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Summary

Deep neural networks (DNNs) have attracted considerable attention over the
last several years due to their promising results in various applications. Never-
theless, their extensive model size and over-parameterization have brought to
the forefront a significant challenge—escalating computational costs. Further-
more, these challenges are exacerbated when dealing with high-dimensional
data, as the complexity and resource requirements of DNNs increase significantly.
Consequently, the utilization of deep learning models proves to be ill-suited
for scenarios characterized by constrained computational resources and limited
battery life, incurring substantial training and inference costs, both in terms of
memory and computational resources.

Sparse neural networks (SNNs) have emerged as a prominent approach
toward addressing the over-parameterization inherent in DNNs, thus, mitigating
associated costs. By keeping only the most important connections of a DNN,
they achieve a comparable result to their dense counterpart network but with
significantly fewer parameters. However, most current solutions to reduce
computation costs using SNNs mainly gain inference efficiency, while being
resource-intensive during training. Furthermore, these solutions predominantly
center their efforts on a restricted set of application domains, particularly within
the realms of vision and language tasks.

This Ph.D. research aims to address these challenges by introducing Cost-
effective Artificial Neural Networks (CeANNs) designed to achieve a targeted
performance across diverse complex machine learning tasks while demanding
minimal computational, memory, and energy resources during both network
training and inference. Our study on CeANNs includes two primary perspectives:
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model and data efficiency. In essence, we leverage the potential of SNNs to reduce
the model parameters and data dimensionality, thereby facilitating efficient
training and deployment of artificial neural networks. This work results in the
development of artificial neural networks that are more practical and accessible
for real-world applications, with a key emphasis on cost-effectiveness. Within
this thesis, we delve into our developed methodologies aimed at advancing
efficiency. Our contributions can be summarized as follows:

Part I. Advancing Training and Inference Efficiency of DNNs through Sparsity.
This part of the thesis focuses on enhancing the model efficiency of DNNs
through sparsity. The inherent high computational cost associated with DNNs,
primarily stemming from their large, over-parameterized layers, highlights the
need for computationally-aware design in both model architecture and training
methods. Within Part I of this thesis, we leverage sparsity to address this
challenge, with a specific focus on achieving a targeted performance in extremely
sparse neural networks and efficient time series analysis with DNNs. We propose
two algorithms to tackle these issues: a dynamic sparse training (DST) algorithm
for learning in extremely sparse neural networks (Chapter 2) and a methodology
for obtaining SNNs for time series prediction (Chapter 3). In essence, our goal is
to enhance the training and inference efficiency of DNNs through sparsity while
focusing on addressing specific challenges in underexplored application domains,
particularly in tabular and time series data analysis.

Part II. Leveraging Feature Selection for Efficient Model Development. In
the pursuit of cost-effective artificial neural networks, it is crucial to address the
challenges associated with high-dimensional input data due to its potential to
hinder scalability and introduce issues such as the curse of dimensionality and
over-fitting. One promising avenue to tackle these challenges is feature selection,
a technique designed to identify the most relevant and informative attributes of a
dataset. However, existing feature selection methods are mostly computationally
expensive, especially when dealing with high-dimensional datasets or those
with a substantial sample size. To address this issue, in the second part of
the thesis, we propose for the first time to exploit SNNs to perform efficient
feature selection. We present our two proposed feature selection methods,
one for unsupervised feature selection (Chapter 4) and another for supervised
feature selection (Chapter 5). These methods are specifically designed to offer
effective solutions to the challenges of high dimensionality while maintaining
computational efficiency. As we show in Chapter 4, by using less than 10% of
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the parameters of the dense network, our proposed method achieves the highest
ranking-based score in terms of finding qualitative features among the state-
of-the-art feature selection methods. The combination of feature selection and
neural networks offers a powerful strategy, enhancing the training process and
performing dimensionality reduction, thereby advancing the overall efficiency of
model development.

In conclusion, this research focuses on the development of cost-effective
artificial neural networks that deliver targeted performance while minimizing
computational, memory, and energy resources. The research explores CeANNs
from two perspectives: model efficiency and data efficiency. The first part of
the thesis addresses model efficiency through sparsity, proposing algorithms for
efficient training and inference of DNNs for various data types. The second
part of the thesis leverages SNNs to efficiently select an informative subset of
attributes from high-dimensional input data. By considering both model and
data efficiency, the aim is to develop CeANNs that are practical and accessible
for real-world applications. In Chapter 6, we present the preliminary impact and
the limitations of the work and potential directions for future research in the
field. We hope that this Ph.D. thesis will pave the way to designing cost-effective
artificial neural networks.





Samenvatting

Diepe neurale netwerken (DNN’s) hebben de afgelopen jaren aanzienlijke aan-
dacht getrokken vanwege hun veelbelovende resultaten in verschillende toepassin-
gen. Desondanks heeft hun uitgebreide modelgrootte en over-parameterisatie
een aanzienlijke uitdaging naar voren gebracht: toenemende computationele
kosten. Bovendien worden deze uitdagingen verergerd wanneer omgegaan
wordt met hoog-dimensionale gegevens, aangezien de complexiteit en resourcev-
ereisten van DNN’s aanzienlijk toenemen. Als gevolg is het gebruik van deep
learning modellen niet geschikt voor scenario’s die gekenmerkt worden door
beperkte computationele resources en beperkte batterijlevensduur, wat aanzien-
lijke trainings- en inferentiekosten met zich meebrengt, zowel in termen van
geheugen als computationele resources.

