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The pursue of what are properties that can be identified to permit an automated reasoning program
to generate and find new and interesting theorems is an interesting research goal (pun intended).
The automatic discovery of new theorems is a goal in itself, and it has been addressed in specific
areas, with different methods. The separation of the “weeds”, uninteresting, trivial facts, from the
“wheat”, new and interesting facts, is much harder, but is also being addressed by different authors
using different approaches. In this paper we will focus on geometry. We present and discuss different
approaches for the automatic discovery of geometric theorems (and properties), and different metrics
to find the interesting theorems among all those that were generated. After this description we will
introduce the first result of this article: an undecidability result proving that having an algorithmic
procedure that decides for every possible Turing Machine that produces theorems, whether it is able
to produce also interesting theorems, is an undecidable problem. Consequently, we will argue that
judging whether a theorem prover is able to produce interesting theorems remains a non deterministic
task, at best a task to be addressed by program based in an algorithm guided by heuristics criteria.
Therefore, as a human, to satisfy this task two things are necessary: an expert survey that sheds light
on what a theorem prover/finder of interesting geometric theorems is, and—to enable this analysis—
other surveys that clarify metrics and approaches related to the interestingness of geometric theorems.
In the conclusion of this article we will introduce the structure of two of these surveys —the second
result of this article— and we will discuss some future work.

1 Introduction

In Automated Reasoning: 33 Basic Research Problems, Larry Wos, wrote about the problems that com-
puter programs that reason face. Problem 31 is still open and object of active research [56, 57]:

Wos’ Problem 31—What properties can be identified to permit an automated reasoning pro-
gram to find new and interesting theorems, as opposed to proving conjectured theorems?

Two problems in a single sentence: new and interesting theorems. The automatic discovery of new
theorems is a goal in itself, it has been addressed in specific areas, with different methods. The separation

*Partially supported by FCT – Foundation for Science and Technology, I.P., within the scope of the project CISUC –
UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020.

†Partially supported by Italian Ministry of Education, University and Research through the PRIN 2017 project “The Manifest
Image and the Scientific Image” prot. 2017ZNWW7F 004.

‡Funded by ERC Consolidator Grant 864075 (CAESAR).

http://dx.doi.org/10.4204/EPTCS.398.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


86 Considerations on Approaches and Metrics in ATG/F in Geometry

of the “weeds”, uninteresting, trivial facts, from the “wheat”, new and interesting facts, is much harder,
but is being addressed also, by different authors using different approaches.

Paraphrasing, again, Wos, “since a reasoning program can be instructed to draw some (possible large)
set of conclusions” what should be the “criteria that permit the program to select from those the ones (if
any) that correspond to interesting results.”

Different fields have come across the finding of new and interesting theorems’ questions.
Regarding the novelty side: there are different views of approaching new mathematical results. One

of those approaches is the systematic exploration of a given broad area of mathematical knowledge, gen-
erating, by different means, new theorems and expecting to find interesting ones among those generated
(that will be analysed in section 4) [14, 15, 19, 25, 30, 35, 36, 46]. Another approach is given by the
pursue of mathematical discovery in specific areas, e.g. Computing Locus Equations [1, 9], Automated
Discovery of Angle Theorems [54], Automated Discovery of Geometric Theorems Based on Vector Equa-
tions [42], Automated Generation of Geometric Theorems from Images of Diagrams [13], Automatic
Discovery of Theorems in Elementary Geometry [48]. These approaches do not aim to address the prob-
lem of automated theorem finding in itself but, for example, to find complementary hypotheses for a
given geometric statements to become true [48] i.e. automatic discovery for specific areas.1

Regarding the interestingness side we are aware that relevant literature can be found in different areas.
For example in automated theorem proving [19, 25, 30, 46] and in sociological studies on the concept of
proving [20, 39, 40], in cognitive and educational science studies on the concept of proving [2, 11, 21,
33, 45, 52] and in semiotics and epistemology of mathematics [3, 4, 5, 8, 12].

