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Chapter 5

OnViews, Diagrams, Programs, Animations, and Other Models

Henderik A. Proper and Giancarlo Guizzardi

Humanity has long since used models in different shapes and forms to under-
stand, redesign, communicate about, and shape, the world around us; including
many different social, economic, biological, chemical, physical, and digital as-
pects. This has resulted in a wide range of modeling practices. When the models
as used in such modeling practices have a key role to play in the activities in
which these modeling practices are ‘embedded’, the need emerges to consider
the effectiveness and efficiency of such processes, and speak about modeling
capabilities. In the latter situation, it becomes relevant to develop a thorough
understanding of the artifacts involved in the modeling practices/capabilities.
One field in which models play (an increasingly) important role is the field
of system development (including software engineering, information systems
engineering, and enterprise design management). In this context, we come
across notions, such as views, diagrams, programs, animations, specifications,
etc. The aim of this paper is to take a fundamental look at these notions. In
doing so, we will argue that these notions should actually be seen as specific
kinds of models, albeit for fundamentally different purposes.

5.1 Introduction

Whenever we are confronted with complex phenomena, such as the processes we observe
in nature, the construction of buildings, the design of information systems, etc, we tend to
‘work with’ an abstraction (in our mind) of the actual phenomenon; zooming in on those
‘properties’ of the phenomenon that matter to us, and filtering out all the properties that are
not germane to the goals at hand. When we externalize this abstraction in terms of some
artifact, then this artifact is a model (to us, as an individual) of the observed phenomenon.

More generally, one can observe how humanity has long since usedmodels to understand,
redesign, communicate about, and shape, the world around us, including many different
social, economic, biological, chemical, physical, and digital aspects. These models may take
different shapes and forms, such as sketches, precise drawings, textual specifications, or
tangible forms mimicking key physical properties of some original. This wide spread, and
natural (Zarwin et al. 2014) use of models has resulted in many different modeling practices.

When the models as created and/or used in such modeling practices have a key role
to play in the activities in which these modeling practices are ‘embedded’, a natural need
emerges to consider the effectiveness and efficiency of such processes, and speak about
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modeling capabilities.1 In the latter situation, it becomes relevant to develop a thorough
understanding of the artifacts involved in the modeling practices/capabilities.

One field in which models play (an increasingly) important role is the field of system
development (including software engineering, information systems engineering, and en-
terprise design management2). In this context, we come across notions, such as views,
diagrams, programs, animations, specifications, etc. In this chapter, we aim to take a deeper
look at these notions, where we will also argue that these notions should be seen as specific
kinds of models; albeit for fundamentally different purposes.

In line with this, the remainder of this chapter is structured as follows. In Section 5.2,
we start by zooming in on the notion of (domain) model. In doing so, we will discuss the
importance of knowing a model’s purpose and its potential Return on Modeling Effort
(RoME) in particular. This will then also take us, in Section 5.3 to the notion of conceptual
model, which is a class of models that has initially grown to play an important role in the
field of information systems engineering, but has a much wider role to play. Identifying
conceptual models as a distinct class of models, does suggests there to be a class of domain
models that are not conceptual. This also results in a need to speak about conceptual fidelity.

Building on this grounding, Section 5.4 discusses the notion of view as complexity
management mechanism that supports making complex models cognitively tractable. Finally,
before concluding, Section 5.5 position notions such as diagrams, programs, and animations,
as being specific kinds of models, covering different purposes, different audiences.

5.2 Domain Models and Their RoME

Based on foundational work by, e. g., Apostel (1960), and Stachowiak (1973), more recent
work on the same by different authors (Rothenberg 1989; Harel and Rumpe 2004; Thalheim
2011; Sandkuhl et al. 2018), as well as our own work (Hoppenbrouwers et al. 2005; Proper
et al. 2005; Guarino et al. 2020; Guizzardi 2007; Bjeković et al. 2014; Proper and Guizzardi
2020; Proper and Guizzardi 2021; Proper and Guizzardi 2022), we currently understand a
domain model to be:

A social artifact that is understood, and acknowledged, by a collective human
agent to represent an abstraction of some domain for a particular cognitive
purpose.