Schrale neurale netwerken (SNN’s) zijn naar voren gekomen als een promi-
nente benadering om de over-parameterisatie die inherent is aan DNN’s aan te
pakken, waardoor de bijbehorende kosten worden verminderd. Door alleen de
belangrijkste verbindingen van een DNN te behouden, bereiken ze een vergeli-
jkbaar resultaat met hun dichte tegenhanger netwerk maar met aanzienlijk
minder parameters. Echter, de meeste huidige oplossingen om computationele
kosten te verminderen met SNN’s behalen voornamelijk efficiëntie tijdens de
inferentie, terwijl ze resource-intensief zijn tijdens de training. Bovendien con-
centreren deze oplossingen hun inspanningen voornamelijk op een beperkte set
van toepassingsdomeinen, vooral binnen de gebieden van visie en taaltaken.

Dit PhD-onderzoek streeft ernaar deze uitdagingen aan te pakken door
Kosten-effectieve Kunstmatige Neurale Netwerken (KeNN’s) te introduceren
die ontworpen zijn om een gerichte prestatie te bereiken over diverse complexe
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machine learning taken, terwijl ze minimale computationele, geheugen- en en-
ergiebronnen eisen tijdens zowel netwerktraining als -inferentie. Onze studie
naar KeNN’s omvat twee primaire perspectieven: model- en data-efficiëntie. In
wezen benutten we het potentieel van SNN’s om de modelparameters en data
dimensionaliteit te verminderen, waardoor efficiënte training en implementatie
van kunstmatige neurale netwerken wordt gefaciliteerd. Dit werk resulteert in
de ontwikkeling van kunstmatige neurale netwerken die praktischer en toeganke-
lijker zijn voor echte toepassingen, met een sleutel nadruk op kosten-effectiviteit.
Binnen deze thesis verdiepen we ons in onze ontwikkelde methodologieën
gericht op het bevorderen van efficiëntie. Onze bijdragen kunnen als volgt
worden samengevat:

Deel I. Het bevorderen van trainings- en inferentie-efficiëntie van DNN’s
door middel van spaarzaamheid. Dit deel van de thesis richt zich op het
verbeteren van de model efficiëntie van DNN’s door spaarzaamheid. De inherent
hoge computationele kosten geassocieerd met DNN’s, voornamelijk voortkomend
uit hun grote, over-geparameteriseerde lagen, benadrukken de noodzaak voor
computationeel bewust ontwerp in zowel modelarchitectuur als trainingsmeth-
oden. Binnen Deel I van deze thesis benutten we spaarzaamheid om deze
uitdaging aan te gaan, met een specifieke focus op het bereiken van een gerichte
prestatie in extreem schrale neurale netwerken en efficiënte tijdreeksanalyse
met DNN’s. We stellen twee algoritmen voor om deze problemen aan te pakken:
een dynamisch schraal trainingsalgoritme (DST) voor leren in extreem schrale
neurale netwerken en een methodologie voor het verkrijgen van SNN’s voor
tijdreeksvoorspelling.

Deel II. Het benutten van kenmerkselectie voor efficiënte modelontwikkel-
ing. In de zoektocht naar kosteneffectieve kunstmatige neurale netwerken is
het cruciaal om de uitdagingen aan te pakken die geassocieerd zijn met hoog-
dimensionale invoergegevens, vanwege het potentieel om schaalbaarheid te
hinderen en problemen zoals de vloek van dimensionaliteit en overfitting te
introduceren. Een veelbelovende manier om deze uitdagingen aan te gaan is
kenmerkselectie, een techniek ontworpen om de meest relevante en informatieve
attributen van een dataset te identificeren. Echter, bestaande methoden voor
kenmerkselectie zijn meestal computationeel duur, vooral wanneer ze te maken
hebben met hoog-dimensionale datasets of die met een aanzienlijke steekproefg-
rootte. Om dit probleem aan te pakken, stellen we in het tweede deel van de
thesis voor het eerst voor om SNN’s te gebruiken voor efficiënte kenmerkselectie.
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We presenteren onze twee voorgestelde methoden voor kenmerkselectie, één
voor onbegeleide kenmerkselectie en een ander voor begeleide kenmerkselectie.
Deze methoden zijn specifiek ontworpen om effectieve oplossingen te bieden voor
de uitdagingen van hoge dimensionaliteit, terwijl de computationele efficiëntie
behouden blijft. Zoals we laten zien, door minder dan 10% van de parameters
van het dichte netwerk te gebruiken, bereikt onze voorgestelde methode de
hoogste rangschikkingsgebaseerde score in termen van het vinden van kwal-
itatieve kenmerken onder de state-of-the-art methoden voor kenmerkselectie.
De combinatie van kenmerkselectie en neurale netwerken biedt een krachtige
strategie, die het trainingsproces verbetert en dimensionaliteitsreductie uitvoert,
waardoor de algehele efficiëntie van modelontwikkeling wordt bevorderd.