Despite the cited studies, the Wos’ problem is still on the table. On the contrary, a new result of
undecidability can be added to the problem, i.e. having an algorithmic procedure that decides for every
possible Turing Machine that produces theorems, whether it is able to produce also interesting theorems,
is an undecidable problem. Consequently, we can argue that judging whether a theorem prover is able to
produce interesting theorems remains a non deterministic task, at best a task to be addressed by program
based in an algorithm guided by heuristics criteria. Therefore, as a human, to satisfy this task we need
expert survey that sheds light on what a theorem prover/finder of interesting geometric theorems is, and—
to enable this analysis—other surveys that clarify metrics and approaches related to the interestingness
of geometric theorems.

Structure of the paper. In section 2 the issue of Automated Theorem Generation (ATG) is dis-
cussed. In section 3 we discuss the deductive approach in ATG. In section 4 the issue of Automated
Theorem Finding (ATF) is analysed. In section 5 we present an undecidability result concerning the
problem of finding interesting theorems and its conceptual consequences. In section 6 we will introduce
the structure of two surveys to empirically explore the interestingness of theorems in geometry and its
potential application in theorem proving/finding (a third survey). Finally, we will discuss some future
work.

2 Automated Theorem Generation

Automated theorem generation, independently of being interesting, or not, can be addressed in several
ways [46].

1We left aside the notion of discovery in education, given that, in that area, the goal is the student’s discovery of “new” (for
them) theorems, giving the student the possibility of freely making conjectures and having an interactive/automatic deduction
support in the exploration of those “new” theorems [10, 32, 37, 38].
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The Inductive approach, is a natural approach. Conclusions are drawn by going from the specific to
the general. Exploring a given domain, seeking for properties that emerge from a set of particular cases
and making a conjecture about the general case.

Dynamic Geometry Software (DGS) can be seen as software environments to inductively explore
new knowledge. Making a geometric construction, constrained by a given set of geometric properties,
and then moving the free point around will show all the fix-points, conjecturing if those new fixed re-
lations between objects are true in all cases, or not. For example the Pappus’ Theorem, in this case, a
well-known theorem: are the intersection points (see Figure 1) G, H and I, collinear? By moving, in the
DGS, the free-points it seems that they are, it remains to prove it.

Figure 1: Pappus’ Theorem

The inductive approach has the advantage of being stimulated by observations in the domain. but has
the disadvantage that induction is unsound. A famous example of such unsound inductive approach can
be seen in the Euclid Parallel lines Postulate, that nevertheless was very fruitful, giving raise to different
geometries.

The Generative approach, i.e. the generation of conjectures, testing them for theorem-hood. The
simplest form of generation is syntactic, in which conjectures are created by mechanical manipulation
of symbols, e.g. [44]. The MCS program generates conjectures syntactically and filters them against
models of the domain [59]. A stronger semantically based approach is taken by the HR program, which
generates conjectures based on examples of concepts in the domain [18]. A theory exploration system
called QuickSpec, works by interleaving term generation with random testing to form candidate con-
jectures [34]. In [34] the conjecture generation approaches are classified into three categories: heuristic
rule-based systems, term generation-and-testing and neural network-based systems. The RoughSpec sys-
tem adds to QuickSpec the notion of shapes of theorems, specifying the shapes of conjectures the user is
interested in, and thus limiting the search [22].

Like induction, generation is unsound. However, if the rules by which the generation is performed are
sufficiently conservative then this approach may generate a higher fraction of theorems than the inductive
approach.

The Manipulative Approach, conjectures are generated from existing theorems. An existing theorem
is modified by operations such as generalisation, specialisation, combination, etc. This approach is used
in abstraction mapping, which converts a theorem to a simpler theorem, and uses a solution to the simpler
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theorem to help find a solution to the original theorem [43]. Manipulation of ATP theorems has also been
used to produce new theorems for testing the robustness of ATP systems’ performances [55].

An advantage of the manipulative approach is that, if the manipulations are satisfiability preserving,
then theorems, rather than conjectures, are produced from existing theorems. However, the conjectures
produced by the manipulative approach are typically artificial in nature, and thus uninteresting.

