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Abstract
This paper presents an a-posteriori assessment

of different LES sub-grid scale closures for momen-
tum advection in the context of bubble-laden chan-
nel flows. The numerical approach is based on the
Volume-of-Fluid method in combination with the one-
fluid formulation of the incompressible Navier-Stokes
equations. To study the behavior of different sub-
grid scale models, a turbulent bubble-laden downflow
channel is simulated at a friction Reynolds number of
Reτ = 590. The setup is chosen such that the bubbles
are nearly spherical, but mildly wobbling. Both func-
tional models of eddy viscosity type and scale simi-
larity type models are used to close the sub-grid scale
stresses. The results are compared to a direct numer-
ical simulation of the same setup. It is found that the
stream-wise volumetric flow rate depends strongly on
the closure model as well as the grid resolution. While
some models lead to an improvement compared to the
LES without an explicit model, the comparably dissi-
pative nature of the QUICK scheme prevents a clear
assessment of some more advanced modeling strate-
gies.

1 Introduction
Turbulent bubbly flow plays an important role in a

large variety of technical applications, such as chemi-
cal reactors in the process industry or heat exchangers
in power plants. Due to the increased computational
power, Direct Numerical Simulation (DNS) has be-
come feasible for reduced-complexity two-phase flow
setups at limited Reynolds numbers. However, bub-
bly flows in industrial devices generally exhibit high
Reynolds numbers, which limits the application of
DNS to academic setups. Moreover, due to the pres-
ence of a second phase, the already wide range of
scales of motion introduced by turbulence is possibly
extended, preventing the usage of DNS for the design
of most technical devices in the foreseeable future.

Consequently, Large Eddy Simulation (LES),

which allows to resolve many physical processes to
a large extent, while retaining the computational cost
at an acceptable level, comes into focus. Compared
to single-phase flow, multiphase flow LES is still in
an early development stage. This is mostly due to the
fact that additional unclosed terms are present in the
respective governing equations. As a-priori analysis
has shown, the dominant Sub-Grid Scale (SGS) con-
tribution deserving the biggest attention stems from
the convective term (Klein et al., 2019). In this pa-
per, various models for this term are analysed based
on a-posteriori LES and a comparison with results
from a DNS of the setup. This is a first step towards
a modeling strategy for bubbly flows, consisting of a
set of LES closure terms that, due to the strong interac-
tion, must be assessed in combination with a numerical
method.

2 Governing equations and numerical
method

The mathematical model implemented in the
highly scalable open-source code “TBFsolver” (Cifani
et al., 2018) is based on the one-fluid formulation of
the incompressible Navier-Stokes equations. In the
usual notation (density ρ, velocity components ui,
pressure p, dynamic viscosity µ, gravitational accel-
eration gi, surface tension coefficient σ, interface nor-
mal ni, interface curvature κ, interface Dirac function
δS), the Favre-filtered LES equations (together with
eq. (4)) read

∂ũi
∂xi

= τdivu (1)
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(2)

The average density in the domain is denoted as ρ0.



The convective SGS term, which is the scope of this
paper, is represented by τρuu,ij , while τµS,ij , τnn,i and
τdivu denote the diffusive SGS term, the SGS surface
tension force and the residual in the divergence of the
Favre-filtered velocity, respectively. Modeling the lat-
ter three is beyond the scope of this work. For the
formulation implemented in the solver, the momentum
equation (eq. (2)) has been divided by the density ρ, so
that the sub-grid stress tensor τρuu,ij can be expressed
as τuu,ij = ũiuj − ũi ũj .

The Continuum Surface Force approach is used to
compute surface tension. In this context, the inter-
face normal is defined as ni = ∇f/

∣∣∇f ∣∣, where f
is the filtered marker function for the local gas volume
fraction in the context of the geometrical Volume-of-
Fluid (VOF) method. The filtered interface curvature
κ = ∂ni/∂xi is determined using a state-of-the-art
height function method. The interface Dirac function
δS is numerically approximated as δS =

∣∣∇f ∣∣. In
each cell, the filtered density ρ and dynamic viscos-
ity µ are linearly interpolated from the liquid (l) and
gas (g) phase material properties using the local gas
volume fraction f , i.e.,

ρ = fρg +
(
1− f

)
ρl,

µ = fµg +
(
1− f

)
µl.

(3)

For the advection of the VOF marker function,
a multiple-marker formulation (Coyajee & Boersma,
2009) is used to avoid numerical coalescence and han-
dle bubble collisions. The single marker functions
b = 1, ..., N (with the total number of bubbles N ) are
advected (eq. (4)) using a geometrical interface recon-
struction approach.