Concluderend richt dit onderzoek zich op de ontwikkeling van kosteneffec-
tieve kunstmatige neurale netwerken die gerichte prestaties leveren terwijl ze de
computationele, geheugen- en energiebronnen minimaliseren. Het onderzoek
verkent KeNN’s vanuit twee perspectieven: model efficiëntie en data efficiëntie.
Het eerste deel van de thesis richt zich op model efficiëntie door spaarzaamheid,
en stelt algoritmen voor voor efficiënte training en inferentie van DNN’s voor
verschillende datatypes. Het tweede deel van de thesis benut SNN’s om effi-
ciënt een informatieve subset van attributen te selecteren uit hoog-dimensionale
invoergegevens. Door zowel model- als data efficiëntie te overwegen, is het
doel om KeNN’s te ontwikkelen die praktisch en toegankelijk zijn voor echte
toepassingen. In het slotkapittel presenteren we de voorlopige impact en de
beperkingen van het werk en potentiële richtingen voor toekomstig onderzoek
in het veld. We hopen dat deze PhD-thesis de weg zal banen voor het ontwerpen
van kosteneffectieve kunstmatige neurale netwerken.
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Chapter 1
Introduction

Deep Neural Networks (DNNs) have demonstrated remarkable performance
in various machine learning tasks [HZRS16,KSH12,RDGF16,VSP+17,BMR+20,
HDY+12, EKN+17]. This success can be attributed to the extremely large
over-parameterized models which improve the generalization on unseen sam-
ples [NLB+19,AZLS19,BGMSS18,DZPS19]. However, this over-parameterization
leads to the ever-increasing cost of computational and memory resources during
the training and deployment of these models [HABN+21]. The high computa-
tional and memory demands can be severely worsened when DNNs are applied
to high-dimensional and/or noisy data, leading to issues such as slow conver-
gence during training, the curse of dimensionality, and over-fitting [GBC16].
Consequently, training and inference of DNNs on low-resource devices, e.g., an
edge device with limited computational, memory, and energy resources, might
not be economically viable.

Furthermore, such an increase in computations stemming from training and
deployment of deep learning models can lead to a critical rise in the energy
consumption in data centers and, consequently, results in extremely high carbon
emissions and adverse environmental effects [SGM20]. Notably, discussions
in [SGM20] reveal that CO2 emissions from the training and deployment of
some Natural Language Processing (NLP) models can exceed the average annual
carbon footprint of a human by more than seven times.

This Chapter is partly based on: Zahra Atashgahi, Cost-effective Artificial Neural Networks,
International Joint Conference on Artificial Intelligence (IJCAI), Doctoral Consortium, 2023.



2 Introduction

According to the High-Level Expert Group on Artificial Intelligence, ensuring
environmental well-being is a crucial aspect of building trustworthy AI systems
[Gro20,BLN+23]. It is essential to evaluate the development, deployment, and
operation of AI systems to guarantee their adherence to environmentally friendly
practices. Therefore, we believe it is necessary to develop Cost-effective Artificial
Neural Networks which are defined as follows:

Definition 1.1. Cost-effective Artificial Neural Networks (CeANNs) are artificial
neural networks that are designed to deliver a targeted performance while
minimizing the required computational power, memory, and energy consumption,
for their development and deployment.

CeANNs can be explored from two main perspectives: model and data.

• Model. As discussed earlier, training and deploying DNNs suffer from high
computational cost which is attributed to their large over-parameterized
models. Developing CeANNs necessitates a rethinking of the architecture
and training methodologies applied in current deep learning models. The
central challenge lies in reducing the computational, memory, and energy
requirements while preserving or even improving predictive performance.
Model compression through sparsity is a widely used technique to overcome
the challenges raised by the over-parametrization of neural networks.
Sparsification techniques can result in a 10-100 times decrease in model
size, leading to associated theoretical improvements in computational,
storage, and energy efficiency, all without significantly comprising accuracy
[HABN+21]. In this thesis, we employ sparsity in model architecture during
training and inference to develop CeANNs that are efficient during both
development and deployment.

• Data. Another major bottleneck in decreasing the costs associated with
training neural networks is noisy and high-dimensional input data. Input
data to ANNs can be high-dimensional. High dimensionality poses several
challenges, including the curse of dimensionality and the risk of overfitting,
which can compromise the performance and generalization ability of neural
networks. Furthermore, the large volume of input dimensions can hinder
the scalability and computational efficiency of ANNs. Moreover, the input
to neural networks might contain noisy or irrelevant features, which can
impede the training process by slowing it down or causing it to diverge from
the optimal solution. Addressing the challenges posed by noisy and high-
dimensional input data is paramount to ensuring the cost-effectiveness of
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artificial neural networks. Feature selection is a popular technique that can
facilitate the training process by selecting the most informative features
from the input data, leading to improved training and more efficient and
economically viable neural networks. In this thesis, we leverage feature
selection and sparsity to efficiently address the high costs associated with
data.

By reducing the costs raised by the model and/or data without compromising
the predictive performance, we can achieve CeANNs that enable efficient training
and deployment of ANNs, making them more practical and accessible for real-
world applications.