The Deductive Approach, consequences are generated by application of sound inference rules to the
axioms and previously generated logical consequences. This can be done by an appropriately configured
saturation-based ATP system.

The advantage of this approach is that only logical consequences are ever generated. The challenge
of this approach is to avoid the many uninteresting logical consequences that can be generated.

3 The Deductive Approach

Some systems addresses, explicitly, the generation of new geometric results using different approaches.
In the following some of these approaches are described.

3.1 Strong Relevant Logic-based Forward Deduction Approach

In [27] the authors argue for the fundamental difference between the Automated Theorem Proving (ATP)
and the Automated Theorem Finding (ATF). ATP is the process of finding a justification for an explicitly
specified statement from given premises which are already known facts or previously assumed hypo-
theses. ATF is the process to find out or bring to light that which was previously unknown. Where
ATP is all about known (old) facts, ATF is about previously unknown conclusions from given premises.
Jingde Cheng [15] claims that classical mathematical logic, its various classical conservative extensions,
and traditional (weak) relevant logics cannot satisfactorily underlie epistemic processes in scientific dis-
covery, presenting an approach based on strong relevant logic. Hongbiao Gao et al. have followed
this approach applying it for several domains such as NBG set theory, Tarski’s Geometry and Peano’s
Arithmetic [26, 27, 29, 30]

3.2 Rule Based Systems

The rule-based automated deduction system are often used when the proof itself is an object of interest
(and not only the end result), given that the proofs are developed from the hypothesis and sets of axioms,
to the conclusion by application of the inference rules, the proofs are “readable”.

Example of such approaches can be seen in systems like QED-Tutrix [23, 24] and JGEx [58], both
for geometry. In the tutorial system QED-Tutrix, the rule based automated theorem prover goal is to
find the many possible branches of the proof tree, in order to be able to help the student approaching the
proof of a geometric conjecture. In the JGEx system we can have the proof in a “readable” and “visual”
renderings and also the set of all properties that can be deduced from the construction.

One of the ATP built-in in JGEx is an implementation of the geometry deductive database method [16,
58]. Using a breadth-first forward chaining a fix-point for the conjecture at hand is reached. For that
geometric construction and the rules of the method, the fix-point gives us all the properties that can be
deduced, some already known facts, but also new facts (not necessary interesting ones).
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The geometry deductive database method proceeds by using a simple algorithm where, starting from
the geometric construction D0, the rules, R, are applied over and over till a fix-point, Dk is reached:

D0
R
⊂ D1

R
⊂ ·· ·

R
⊂ Dk (fix-point) (1)

In figure 2 an example, using JGEx, is shown. On the right, the geometric construction, on the left,
the fix-point, with all the facts that were found for that construction.

Figure 2: Fix-point in JGEx

A new open source implementation of this method, OGP-GDDM,2 is described in [7]. It will be
integrated in the Open Geometry Prover Community Project (OGPCP) [6]. One of the medium-term
goals of the OGP-GDDM project, is to develop a meta-prover, a program capable to receive different
sets of rules and synthesise a specific ATP for those rules.

3.3 Algebraic Approaches

A similar approach is taken in the well-known dynamic geometry system GeoGebra.3 The GeoGebra
Discovery version4 has the capability to find, from a user defined geometric construction, properties
about that construction. GeoGebra Discovery reports some facts that were systematically checked from
a list of possible features including identical points, parallel or perpendicular lines, equal long segments,
collinearity or concyclicity. This is not a deductive method so the generation process must be externally
verified, GeoGebra Discovery do that by recurring to a built-in algebraic automated theorem prover based
in the Gröbner bases method [35, 36].