With domain, we refer to ‘anything’ that one can speak and/or reflect about; i.e. the domain
of interest. As such, domain simply refers to ‘that what is being modeled’.3 Furthermore,
the domain could be something that already exists in the ‘real world’, something that is
desired to exist in the future, something imagined, or even something that is brought about
by the existence of the model itself.4 In the context of system development at large, more

1 Ontologically speaking, capabilities (or capacities) are gradable dispositions, i. e., properties that are manifested
in certain situations via the occurrences of events of a certain kind (Azevedo et al. 2015).

2 Used here as a generalization of (among others) Business Process Management, Enterprise Architecture
Management, Enterprise Engineering, Enterprise Transformation, and Organization(al) Design.

3 In Guizzardi (2013), a more precise characterization of the notion of the domain being modeled is provided in
terms of usage: abstraction – when referring to a mental model (Guarino et al. 2020) of a particular state of
affairs (e. g., a configuration of the existing subway lines of Milan); conceptualization – when we are referring
to general notions that are repeatable across multiple state of affairs (e. g., the concept of a subway line, being
an ancestor, or an offspring in genealogy).

4 In Guizzardi and Proper (2021), we discussed how models can socially be seen as complex speech acts and, as
such, they can be characterized as having different relations to world in terms of directions of fit. In particular,
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5.2. Domain Models and Their RoME

specific classes of domain models include enterprise (architecture) models, business process
models, ontology models, organizational models, information models, software models, etc.
We consider all of these as valued members of the larger family of domain models.

A model must always be created for some cognitive purpose, i. e., to express, specify,
learn about, or experience, knowledge regarding the modeled domain. This also implies that,
in line with the cognitive purpose of the model, some (if not most) ‘details’ of the domain
are consciously filtered out. As we regard a model to be an artifact, this also implies that
it is something that exists outside of our minds, i. e., as ‘represented abstractions’. More
specifically, a model is seen as a social artifact in the sense that its role as a model should be
recognizable by a collective human agent.5 The understood, and acknowledged, by a collective
human agent phrase also differentiates domain models from, e. g., machine-learned models.
A domain model can certainly involve complex mathematical formalisms, or computer
readable specifications. However, it must be transparent expressions of a human agent’s
mental model (or conceptualization), in line with the cognitive purpose. In the context of
system development, models typically take the form of some ‘boxes-and-lines’ diagram.
More generally, however, domain models can, depending on the purpose at hand, take other
forms as well, including (controlled) natural language texts, mathematical specifications,
games, sketches, animations, simulations, and physical objects (we will elaborate on this in
Section 5.5).

Finally, the creation, administration, and use, of such domain models, as well as the
development of modeling capabilities, require investments in terms of time, money, cognitive
effort, etc. We contend that such investments should be met by a (potential) return. In other
words, the resulting models and/or the processes involved in their creation, administration,
and use, should add value that make these investments worth while. This has resulted in
the notion of Return on Modeling Effort, which we first coined in a publication,6 in Op ’t
Land et al. (2008) while a more elaborate discussion of the concept in Guizzardi and Proper
(2021) and Proper and Guizzardi (2022) is provided as part of our joint endeavor to better
understand the foundations of (domain) modeling and modeling practices.

The enactment of a modeling practice and the exercise of a modeling capability is an
event, an intentional event (or an action). From an ontological point of view, events are
always manifestations of dispositions. Ordinary events are manifestations of interacting
dispositions (Molnar 2003; Mumford and Anjum 2011). In particular, modeling events are
the manifestation of the modeler’s beliefs, intentions and modeling capabilities interacting
with capabilities/affordances that are present in the modeling ecosystem at hand, including
modeling languages (in terms of primitives, semantics and pragmatics), other models, tools,
methodologies, etc. In line with the ontology of value propositions proposed in Sales et al.
(2017), we speak of value experiences with its benefits (afforded by a system of dispositions)
and sacrifices. This view allows us to think of the enactment of modeling practices as value

we recognized the case of the constructive models, i. e., models with a double direction of fit, namely, they
represent the propositional content of a creative speech act and end up describing the entities that they help to
create. Examples include patent diagrams or diagrams that, e. g., create new real estate properties by dividing
a piece of land.