This thesis evaluates CeANNs’ training and inference efficiency through
various metrics. Chapter 4 presents a genuinely sparse implementation of the
proposed method, assessing efficiency based on running time, memory usage,
and energy consumption. In contrast, other chapters utilize a binary mask
to simulate sparsity, with computational efficiency measured by floating-point
operations (FLOPs) and the number of parameters. Using FLOPs and parameter
counts to estimate the efficiency benefits of sparse neural networks over their
dense counterparts is a well-established method [EGM+20, SMM+21]. The
parameter count reflects the model’s size, influencing both memory demands
and computational complexity. FLOPs provide an implementation-independent
measure of an algorithm’s time complexity. Moreover, since current deep learning
hardware lacks optimization for sparse matrix operations, many approaches
to achieving sparse neural networks merely mimic sparsity through a binary
weight mask. As a result, the actual running time of these methods may not
accurately indicate their efficiency. Additionally, the pursuit of true sparse
implementations for sparse neural networks is an active area of research [Hoo21,
HABN+21]. Given the theoretical nature of our work, we have deferred this
aspect of engineering research to future endeavors. Consequently, we also rely
on parameters and FLOPs counts to assess efficiency.

1.1 Advancing Model Efficiency through Sparsity

Sparse neural networks (SNNs) have gained significant attention as an effective
solution to the issue of over-parameterization in DNNs. They are achieved
by setting a subset of model parameters to zero and as a result, reducing the
complexity of the model [HABN+21]. SNNs can be defined as below:
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Definition 1.2. A sparse neural network is characterized by a connectivity graph
G(V,E′), where V denotes the set of vertices (nodes or neurons), E represents the
set of edges (connections or parameters) in the equivalent dense neural network,
and E′ is a subset of edges from the dense network (E′ ⊂E). The cardinality of E′
is significantly smaller than that of E, denoted as |E′|≪ |E|, resulting in a sparse
connectivity among components.

By keeping only the most important parameters of a DNN, SNNs achieve
performance on par with their dense counterparts while having a much smaller
size. SNNs not only mitigate the issue of model over-parameterization but also
have the potential to accelerate model training, improve inference efficiency, and
facilitate the deployment of neural networks in resource-constrained environ-
ments.

Sparsity in neural networks can be classified into two main categories: un-
structured and structured. Unstructured sparsity includes pruning arbitrary
indices in the weights based on specific criteria, necessitating the storage of
zero-element indices. This can lead to limited acceleration on typical GPUs due
to the overhead associated with indexing. In contrast, structured sparsity targets
contiguous blocks of weights, such as neurons, filters, and channels, rather
than individual elements. This reduces the indexing overhead and improves the
computational efficiency during execution. While structured sparsity has demon-
strated computational efficiency on standard hardware, unstructured sparsity
has been shown to achieve higher accuracy at higher sparsity levels [MHP+17]
and improve performance in various aspects beyond efficiency such as adversar-
ial robustness [CZpw+22], data efficiency [VTCZ+22], and out-of-distribution
generalization/detection [SL22, NSvKS23, LW23], interpretability [CYM+23].
Therefore, in this thesis, we leverage the potential of unstructured sparsity to de-
velop CeANNs. Furthermore, we design CeANNs that benefit from real speedup
through a truly sparse implementation.

Sparse neural networks can be achieved through two primary methods:
pruning dense neural networks, often referred to as dense-to-sparse approach,
or training SNNs directly from scratch, known as sparse-to-sparse approach
[HABN+21,MMP+21].

1.1.1 Dense-to-sparse

Dense-to-sparse (a.k.a. pruning) methods prune a dense neural network to the
desired sparsity level. Pruning techniques can be categorized based on the phase
at which pruning occurs: post-training [LDS90,HPTD15], during-training [ZG17],
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and before-training [LAT19] pruning.

• Post-training. Post-training pruning is the most widely used approach
for obtaining SNNs. Seminal works include Optimal Brain Damage (OBD)
[LDS90] and Optimal Brain Surgeon (OBS) [HS93] that exploit hessian
matrix information to assess the connection importance and prune unnec-
essary connections from a dense network in order to reduce the computa-
tional complexity. [HPTD15] refined the idea for deep learning models and
demonstrated that it is feasible to decrease the storage and computation of
DNNs by an order of magnitude without without sacrificing accuracy. This
was achieved by iterative pruning and retraining in a three-step process:
first, training the network to recognize important connections; second,
pruning the unimportant ones; and lastly, fine-tuning the weights of the
remaining connections. Post-training pruning methods might require one
or several rounds of pruning and retraining [HPTD15, FC19]. Various
metrics are used to assess connection importance in this process, such as
Hessian matrix information [LDS90,HS93], magnitude [HPTD15,FC19],
gradient [LW19], Taylor expansion [MTK+17, MMT+19], and low-rank
decomposition [WGFZ19,LGM+20]. While post-training pruning achieves
on-par performance with dense neural networks, it suffers from high com-
putational costs due to the dense training of the network. It can be even
more costly than training a dense neural network due to multiple rounds
of pruning and retraining.