2https://github.com/opengeometryprover/OpenGeometryProver
3https://www.geogebra.org/
4https://github.com/kovzol/geogebra-discovery

https://github.com/opengeometryprover/OpenGeometryProver
https://www.geogebra.org/
https://github.com/kovzol/geogebra-discovery
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4 Automated Theorem Finding

Apart from our research goal of finding the interesting geometric theorems among all those that were
automatically generated, the pursue of measures of interestingness has applicability in the interactive
and automated theorem proving area. In that area a common use of interestingness is to improve the
efficiency of the programs, tailoring the search space, making the search depth limited and guaranteeing
that only comprehensible concepts are produced [19].

A goal, pursued with different approaches by many researchers, is the creation of strong AI meth-
ods capable of complex research-level proofs, mathematical discovery, and automated formalisation of
today’s vast body of mathematics [47]. The MATHsAiD (Mechanically Ascertaining Theorems from
Hypotheses, Axioms and Definitions) project aimed to build a tool for automated theorem-discovery,
from a set of user-supplied axioms and definitions. In the words of its authors, MATHsAiD 2.0 can
conjecture and prove interesting Theorems in high-level theories, including Theorems of current math-
ematical significance, without generating an unacceptable number of uninteresting theorems [41]. The
TacticToe system, combines reinforcement-learning with Monte-Carlo proof search on the level of HOL4
tactics [31]. The ENIGMA-NG system uses efficient neural and gradient-boosted inference guidance for
the ATP E, improving its efficiency [17]. This two systems, one for interactive provers and the other to
automatic provers, are examples of systems that uses discovery and filtering for improving the efficiency
of automated deduction systems.

4.1 The Deductive Approach Algorithm

The different approaches found in the literature [18, 27, 46] share, in their general lines, the same al-
gorithm: for a given logical fragment, select a initial set of facts and then a cycle of generation/filtering
is applied until some stopping condition is matched (see Fig. 4.1).

4.2 Filtering Interesting Theorems

A first level of filtering (run-time filter) should discard the obvious tautologies and also conjectures
proved false by empirical evidence.

The filtering for interesting theorems or for uninteresting conjectures, two sides of the same coin,
is done by application of a series of filters. These filters are still to be validated, being of speculative
nature [19, 29, 30, 46].

Obviousness: the number of inferences in its derivation. Obviousness estimates the difficulty of proving
a formula, it can be given by the number of inferences in its derivation.

Weight: the effort required to read a formula. The weight score of a formula is the number of symbols
it contains.

Complexity: the effort required to understand a formula, the number of distinct function and predicate
symbols it contains.

Surprisingness: measures new relationships between concepts and properties.

Intensity: measures how much a formula summarises information from the leaf ancestors in its deriva-
tion tree.

Adaptivity: measures how tightly the universally quantified variables of a formula are constrained (for
formulae in clause normal form).
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List of axioms/deduction rules
for a given logic fragment

New Fact List:
hypothesis + interesting theorems

•

•

New Fact
Exist?

Apply
Deduction

Run-time
Filter

Interesting Theorems
Filter

List of
Interesting Theorems

yes

no

Interesting Theorem

(added)

(discarded)
no

(discarded)

tautologies/false conj.

Figure 3: New and Interesting Theorems Algorithm

Focus: measures the extent to which a formula is making a positive or negative statement about the
domain of application.

Usefulness: measures how much an interesting theorem has contributed to proofs of further interesting
theorems.

In spite of the relevance of these metrics, it would be appropriate to construct an expert survey with
which we could validate them by referring to a significant public of experts. We believe this kind of
survey would be relevant not only to face Wos’ problem, but also to better understand how to construct
and evaluate software that generates/finds interesting theorems. Despite having only relevant metrics and
approaches regarding Wos’ problem, while not yet having formal results, we can prove a relevant result
that concerns the second issue, i.e., the question regarding Interesting Turing Machines, i.e., programs
capable of generating interesting new geometric results.

5 Undecidability Result

In section 4.2 the application of filters was discussed, these filters are based on some measures of inter-
estingness that are still to be validated and that are applied in an heuristic way. Is it possible to have a
deterministic approach, i.e., is it possible to write a computer program that in a deterministic way, find
interesting theorems? We show, as an application of the Rice’s theorem [49, 50, 51] (see Lemma 1), that
it is undecidable to determine, for a given Turing Machine, whether the language recognised by it has
the (non-trivial) property of finding interesting theorems.