5 The pre-noun collective does suggest that it would require the involvement of multiple people. We do, indeed,
acknowledge the use of domain models by an individual person as well, but prefer to treat this as a special
case concerning a ‘self-shared’ model.

6 The notion of RoME actually made its first informal appearance in Proper (2005) as a leading principle in the
research group of one of the authors, while a first informal elaboration of the concept was published as a blog
posting (Proper 2009).
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experiences and, hence, to think of RoME as Return of Model Experiences,7 also underlining
the fact that the value of models lies mainly in their Value in Action (ViA) (Proper and
Guizzardi 2022) during their creation and/or use.

The complexity management tools (views) as discussed in Section 5.4, as well as the other
types of modeling artifacts we discuss in Section 5.5, result in different types of artifacts
that afford different modeling experiences leading to Value in Action.

5.3 Conceptual Fidelity

In the context of information systems engineering, an important role is played by conceptual
models; which we see as a specific class of domain models. According to the traditional
information systems engineering view (ISO/IEC JTC 1/SC 32 Technical Committee on Data
management and interchange 1987), a conceptual model captures the essential structures
of some universe of discourse. In this context, conceptual models are used to express the
concepts, and their (allowed) relations, of the universe of discourse (while avoiding the
inclusion of implementation/storage details).

The field of information systems engineering, indeed, provides a fruitful application area
for conceptual modeling. At the same time, however, we suggest to avoid a ‘framing’ of what
a conceptual model is to this application area only. As such, we suggest a more generalized
understanding of the notion of conceptual model. More specifically, based on Proper and
Guizzardi (2020), Proper (2021) and Guarino et al. (2020), in our current understanding a
conceptual model is:

A domain model, where:

1. the purpose of the model is dominated by the ambition to remain as-true-
as-possible to the conceptualization of the domain by the collective agent,
while

2. there is an explicit mapping from the elements in the model to the latter
domain conceptualization.

The domain conceptualization identifies the fundamental concepts in terms of which the
collective agent create(s) their conception of the world. This mapping specifies the real-world
semantics of that model and characterizes the ontological commitment (Guizzardi 2007) of
the model (and the collective agent) as well as its real-world semantics.

Returning to the above point regarding the need to consider the role of conceptual
models beyond the field of information systems engineering, the ambition to as-true-as-
possible to the conceptualization of the domain by the collective agent is not only of value in
the context of information systems engineering, but other contexts as well. For instance,
Guarino et al. (2020) already stated that the history of conceptual modeling can be traced
back to at least the 60s (Quillian 1968). Furthermore, ontology engineering (Guizzardi 2007)
also involves the construction of conceptual models representing a (domain) ontology.

At a more general level, we also observe that in many different endeavors in which we
(as humans) aim to understand the workings of some domain and/or aim to express, or
study, design alternatives, we actually do so in terms of (purpose and situation specific)
domain models. This includes many examples across science and engineering at large. We

7 We thank Tiago Sales and Isadora Valle Sousa for calling this to our attention. We shall explore these notions
together in a future paper.
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also argue that in these cases, a deepening of our understanding of the essential mechanisms
leads to a natural drive to create domain models that remain as-true-as-possible to the
original domain (and our conceptualization thereof), i. e., conceptual models.

Since a conceptual model is meant to be used by human agents in tasks such as domain
understanding and learning, communication, problem-solving, and meaning negotiation
(Guarino et al. 2020), another fundamental quality attribute of a conceptual model is its prag-
matic efficiency, i. e., how easy it is for those human agents to perform these aforementioned
tasks with these models (Guizzardi et al. 2002; Guizzardi 2013).

As a result, a conceptual model provides an explicit – human understandable, ideally,
pragmatically efficient – representation of a theory about the entities and their ties that
are assumed to exist in a given domain of interest (the ontological commitment); as such
explicitly capturing descriptive and/or prescriptive selected aspects of the modeled domain.
Conceptual models, therefore, enable us to explicitly clarify the things we talk and reason
about (at a chosen level of abstraction and from a desired perspective).