• During-training. To address the high computational costs of post-training
approaches, during-training methods gradually reduce the number of
parameters throughout training until they reach the desired sparsity level
before the training completion [ZG17,LWK18,LCC+21]. A standard during-
training pruning is Gradual Magnitude Pruning (GMP) [ZG17] which
gradually drops unimportant weights based on the magnitude during the
training process. These methods can maintain close performance to the
dense network while being more efficient during training.

• Before-training. Before-training pruning methods find a well-performing
sparse sub-network at initialization. The idea of pruning at initialization
was first introduced by [LAT19] proposing Single-shot Network Pruning
(SNIP). Before-training algorithms prune the network to the desired spar-
sity level before the training starts based on various connection saliency
scores, such as sensitivity to training loss [LAT19, dJSB+21], gradient
preservation [WZG19], synaptic strength [TKYG20], and meta gradi-
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ents [ATZ+22], or based on the input-output path [PD21]. While the
entire training process occurs in a sparse manner, these methods require
at least a few iterations of dense training. Therefore, they fall into the
category of dense-to-sparse training. It is worth noting that before-training
pruning approaches typically lag behind the performance of their dense
counterparts.

The post-training approach often proves to be the most computationally
demanding among dense-to-sparse methods, as it necessitates one or multiple
rounds of dense training. Consequently, the resource requirements decrease for
during-training and before training, impacting the potential accuracy achievable.
Thus, the choice among these three methods depends on the available training
resources, enabling practitioners to make informed decisions tailored to their
computational constraints.

While unstructured pruning holds the potential to achieve dense model
performance, its reliance on dense matrices during training necessitates a careful
consideration of the performance-resource tradeoff, contingent upon available
resources. In environments with limited computational resources, especially
where accommodating the dense model proves unfeasible on existing hardware,
applying these models becomes impractical. Therefore, it becomes imperative
to assess the computational capabilities and constraints prior to opting for
dense-to-sparse pruning, ensuring a careful allocation of resources for optimal
performance.

1.1.2 Sparse-to-sparse

Sparse-to-sparse training refers to a class of methods used to train sparse neural
networks from scratch, aiming to achieve computational efficiency during both
training and inference. These methods train a sparse network throughout the
entire training process. The sparse-to-sparse approach is more efficient than the
dense-to-sparse methods as it never uses dense matrices before or throughout
training. The sparse connectivity of the network can be fixed (a.k.a. static
sparse training [MMN+16]) or dynamically optimized (a.k.a. dynamic sparse
training [MMS+18]) during training. One main drawback of static sparse training
is that the sparse connectivity is initialized randomly before training and cannot
be adapted to the data automatically during training. Therefore, its performance
lags behind that of the dense network. Dynamic sparse training addresses this
by optimizing the sparse connectivity during training.

Dynamic Sparse Training (DST) updates the sparse topology iteratively by
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dropping a fraction of unimportant weights and growing an equal number of
weights. DST term was first introduced in [MW19] and it stems from SET
[MMS+18], quickly followed by DeepR [BKML18] and NeST [DYJ19]. While the
drop criterion is often the magnitude of the weights, the growing criteria can
be of different types [HABN+21], including random-based [MMS+18], gradient-
based [EGM+20, JPR+20], and locality-based weight regrowth. DST methods
have shown promising results, often achieving comparable or even superior
performance to dense networks while requiring significantly fewer training and
inference FLOPs.

However, despite the promise of sparse neural networks, there are several
issues with the existing methods. One notable concern is the weight regrowth
mechanism in DST. Current methods predominantly rely on random, which
can slow down the convergence, or gradient-based criteria which necessitates
dense gradient computations at regular intervals during training. This added
computational load can substantially increase the training overhead. Additionally,
the performance of DST methods tends to suffer in extremely sparse regions.
Furthermore, the existing techniques for achieving sparse neural networks have
been primarily tailored to applications in vision and natural language processing,
leaving a notable gap when it comes to applying sparse neural networks to other
data types, such as time series or tabular data. These issues highlight the need
for further research and development in the field of sparse neural networks to
overcome these challenges.

1.2 Leveraging Feature Selection for Designing Cost-
effective Models

Feature selection techniques can help reduce computational overhead, enhance
predictive accuracy, and offer deeper insights into the data by identifying the
most relevant and informative features within a given dataset [CS14].

There are three main categories of feature selection methods: filter, wrapper,
and embedded methods. Filter methods rely on data characteristics and employ
ranking criteria, such as correlation [GE03], and mutual information [Bat94], to
evaluate features independently of the learning task. While these methods are
fast and efficient, they are prone to selecting redundant features or features that
are irrelevant to the target learning task. In contrast, wrapper methods rely on
the predictive performance of a learning function and employ search strategies
[ZNLW19], such as tree structures [KJ97] and evolutionary algorithms [LS+96]
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to identify feature subsets that maximize predictive performance. Although
wrapper methods often yield better performance than filter approaches, they are
computationally expensive due to the large search space of features, particularly
on high-dimensional data. Embedded methods overcome the limitations of
filter and wrapper approaches by integrating feature selection into the training
process to find the relevant subset of features for the task at hand [Bat94,PLD05,
GWBV02, SL97]. The embedded model selects the features that contribute
most to the accuracy of the training model [DA22]. They exploit the feature
interactions with the learning algorithm, thus, finding better features than filter
methods. Additionally, as embedded methods do not require iterative evaluation
of selected features, they prove to be more computationally efficient than wrapper
methods [LCW+18].