∂f b
∂t

+
∂ũjf b
∂xj

= 0, f b =

{
1 for gas
0 for liquid

(4)

Time integration is performed using a second-order
Adams-Bashforth scheme. For stability reasons (Ket-
terl et al., 2019), the convective term is discretized us-
ing the third-order QUICK scheme, and central dif-
ferences are used for the diffusive terms. The veloc-
ity components are arranged on a staggered grid. To
allow the utilization of a fast Poisson solver (Dodd
& Ferrante, 2014), the Poisson equation for pressure
is transformed into a constant-coefficient formulation
(Cifani, 2019).

3 Models for the convective SGS term
Models for the convective SGS term can be distin-

guished into functional and structural models. Func-
tional models are mainly supposed to represent the
forward energy cascade process. Two well known ex-
amples are the standard Smagorinsky model (eq. (5))
and the sigma model by Nicoud et al. (2011, eq. (6)),
which both are of eddy viscosity type. The SGS stress
tensor τuu,ij = ũiuj−ũi ũj is approximated using the

concept of an eddy viscosity νt.

τSmago
uu,ij = −2νtS̃ij , νt = (Cs∆)

2
∣∣∣S̃ij∣∣∣∣∣∣S̃ij∣∣∣ =

√
2S̃ijS̃ij , Cs = 0.17

(5)

In eq. (6), the singular values σi, ordered such that
σ1 ≥ σ2 ≥ σ3, are the square roots of the eigenvalues
of Gij .

τSigma
uu,ij = −2νtS̃ij

νt = (Cσ∆)
2 σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

Gij =
∂ũk
∂xi

∂ũk
∂xj

, Cσ = 1.35

(6)

Here, S̃ij = (1/2)(∂ũi/∂xj + ∂ũj/∂xi) denotes the
grid-scale strain rate.

In addition, a recently proposed dynamic modifi-
cation of the Smagorinsky model by Hasslberger et
al. (2021) is investigated. It is based on the coherent
structure function FCS = Q/E, which is compared
on two different scales: implicitly filtered by the grid
(FCS) and explicitly filtered (F̂CS) using the test filter
by Anderson & Domaradzki (2012). In this context, Q
is the second invariant of the grid-scale velocity gradi-
ent tensor, which is normalized by its magnitude E.

Q = −1

2

∂ũj
∂xi

∂ũi
∂xj

, E =
1

2

∂ũj
∂xi

∂ũj
∂xi

(7)

The model is then given as

τSensor
uu,ij = τSmago

uu,ij

∣∣∣F̂CS − FCS∣∣∣3/2 CSensor (8)

When used together with the QUICK scheme, the con-
stant is set to CSensor = 1/0.13. This sensor-based
modification has two main advantages: firstly, it can
dynamically deactivate SGS dissipation if no sub-grid
activity is present. Secondly, the exponent 3/2 rec-
tifies the incorrect near-wall scaling of the standard
Smagorinsky model.

Structural models, on the other hand, are not re-
stricted to the representation of the forward energy
transfer, but instead aim to directly model the sub-grid
tensor. While structural models generally reveal better
performance in the context of a-priori analysis (Klein
et al., 2019), they often become unstable when applied
in a-posteriori LES. To further analyse this in the con-
text of bubble-laden channel flow, several Scale Simi-
larity Type (SST) models are investigated.

Using the tensor diffusivity model of Clark et al.
(1979), the SGS stress tensor is calculated as

τClark
uu,ij =

∆2

12

∂ũi
∂xk

∂ũj
∂xk

. (9)

The scale similarity model of Liu et al. (1994) de-
termines the tensor by applying an explicit secondary
filter (̂·):

τLiu
uu,ij = ̂̃uiũj − ̂̃uî̃uj . (10)



Here, the secondary filter is chosen to be the same as
for the previously explained sensor-based model.

In order to stabilize scale similarity type mod-
els, different regularization strategies have been pro-
posed in an effort to prevent destabilization caused by
backscatter. Klein et al. (2020) proposed a regular-
ized, parameter free modeling strategy that can be ap-
plied to arbitrary structural models τSST

ij :

τKKK
uu,ij = τSST

ij −max
{
τSST
ab S̃ab

S̃abS̃ab

}
S̃ij . (11)

In this work it is used to regularize Clark’s model.