Identifying conceptual models as a specific class of domain models, does raise the
question regarding the role of ‘other’ domain models that are ‘not conceptual’. In Proper and
Guizzardi (2020), it is suggested to, next to conceptual models, also identify computational-
design models. These latter models may involve ‘conceptual compromises’ (with regard to
the ambition to remain as-true-as-possible to the original domain conceptualization) to cater
for highly desirable computational considerations to, e. g., support simulation, animation,
or even execution of the model. In Proper (2021), it is suggested to generalize this towards
utility-design models, to cater for the fact that ‘conceptual compromises’ may not only be
introduced for computational purposes, but also for e. g., experiential purposes, such as the
ability to touch, feel, or even ‘enact’ a model.

An interesting analogy, which certainly needs further investigation, is the notion of
surrogate modeling in the context of simulation (Razavi et al. 2012) of real-world systems. The
level at which a simulation model reflects all (relevant) properties of a (planned/existing)
real-world system is referred to as the fidelity of the simulation model: ‘Fidelity in the
modeling context refers to the degree of the realism of a simulation model’ (Razavi et al.
2012). Likewise, one can speak of being as-true-as-possible-to a given domain as a sort
of conceptual fidelity. Conceptual fidelity, also frequently called domain appropriateness,
represents the level of homomorphism between a given representation and the underlying
domain conceptualization it commits to. In the ideal case, this representation artifact
is not only isomorphic to the structure of that conceptualization (i. e., it represents in a
univocal and non-redundant way all its constituting concepts and only them) but it also
only allows for interpretations that represent state of affairs deemed acceptable by that
conceptualization (Guizzardi et al. 2005; Guizzardi 2013). As, in the case of simulation
models of real-world systems, the involved high fidelity models may be too computationally
intensive to simulate as a whole, one uses so-called surrogate models (Razavi et al. 2012)
that are computationally more efficient, while approximating the high fidelity model good
enough to meet the (optimization) purpose at hand.

In an information systems engineering context, the ambition for a conceptual model
to remain as-true-as-possible to the conceptualization of the domain by the collective agent,
has a direct correspondence to the conceptualization principle as put forward in the well
known ISO report on the design of information systems (ISO/IEC JTC 1/SC 32 Technical
Committee on Data management and interchange 1987).
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It is important to note that we do not argue that non-conceptual models are a bad thing; far
from it. However, it needs to be clear what the ‘conceptual deviations’ are of a non-conceptual
model in relation to the conceptual model of the same domain, and what the benefit are of
these deviations in terms of e. g., computational efficiency or experiential properties. As
such, it might quite well be the case that one conceptual model has different associated
non-conceptual models catering for different needs (Guizzardi 2010). Conversely, we would
expect that each non-conceptual model has been based on (at least one) corresponding
conceptual model.

Returning briefly to the notion or RoME, we postulate that the RoME of a conceptual
model is at least as high as the sum of the RoME of each of the non-conceptual models that
have been derived from it.

5.4 Complexity Management and Views

As discussed in e. g., Arbab et al. (2007), Lankhorst et al. (2017) and Frank (2002), views
are positioned as providing a powerful mechanism to create domain models that are more
suitable in the communication with different stakeholders (and for different purposes)
than the ‘full scale’ model would provide. At a fundamental level, views are a complexity
management mechanism that supports making complex models cognitively tractable, while
also tuning this to the audience (and their concerns/interests at hand). In this vein, IEEE
(2000) defines the notion of view (in the context of the architecture of software systems) as:
‘A representation of a whole system from the perspective of a related set of concerns’. Based
on this definition, Lankhorst et al. (2017) speaks about a view as having an ‘underlying
model’, making it explicit that a view is indeed based on an underlying model. At the same
time, the fact that a view provides a representation of a whole system from the perspective of
a related set of concerns implies that a view is a model as well. In line with this, we currently
understand a view on another domain model (and the modeled domain) as being:

A domain model of the modeled domain, which differs from the original domain
model, while:

• being of the same level of conceptual fidelity,
• and providing an integrated subset of the potential information as provided
by the original domain model.

which we hold as being a generalization of the way(s) the notion of view is used in IEEE
(2000), Lankhorst et al. (2017) and Frank (2002) where, for instance, the from the perspective
of a related set of concerns (IEEE 2000) corresponds to the need of a view to be an integrated
subset of the information as provided by the original domain model. Note that, as a view is
a domain model as well, one can recursively create views on views.