Definition 1 (Non-Trivial Property). A property p of a formal language is non-trivial if:
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• there exist a recursively enumerable language having the property p;

• there exist a recursively enumerable language not having the property p.

Lemma 1 (Rice’s Theorem). Let p be any non-trivial property of the language of a Turing machine. The
problem of determining whether a given Turing machine’s language has property p is undecidable.

Theorem 1 (Undecidability Result). For any given Turing Machine, it is undecidable to determine,
whether the language recognised by it has the property of finding interesting theorems.

Proof. All programs (Turing machines) capable of automated theorem proving and by extension gen-
erating/finding geometric theorems rely on a formal language to describe the geometric constructions,
conjectures and proofs. For example we can consider the (full) First-Order Form (FOF)5 of TPTP [53]
and the formal axiomatic theories for geometry based on that language.6

Let p be the property of that language that says that theorem t is interesting, for any conceivable
definition of interestingness, then there exist a recursively enumerable language having the property p.
It will be enough to restrict the language in such a way that the theorem t, and only this, would be
recognised. But, it also exist a recursively enumerable language not having the property p. It would be
enough to restrict that language in such a way that only tautologies would be recognised. Tautologies
are, for any conceivable definition of interestingness, uninteresting. We have proved that p, the property
that can establish if a given theorem is interesting, is a non-trivial property.

Having establish that the property p is non-trivial, then, by application of Rice’s theorem, it is un-
decidable to determine for any given Turing machine M, whether the language recognised by M has the
property p.

In other words, it is undecidable to have a deterministic program that can find interesting problems.
At best this is a task to be addressed by programs based on algorithms guided by heuristics criteria.

6 Designing Interesting Surveys

In light of our undecidability result, to understand what experts mean by, “a program that is able to
also prove interesting theorems”, must be done referring to empirical data, via the formulation of an
expert survey. However, for it to be fulfilled, one has to first reach a minimal degree of agreement on
the definition of interestingness of theorems. How could one speak about programs that produce such
theorems? In order to achieve this agreement, an empirical exploration of the notion of interestingness
and of what it concretely entails is paramount. This exploration requires to situate the notion of inter-
estingness historically and socio-culturally, considering logical, epistemological, sociological, cognitive,
semiotic and pedagogical aspects of the issue. Probably—and as Wos already implies—interestingness
entails different tangible properties, which differ in given centuries, geographical locations and societies.
Moreover, in some cases we say that a theorem is interesting for what we can call global reasons e.g.,
Euclid’s theorem on the infinitude of the set of prime numbers, Zorn’s lemma and Gödel’s Theorems are
interesting due to their role in mathematics, logic and computer science. Other times for local reasons
e.g., in relation to what we are teaching our students at that moment. In order to assess which tangible
properties—both global and local—interestingness entails today, we are proposing to conduct two expert
surveys with two statistically significant pools of participants.

5http://tptp.cs.miami.edu/TPTP/QuickGuide/
6TPTP Axioms Files for geometry, https://www.tptp.org/cgi-bin/SeeTPTP?Category=Axioms, e.g. Tarski geo-

metry axiom, GEO001 and GEO002, Deductive Databases Method in Geometry, GEO012.

http://tptp.cs.miami.edu/TPTP/QuickGuide/
https://www.tptp.org/cgi-bin/SeeTPTP?Category=Axioms
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Influencing factors. Gao et al. performed an extensive analysis of areas like Set Theory, Peano’s arith-
metic and Tarski’s Geometry, looking for the relevance of structural factors, such as the degree of logical
connectives in the theorem, the propositional schema of the formula formalising the theorem, the abstract
level of predicates and functions in the theorem and the deduction distance of a theorem [19, 28, 30, 46].
Some of these structural aspects might be related to our cognitive dynamics. But also the epistemolo-
gical role of a theorem with respect to other theorems might be a relevant feature; or the educational role
that some theorems have with respect to some notions might influence their interestingness. Finally, the
history of a theorem—e.g. Fermat’s last theorem—could add points to its interestingness, which, in the
case of Fermat’s last theorem, might be already caused by the technicalities of the proof itself.