4 Flow configuration
The setup investigated in this work, as shown in

Figure 1, is a vertical downflow (i.e., bubbles ris-
ing relative to the surrounding liquid) channel of size
Lx = 4H , Ly = 2H and Lz = 2H , where H de-
notes the channel half width. In the stream-wise (x)
and the span-wise (z) directions, periodic boundary
conditions are imposed, whereas the wall-normal y-
direction is bounded by no-slip walls. The flow is
driven downward by imposing a constant pressure gra-
dient in x-direction, which is identical for all investi-
gated setups and corresponds to a friction Reynolds
number of Reτ = (

√
τw/ρlH)/νl = 590. Here, τw is

the average wall shear stress, and νl denotes the liquid
phase kinematic viscosity.

𝒙

𝒚
𝒛

Figure 1: Volume fraction isosurfaces (grey, f = 0.5) to-
gether with a wall-normal slice of the velocity
magnitude on the mid-plane.

Both the density ratio ρl/ρg and the dynamic vis-
cosity ratio µl/µg have been set to 20. The setup
is investigated at a technically relevant gas fraction
of 10%, which is achieved by inserting 195 initially

spherical bubbles with an identical diameter of db =
0.25H . The chosen gravitational acceleration results
in a Galilei number Ga = ρl

√
gdbdb/µl of Ga =

417.1930. Furthermore, the surface tension coefficient
σ is such that the Eötvös number Eo =

(
ρlgd

2
b

)
/σ is

Eo = 0.6667. The combination of Eo and the bubble
Reynolds numberReb = (〈ux〉l−〈ux〉g)db/νl ≈ 475,
which is based on the relative axial velocity of both
phases, results in nearly spherical, mildly wobbling
bubbles, as can also be seen in Figure 1.

All LES setups in this study are computed using
208 × 104 × 104 uniform cubic cells, such that the
bubbles are resolved with approximately 13 cells per
diameter. To perform a first assessment of the SGS
models, the LES results are compared to the results
of a DNS of the same setup, which is conducted us-
ing twice the LES resolution (i.e., 416 × 208 × 208
cubic cells, or approximately 26 cells per bubble di-
ameter). Although this resolution does not fulfill the
typical criteria for a DNS (i.e., resolution of the Kol-
mogorov length scale) and is slightly under-resolved,
it already allows an initial consistency check regarding
the trends arising for different models, as well as their
interplay with the numerical scheme. The time step is
controlled by setting CFL = 0.2, and all statistical
quantities are averaged in space and time for several
hundred flow-through times after reaching a statisti-
cally steady state.

5 Results
In order to assess the performance of different SGS

models, this section compares the volume fraction and
velocity statistics resulting from LES to those of the
more detailed simulation. For brevity, the latter is re-
ferred to as DNS in this section, despite the shortcom-
ings discussed above. All velocity statistics are nor-
malized using the wall friction velocity uτ =

√
τw/ρl

of the more detailed simulation. In the following, 〈·〉
refers to averaging over the time, as well as the ho-
mogeneous directions x and z, which results in wall-
normal profiles of the averaged quantities. The statis-
tics are evaluated for the entire flow field, i.e., they
are not conditioned on either the liquid or the gas
phase. Due to the symmetry of the setup, the pro-
files have been averaged over both channel halves, and
they are shown over the dimensionless wall distance
y+ = y(uτ/ν). For better clarity, the tilde denoting
implicit filtering is omitted in the following.

Figure 2 shows the wall-normal profile of the av-
erage gas volume fraction. The DNS reveals similar
results as known from previous work (e.g. Bräuer et
al. 2021). Compared to the DNS results, the bubble-
free zone near the wall is wider for the Smagorinsky
model, while it is narrower for the SST models and the
sensor-based modification of the Smagorinsky model.
The profile for the sigma model matches the DNS pro-
file relatively well up to y+ ≈ 70 and starts to deviate
slightly afterwards. It overestimates the peak of the



gas fraction profile at y+ ≈ 200, just as the Smagorin-
sky model. The SST models and the sensor model
match the peak relatively well, however it is located
slightly too close to the walls. Since, compared to
the DNS and the other models, the bubbles on aver-
age move closer to the walls for the latter ones, they
reveal a weaker accumulation of bubbles in the chan-
nel center. In this region, the Smagorinsky and sigma
model are closer to the DNS reference. The profile for
the LES without an explicit SGS model overlaps with
those of the SST-models and the sensor-based model
for all values of y+.

Figure 2: Average gas volume fraction 〈f〉 as a function of
the dimensionless wall distance y+.

