
PFL: a Probabilistic Logic for Fault Trees⋆

Stefano M. Nicoletti1 , Milan Lopuhaä-Zwakenberg1 , E. Moritz Hahn1 ,
and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, the Netherlands
{s.m.nicoletti,m.a.lopuhaa,e.m.hahn,m.i.a.stoelinga}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, the Netherlands

Abstract Safety-critical infrastructures must operate in a safe and re-
liable way. Fault tree analysis is a widespread method used for risk as-
sessment of these systems: fault trees (FTs) are required by, e.g., the
Federal Aviation Administration and the Nuclear Regulatory Commis-
sion. In spite of their popularity, little work has been done on formulating
structural queries about FT and analyzing these, e.g., when evaluating
potential scenarios, and to give practitioners instruments to formulate
queries on fts in an understandable yet powerful way. In this paper, we
aim to fill this gap by extending BFL [32], a logic that reasons about
Boolean fts. To do so, we introduce a Probabilistic Fault tree Logic
(PFL). PFL is a simple, yet expressive logic that supports easier for-
mulation of complex scenarios and specification of FT properties that
comprise probabilities. Alongside PFL, we present LangPFL, a domain
specific language to further ease property specification. We showcase PFL
and LangPFL by applying them to a COVID-19 related FT and to a FT
for an oil/gas pipeline. Finally, we present theory and model checking
algorithms based on binary decision diagrams (BDDs).

1 Introduction

Our self-driving cars, power plants, oil/gas refineries and transportation sys-
tems must operate in a safe and reliable way. Risk assessment is a key activ-
ity to identify, analyze and prioritize the risk in a system, and come up with
(cost-)effective countermeasures. Fault tree analysis (FTA) [38, 40] is a wide-
spread formalism to support risk assessment. FTA is applied to many safety-
critical systems and the use of fault trees is required, e.g., by the Federal Avi-
ation Administration (FAA), the Nuclear Regulatory Commission (NRC), in the
⋆ This work was partially funded by the NWO grant NWA.1160.18.238 (PrimaVera),

and the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 101008233, and the ERC Consolid-
ator Grant 864075 (CAESAR). This preprint has not undergone peer review (when
applicable) or any post-submission improvements or corrections. The Version of Re-
cord of this contribution is published in the Proceedings of the 25th International
Symposium on Formal Methods (LNCS, volume 14000), and is available online at
https://doi.org/10.1007/978-3-031-27481-7_13.

http://orcid.org/0000-0001-5522-4798
http://orcid.org/0000-0001-5687-854X
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-27481-7_13

2 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

ISO 26262 standard [26] for autonomous driving and for software development
in aerospace systems. A fault tree (ft) models how component failures arise and
propagate through the system, eventually leading to system level failures. Leaves
in a ft represent basic events (bes), i.e. elements of the tree that do not need
further refinement. Once these fail, the failure is propagated through the interme-
diate events (ies) via gates, to eventually reach the top level event (TLE), which
symbolizes system failure. In the (sub)tree represented in Fig. 1, the tle— Me-
dium Corrosion — is refined by an AND-gate (MeC). For MeC to fail, water
must be present, i.e., the With Water (WW) BE must fail, and there must be
at least one acid medium in the pipes, i.e., Acid Medium (AcM) has to happen.

WW

MeC

AcM

H2S O2 CO2

Figure 1: ft ex-
cerpt from Fig. 3.

This last OR-gate is further refined with three BEs: for it
to fail, at least one of its three children needs to fail. This
means that either Hydrogen sulfide (H2 S) or Oxygen (O2)
or Carbon dioxide (CO2) must be present. Fault tree ana-
lysis supports qualitative and quantitative analysis. Qualit-
ative analysis aims at pointing out root causes and critical
paths in the system. One can identify the minimal cut sets
(mcss) of a ft, i.e. minimal sets of bes that, when failed,
cause the system to fail. One can also identify minimal path
sets (mpss), i.e. minimal sets of bes that - when opera-
tional - guarantee that the system will remain operational.
Quantitative analysis allows to compute relevant dependab-
ility metrics, such as the system reliability, availability and mean time to failure.
A formal background on fts is given in Sec. 2.

Probabilistic Fault tree Logic. In spite of their popularity, little work has
been done on formulating structural queries about fts and analyzing these,
e.g., when evaluating potential scenarios, and to give practitioners instruments
to formulate queries on fts in an understandable yet powerful way. Usually,
fts are translated to stochastic models and existing logics specify properties
on these, rather than on elements of fts. An exception [32] presents a logic
to reason about static fts when bes have Boolean values. The present work
aims to extend that framework by devising a probabilistic logic for fts, called
PFL, where one could easily reason about fts also taking probabilities into
account. To further meet the need for usability - that we uncovered through
interviews with a domain expert [3] - we present a domain specific language
for PFL, LangPFL, and showcase property specification with both on two case
studies, one with a COVID-19 ft, and one with an oil/gas pipeline ft.

Model checking. In this paper, we provide model checking algorithms that
extend the work in [32]. While we build from algorithms from [32], we require
extensions for formulae in which probabilities come into play. We introduce novel
algorithms which can decide 1. whether a single probability assignment to all BEs
of a ft satisfy a formula; 2. whether a formula is satisfied for all possible prob-
ability assignments to BEs and 3. in which regions of the parameter space the
considered formula holds. In continuity with previous work, all three algorithms
are based on construction and manipulation of binary decision diagrams (bdds).

PFL: a Probabilistic Logic for Fault Trees 3

Related work. Numerous logics describe properties of state-transition systems,
such as labelled transition systems (LTSs) and Markov models, e.g., CTL [14],
LTL [35], and their variants for Markov models, PCTL [25] and PLTL [33].
State-transition systems are usually not written by hand, but are the result
of the semantics of high-level description mechanisms, such as AADL [9], the
hardware description language VHDL [19] or model description languages such
as JANI [11] or PRISM [30]. Consequently, these logics are not used to reason
about the structure of such models (e.g. the placement of circuit elements in
a VHDL model or the structure of modules in a PRISM model), but on the
temporal behaviour of the underlying state-transition system. Similarly, related
work on model checking on fts [41, 6, 42, 8] exhibits significant differences:
these works perform model checking by referring to states in the underlying
stochastic models, and properties are formulated in terms of these stochastic
logics, not in terms of events in the given ft. In [43], the author provides a
formulation of Pandora, a logic for the qualitative analysis of temporal fts. In
spite of the use of logic to capture properties of ft, [43] focuses on the analysis of
time, introducing gates that are different from the ones considered in this work:
the Priority-AND-gate (PAND), the Simultaneous-AND-gate (SAND), and the
Priority-OR gate (POR). In PFL we do not (yet) consider time and we focus on
AND, OR and VOT-gates. Furthermore, [43] focuses more on the algorithmic
part of FTA while leaving out any formalization of fts or the logic defined
upon. Another exception is [32], presenting BFL, a logic on fts that however
reasons about fts only in Boolean terms. We take this framework and develop
a logic that extends BFL with probabilities. Literature related to fts, property
specification languages, bdds and parametric model checking is referenced and
contextualized in Sec. 2, Sec. 5, Sec. 6.1 and Sec. 6.5.

Contributions. To summarize, in this work:
1. We develop PFL, a probabilistic logic to reason about fts.
2. We present a domain specific language for PFL, LangPFL, to further ease prop-

erty specification.
3. We showcase the potential of PFL and LangPFL by applying them to a medium-

sized COVID-19 related example and to a large-sized case study of an oil/gas
pipeline.

4. We provide model checking algorithms to check properties defined in PFL.
5. We provide the theory and an algorithm to solve problems where the probab-

ilities of bes are parametric.

Structure of the paper. Sec. 2 covers background on fts, Sec. 3 describes
PFL, Sec. 4 shows the application of PFL to case studies, Sec. 5 introduces
LangPFL, Sec. 6 presents algorithms and Sec. 7 concludes our work.