Designing the surveys. Taking all these factors into consideration, we would propose to design three
surveys that question experts from different fields.

Before describing the surveys below some clarifications are necessary. We will use the term “expert”
to mean mathematics teachers at primary, middle, and high schools, and professors or researchers in pure
and applied mathematics at universities or at research centres. Furthermore, we will focus on the case
study of geometry, hence interesting theorems in geometry. The reasons for this restriction to geometry
are as follows: on the one hand, considering all fields of research in mathematics might require a too large
number of experts and could produce too many divergent ideas. On the other hand, having in mind an
application of the results in automatic theorem proving as a target, it seems appropriate to move into an
area were there are many different methods and many automated provers implementing those methods.
Finally, geometry is a kind of language common to many areas of mathematics and has been a domain
for reflection since the early years of mathematics teaching.

Finally, these surveys are intended to involve mathematics teachers, but their outcome does not target
mathematics education. Of course, this is a possible target, but it is not the primary goal of these starting
surveys.

6.1 Three Surveys

In the first survey, we will ask the experts both to indicate some situations in which they remember to have
used the adjective interesting concerning a theorem, and to explain the use of this expression. In addition,
we will ask experts to list several geometric theorems they find interesting, and to list several geometric
theorems they find not interesting, both from elementary and higher geometry, explaining the reasons for
their answers (see Appendix A). This first survey is already under way, the steering committee is already
approaching it and the authors of accepted papers in the conference, 14th International Conference on
Automated Deduction in Geometry (ADG 2023)7, were invited to participate. We are planning to enlarge
it to our network of contacts and we invite the interested reader to also participate, answering it.8 We are
planning to begin collect and analyse the answers in February, 2024.

We will use the information from this survey to define a list of characteristics (A,B,C, . . . ) of a
theorem that offer sufficient reasons to attribute interestingness to it. We will assign weights to the
various characteristics by considering the answers to this first survey.

After the first survey, we will implement a second one. This second survey will consider a list of
theorems that, in different percentages, have the characteristics inferred from the first survey. We will

7ADG 2023, 14th International Conference on Automated Deduction in Geometry, Belgrade, Serbia, September 20-22,
2023.

8https://docs.google.com/forms/d/e/1FAIpQLScIXZbLPBHTLvmQ28P30Cm_-lkOrM7e6rab7ho0WrAFwf_mbQ/

viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLScIXZbLPBHTLvmQ28P30Cm_-lkOrM7e6rab7ho0WrAFwf_mbQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScIXZbLPBHTLvmQ28P30Cm_-lkOrM7e6rab7ho0WrAFwf_mbQ/viewform?usp=sf_link
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submit the second survey to a set of experts different from those used in the first survey. We will ask these
experts whether they find the theorems listed interesting or not. We will ask them to rate, using a Likert
scale,9 the degree of impact that having certain characteristics plays in their attribution of interestingness
(see Appendix B).

This second group will allow us to understand whether the characteristics isolated through the first
survey are sufficient conditions to affirm that a theorem is interesting.

With an agreement on what an interesting theorem is, based on empirical research, we could query
experts in theorem generators/finders design, with another survey (the third survey) asking how to design
software able to produce these interesting theorems.

After that, we will focus our empirical inquiry on programs, driven by heuristics based on our find-
ings, able to find interesting theorems.

We have established a steering committee to design the surveys and who will oversee the submission
of the surveys to experts around the world.

The steering committee consists of the following scholars:

• Thierry Dana-Picard, Jerusalem College of Technology, Jerusalem, Israel;

• James Davenport, University of Bath, United Kingdom;

• Pierluigi Graziani, University of Urbino, Urbino, Italy;

• Pedro Quaresma, University of Coimbra, Coimbra, Portugal;

• Tomás Recio, University Antonio de Nebrija, Madrid, Spain.