We do realize that the information as provided by the original domain model may be hard
to formalize, as the information as provided does depend on the observer of the model.8

This is also the reason why we have added the ‘in potential’ qualification. For instance, a

8 This issue is actually analogous to the challenge of defining what information can potentially be provided by
an ‘information carrier’ in general, in the context of information retrieval systems. A theoretical framework to
explicitly reason about this has been reported in Proper and Bruza (1999) and Bommel et al. (2007). It remains a
possible avenue for further research to apply this in the context of models and views. At least for some models
with certain explanatory functions, the information content of a model can be associated with its ability to
answer why-questions (Romanenko et al. 2022b).
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large domain model might be so (cognitively) ‘overwhelming’ to an observer that they might
actually glean more information from the view than from the original model.

When the involved domain models (i. e., the view and the original domain model) are
represented in terms of explicit modeling languages, one can mathematically think of these
models as being typed-graphs that are typed in terms of the modeling concepts as provided
by the modeling language(s). In that case, the notion of ‘proper subset of the potential
information as provided by the original domain model’ can be formalized by requiring there
to be a function that maps a sub-graph of the (implied) graph representing the original
domain model to the graph that represents the view, where this function respects the
syntax and (formal) semantics of the modeling language(s) used. The requirement that the
(potential) information provided by a view should be integrated, then corresponds to the
requirement of the graph representing the view being a connected graph.

Note that models (and views) are not required to be ‘minimal’. It is allowed for models
to contain elements that can be derived from other parts of the model. This is also why,
above, we added ‘implied’ when writing ‘(implied) graph representing the original domain
model’. Consider, for instance, the derived relationships in ArchiMate (Lankhorst et al. 2017)
that, depending on the purpose at hand, may or may not be included in the model/view. As
an example, if a business role 𝑟 is assigned to (the execution of) business process 𝑝, while
business process 𝑝 is (part of) the realization of business service 𝑠, then this implies that
business role 𝑟 is also (part of) the realization of business service 𝑠.

In terms of the above discussed possible formalization of views, we currently posit there
to be four ‘stackable’ operations to construct views:

1. Selection – involving the focusing of the view on a specific part of the original model.

In this case, the mapping function should involve a bijective function between from
the (selected!) part of the graph of the original domain model, and the view’s graph.

The central question in using this operation is what is the (sub)domain to focus on in
the view? When one would be taking a photo of a subject, this would correspond to
the question of where to point the camera at. In this case, as the metaphor goes, the
angle (perspective) from in which the picture (i. e., model) is taken reveals or occludes
certain elements from the scene (i. e., domain).

In a system development context this operation pertains to both the scoping of
what is to be included in the model/view in terms of e. g., enterprise-wide, business
unit specific, etc., as well as the perspective in terms of the high level structures
the well-known ‘engineering frameworks’ (e. g., Sowa and Zachman 1992; Spewak
1993; Boar 1999; The Open Group 2011; van’t Wout et al. 2010; DoD Deputy Chief
Information Officer 2011; Frank 2014; Band et al. 2016). For each of the ‘cells’ of the
latter engineering frameworks, one can create a view on the model of the system (of
systems) as a whole.

2. Distillation – involving a further abstracting away from the original domain, by
distilling specific aspects of the domain.

In ‘distilling’, one may need to combine certain elements/properties from the original
domain model. Therefore, in this case, the mapping from the (selected part of the)
original domain model to the view’s graph would involve a surjective (but possibly
bijective) function.
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The central question in using this operation is what phenomena to include in the view?
In terms of the analogy of taking photos, this would correspond to the question if one
would make a color photo, a gray-scale photo, or possibly even an infra-red photo.
In a system development context, this is where we find the need to hone in on specific
aspects (e. g., process flows, resource use, information flows, etc.), and/or cross-cutting
concerns (e. g., security, privacy, sustainability, etc.).

3. Summarization – also involves a further abstracting away from the original domain,
but now by clustering of different elements in the original domain model into more
coarse grained elements.
As a result, the mapping from the (selected part of the) original domain model to the
view’s graph would again involve a surjective function, but in this case, this is not
allowed to be a bijective function.
The leading question here is what level of detail is needed? In terms of taking a photo,
this is the question of the level at which one zooms in/out on the subject in relation
to the resolution of the optical sensors as used in the camera.