2 Fault Trees: Background

Developed in the early ’60s [21], fts are directed acyclic graphs (dags) that
model how low-level failures can propagate and cause a system-level failure. The

4 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

overall failure of a system is captured by a top level event (tle), that is refined
through the use of gates. fts come with different gate types. For the purposes
of our paper, we will focus on static fault trees, featuring OR-gates, AND-gates
and VOT(k/N)-gates. For a low-level failure to propagate, at least one child of
an OR-gate has to fail, all the children of an AND-gate must fail, and at least
k out of N children must fail for a VOT(k/N)-gate to fail. When gates can no
longer be refined, we reach the basic events (bes) which are the leaves of the tree.
fts enable both qualitative and quantitative analyses. On the qualitative side,
minimal cut sets (mcss) and minimal path sets (mpss) highlight root causes of
failures and critical paths in the system. mcss are minimal sets of events that -
when failed - cause the failure of the tle. mpss are minimal sets of events that
- when remaining operational - guarantee that the tle will remain operational.

Definition 1 (Fault Tree). A Fault Tree is a tuple T = (E, A, t) where (E, A)
is a rooted directed acyclic graph (E are the vertices, called events) and t is a
map E → {AND, OR, BE} such that t(e) = BE iff e is a leaf.

We denote the top event by etop, and the set of children of an event e by ch(e) =
{e′ | (e, e′) ∈ A}. Slightly abusing notation, we denote the set of basic events, e
with t(e) = BE, as BE, whose elements we enumerate BE = {e1, . . . , en}. We also
define the set of intermediate events IE = E \ BE. The behaviour of a ft T can
be rigorously expressed through its structure function [38] - ΦT: if we assume
the convention that a be has value 1 if failed and 0 if operational, the structure
function indicates the status of the tle given the status of all the n bes of T,
given by a Boolean vector b = (b1, . . . , bn).

Definition 2 (Structure Function). The structure function of an FT T is
a function ΦT : Bn × E → B defined recursively by

ΦT(b , e) =

bi if e = ei ∈ BE∨

e′∈ch(e) ΦT(b , e′) if t(e)=OR∧
e′∈ch(e) ΦT(b , e′) if t(e)=AND

Thus, for each set of bes we can identify its characteristic vector b. One can
extend Def. 2 by allowing voting gates, where a gate with t(e)=VOT(k/N) fails
if at least k of its children fail, i.e.∑

e′∈ch(e)

ΦT(b , e′) ≥ k

We can also define the classical notions of minimal cut sets and minimal path
sets [38]. A cut set is any set of basic events that causes the tle to occur,
i.e., for which the structure function evaluates to 1. A path set is any set of
basic events that does not cause the tle to occur, i.e., for which the structure
function evaluates to 0.

Definition 3. A status vector b is a cut set (CS) for e ∈ E of a given tree T if
ΦT(b , e) = 1. A minimal cut set (MCS) is a cut set of which no subset is a cut
set: b is a MCS for e ∈ E of T if ΦT(b , e) = 1 ∧ ∀b′ ⊂ b , ΦT(b , e) = 0.

PFL: a Probabilistic Logic for Fault Trees 5

Definition 4. A status vector b is a path set (PS) for e ∈ E of a given tree T
if ΦT(b , e) = 0. A minimal path set (MPS) is a path set of which no subset is a
path set: b is a MPS for e ∈ E of T if ΦT(b , e) = 0 ∧ ∀b′ ⊂ b , ΦT(b , e) = 1.

3 A Probabilistic Logic to Reason about FTs

3.1 Syntax

Our logic - PFL - consists of three syntactical layers that we represent with ϕ,
ψ and ξ respectively. To refer to layer two or layer three formulae indistinctly
we simply write θ. χ is a generic formula in PFL. We indicate atomic formulae
with the letter e: each atomic formula represent an element of a given ft, it
being an ie or a be. Formulae in ϕ and ψ can be rewritten with the usual
negation and conjunction. Furthermore, in layer one we have the possibility to
arbitrarily set the value of one atom e in complex formulae either to 0 or to 1
by writing ϕ[e 7→ 0] and ϕ[e 7→ 1]. Please note that ϕ[e 7→ 0] is not equivalent
to ϕ ∧ ¬e. This can be clearly shown if we assume ϕ = ¬e. In this scenario, we
would have (¬e)[e 7→ 0] = true while (¬e) ∧ ¬e would not necessarily equal true.
Moreover, we have operators to check for mpss and mcss for a given formula.
The second layer allows us to reason about probabilities. We can check whether
the probability of a given layer one formula (potentially conditioned by another
one) respects a certain threshold. We have the possibility to set the value of one
atom e in complex formulae to an arbitrary probability value p. We can also
check if two formulae (e.g., two intermediate events) are independent. Finally,
the third layer allows us to return the probability value for a given formula,
possibly mapping atoms to an arbitrary probability value p. Note that, for all
three layers, we usually assign values to e ∈ BE. We can however assign values
to ies if 1. e is a module [20], i.e., all paths between descendants of e and the
rest of the ft pass through e 2. and none of the descendants of e are present in
the formula. If so, we prune that (sub)ft and treat occurring ies as bes.

ϕ ::= e | ¬ϕ | ϕ ∧ ϕ | ϕ[e 7→ 0] | ϕ[e 7→ 1] | MCS(ϕ)
ψ ::= ¬ψ | ψ ∧ ψ | Pr

▷◁p
(ϕ | ϕ) | ψ[e 7→ q] | IDP(ϕ, ϕ)

ξ ::= Pr(ϕ | ϕ) | ξ[e 7→ q]

where ▷◁ ∈ {<,≤,=,≥, >}.
Syntactic sugar. We define the following derived operators where formulae θ
are in the set of layer one or layer two formulae, i.e., such that θ ∈ X1 ∪X2:

θ1 ∨ θ2 ::=¬(¬θ1 ∧ ¬θ2) θ1 ̸⇔ θ2 ::= ¬(θ1 ⇔ θ2)
θ1 ⇒ θ2 ::=¬(θ1 ∧ ¬θ2) mps(ϕ) ::= mcs(¬ϕ)
θ1 ⇔ θ2 ::=(θ1 ⇒ θ2) ∧ (θ2 ⇒ θ1) SUP(e) ::= IDP(e, etop)

Vot
▷◁k

(ϕ1, . . . , ϕN) ::=
∨

U⊆{1,...,N}
|U|▷◁k

(∧
u∈U

ϕu

)
∧

 ∧
u∈{1,...,N}\U

¬ϕu

with k ≤ N .

6 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

3.2 Semantics

The semantics for our logic is twofold. For the first layer of PFL, formulae are
evaluated on a Boolean status vector b and on a tree T. Atomic formulae e are
satisfied by b and T if the structure function in Def. 2 returns 1 with these b
and e as input. Formally:

b ,T |= e iff ΦT(b , e) = 1

b ,T |= ¬ϕ iff b ,T ̸|= ϕ

b ,T |= ϕ ∧ ϕ′ iff b ,T |= ϕ and b ,T |= ϕ′

b ,T |= ϕ[ei 7→ 0] iff b′ ,T |= ϕ with b′ = (b′
1, . . . , b

′
n) where

b′
i = 0 and for j ̸= i we have b′

j = bj

b ,T |= ϕ[ei 7→ 1] iff b′ ,T |= ϕ with b′ = (b′
1, . . . , b

′
n) where

b′
i = 1 and b′

j = bj for j ̸= i

b ,T |= MCS(ϕ) iff b ,T |= ϕ ∧ (¬∃b′. b′ ⊂ b ∧ b′,T |= ϕ)

With JϕKT we denote the satisfaction set of vectors for ϕ, i.e., the set of all
b that satisfy ϕ given T. Semantics for the second and third layer require the
introduction of probabilities. If we consider the function ΦT : Bn × E → B, we
can devise an extension such that ΦT : Bn ×X1 → B, where X1 is the set of layer
one formulae (note that E ⊆ X1). With a slight abuse of notation, ΦT will now
return 1 whenever the input Boolean vector satisfies the input layer one formula.
With ϕ ∈ X1, we lift the structure function to Φ∗