7 Conclusions

The pursuit of new and interesting theorems in geometry, by automatic means is an interesting open
problem. From the point of view of generating new information the deductive approach seems the most
appropriated, given that: only logical consequences are ever generated and also the paths to those new
theorems can be analysed from the point of view of the geometric theory used, i.e. in the process of
generating new facts, geometric proofs of their validity are produced. Already existing implementations,
e.g. the deductive databases method (DDM) implemented in JGEx, and new implementations, e.g. the
GeoGebra Discovery and the new implementation of the DDM, the OGPCP-GDDM prover, can be used.
The separation of the uninteresting, trivial facts, from the new and interesting facts is much harder. The
current approaches are based in ad-hoc measures, proposed by experts from the field, but nevertheless,
not substantiated by any study approaching that problem. Our goal is to fulfil that gap, to produce a
comprehensive survey, supported in a large set of mathematicians, in order to be able to return to that
question and to develop filters supported by the findings of that survey.

Acknowledgements The authors wish to thank Francisco Botana, Thierry Dana-Picard, James Daven-
port and Tomás Recio for their support in the pursue of this long term project.

9A Likert scale is a question which is a five-point or seven-point scale. The choices range from Strongly Agree to Strongly
Disagree so the survey maker can get a holistic view of people’s opinions. It was developed in 1932 by the social psychologist
Rensis Likert.
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A First Survey—Interesting Theorems

With this survey the goal will be to find the characteristics that make a theorem interesting, or not. A list
of questions about geometric theorems found to be interesting, or not interesting.

For an initial pool of expert on the area it is our intention to use the network created for the submission
of the COST proposal, iGEOMXXI.10 This survey will be available online, based on an online survey
tool.11

A.1 Interesting and Why?

A list of situations/explanations about interesting theorems.

10OC-2020-1-24509, Building a Networked Environment for Geometric Reasoning (iGEOMXXI), The submitted Action
(not funded) focused on the exploration of new paradigms and methodologies for supporting formal reasoning in the field of
Geometry. A network of 49 experts from 19 countries.

11e.g. LimeSurvey, https://www.limesurvey.org/
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Can you describe in detail a situation (during classes or lectures) in which you have used the adjective
interesting applied to a theorem in geometry?

nth Situation

Can you explain in detail the reasons why you used the adjective interesting in the first situation?

nth Explanation

A.2 Five Interesting Theorems in Geometry

A list of 5 questions, each about an interesting theorem.

Can you list at least five theorems in geometry that you consider interesting?

Theorem n

Can you explain in detail the reason for your choice by listing at least five adjectives that describe
characteristics of the previous theorem making it interesting?

A.3 Five Not Interesting Theorems in Geometry

A list of 5 questions, each about a not interesting theorem.
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Can you list at least five theorems in geometry that you consider NOT interesting?

Theorem n

Can you explain in detail the reason for your choice by listing at least five adjectives that describe
characteristics of the previous theorem making it NOT interesting?

B Second Survey—Characteristics of Interesting Theorems

This survey will only be designed after studying the results of the first survey. The second survey will
propose theorems (taken from the first survey) and will provide characteristics (taken from the first
survey) for each of them. The survey will ask the participants to express their opinion on characteristics
that (presumably) make the theorems interesting or not interesting.

This survey will be available online, based on an online survey tool.9

Please express whether you consider the following theorems interesting or not, and why?

Is Theorem n interesting?
□ YES □ NO

Why? Because it has the characteristic A.
□ Strongly disagree □ Disagree □ Neutral □ Agree □ Strongly Agree

Why? Because it has the characteristic B.
□ Strongly disagree □ Disagree □ Neutral □ Agree □ Strongly Agree

Why? Because it has the characteristic C.
□ Strongly disagree □ Disagree □ Neutral □ Agree □ Strongly Agree

Why? Because it has the characteristic D.
□ Strongly disagree □ Disagree □ Neutral □ Agree □ Strongly Agree
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