4. Translation – involving a translation between one modeling language to another
modeling language (and medium).
This implies that the mapping needs to provide a ‘translation’ between the modeling
languages used.
The main question for this operation is what is the best language and medium to
represent the view?
In a system development context, this is where also find the variety of representa-
tions that are tuned to different stakeholders in terms of e. g., heat-maps, matrix-like
representations, textual descriptions combined with info-graphics, animations, etc.
In Section 5.5, we will return to this point in terms of the representation of a model
actually involving a connection between its informational payload and a concrete
‘medium system’.

The needed mix of operations used in creating a specific view, depends on the specific
purpose for the view at hand. Even more, given one domain model, one can even construct
an entire hierarchy of views, using the different operations.

As mentioned above, in the context of system development, the selection operation has
a natural link to the high level perspectives of engineering frameworks. Collectively, the
views that correspond to the different cells in such frameworks provide different ‘chunks’
that make up the model of the entire (as-is/to-be) system. In addition, strategies exist that
enable a recoding or modularization of models using an underlying foundational ontology.
In model recoding (Figueiredo et al. 2018), models are re-organized by grouping elements in
terms of higher-granularity modeling primitives. In model modularization (Guizzardi et al.
2021), models are reorganized in cognitively tractable chunks that can be understood as a
whole.

The distillation, summarization, and translation operations are directly linked to the
question of the concepts and relations to be used in modeling the domain. In other words,
the ontological commitment by which we will look at the domain. This is where we find the
meta-models9 underlying actual modeling languages and methods (e. g., OMG 2003; Band

9 The term meta-model is often overloaded in the area. Often, it refers to the description of a language’s
abstract syntax. In contrast, we are using it here in the sense of what is termed the ontological meta-model
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et al. 2016), as well as explicit ‘content frameworks’ (e. g., van’t Wout et al. 2010; The Open
Group 2011) that (albeit without a ‘concrete syntax’) do define the concepts and relation in
terms of which the system is to be observed and modeled.

The question of what level of detail is needed? behind the summarization operation
is also directly linked to the role of views as a complexity management mechanism to
make complex models cognitively tractable. What is needed for summarization is some
kind of ‘(un)folding’ mechanism. Having a (recursive) (un)folding mechanism also enables
the construction of a dynamic hierarchy of views, that allows for a navigation in terms of
zooming in/out akin to the way we use Google Maps.

The needed (un)folding mechanism can be based on mereology (i. e., part-whole rela-
tions), as well as different forms of ‘attribution’. For instance, in the case of processes, it
is quite commonplace to decompose these in terms of their mereological structure, i. e.,
decomposing a process into smaller temporal parts (sub-processes/tasks). In the case of
organizational structures, the organizational hierarchy (which is structure of delegation
power) coincides with a mereological structure in which organizations, their branches and
units are decomposed into other smaller (functional parts).

‘Attribution’ refers to the fact that one concept might be considered as an attribute of
another concept. For instance, the height of a person, the name of a person, etc are an
attribute of a person. This ‘attribution’ can be applied recursively in the sense that a person
in the role of a manager of a department, might be seen as an attribute of that department.

General strategies for the (un)folding mechanisms needed for model summarization
have been the subject of study in the past in the context of dealing with large conceptual
models (Hofstede et al. 1992; Campbell et al. 1996; Creasy and Proper 1996), as well as more
recently utilizing foundational ontologies to generate ontologically founded (un)foldings
(Guizzardi et al. 2019; Romanenko et al. 2022a) of large conceptual models. The general idea
of the latter approaches is to let the models undergo an (automatic) lossy transformation
based on the underlying foundational ontology, to yield another model but capturing the
gist of what the original model was about. By applying this recursively, a hierarchy of
(ontology based) summarizations results.

Since a view involves a mapping from the original model to the view that is generally a
surjective function (and not a bijective one), updating/editing a view can lead to a variation
of the ‘view update’ problem as known from the field of databases. Operationally this means
that if a change is made in a view based on some original domain model, it may not be clear
how to then make a corresponding change in the original domain model.