T : Dist(Bn)×X1 → [0, 1], where
Dist expresses a set of probability distributions, in a standard fashion, i.e.,

Φ∗
T(µ, ϕ) =

∑
{µ(b) | b ∈ Bn for which ΦT(b, ϕ) = 1}

We further convert probabilistic status vectors ρ ∈ [0, 1]n to a distribution
µρ ∈ Dist(Bn):

µρ (b1, . . . , bk) =
k∏

i=1

(bi × ρi + (1− bi)× (1− ρi))

We can then define semantics for the second syntactic layer as follows:
ρ ,T |= ¬ψ iff ρ ,T ̸|= ψ

ρ ,T |= ψ ∧ ψ′ iff ρ ,T |= ψ and ρ ,T |= ψ′

ρ ,T |= Pr
▷◁p

(ϕ | ϕ′) iff Φ∗
T(µρ , ϕ ∧ ϕ′)/Φ∗

T(µρ , ϕ
′) ▷◁ p

ρ ,T |= ψ[ei 7→ q] iff ρ [ρi 7→ q],T |= ψ

ρ ,T |= IDP(ϕ, ϕ′) iff Φ∗
T(µρ , ϕ ∧ ϕ′) = Φ∗

T(µρ , ϕ) · Φ∗
T(µρ , ϕ

′)

Finally, to define semantics for the third layer we let Valρ ,T : X3 → [0, 1] define
an evaluation function of layer three formulae in X3:

Valρ ,T(Pr(ϕ | ϕ′)) = Φ∗
T(µρ , ϕ ∧ ϕ′)/Φ∗

T(µρ , ϕ
′)

Valρ ,T(ξ[ei 7→ q]) = Valρ [ρi 7→q],T(ξ)

Furthermore we write T |= θ, meaning ∀ρ . ρ ,T |= θ.

PFL: a Probabilistic Logic for Fault Trees 7

4 Case Study: Examples
We showcase the potential of our logic by presenting two case studies: a COVID-
19 related ft [4, 32] and the ft for an oil/gas pipeline [45].

4.1 COVID-19 FT
The tle represents a COVID-19 infected worker on site, abbreviated IWoS .
As shown in Fig. 2, the ft considers events in several categories: COVID-19
pathogens and reservoirs (i.e., germs and objects carrying the virus); their mode
of transmissions; the presence of susceptible hosts, infected objects and workers;
physical contacts as well as human errors. Note that Fig. 2 contains several
repeated basic events (marked with a dashed border): IT , PP, H1 and IW . This
tle IWoS is refined via an AND-gate with three children. Thus, for the TLE
to occur the following must happen: COVID pathogens/COVID infected objects

IWoS

CP/R SHMoT

CR CT DT AT CVT UT
H1

IT H2 CIW CIO CIS IW PP IW

VW

AB IW H1MV

IT

H1

MH1

H4

IS

H1

MH2

H5

H1PPIW

CP

IW H3

Figure 2: COVID-19 ft.

must exist, there has to
be a susceptible host and
COVID pathogens must be
transmitted in some way to
this host. These events are
captured by corresponding
subtrees: the purplepurple OR-
gate CP/R refines the exist-
ence of COVID pathogens/-
COVID infected objects, the
OR-gate MoT in tealteal re-
fines modes of transmission
and the AND-gate SH in
orangeorange details the presence
of a susceptible host.
Properties. Following, we
specify some properties us-
ing natural language and
present the corresponding
PFL formulae: 1) What are
all the mcss for the modes of transmission that include errors in objects and
surfaces disinfection? JMCS(MoT) ∧ H4 ∧ H5 KT; 2) Is the probability of TLE
smaller than 0.03, if physical proximity occurred? Pr≤0.03(IWoS)[PP 7→ 1];
3) Assume that the probability of an infected worker on the team equals 0.25.
How does that affect the probability of TLE? Pr(IWoS)[IW 7→ 0.25]; 4) Assume
that both COVID-19 pathogens and a vulnerable worker exist. Does this imply
that P (IWoS) ≥ 0.15? Pr=1(CP) ∧ Pr=1(VW) ⇒ Pr≥0.15(IWoS).

4.2 Oil/gas pipeline FT
The tle represents the failure of an oil/gas pipeline, abbreviated O/GPF . As
shown in Fig. 3, the ft considers events in several categories: failures like rup-
tures and punctures; third party interference; different kinds of corrosion; incor-
rect performance of some operations (e.g., maintenance); unreasonable design

8 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

O/GPF

RupA

B

Pun

TPI

PiS IS SB OV

GH

EQ FD SUUS UM

UDIO

OP MA

QoW SCD EQP AP

Cor

SCC CoFC

TS

SCo LISRS

SpM

WW AcM

H2S O2 CO2

D

PS EL

AlS

A

CoTC

ExC InC

FCP FoC IACSoC

Ba HWR Ele HiSHT LoR LoP

IAC ProM

FoI FCo BCP De WW

MeCD

AcM

H2S O2 CO2

DoP

InD

CoD

B

MaD

CoG MIBMi

OpD

BaI BaW BaG MD

Figure 3: Oil/Gas Pipeline ft.
choices; as well as defects on pipes. Fig. 3 contains several repeated basic events
(again, marked with a dashed border): WW , H2 S , O2 , CO2 and IAC . Fur-
thermore, multiple sub-trees are referenced/repeated in different places: those
are marked using labelled triangles. The tle O/GPF is refined via an OR-
gate with two children, in blueblue. Thus, for the TLE to occur either a rupture or
a puncture must happen. These two events are captured by corresponding sub-
trees. The rupturerupture subtree (top-right of Fig. 3) is refined by an OR-gate with six
children: the greengreen OR-gate TPI refines possible interference by third parties;
the violetviolet OR-gate Cor refines modes of pipes corrosion; the yellowyellow subtree
B refines modes in which pipes could be defective; the dove graydove gray OR-gate IO
details possible incorrect operations; the lime greenlime green OR-gate UD details un-
reasonable design choices; and the pinkpink OR-gate GH refines possible geological
hazards. Similarly, the puncturepuncture subtree (bottom of Fig. 3) is refined by an
OR-gate with two children: the orangeorange OR-gate CoT refines modes in which
corrosion can make pipes thinner — with a detailed subtree in light bluelight blue re-
fining medium corrosion; and the OR-gate DoP in yellowyellow that refines modes in
which pipes could be defective.
Properties. We specify some properties using natural language and present
the corresponding PFL formulae: 1) What are all the mpss for pipes rupture
that include the absence of water as a corrosive medium, H2 S ,O2 and CO2 ?
JMPS(Rup) ∧ ¬WW ∧ ¬H2 S ∧ ¬O2 ∧ ¬CO2 KT; 2) Assume that H2S shows up
in the pipes with 0.25% probability. What is the probability of pipes corrosion,
given that corrosion happens with water with 2% probability and that pressure

PFL: a Probabilistic Logic for Fault Trees 9

surges with 1% probability? Pr(Cor)[H2 S 7→ 0.0025,WW 7→ 0.02,PS 7→ 0.01];
3) Assume that the probability of pipes corrosion with acid is equal to 0.005.
Assume also that pipes present defects in their construction material with 0.2%
probability. Is the probability of TLE happening lower than 1.2%? Pr≤0.012
(O/GPF)[AcM 7→ 0.005,MaD 7→ 0.02].

5 LangPFL: A Domain Specific Language for PFL

Design of LangPFL. To ease usability of PFL, we present LangPFL, a Domain
Specific Language (DSL) to specify properties in PFL. The strive for a simple
way to specify properties involving probability on ft was a specific need we un-
covered while conducting interviews with a domain expert from industry [3]. De-
fining languages and tools for properties and requirements specification is com-
mon practice.

Natural Language PFL LangPFL
What are all the mcss for the

modes of transmission that
include errors in objects and

surfaces disinfection?

