 we compare the results
of ResNet34 trained without augmentation or with DFM-
30, AugMix, and AugMix + DFM-30. We observe that the
model trained with AugMix (see the purple line) demon-
strates less robustness to FGSM attack, compared to the
model trained with DFM-30 (see the blue line). Regard-
ing the PGD attack, both models show comparable robust-
ness. Combining AugMix with DFM-30 does not obtain
more robustness to the FGSM attack when ϵ becomes large,
but the model is robust to the PGD attack. From Table 3,
ResNet18 trained with AugMix shows similar robustness to
the FGSM attack to the one trained with DFM-50, but it
is less robust to the PGD attack. We conjecture that Aug-
Mix, resulting in images with similar displacement effects
to those augmented by DFM-X (see Figure 3), might in-
directly augment the frequency information of images like

DFM-X. But it is less effective than DFM-X, which em-
ploys model-distilled prior knowledge from the data in aug-
mentation, rather than randomly adding augmentations to
images. Combining DFM-X with AugMix avoids unwanted
learning behavior and increases data variety, thus obtaining
more adversarial robustness.

Reduced negative impact of AutoAugment. We demon-
strate in Figure 5 that ResNet34 trained with DFM-30
(see the blue line) has better adversarial robustness than
ResNet34 and ResNet34+AutoAugment. Interestingly,
training solely with AutoAugment impairs adversarial ro-
bustness slightly to FGSM attack and significantly to PGD
attack (see green lines in Figure 5). When combining DFM-
30 and AutoAugment (see the orange line), the model gains
more robustness to the FGSM attack, compared with the
one trained only with DFM-30. We observe from Tables 3
and 4 that AutoAugment also impairs the adversarial robust-
ness of ResNet18 to the FGSM and PGD attacks. Train-
ing the model with AutoAugment and DFM-X augmen-
tations benefits the adversarial robustness of the models.
Although AutoAugment alone harms the robustness, using
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Figure 4: ResNet34 trained without augmentation or with
DFM-30, AugMix, or AugMix + DFM-30 under (a) FGSM
attack and (b) PGD attack.

DFM-X avoids much performance degradation under the at-
tacks. From the augmented images in Figure 3, DFM-X
results in different variations from those augmented by Au-
toAugment. We attribute the models having better adver-
sarial robustness than those trained with only one of them
to the complementarity between DFM-X and AutoAugment
in terms of augmentation effects.

5. Conclusions
We propose DFM-X, an augmentation approach that

leverages prior knowledge about frequency shortcuts. Mo-
tivated by shortcut mitigation, our method aims at avoiding
unwanted shortcut solutions by enforcing models to learn
from a wider range of frequencies and thus more seman-
tics. DFM-X exploits data efficiently, as it targets implicit
problems in the data that might impair the generalization
and robustness of models, unlike other commonly used aug-
mentation techniques focusing on increasing data variety by
adding visual variations. Our experimental results show that
DFM-X enhances model robustness against common cor-
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Figure 5: ResNet34 trained without augmentation or with
DFM-30, AutoAugment, or AutoAugment + DFM-30 un-
der (a) FGSM attack and (b) PGD attack.

ruptions and adversarial attacks without sacrificing the stan-
dard performance on the original test set. Combining DFM-
X with other commonly used augmentation techniques, e.g.
AugMix and AutoAugment, gains more robustness than us-
ing only one of them. DFM-X compensates for the weak-
ness of AutoAugment in impairing adversarial robustness.
We observe that the complementarity between augmenta-
tion techniques is important to model performance. Dis-
tilling prior knowledge about destructive learning behavior
from data helps exploit data more efficiently. We suggest
future research on designing augmentation strategies that
consider data characteristics instead of directly increasing
the visual variations of images to bridge the distribution gap
between training and testing data.
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