Neural network-based feature selection has gained significant attention in
recent years, both in supervised [LFLN18, LRAT21, YLNK20, WC20] and unsu-
pervised [BAZ19,HWZ+18,CS15,DS19] settings. These methods leverage the
advantages of neural networks in capturing non-linear dependencies and per-
forming well on large datasets. However, many existing neural network-based
feature selection methods suffer from over-parameterization, resulting in high
computational costs, especially for high-dimensional datasets. Consequently,
when dealing with extremely high-dimensional data, it may not be feasible to
directly employ dense neural networks due to the extremely large model size
and the lack of sufficient computational and memory resources to fit and train
the model.

1.3 Research Questions

In this Ph.D. research, we aim to leverage the power of SNNs and feature selection
in developing Cost-effective Artificial Neural Networks (CeANNs) (Definition
1.1). The research questions of this thesis are as follows:

(Q1) How can we design ANNs that can deliver a targeted performance,
while minimizing the utilization of computational power and memory
resources during both the training and inference stages?

DST is an approach to gain efficiency in both the training and inference
phases of ANNs. Despite the good performance of the existing DST algorithms
from low to high sparsity levels, the effectiveness of SNNs in extreme sparsity
regimes, when trained from scratch, has remained unsatisfactory. To enable
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model training and deployment in resource-constrained environments, it is
crucial to facilitate learning of DST in extreme sparsity regimes.

(Q2) Can we use sparse neural networks to learn from time series effi-
ciently?

Despite the extensive body of literature on sparse neural networks designed
in the domain of vision and language, exploring sparsity in models for time
series analysis has remained understudied. Developing computationally efficient
models to perform time series analysis has become increasingly crucial due to
the continuous growth in the number of large time series collections and the
demand to forecast millions of time series [THA+18,HLW16,RCM+12].

(Q3) How can we address the challenges imposed by high-dimensional data
efficiently using SNNs?

Feature selection is a popular approach to address the challenges raised
by high-dimensional data. However, most existing methods suffer from high
computational costs when applied to high-dimensional datasets. Developing
computationally efficient feature selection methods for high-dimensional data is
of great importance to the community.

All in one, we seek to answer How we can reduce the training and deploying costs
associated with today’s deep learning models without compromising performance?

1.4 Thesis Contributions and Outline

In this section, we outline the structure of the thesis and provide a brief overview
of the main chapters and their respective contents. By presenting a clear roadmap
for the thesis, this outline aims to guide the reader through the subsequent
sections.

This thesis consists of two main parts, each focusing on an aspect of designing
CeANNs, including model and data efficiency, respectively:

Part I Advancing Training and Inference Efficiency of DNNs through Sparsity
(See Section 1.4.1)

Part II Leveraging Feature Selection for Designing Cost-effective Models (See
Section 1.4.2)
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In the following, we shed light on the content of each part which are the
contributions of this thesis.

1.4.1 Part I. Advancing Training and Inference Efficiency of
DNNs through Sparsity

As discussed in Section 1.1, sparsity is one of the keys to achieving efficiency
in deep neural networks. However, the pursuit of model efficiency using SNNs
presents several challenges, which prompted the formulation of research ques-
tions 1 and 2 discussed in Section 1.3. To improve the performance of DST in
extremely sparsity regimes, inspired by the Hebbian learning theory, we propose
a novel DST algorithm in Chapter 2. We introduce a new pruning algorithm to
prune transformers for time series forecasting in Chapter 3. In the following, we
provide a brief overview of each of the chapters in the first part of the thesis:

Chapter 2

In this chapter, we introduce a dynamic sparse training algorithm named "Cosine
similarity-based and Random Topology Exploration (CTRE)" [APL+22]. CTRE
draws inspiration from the Hebbian learning theory to adapt the connectivity
of a sparse neural network within the Dynamic Sparse Training (DST) frame-
work. By leveraging cosine similarity as a metric for connection importance,
CTRE evolves sparse network topologies, adding the most important connections
without relying on dense gradient information. Through extensive experiments
across diverse datasets, including tabular, image, and text data, we demon-
strate that CTRE outperforms several state-of-the-art sparse training algorithms,
particularly in highly sparse network scenarios. CTRE addresses the pressing
challenges of computational efficiency and resource constraints, offering a more
environmentally sustainable and economically viable solution for neural network
development and deployment. Additionally, the promising results of applying
CTRE to Multi-Layer Perceptrons (MLPs) for tabular data, which is shown to
constitute a significant computational workload in data centers, pave the way
for environmentally friendly ANNs. Our findings highlight the effectiveness and
applicability of the CTRE algorithm in diverse domains, ultimately advancing
sparse neural network training.
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Chapter 3