The average stream-wise velocity profiles, normal-
ized with uτ of the DNS to yield the dimensionless
velocity 〈u+〉, are presented in Figure 3. It is immedi-
ately apparent that the choice of an SGS model for mo-
mentum advection strongly influences the mean volu-
metric flow rate in axial direction. The DNS reveals
the highest average stream-wise velocity. Of all LES
models, the sigma model provides the best prediction
for this quantity, followed by the sensor model. The
latter leads to a slight improvement compared to the
LES without SGS model, and to a significant improve-
ment compared to the baseline Smagorinsky model,
which again yields the worst results. Out of the three
SST models, Clark’s model reveals the best perfor-
mance with respect to the stream-wise velocity, fol-
lowed by Liu’s scale-similarity model and the KKK-
regularization of Clark’s model. In this context, it is
worth noting that the KKK-regularization mainly aims
to stabilize SST models, which, without regulariza-
tion, often lead to unstable simulations. However, pre-
sumably mostly due to the comparably dissipative na-
ture of the QUICK scheme, Clark’s model remains sta-
ble for the simulated setup.

Despite the significant deviations between the ax-
ial flow rates that are apparent from Figure 3, the bub-
ble Reynolds number, which depends on the relative
velocity between the bubbles and the surrounding liq-

Figure 3: Average stream-wise velocity, normalized by the
wall friction velocity uτ to yield 〈u+〉, as a func-
tion of the dimensionless wall distance y+.

uid, only varies between Reb ≈ 476.8 for the DNS
and Reb ≈ 466.0 for the LES with the Smagorinsky
model. It can therefore be concluded that the com-
parison between DNS and LES remains meaningful
in terms of the problem-characterizing dimensionless
numbers.

Figures 4 to 6 show the root mean square (RMS)
of the stream-wise, the wall-normal and the span-wise
velocity fluctuations. As Figure 4 demonstrates, all
LES profiles, apart from the one for the Smagorinsky
model, correctly predict the location of the first peak
of the stream-wise velocity fluctuations u′, consider-
ing the low mesh resolution close to the wall. Once
again, the sigma model overall leads to the best agree-
ment between LES and DNS, especially in the near-
wall region, but also for the second increase of the
fluctuations towards the channel center. The sensor
model once more slightly outperforms the LES with-
out SGS model, and properly corrects the behavior of
the Smagorinsky model. The SST models overall be-
have similarly to each other, irrespective of y+. Di-
rectly in the channel core, there is hardly any differ-
ence between the DNS and the different LES profiles.

The deviation between the stream-wise fluctuation
profiles is relatively large close to the walls, where
the flow is dominated by wall turbulence, whereas it
nearly vanishes for the mainly bubble-induced turbu-
lence in the center of the channel. Since the differ-
ences in the near-wall behavior of u′ qualitatively re-
semble the differences in the average stream-wise ve-
locities (see Figure 3), it seems that the mean axial ve-
locity is the main influencing factor close to the walls.
In the channel center, however, all profiles quasi over-
lap, which might be indicative that the relative axial
velocity of both phases, which also defines the bubble
Reynolds number (see discussion above), is the deci-
sive parameter for the fluctuation level.



Figure 4: RMS of the stream-wise velocity fluctuations u′,
normalized by the wall friction velocity uτ , as a
function of the dimensionless wall distance y+.

The wall-normal velocity fluctuations are shown in
Figure 5. Irrespective of y+, the DNS shows the high-
est fluctuations, while the Smagorinsky model predicts
the lowest fluctuations. Compared to the Smagorin-
sky model, the sigma model matches the DNS signif-
icantly better close to the walls, where it produces es-
sentially the same results as the SST models, the sen-
sor model, and the LES without model. However, with
increasing distance to the wall, the sigma model devi-
ates from the latter profiles, and approaches the one of
the Smagorinsky model. The results for the SST mod-
els, the sensor model, and the LES without model are
quasi indistinguishable for all values of y+. The fact
that this is not the case for the near-wall region of the
stream-wise velocity fluctuations (see Figure 4) once
again suggests that the differences in the stream-wise
fluctuations are closely related to the difference in the
axial flow rate. Overall, the SST models, the sensor
model and the LES without SGS model reveal a better
performance than the Smagorinsky and sigma model
in terms of the wall-normal velocity fluctuations.