JMCS(MoT) ∧ H4 ∧ H5 KT

assume:

computeall:
mcs[MoT] and
H4 and H5

Is the probability of
TLE smaller than 0.03,

if physical proximity occurred?
Pr

≤0.03
(IWoS)[PP 7→ 1]

assume:
setp PP = 1

check:
P[IWoS] ≤ 0.03

Assume that the probability of
an infected worker on the team

equals 0.25. How does that
affect the probability of TLE?

Pr(IWoS)[IW 7→ 0.25]

assume:
setp IW = 0.25

compute:
P[IWoS]

Assume that both COVID-19
pathogens and a vulnerable

worker exist. Does this imply
that P (IWoS) ≥ 0.15?

Pr
=1

(CP) ∧ Pr
=1

(VW)
⇒ Pr

≥0.15
(IWoS)

assume:
setp CP = 1
setp VW = 1

check:
P[IWoS] ≥ 0.15

What are all the mpss for pipes
rupture that include the absence
of water as a corrosive medium,

H2 S ,O2 and CO2 ?

JMPS(Rup) ∧ ¬WW ∧
¬H2 S ∧ ¬O2 ∧ ¬CO2 KT

assume:

computeall:
mps [Rup] and
not WW and
not H2 S
and not O2

and not CO2

Assume that H2S shows up
in the pipes with 0.25%
probability. What is the

probability of pipes corrosion,
given that corrosion happens

with water with 2% probability
and that pressure surges

with 1% probability?

Pr(Cor)[H2 S 7→ 0.0025,
WW 7→ 0.02,PS 7→ 0.01]

assume:
setp H2S = 0.0025
setp WW = 0.02
setp PS = 0.01

compute:
P[Cor]

Assume that the probability
of pipes corrosion with acid

is equal to 0.005. Assume also
that pipes present defects in

their construction material with
0.2% probability. Is the

probability of TLE lower
than 1.2%?

Pr
≤0.012

(O/GPF)[AcM
7→ 0.005,MaD 7→ 0.02]

assume:
setp AcM = 0.005
setp MaD = 0.02

check:
P[O/GPF]≤0.012

Table 1: Properties: natural language, PFL, LangPFL.

In [17] the authors cap-
ture high-level require-
ments in a human read-
able form by present-
ing SADL, a controlled
English requirements cap-
ture language, along-
side its tool suite AS-
SERT. Other controlled
natural languages for
knowledge representa-
tion include Process-
able English (PENG)
[44], Controlled Eng-
lish to Logic Transla-
tion (CELT) [34] and
Computer Processable
Language (CPL) [13].
LangPFL is inspired by
these languages for their
ease of use and close
proximity to natural
language. Finally, an-
other notable example
is FRETish [15], a
structured natural lan-
guage used to spe-
cify requirements and
to translate them into
Linear Temporal Logic
(LTL), developed at NASA and supported by the FRET tool [23]. Other than
for its usability, FRETish inspired us with the clear way in which the scope,

10 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

conditions and component of specified properties are clearly separated from de-
sired behaviours on timing and responses. LangPFL expresses only a fragment
of PFL: most notably, nesting of formulae is disallowed. By doing so, we retain
most of the expressiveness of PFL while making property specification easier.
ft elements are referred to with their label and each operator in PFL has a
counterpart in the DSL: Boolean operators, not, and, or, impl . . .; setting the
value of ft elements to Boolean or probability values, set, setp; mcss and
mpss, MCS[. . .], MPS[. . .]; operators to check probability thresholds/compute
probability values, P[. . .] ▷◁ . . .,P[. . .]; and to check for independence between
ft elements IDP[. . . , . . .].
LangPFL Templates. Properties can be specified in LangPFL by utilizing oper-
ators inside structured templates. Assumptions on the status of ft elements can
be specified under the assume keyword. These assumptions will be automat-
ically integrated in the translated formula accordingly, e.g., set or setp will be
translated with the according operators to set evidence, while other assumptions
will be the antecedent of an implication. A second keyword separates specified
formulae from the assumptions and dictates the desired result: compute and
computeall compute and return desired values, i.e., probability values and lists
of mcss/mpss respectively, while check establishes if a specified property holds.
Case studies. In Table 1 we showcase the properties specified in Sec. 4 and
their respective translation in LangPFL.

6 Model Checking Algorithms

Overview. With PFL extending previous work [32], algorithms to compute sat-
isfiability of layer one formulae remain unchanged. In particular, it is possible to
model check PFL over a ft and a Boolean vector b when considering layer one
formulae. Furthermore, we can collect all Boolean vectors b such that b ,T |= ϕ.
As noted in [32], checking if b ,T |= ϕ holds is trivial if ϕ is a layer one formula
that does not contain an MCS or MPS operator. In that case, we can simply
substitute the values of b in ϕ and see if the Boolean expression evaluates to
true. This holds true also when considering a given probabilistic vector ρ , a tree-
shaped ft and a layer two/three formula θ that does not contain operators for
MCS or MPS. In this case, values can be computed following usual probability
laws. For the other cases, the computation becomes more complex, and proced-
ures involving binary decision diagrams (bdds) are necessary. Algorithms for
the Boolean scenarios are described in Appendix A.3 and Appendix A.4 respect-
ively. When reasoning about satisfiability of second layer formulae, algorithms
present differences. As such, we present three novel algorithms for PFL: 1. Given
a vector ρ , a ft T and a formula ψ, check if ρ ,T |= ψ (Sec. 6.4), 2. Given T and
ψ, compute regions of the parameter space where T |= ψ (Sec. 6.5), 3. Given a
ft T and a formula ψ, check whether T |= ψ for all ρ (Sec. 6.6). In continuity
with previous work, all three algorithms are based on construction and manip-
ulation of bdds: first, ft elements that appear in a given layer one formula
are identified. Then, bdds for these elements are selectively constructed (see

PFL: a Probabilistic Logic for Fault Trees 11

Algo. 5) and stored to reduce computation time. Finally, these bdds are ma-
nipulated and equipped with probabilities (see Algo. 1) to reflect semantics of
the operators of PFL. This translation to BDDs constitutes a formal ground that
permits to address these procedures in a uniform way, while integrating novel
work presented in this paper with previous algorithms. A brief overview of each
algorithm is given in Sec. 6.4, Sec. 6.5 and Sec. 6.6 respectively.

6.1 (Reduced Ordered) Binary Decision Diagrams
bdds are directed acyclic graphs (dags) that compactly represent Boolean
functions [2] by reducing redundancy. Depending on variable’s ordering, bdd’s
size can grow linearly in the number of variables and at worst exponentially. In
practice, bdds are heavily used, including in ft analysis and in their security-
related counterpart, attack trees (ats) [37, 12]. Formally, a bdd is a rooted
dag Bf that represents a Boolean function f : Bn → B over variables Vars =
{xi}n

i=1. Each nonleaf w has two outgoing arrows, labeled 0 and 1, and a label
Lab(w) ∈ Vars; furthermore, each leaf has a label 0 or 1. Given a b in Bn, the
BDD is used to compute f(b) as follows: starting from the top, upon arriving at a
node w with Lab(w) = xi, one takes the 0-edge if bi = 0 and the 1-edge if bi = 1.
The label of the leaf one ends up in, is then equal to f(b). A function f can be
represented by multiple BDDs, but has a unique reduced ordered representative,
or ROBDD [5, 10], where the xi occur in ascending order, and the BDD is reduced
as much as possible by removing irrelevant nodes and merging duplicates. This
is formally defined below; we let Low(w) (resp. High(w)) be the endpoint of w’s
0-edge (resp. 1-edge) and let RB be the bdd root.