Despite the promising results of CTRE in learning from diverse data types such
as tabular, image, and text, its primary emphasis has been on classification
using MLPs. Yet, the potential of sparse neural networks in the context of
time series analysis, particularly in forecasting, remains unexplored. On the
other hand, sparse network literature predominantly covers vision and natural
language processing, neglecting pruning in time series analysis, despite the
growing need for computationally efficient models to handle large time series
datasets and millions of forecasts. Therefore, in Chapter 3, we aim to learn
from time series data efficiently [APVM23]. Particularly, we focus on decreasing
the computational and memory costs of training and deploying transformers
for time series forecasting. We first show that determining the optimal sparsity
level when learning from time series data is challenging due to variations in the
loss-sparsity trade-offs across datasets. Then, we propose "Pruning with Adaptive
Sparsity Level" (PALS), a novel approach that dynamically balances loss and
sparsity without requiring a predefined sparsity level. PALS integrates dynamic
sparse training with pruning and introduces the "Expand" mechanism, offering a
novel perspective in the field of sparse neural networks. Using these mechanisms
and loss heuristics, PALS automatically finds a decent trade-off between loss and
sparsity in one round of training. By performing experiments on six benchmark
datasets and five SOTA transformer variants for time series forecasting, we show
that PALS reduces the model’s size (reducing 65% parameters on average) and
computation (63% FLOPs reduction on average) substantially while maintaining
comparable performance to the dense counterpart in terms of prediction loss.

1.4.2 Part II. Leveraging Feature Selection for Designing Cost-
effective Models

The second part of the thesis seeks to answer Q3 in Section 1.3, which focuses
on alleviating the burden of high computational costs and memory requirements
imposed by the rise of high-dimensional data. Feature selection, which identifies
the most relevant and informative attributes of a dataset, not only addresses
the computational costs caused by the high dimensionality of data but also can
help to increase interpretability and improve generalization. However, most
existing feature selection methods are computationally expensive. To address
this research question, we present two developed feature selection methods.
In chapter 4, we introduce QuickSelection, which performs feature selection
using sparse neural network characteristics to perform unsupervised feature
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selection. In Chapter 5, we propose another feature selection method that
integrates feature selection into the training of a sparse neural network to
perform supervised feature selection.

Chapter 4

In Chapter 4, we introduce the first method to use the characteristics of sparse
neural networks to perform energy-efficient feature selection, named QuickS-
election [ASvdL+22]. QuickSelection introduces the strength of the neuron in
SNNs as a criterion to measure the feature importance. It incorporates sparsely
connected denoising autoencoders trained with the DST framework to model
data distribution efficiently, ultimately reducing memory usage and training time.
Using an SNN to perform feature selection, QuickSelection achieves the best
trade-off between accuracy and computational efficiency when compared with
several baseline methods. Experimental results on benchmark datasets reveal
QuickSelection’s superior performance in terms of classification and clustering
accuracy, running time, and memory usage, making it a more energy-efficient
choice compared to other neural network-based feature selection methods. Quick-
Selection marks a big leap forward in our journey to make data processing more
efficient and environmentally friendly, especially as datasets keep getting larger
and more complex.

Chapter 5

Although QuickSelection provides valuable insights into the characteristics of
sparse neural networks and how they can be leveraged to rank the input features,
the training process is not tailored to perform feature selection. The proposed
strength metric may not accurately rank features in a very high-dimensional
feature space, such as those with 40,000 features. In Chapter 5, we introduce
NeuroFS to enhance feature selection in high-dimensional data. NeuroFS inte-
grates feature selection into the training of sparse neural networks, effectively
reducing the search space during the feature selection process [AZK+23]. The
core innovation of NeuroFS lies in its dynamic neuron pruning and regrowing
approach within the input layer of a sparse neural network during training. This
unique process allows NeuroFS to adaptively identify and retain informative
features while discarding uninformative ones. Furthermore, because NeuroFS
operates in a supervised manner, it can leverage loss signals to select features
based on the underlying classification task. NeuroFS’s ability to perform feature
selection efficiently is evaluated across a range of real-world datasets. Results
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demonstrate that NeuroFS outperforms other state-of-the-art supervised feature
selection models, making it a valuable tool for data analysis, particularly in
high-dimensional feature space and in scenarios where resource constraints are
a concern.

Chapter 6

Chapter 6 brings together the key findings and insights gleaned from this Ph.D.
research, shedding light on the broader implications and significance of our
work. We also highlight the limitations of our study, paving the way for future
investigations in this field. Finally, the chapter concludes by outlining promising
avenues for further research.

1.5 How to Read This Thesis

This thesis is designed with self-contained chapters, offering readers the flex-
ibility to explore topics of interest in any order. While reading sequentially
provides a gradual introduction to the concepts, individual chapters can be
explored independently, as they cover specific aspects of the topic. This structure
accommodates various reading preferences and allows readers to delve into the
material according to their interests or research needs.





Chapter 2
A Brain-inspired Algorithm for
Training Highly Sparse Neural
Networks

In this chapter, we aim to obtain sparse neural networks that can be trained
and deployed efficiently in terms of computational and memory costs and perform
decently in the high-sparsity regime. Inspired by the evolution of the biological
brain and the Hebbian learning theory, we propose a new dynamic sparse training
approach that evolves sparse neural networks according to the behavior of neurons
in the network. Concretely, by exploiting the cosine similarity metric to measure
the importance of the connections, our proposed method, Cosine similarity-based
and Random Topology Exploration (CTRE), evolves the topology of sparse neural
networks by adding the most important connections to the network without calcu-
lating the dense gradient in the backward path. We carry out different experiments
on eight datasets, including tabular, image, and text datasets, and demonstrate that
our proposed method outperforms several state-of-the-art sparse training algorithms
in extremely sparse neural networks by a large gap. The implementation code is
available at https: // github. com/ zahraatashgahi/ CTRE .