Figure 6 presents the span-wise velocity fluctua-
tions. Overall, the results are similar to the wall-
normal velocity fluctuations (see Figure 5). Apart
from a short section at y+ ≈ 150, the highest fluc-
tuations can be observed for the DNS, while the
Smagorinsky model significantly underpredicts w′.
The results for the LES without an explicit SGS model
once again reveals nearly identical results to the LES
using the sensor model. Also, both profiles are similar
to those for the SST models. As previously discussed
for the wall-normal velocity fluctuations, the sigma
model behaves similarly to the SST models close to
the wall, and continuously approaches the profile of
the Smagorinsky model with increasing wall distance.
With respect to the span-wise velocity fluctuations, the
best results are obtained for the sensor model and the
LES without an SGS model.

Figure 5: RMS of the wall-normal velocity fluctuations v′,
normalized by the wall friction velocity uτ , as a
function of the dimensionless wall distance y+.

Figure 6: RMS of the span-wise velocity fluctuations w′,
normalized by the wall friction velocity uτ , as a
function of the dimensionless wall distance y+.

6 Conclusion and outlook
As a-posteriori analysis has shown, the volumetric

flow rate in main flow direction depends strongly on
the mesh resolution and the SGS model for momentum
advection. Despite the significant deviations in the
stream-wise flow velocity, the bubble Reynolds num-
ber remains largely unaffected, since the relative ax-
ial velocity between the gas and liquid phase is nearly
identical for all LES setups and the DNS.

Across all investigated volume fraction and veloc-
ity statistics, the static Smagorinsky model produces
the worst results. The sigma model, on the one hand,
provides the best estimation for the average stream-
wise velocity (and therefore for the average flow rate)
and its fluctuation. On the other hand, it underesti-
mates the wall-normal and span-wise velocity fluctua-
tions in the channel center. The results for the sensor
model are nearly identical to the results for the LES



without an explicit SGS model. Still, the sensor model
leads to a slight improvement in terms of the axial ve-
locity. Given its definition, the sensor model’s behav-
ior suggests that it almost permanently deactivates the
SGS dissipation of the Smagorinsky model. The re-
sults revealed that the sensor model features a consid-
erably lower mean turbulent viscosity compared to the
Sigma model for this configuration. By increasing the
constant Csensor in such a manner that the mean sub-
grid scale dissipations coincide with each other, the
differences between both models nearly vanish.

The three SST models, namely Clark’s model, its
regularization using the KKK-approach, as well as the
scale similarity model by Liu, also behave very simi-
larly to each other. Out of the three, Clark’s model on
average is closest to the DNS results in terms of the
axial velocity and its fluctuation, while all other statis-
tics do not allow further conclusions. For the given
setup, it is evident that the investigated SST models do
not lead to a clear improvement compared to the LES
without an explicit SGS model.

When comparing the results across all investigated
gas fraction and velocity statistics, the sigma model
and the sensor-based modification of the Smagorinsky
model on average reveal the best behavior. However,
the results presented in this paper clearly highlight the
challenges related to the modeling of the convective
SGS contribution in the two-phase flow context. One
particular aspect in this regard is the choice of the nu-
merical scheme for momentum advection. On the one
hand, central differencing schemes (CDS) are consid-
ered the best choices for the evaluation of models for
the convective SGS term. However, in the two-phase
flow context, using CDS can lead to unphysical os-
cillations or unstable simulations due to the singular
surface tension force as well as the density and vis-
cosity jumps at the interface. Using a more dissipa-
tive scheme, such as the QUICK scheme selected for
this work, often resolves stability problems (Ketterl et
al., 2019). In the context of a-posteriori assessment of
SGS closures, however, using comparably dissipative
schemes comes with clear disadvantages. Firstly, it
is hardly possible to distinguish the dissipation inten-
tionally introduced by the SGS model from the signif-
icant dissipation provided by the convection scheme.
Secondly, more advanced modeling strategies, such
as the KKK-regularization as well as the sensor-based
Smagorinsky modification, are often deprived of their
main advantages. This becomes clearly evident by, for
example, comparing the results for the LES without
SGS model to those for the sensor-based modification
of the Smagorinsky model: due to the dissipative na-
ture of the QUICK scheme, the model does not seem
to considerably influence the simulation.

Consequently, to allow a more precise estimation
of the model behavior, the next step will be to repeat
the analysis using a CDS scheme. This will also in-
clude the validation of the LES results against a prop-

erly resolved DNS reference solution. For future work,
it is also planned to increase the Eötvös number, which
will lead to more deformable, oscillating bubbles. In
this context, also an evaluation of SGS closures for the
unresolved surface tension force is intended.
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