In practice, this ‘view update’ problem becomes even more pressing as in the context of
system development one is likely to actually start modeling a system from different angles;
not unlike taking photos of the same object. Of course, knowing that these would be models
of the same system, would imply that these models are essentially views of a larger model.
Indeed, during a modeling process, one may use views to gradually (in a bottom up fashion)
construct the ‘larger picture’.

A challenge is, of course, to ensure linkages between these views to maintain consistency
and maintain/obtain the ‘larger picture’ (see discussion, e. g., in Boiten et al. 2000). When,
across an engineering framework, the ‘cell-specific’ meta-models are aligned well – as is

of the language, or simply, the ontology of the language, i. e., a description of the worldview embedded in the
language’s modeling primitives. For example, Peter Chen’s Entity Relationship model commits to a worldview
that accounts for the existence of four types of things: entity, relationship, attribute and attribute value spaces
(Guizzardi 2007).
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explicitly the case for, e. g., ArchiMate (Band et al. 2016), IAF (van’t Wout et al. 2010) and
MEMO (Frank 2014), views corresponding to the different ‘cells’ of the framework can be
connected to maintain/obtain the ‘larger picture’.

5.5 Diagrams, Programs, Animations, and Other Models

Before we review (some of) the ‘other’ model kinds, such as tables, diagrams and animations,
it is important to have a closer look at the actual representation of models.

A model will be expressed in terms of some modeling language. This can be a precisely
(a-priori) defined modeling language, but can also be a highly informal ad-hoc (emerging)
language. In a (modeling) language, one can make a distinction between the conventions
that govern what constructions are allowed in the language, and conventions that govern
the way these are concretely presented in terms of representational mechanisms associated
to a medium system. The former corresponds to the grammar and the abstract syntax of
the language, while the latter pertains to the concrete syntax. The concrete syntax also ties a
model’s abstract syntax to an actual medium system. Obvious examples of medium systems
that can be used to ‘render’ the concrete syntax models include paper (including the back of
a napkin), a 2D vector graphics (and textual fonts) rendering engine, or a simulation engine.
Less obvious examples, include game engines or even tangible objects, in order to create
models (and views) that may provide a more tangible experience.

Building on this, it is also important to note that a model (qua representation on a
medium system) may be of a static nature or of a dynamic (and even interactive) nature.
This distinction is actually orthogonal to the question if the modeled domain is static or
dynamic.

If a domain is static, one could, indeed imagine creating a model with a static represent-
ation, such as a simple paper-based ‘org chart’ of the structure of an organization. However,
one could also opt to, for example, create a ‘navigable’ model where a ‘viewer’ can interact-
ively navigate over/through the model, as we, e. g., already hinted at when discussing the
(un)folding of models in Section 5.4.

Conversely, a dynamic domain such as a business process can be represented in terms
of a simulation or animation, but also as a static representation in terms of, for example, a
BPMN model.10

In the remainder of this section, we will argue how specifications, programs, diagrams,
tables, spreadsheets, simulations, and animations can all essentially be seen as models;
albeit with fundamentally different purposes and represented on different media systems.
The chosen set (specifications, programs, diagrams, tables, spreadsheets, simulations, and
animations) is not intended as a complete coverage of all ‘things model’ that may be used
in a system development context. Together, however, they do illustrate the richness of
the kinds of models we may come across in the modeling practices as embedded in system
development:

• Specification – A specification is a model that normatively prescribes the properties of
a (to be designed, to be elaborated, to happen, to be brought about, …) phenomenon.
In terms of our earlier work (Guizzardi and Proper 2021) towards a taxonomy of
modeling-related goals, a specification has a world-to-model direction of fit (in a

10 Where this model can, of course, be complemented with a simulation of actual process instances.
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world-to-word vein, cf. Searle, Willis et al. 1983) with the aim to change the world (the
world in the sense of the phenomenon which’ properties are described normatively).
Specifications tend to be represented using precise/formal languages on 2D text/-
graphics based medium systems. For instance, a specification of business rules in
as a text file in controlled natural language format, a mathematical specification on
(digital) paper, or a graphical Petri-net based specification.