Definition 5 (Reduced Ordered Binary Decision Diagram ((RO)BDD)).
Let Vars be a set. A BDD over Vars is a tuple B = (W,A,Lab, u) where (W,A)
is a rooted directed acyclic graph, and Lab : W → Vars ⊔ {0, 1}, u : A → {0, 1}
are maps such that: 1. Every nonleaf w has exactly two outgoing edges a, a′ with
u(a) ̸= u(a′), and Lab(w) ∈ Vars; 2. Every leaf w has Lab(w) ∈ {0, 1}. 3. Vars
are equipped with a total order, Bf is thus defined over a pair ⟨Vars, <⟩; 4. the
variable of a node is of lower order than its children, that is: ∀w ∈ Wn .Lab(w) <
Lab(Low(w)), Lab(High(w)); 5. the children of non terminal nodes are distinct
nodes; 6. nodes are uniquely determined by their label, low child and high child.

6.2 Translating FTs/formulae to BDDs
Translations. We shortly sketch the idea of translating a layer one formula
and a (sub)tree to bdds. As mentioned, to translate formulae to bdds, ft
elements that appear in a given formula are identified. Then, bdds representing
these elements are selectively constructed and stored to reduce computation
time. Finally, operations on these bdds are performed to reflect semantics of
the operators in PFL.
Translating FTs to BDDs. As a first step, a translation from fts to bdds is
needed [32]. These bdds represent exactly the structure function of (sub)trees.
In the following paragraphs we assume Vars = V ∪̇ V′, where the set of vari-
ables V = BE and the set of primed variables V′ = {e′|e ∈ BE} (used for the

12 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

bdd translation of the mcs operator, see Appendix A.2). Furthermore, we
keep Var B : BDD → Vars to be a function that returns variables occurring in
a bdd [32]. Then, our translation function ΨFT : E → BDD takes elements of
a ft as input and maps them to bdds. For an exact definition of ΨFT see
Appendix A.1.
Translating formulae. With bdds for fts, the next step consists in manip-
ulating them to mirror PFL operators in layer one. I.e., given ΨFT and a ft T,
for every PFL formula ϕ in the set of PFL layer one formulae X1 there exists
a translation to bdds BT : X1 → BDD in Algo. 5 (see Appendix A.2). The im-
plementation of this procedure abides the dynamic programming standards: by
caching, we would reuse the translation of (sub)trees and (sub)formulae between
different analyses without recomputing them each time anew.

6.3 Equipping BDDs with probabilities

Algorithm 1 Obtain Φ∗
T(µx , ϕ) for BT(ϕ).

Input: ft T, formula ϕ
Output: function Φ∗

T(µx , ϕ) : [0, 1]n → [0, 1]
where x1, . . . , xn ∈ x are function parameters
Method:
BT(ϕ)← Algo. 5(T, ϕ)
poly(BT(ϕ))← value(RBT(ϕ)), where:

- value(wi ̸∈ Wt) = (1−xi) · value(Low(wi))
+xi · value(High(wi))
- value(⊤) = 1 and value(⊥) = 0

return poly(BT(ϕ))

Once we obtain bdds for fts/ϕ-
formulae, we can construct a func-
tion Φ∗

T(µx , ϕ) from [0, 1]n to
[0, 1] that computes the probab-
ility value of ϕ given probability
values in x , where x can be sub-
stituted with any ρ . Algo. 1 shows
this procedure: first, we compute
BT(ϕ) via Algo. 5, we then obtain
a polynomial poly(BT(ϕ)) repres-
enting BT(ϕ) via value(RBT(ϕ)),
where value(wi ̸∈ Wt) = (1 − xi) · value(Low(wi)) + xi · value(High(wi)),
value(⊤) = 1 and value(⊥) = 0. x1, . . . , xn ∈ x are parameters of the constructed
function and can be substituted in poly(BT(ϕ)) with values from an arbitrary ρ
to compute the overall probability value of the bdd for ft/ϕ-formula.

6.4 Algorithm 2: Model checking PFL over a FT and a ρ

Overview. Given a specific vector ρ , a ft T and a PFL layer two formula ψ, we
want to check if ρ ,T |= ψ. To do so, if we come across a layer one formula ϕ we
translate it to a bdd, we equip the resulting bdd with probabilities obtained
from ρ and we compute whether the resulting value respects the threshold set
in the given layer two formula ψ. Boolean connectives are resolved as usual and
independence is checked according to probability laws once the value for the
respective bdd is computed. For the corresponding layer three formulae ξ, we
would simply return the value computed from the bdd instead of comparing it
to the given layer two threshold.
Algo. 2. This algorithm shows a procedure to check if ρ ,T |= ψ, given ρ , T and
ψ. Boolean connectives are handled as usual via case distinction. In the same way,
probability values in ρ are replaced by mappings in ψ, if any. For Pr▷◁p(ϕ | ϕ′),
we compute the bdd BT(ϕn) for each ϕn of the respective layer one formulae
via Algo. 1. Finally, we compute the conditional probability P (ϕ | ϕ′). If the

PFL: a Probabilistic Logic for Fault Trees 13

returned value respects the threshold set in ψ we return True, False otherwise.
For IDP we follow an analogous procedure: we compute probability values of
needed layer one inner formulae and we return True if they are stochastically
independent. An algorithm for layer three formulae ξ would simply return the
conditional probability value for Pr(ϕ | ϕ′), after potentially modifying ρ and
computing P (BT(ϕn)).

WW

10

O2

H2S

CO2

Figure 4: bdd
for Fig. 1.

Example. Let us consider the subtree in Fig. 1 and a vec-
tor with probability values for WW , H2 S , O2 and CO2 re-
spectively: ρ = (0.002, 0.001, 0.0015, 0.002). Suppose we want to
know if P (MeC) is lower or equal to 0.0001, assuming the scen-
ario where P (H2 S) = 0.0023 and P (WW) = 0.015, i.e., form-
ally with ψ = Pr≤0.0001(MeC)[H2 S 7→ 0.0023,WW 7→ 0.015].
First, ρ would be modified as per the new assignments in ψ:
ρ = (0.015, 0.0023, 0.0015, 0.002). Then, Algo. 2 is called again
with the modified ρ and the bdd BT(MeC) for MeC is con-
structed (see Fig. 4). The value for the bdd is computed via
Algo. 1. The result (0.000087) is lower than the threshold in ψ, the formula is
satisfied and the algorithm returns True.

Algorithm 2 Check if ρ ,T |= ψ, given ρ , T and ψ.
Input: prob. vector ρ , ft T, formula ψ
Output: True iff ρ ,T |= ψ, False otherwise.
Method:
if ψ = ¬ψ′ then return not(Algo. 2(ρ ,T, ψ′))
else if ψ = ψ′ ∧ ψ′′ then return Algo. 2(ρ ,T, ψ′) and Algo. 2(ρ ,T, ψ′′)
else if ψ = Pr▷◁p(ϕ | ϕ′) then

P(BT(ϕ)),P(BT(ϕ′))←Algo. 1(T, ϕ)(ρ), Algo. 1(T, ϕ′)(ρ)
P(ϕ | ϕ′) = P(BT(ϕ))·P(BT(ϕ′))

P(BT(ϕ′))

return P(ϕ | ϕ′) ▷◁ p
else if ψ = ψ′[ei 7→ q] then return Algo. 2(ρ [ρi 7→ q],T, ψ′)
else if ψ = IDP(ϕ, ϕ′) then

P(BT(ϕ)),P(BT(ϕ′)),P(BT(ϕ ∧ ϕ′))←Algo. 1(T, ϕ)(ρ), Algo. 1(T, ϕ′)(ρ),
Algo. 1(T, ϕ ∧ ϕ′)(ρ)
return P(BT(ϕ)) · P(BT(ϕ′)) = P(BT(ϕ ∧ ϕ′))

end if

6.5 Algorithm 3: Computing regions where ψ-formulae are satisfied

Overview. Given a FT T and a layer two formula ψ, we want to find the region
Syes in [0, 1]n of all ρ that satisfy ψ. Typically, such a region is defined by large
polynomials, and therefore difficult to describe analytically. Instead, we provide
an algorithm that approximates this region up to a given level of precision.
Such an approximation is given in the definition below: it consists of a region
Syes where ψ is known to hold, a region Sno where ψ does not hold, and the
remainder Smaybe is of limited volume.

14 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

Definition 6. Let T be a FT, let ε ∈ (0, 1], and let ψ be a layer two formula. A
ε-partition for ψ is a partition (Syes, Sno, Smaybe) of [0, 1]n such that: 1. ρ ,T |= ψ
for all ρ ∈ Syes; 2. ρ ,T ̸|= ψ for all ρ ∈ Sno; 3. Vol(Smaybe) ≤ ε, where Vol
denotes n-dimensional volume.

Algorithm 3 Given T , find ε-partition for Pr≥p(ϕ|ϕ′).
Input: FT T , formulae ϕ, ϕ′, reals p, ε ∈ (0, 1].
Output: ε-partition (Syes, Sno, Smaybe) for Pr≥p(ϕ|ϕ′).
Method:
Bmaybe ← {[0, 1]n}; Vmaybe ← 1; Syes, Sno ← ∅
while Vmaybe > ε do

Pick B =
∏n

i=1[li, ui] from Bmaybe with maximal volume
Bmaybe ← Bmaybe \ {B}
Vmaybe ← Vmaybe −Vol(B)
Btest ←

{∏n

i=1 Ii

∣∣ ∀i.Ii ∈ {[li, li+ui
2], [li+ui

2 , ui]}
}

for each B′ =
∏n

i=1[l′i, u′
i] ∈ Btest do

A← {ρ ∈ [0, 1]n | ∀i.ρi ∈ {l′i, u′
i}}

pmin ← minρ ∈A
Algo. 1(T,ϕ∧ϕ′)(ρ)

Algo. 1(T,ϕ)(ρ)

pmax ← maxρ ∈A
Algo. 1(T,ϕ∧ϕ′)(ρ)

Algo. 1(T,ϕ)(ρ)
if p ≤ pmin then Syes ← Syes ∪B′

else if p > pmax then Sno ← Sno ∪B′

else Bmaybe ← Bmaybe ∪ {B′}; Vmaybe = Vmaybe + Vol(B′)
end if

end for
end while
Smaybe ←

⋃
Bmaybe

return (Syes, Sno, Smaybe)

Algo. 3. An algorithm finding a ε-partition for formulae of the form ψ =
Pr≥p(ϕ|ϕ′) is given in Algo. 3; it works as follows. We have a set Bmaybe of
candidate hypercubes, which starts as the singleton {[0, 1]n}. One by one, we
take hypercubes B from Bmaybe, and divide them into 2n smaller hypercubes.
For each of the smaller hypercubes B′, we check whether ρ , T |= ψ for all ψ ∈ B′;
if so, we add B′ to Syes. If ρ , T ̸|= ψ for all ψ ∈ B′, we add B′ to Sno. If neither
is true, then we add B′ to Bmaybe, so that later it is split up again. The al-
gorithm stops when the joint volume of all hypercubes in Bmaybe is at most
ε. Literature in the area of parametric model checking explored this technique,
also w.r.t. Markov decision processes (MDPs) [18, 22, 24, 27, 28]. However,
we leverage the specific situation presented here to devise a less generic but
more convenient algorithm. In fact, to check ∀ρ ∈ B′.ρ , T |= ψ, we use The-
orem 1 (proof in Appendix B.1), which says that the minimum of Φ∗

T(ρ ,ϕ∧ϕ′)
Φ∗

T(ρ ,ϕ′)(
computed as Algo. 1(T,ϕ∧ϕ′)(ρ)

Algo. 1(T,ϕ)(ρ)

)
on B′ is attained at one of its vertices. This

means that we only need to check whether ρ , T |= ψ for the set A of vertices of
B′. The same holds for checking ∀ρ ∈ B′.ρ , T ̸|= ψ.

PFL: a Probabilistic Logic for Fault Trees 15

Theorem 1. Let ϕ, ϕ′ be layer one formulae, and let B ⊆ [0, 1]n be a hyperrect-
angle. Then Φ∗

T(ρ ,ϕ∧ϕ′)
Φ∗

T(ρ ,ϕ′) attains its minimum and maximum (as a function of ρ)
at one of the vertices of B.

So far, we have assumed ψ = Pr≥p(ϕ|ϕ′). Formulae of the form Pr=p(ϕ|ϕ′) and
IDP(ϕ, ϕ′) generally define hypersurfaces in [0, 1]n rather than regions; these can
be approximated by considering the set Smaybe of a ε-partition, which forms an
open neighborhood of the actual hypersurface. Furthermore, one finds regions
for ¬ψ and ψ ∧ ψ′ by considering complements and intersections, respectively.

6.6 Algorithm 4: Checking PFL ψ-formulae over a FT for all ρ

Overview. Given a ft T a layer two formula ψ, we want to check if T |= ψ for
all ρ . In this section we discuss two different approaches to answer this question,
one derived from Algo. 3 and one employing SAT solving.
Algo. 4. Leveraging Algo. 3, one could check whether T |= ψ for all ρ by
checking the parameter space in order to show that the negated formula ¬ψ is
unsatisfiable. If, on the other hand, we manage to find a candidate hypercube
B′ from Bmaybe such that ∀ρ ∈ B′.ρ ,T |= ¬ψ then we can exhibit a region
that serves as a counterexample for our initial question. This procedure would
be bound to approximate to a given level of precision, as previously discussed.
The second possibility is to resort to SMT solving. Again, our aim is to check if
the negation of the given formula is unsatisfiable. First, we translate each of the
inner ϕn layer one formulae (e.g., inside Pr▷◁p(ϕ | ϕ′) or IDP(ϕ, ϕ′) operators)
to bdds, to then obtain representations of these bdds as polynomials (see
Algo. 1). By comparing these to bounds set in Pr▷◁p(ϕ | ϕ′) operators or to the
semantics of IDP(ϕ, ϕ′), one can represent the original negated formula ¬ψ via
(in)equalities between polynomials. We then use already available SMT solvers -
such as SMT-RAT [16] - as a black box to handle such an encoding. If the input
representation is satisfiable, the SMT solver returns an assignment of variables
to values, i.e., a counterexample probability vector for our original question.

7 Conclusion and Future Work

Conclusion. We presented PFL, a probabilistic logic for fts that enables the
construction of complex queries that capture many relevant scenarios. Further-
more, we introduced LangPFL, a domain specific language for PFL to ease prop-
erty specification. We showcased their usefulness with an application of PFL and
LangPFL to a COVID19-related ft and to a ft for an oil/gas pipeline. Spe-
cified properties can then be checked via the model checking algorithms, that
we presented alongside relevant theorems.
Future work. Our work opens several relevant perspectives for future research.
First, it would be interesting to extend PFL to consider timed behaviours to fur-
ther extend quantitative analysis capabilities. Secondly, it would be possible to
extend PFL in order to consider dynamic gates in fts. This further validates

16 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

our first point: to handle dynamic gates in dynamic fts it would be very nat-
ural to have a logic that can express temporal properties, moving more in the
direction of LTL [35] or CTL [14] or their timed variants TLTL [36] and TCTL
[1]. Moreover, it is foreseeable to extend the proposed framework to security
variants of fts, attack trees (ats) [7, 12, 31, 39], and to their combinations,
e.g., attack-fault trees (AFTs) [29]. Lastly, developing an implementation of this
logic could further propel usability of PFL and LangPFL by providing hands-on
feedback from domain experts acquainted with FTA.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and computation 104(1), 2–34 (1993)

2. Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes, avail-
able online, IT University of Copenhagen p. 5 (1997)

3. Anonymized: A Logic to reason about Fault Trees. Interview Report, URL removed
for anonymization purposes.

4. Bakeli, T., Hafidi, A.A., et al.: Covid-19 infection risk management during con-
struction activities: An approach based on fault tree analysis (fta). Journal of
Emergency Management 18(7), 161–176 (2020)