• Program – A specification which models the required behavior of a computer in an
actionable way, such that a computer can directly exhibit this required behavior (via
interpretation or compilation).
Traditionally, programs are specified in some controlled textual form. In the past,
programs were specified in terms of other medium systems, such as punched cards.
Meanwhile, there has also been an increase in the use of visual ways to represent
programs.
Some of the modern editors for programs allow for some forms of (un)folding, de-facto
resulting in a more dynamic (navigable) representation.
Although we consider program as models (again, of computation), we do not consider
programming languages as appropriate conceptual modeling languages. Programming
languages are designed with computational concerns in mind (e. g., computational
complexity, performance, to facilitate compiler construction) and as a result, for
the purpuse of conceptual modeling, they: compromise expressivity and conceptual
fidelity; hinder separation of concerns by forcing the modeler to consider at the same
time conceptual, design and implementation issues.11

• Diagrams – Diagrams, in particular involving boxes-and-lines, are a common way
to represent models. In general, diagrams involve some (static) graphical structure,
possibly adorned with icons and/or text. In principle, diagrams provide a static
representation.
However, as hinted at before, such models can be made dynamic in a Google Maps like
style by (un)folding and/or blending in/out specific (types of) elements. See the earlier
discussions in Section 5.4 regarding the distillation and summarization operation for
the creations of views.
Diagrammatic notations are often part of the concrete syntax of general-purpose
and domain-specific modeling languages alike. When designed in a proper way,
diagrammatic notations can increase the pragmatic efficiency of the models it produces
(Guizzardi 2013; Guizzardi et al. 2002). However, in order to attain these properties,
these notations have to be properly designed (Moody 2009) lest denting problem-
solving and producing unintended cognitive inferences (implicatures) (Guizzardi et al.
2002; Guizzardi 2013).

• Table – A table essentially provides a two-dimensional grid representation on a 2D
medium (such as paper or a computer screen) that can capture a (possibly derived)
ternary relation (type) concerning the modeled domain.

11 For this discussion in the context of ontology engineering, see, e. g., Guizzardi (2007); for the trade-off
between expressibity and tractability in knowledge representation languages, see, e. g., Levesque and Brachman
(1987). Another manifestation of this problem is the well-known impedance mismatch problem in mapping
ontologically-rich conceptual models to relational databases, see, e. g., Guidoni et al. (2022).
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In principle, a table is a static representation. However, by ‘allowing’ one to blend in-
/out specific rows/columns, thus changing the ‘informational payload’ which the table
(qua model) provides to us at that moment, the representation becomes interactive.

• Spreadsheet – A spreadsheet is a specific way to represent/render one or more con-
nected tables on a computational medium system. Using formulas, derived parts can
be included as well.
A spreadsheet with ‘intentionally left open’ cells to enable ‘what if analysis’ is an
example of an interactive model as it allows one to ‘play’ with the model.
Spreadsheets, with their traditional numbered columns and rows, are, of course, not
the most suitable to capture the structures of a domain in a clear way.

• Animation – A model that is represented on a video-based medium system (i. e., a
‘movie’) that illustrates the dynamic behavior in the modeled domain in terms of the
involved agents, subjects, etc.

• Simulation – A model that is represented on a simulation engine (as the medium
system) and that provides a simulation of the dynamic behavior of the modeled
domain.
If simulation-runs can be generated ‘on the fly’ based on different scenario’s, the
simulation (qua model) becomes an interactive model
Note: a ‘screenshot’ of an animation or a simulation, can be seen as a model as well.
In that case, it would be a view based on a ‘temporal distillation’.

5.6 Conclusion

In this paper, we zoomed in on notions such as views, diagrams, programs, animations,
specifications, that play an important role in the modeling practices that take place in
the context of system development (including software engineering, information systems
engineering, and enterprise design management). In doing so, we took the view that these
notions are be seen as specific kinds of models, albeit for fundamentally different purposes.

In future work, we intend to develop a more completer ontology of models dealing
with aspects such as the mereology of models, models as artifacts (i.e., property connecting
modeling acts to intentions), identity as aspects of models and how they relate to other
artifacts in the ecosystem of modeling (in the spirit of the ontology of software as proposed in
Wang et al. (2014). Finally, we intend to investigate the role of different types of assumptions
(Wang et al. 2016) to modeling practices and to models as artifacts.
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