5. Ben-Ari, M.: Mathematical logic for computer science. Springer Science & Business
Media (2012)

6. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree analysis and model
checking for safety assessment of complex system. In: EDCC-4. vol. 2485, pp. 19–
31. Springer (2002). https://doi.org/10.1007/3-540-36080-8_3

7. Bobbio, A., Egidi, L., Terruggia, R.: A methodology for qualitative/quantitat-
ive analysis of weighted attack trees. IFAC Proceedings Volumes 46(22), 133–138
(2013). https://doi.org/10.3182/20130904-3-UK-4041.00007

8. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using in-
put/output interactive markov chains. In: DSN. pp. 708–717. IEEE Computer
Society (2007). https://doi.org/10.1109/DSN.2007.37

9. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011). https://doi.org/10.1093/comjnl/bxq024

10. Brace, K., Rudell, R., Bryant, R.: Efficient implementation of a BDD pack-
age. In: 27th ACM/IEEE Design Automation Conference. pp. 40–45 (1990). ht-
tps://doi.org/10.1109/DAC.1990.114826

11. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: TACAS. LNCS, vol. 10206, pp.
151–168. Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_9

12. Budde, C.E., Stoelinga, M.: Efficient Algorithms for Quantitative Attack Tree Ana-
lysis. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF). pp.
1–15 (2021). https://doi.org/10.1109/CSF51468.2021.00041

13. Clark, P., Harrison, P., Jenkins, T., Thompson, J.A., Wojcik, R.H., et al.: Ac-
quiring and using world knowledge using a restricted subset of English. In: Flairs
conference. pp. 506–511 (2005)

14. Clarke, E., Emerson, E.: Design and synthesis of synchronisation skeletons using
branching time temporal logic. In: Logic of Programs, Proceedings of Workshop.
Lecture Notes in Computer Science, vol. 31, pp. 52–71. Springer, Berlin (1981)

https://doi.org/10.1007/3-540-36080-8_3
https://doi.org/10.3182/20130904-3-UK-4041.00007
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/CSF51468.2021.00041

PFL: a Probabilistic Logic for Fault Trees 17

15. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A com-
positional proof framework for FRETish requirements. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs. pp.
68–81 (2022)

16. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: Smt-rat: an open
source c++ toolbox for strategic and parallel smt solving. In: International Con-
ference on Theory and Applications of Satisfiability Testing. pp. 360–368. Springer
(2015)

17. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and ana-
lysis in ASSERT (TM). In: 2017 IEEE 25th International Requirements Engineer-
ing Conference (RE). pp. 283–291. IEEE (2017)

18. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex Optimiz-
ation for Parameter Synthesis in MDPs. IEEE Transactions on Automatic Control
(2021)

19. Déharbe, D., Shankar, S., Clarke, E.M.: Model checking VHDL with CV. In:
Gopalakrishnan, G., Windley, P.J. (eds.) Formal Methods in Computer-Aided
Design, Second International Conference, FMCAD ’98, Palo Alto, California, USA,
November 4-6, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1522,
pp. 508–514. Springer (1998). https://doi.org/10.1007/3-540-49519-3_33, https:
//doi.org/10.1007/3-540-49519-3_33

20. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Transactions on Reliability 45(3), 422–425 (1996)

21. Ericson, C.A.: Fault tree analysis. In: Sys. Safety Conf. vol. 1, pp. 1–9 (1999)
22. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric

markov chains. In: International Symposium on Automated Technology for Veri-
fication and Analysis. pp. 300–316. Springer (2018)

23. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ-
2020). No. ARC-E-DAA-TN77785 (2020)

24. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Nasa formal methods symposium. pp. 146–161. Springer (2011)

25. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866,
https://doi.org/10.1007/BF01211866

26. International Standardization Organization: ISO/DIS 26262: Road vehicles, func-
tional safety. https://www.iso.org/standard/68383.html (2018)

27. Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J.P., Quatmann, T.,
Volk, M.: Parameter synthesis for Markov models. arXiv preprint arXiv:1903.07993
(2019)

28. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 31–45
(2016)

29. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: Proceedings of the 18th IEEE International Symposium on High
Assurance Systems Engineering (HASE 2017). pp. 25–32. HASE, IEEE, United
States (Jan 2017). https://doi.org/10.1109/HASE.2017.12

30. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probab-
ilistic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_47

https://doi.org/10.1007/3-540-49519-3_33
https://doi.org/10.1007/3-540-49519-3_33
https://doi.org/10.1007/3-540-49519-3_33
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://www.iso.org/standard/68383.html
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1007/978-3-642-22110-1_47

18 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

31. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
Information Security and Cryptology - ICISC 2005. pp. 186–198. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006)

32. Nicoletti, S., Hahn, E., Stoelinga, M.: BFL: a Logic to Reason
about Fault Trees. In: (DSN). pp. 441–452. IEEE/EUCA (2022). ht-
tps://doi.org/10.1109/DSN53405.2022.00051

33. Ognjanovic, Z.: Discrete linear-time probabilistic logics: Completeness, de-
cidability and complexity. J. Log. Comput. 16(2), 257–285 (2006). ht-
tps://doi.org/10.1093/logcom/exi077, https://doi.org/10.1093/logcom/exi077

34. Pease, A., Murray, W.: An english to logic translator for ontology-based knowledge
representation languages. In: International Conference on Natural Language Pro-
cessing and Knowledge Engineering, 2003. Proceedings. 2003. pp. 777–783. IEEE
(2003)

35. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 Oc-
tober - 1 November 1977. pp. 46–57. IEEE Computer Society (1977). ht-
tps://doi.org/10.1109/SFCS.1977.32, https://doi.org/10.1109/SFCS.1977.32

36. Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, Facultés universitaires Notre-Dame de la Paix, Namur (1999)

37. Rauzy, A.: New algorithms for fault trees analysis. Reliability Engineering & Sys-
tem Safety 40(3), 203–211 (1993). https://doi.org/10.1016/0951-8320(93)90060-C

38. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15–16, 29–62 (2015).
https://doi.org/10.1016/j.cosrev.2015.03.001

39. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
40. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:

Fault tree handbook with aerospace applications. Prepared for NASA Office of
Safety and Mission Assurance (2002)

41. Thums, A., Schellhorn, G.: Model checking FTA. In: Araki, K., Gnesi,
S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 739–757 (2003).
https://doi.org/10.1007/978-3-540-45236-2_40

42. Volk, M., Junges, S., Katoen, J.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Informatics 14(1), 370–379 (2018). ht-
tps://doi.org/10.1109/TII.2017.2710316

43. Walker, M.D.: Pandora: a logic for the qualitative analysis of temporal fault trees.
Ph.D. thesis, The University of Hull (2009)

44. White, C., Schwitter, R.: An update on PENG light. In: Proceedings of the Aus-
tralasian Language Technology Association Workshop 2009. pp. 80–88 (2009)

45. Yuhua, D., Datao, Y.: Estimation of failure probability of oil and gas transmission
pipelines by fuzzy fault tree analysis. Journal of loss prevention in the process
industries 18(2), 83–88 (2005)

https://doi.org/10.1109/DSN53405.2022.00051
https://doi.org/10.1109/DSN53405.2022.00051
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0951-8320(93)90060-C
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1007/978-3-540-45236-2_40
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316

PFL: a Probabilistic Logic for Fault Trees 19

A Appendix: Algorithms and additional definitions for
layer one formulae

Following, operations between bdds are represented by bold operands e.g.,
∧,∨. Algorithms to conduct these operations on bdds can be found in [2, 5].
Given a set of variables V = {v1, . . . , vn}, existential quantification (needed to
translate part of the semantics of MCS operator) can be defined as follows:
∃v.B = Restrict(B, v, 0) ∨ Restrict(B, v, 1); ∃V.B = ∃v1.∃v2. . . . ∃vn.B.

A.1 Translating FTs to BDDs

ΨFT is defined as follows:

Definition 7. The translation function of a FT T is a function ΨFTT : E → BDD
that takes as input an element e ∈ E. With e′ ∈ ch(e), we can define ΨFTT :

ΨFTT(e) =

B(e) if e ∈ BE∨∨∨
ΨFTT(e′) if e ∈ IE and t(e) = OR∧∧∧
ΨFTT(e′) if e ∈ IE and t(e) = AND∨∨∨

n1,...,nk

n1<...<nk

k∧∧∧
i=1

ΨFTT(e′
ni

) if e ∈ IE and t(e)=VOT(k/N)

where B(v) is a BDD with a single node in which Low(v) = 0 and High(v) = 1.

A.2 Algorithm 5: Translating FTs/formulae to BDDs

Following, the recursion scheme taken from [32] to translate fts and layer one
formulae is presented.

Algorithm 5 Given ϕ and T, compute BT(ϕ)
Input: ft T, formula ϕ
Output: BT(ϕ)
Method: Compute BT(ϕ) according to the recursion scheme below. Store
intermediate results BT(· · ·) and ΨFTT(· · ·) in a cache in case they are used
several times.

Recursion scheme:
BT(e) : ΨF TT(e)
BT(¬ϕ) : ¬(BT(ϕ))
BT(ϕ ∧ ϕ′) : BT(ϕ) ∧ BT(ϕ′)
BT(ϕ[ei 7→ 0]) : Restrict(BT(ϕ), ei, 0)
BT(ϕ[ei 7→ 1]) : Restrict(BT(ϕ), ei, 1)
BT(MCS(ϕ)) : BT(ϕ) ∧ (¬∃V′.BT(V′ ⊂ V)∧

BT(ϕ)[V ↷ V′]) where:

20 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

BT(V′ ⊂ V) ≡ BT(
∧
k

v′
k ⇒ vk)∧

BT(
∨
k

v′
k ̸= vk)

where BT(ϕ)[V ↷ V′] indicates the bdd BT(ϕ) in which every variable vk ∈ V
is renamed to its primed v′

k ∈ V′.

A.3 Algorithm 6: Model checking PFL over a FT and a b
Overview. As per [32], given a specific vector b, a ft T and a layer one formula
ϕ, this algorithm showcases how to check if b ,T |= ϕ. To do so, we translate the
given formula to a bdd and then we walk down the bdd from the root node
following truth assignments given in the specific vector b .
Algorithm 6 Check if b ,T |= ϕ, given b, T and ϕ.

Input: boolean vector b , ft T and a formula ϕ
Output: True iff b,T |= ϕ, False otherwise.
Method: compute BT(ϕ)
Starting from bdd root,
while current node wi of BT(ϕ) ̸∈ Wt do:

if bi ∈ b = 0 then:
wi = Low(wi)

else if bi ∈ b = 1 then:
wi = High(wi)

end if
end while
if wi = 0 then:

return False
else if wi = 1 then:

return True
end if

Algo. 6. Algo. 6 shows an algorithm to check whether b ,T |= ϕ, given a status
vector b , a ft T and a formula ϕ. A bdd for the formula ϕ is computed with
regard to the structure function of the given ft T i.e., we compute BT(ϕ) as per
Algo. 5. Subsequently, the algorithm walks down the bdd following the Boolean
assignments given in b : if the i-th element of b is set to 0 then the next node
in the path will be given by Low(wi), if it is set to 1 then the next node will
be High(wi). When the algorithm reaches a terminal node it returns True if its
value is one - i.e., if b ,T |= ϕ - and False otherwise.

A.4 Algorithm 7: Computing all satisfying vectors
Overview. Given a ft T and a formula ϕ, we now want to compute all vectors
b such that b ,T |= ϕ. In this scenario no Boolean vector is given. Thus, we
need to construct the bdd for the given formula and then collect every path
that leads to the terminal 1 to compute all satisfying vectors Jb KT for the given
formula.

PFL: a Probabilistic Logic for Fault Trees 21

Algo. 7. To achieve the desired outcome we will construct the bdd BT(ϕ) for
the given formula following Algo. 5. Then, the algorithm will walk down the bdd
and store all the paths that lead to the terminal node 1. These paths represent
all the status vectors that satisfy our formula ϕ. The value for the elements of
each vector is set to 0 or 1 if the stored path follows respectively the low or high
edge of the collected elements of the bdd. After computing the bdd for a given
ϕ, AllSat [2] will achieve the desired outcome. This algorithm returns exactly
all the satisfying assignments for a given bdd, i.e., in our case, all the Boolean
vectors that satisfy our formula.

22 S.M. Nicoletti, M. Lopuhaä-Zwakenberg, E.M. Hahn and M. Stoelinga

B Appendix: Proofs
B.1 Proof for Theorem 1
Proof. For a layer one formula ϕ and ρ ∈ B, one can express

Φ∗
T(µρ , ϕ) =

∑
b∈Bn :

ΦT (b,ϕ)=1

n∏
i=1

ρbi
i (1 − ρi)1−bi . (1)

This is a polynomial in the n variables ρi. Each summand has degree 1 in each
ρi, hence Φ∗

T(µρ , ϕ) can be written as

Φ∗
T(µρ , ϕ) =

∑
w∈{0,1}n

ch
w

n∏
i=1

ρwi
i (2)

for some constants ch
w ∈ R. Now fix an i, and let ϕ, ϕ′ be two Boolean formulae;

then we can write Φ∗
T(µρ ,ϕ∧ϕ′)
Φ∗

T(µρ ,ϕ′) = Aρi+B
Cρi+D for some polynomials A,B,C,D in the

variables ρ1, . . . , ρi−1, ρi+1, . . . , ρn. In particular, we have
∂

∂ρi

Φ∗
T(µρ , ϕ ∧ ϕ′)
Φ∗

T(µρ , ϕ′) = AD −BC

(Cρi +D)2 . (3)

The sign of this partial derivative does not depend on the value of ρi. In par-
ticular, when all other ρi′ are fixed, this expression is maximized on an interval
when ρi is at one of the boundary points of that interval.

Now let us return to the setting of the Theorem; we will prove it for the
maximum only as the minimum is proved analogously. Let Let B =

∏
i[li, ui]

and let ρ ∈
∏

i[l
−1
i , l+i]; our aim is to find a vertex ρ ′ such that Φ∗

T(µρ ,ϕ∧ϕ′)
Φ∗

T(µρ ,ϕ′) ≤
Φ∗

T(µρ ′ ,ϕ∧ϕ′)
Φ∗

T(µρ ′ ,ϕ′) . To do so, we construct a sequence ρ 0, ρ 1, . . . , ρ n with the following
properties:
1. ρ 0 = ρ ;
2. Φ∗

T(µρ i
,ϕ∧ϕ′)

Φ∗
T(µρ i

,ϕ′) ≤
Φ∗

T(µρ i+1 ,ϕ∧ϕ′)
Φ∗

T(µρ i+1 ,ϕ′) for i < n;
3. ρi,i′ ∈ {li′ , ui′} for i′ ≤ i ≤ n.

This ensures that ρ ′ := ρ n has the required property. We define each ρ i from
ρ i−1 as follows: define ρ−

i , ρ
+
i ∈ [li, ui] by

ρ •
i,i′ =

li, if • = − and i′ = i,

ui, if • = + and i′ = i,

ρi−1,i′ , if i′ ̸= i.

By the discussion following (3), one has Φ∗
T(µρ i

,ϕ∧ϕ′)
Φ∗

T(µρ i
,ϕ′) ≤ max

{
Φ∗

T(µ
ρ

−
i+1

,ϕ∧ϕ′)

Φ∗
T(µ

ρ
−
i+1

,ϕ′) ,
Φ∗

T(µ
ρ

+
i+1

,ϕ∧ϕ′)

Φ∗
T(µ

ρ
+
i+1

,ϕ′)

}
.

Take ρ i+1 ∈ {ρ−
i+1, ρ+

i+1} to maximize
Φ∗

T(µρ i+1 ,ϕ∧ϕ′)
Φ∗

T(µρ i+1 ,ϕ′) , then this satisfies condi-
tions 1–3 above.