This Chapter is integrally based on: Zahra Atashgahi, Joost Pieterse, Shiwei Liu, Decebal
Constantin Mocanu, Raymond Veldhuis, and Mykola Pechenizkiy, A brain-inspired algorithm for
training highly sparse neural networks, Machine Learning, ECML-PKDD 2022 journal track, Vol.
111, No. 12, pp. 4411–4452, 2022.

https://github.com/zahraatashgahi/CTRE
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2.1 Introduction

Dense artificial neural networks are a commonly used machine learning tech-
nique that has a wide range of application domains, such as speech recog-
nition [GMH13], image processing [LH15, MWHN18], and natural language
processing (NLP) [BMR+20]. It has been shown in [HNA+17] that the perfor-
mance of deep neural networks scales with model size and dataset size, and
generalization benefits from over-parameterization [NLB+19]. However, the
ever-increasing size of deep neural networks has given rise to major challenges,
including high computational cost during training and inference and a high
memory requirement [ZZL+20]. Such an increase in the number of computa-
tions can lead to a critical rise in the energy consumption in data centers and,
consequently, a deteriorative effect on the environment [YXJ+18]. However,
a trustworthy AI system should function in the most environmentally friendly
way possible during development, and deployment [Gro20]. In addition, such
gigantic computational costs will lead to a situation where on-device training and
inference of neural network models on low-resource devices, e.g., an edge device
with limited computational resources and battery life, might not be economically
viable [ZZL+20].

Sparse neural networks have been proposed as an effective solution to ad-
dress these challenges [HABN+21, MMP+21]. By using sparsely connected
layers instead of fully connected ones, sparse neural networks have reached a
competitive performance to their dense equivalent networks in various appli-
cations [FC19, ASvdL+22], while having much fewer parameters. It has been
shown that biological brains, especially the human brain, enjoy sparse connec-
tions among neurons [Fri08].

Most existing solutions to obtain sparse neural networks focus on inference
efficiency in order to reduce the storage requirement of deploying the network
and the prediction time of test instances. This class of methods, named dense-
to-sparse training, starts by training a dense neural network followed by a
pruning phase that aims to remove unimportant weight from the network. As
categorized in [MMP+21], in dense-to-sparse training, the pruning phase can
be done after training [LDS90, FC19, HPTD15], during training [LWK18], or
one-shot before training [LAT19]. However, starting from a dense network leads
to a memory requirement of fitting a dense network on the device and the
computational resources for at least a few iterations of training the dense model.
Therefore, training sparse neural networks using dense-to-sparse methods might
be infeasible on low-resource devices due to the energy and computational
resource constraints.
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Figure 2.1: Schematic of the proposed approach (CTREsim). At each epoch, after feed-
forward and back-propagation, a fraction ζ of the weights with the smallest
magnitude is dropped (red connections). Then, the similarity matrices Sim1

and Sim2 are computed using Equation 2.2 to find the most important
connections to add to the network; however, we do not consider the similarity
of the existing connections (empty entries). Finally, the weights corresponding
to the highest similarity values in the similarity matrices (underlined values)
that have not been dropped in the weight removal step are added to the
network (underlined green values), the same amount as removed previously.
If a connection with high similarity has been dropped in the weight removal
step (underlined red value), a random connection will be inserted instead
(pink connection).

With the emergence of the sparse training concept in [MMN+16], there
has been a growing interest in training sparse neural networks that are sparse
from scratch. This sparse connectivity could be fixed during training (known
as static sparse training [MMN+16, MMP+21, KR19]), or might dynamically
change, by removing and regrowing weights (known as dynamic sparse training
[MMS+18,BKML18]). By optimizing the topology along with the weights during
the training, dynamic sparse training algorithms outperform the static ones
[MMS+18]. As discussed in [MMS+18], weight removal in dynamic sparse
training algorithms is similar to synapse shrinkage in the human brain during
sleep, where weak synapses shrink and strong ones remain unchanged.

While most dynamic sparse training methods use magnitude as a pruning
criterion, weight regrowing approaches are of different types, including random
[MMS+18,MW19] and gradient-based regrowth [EGM+20,JPR+20]. As shown
in [LYMP21], the random addition of weights could lead to a low training speed,
and the performance of sparse training is highly correlated with the total number
of parameters explored during training. To speed up convergence, the gradient
information of non-existing connections can be used to add the most important
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connections to the network [DZ19]. However, computing the gradient of all
non-existing connections in a sparse neural network can be computationally
demanding. Consequently, increasing the size of the network might escalate the
high computational cost into a bottleneck in the sparse training of networks on
low-resource devices. In addition, in Section 2.4.2, we demonstrate that some
gradient-based sparse training algorithms might fail in a highly sparse neural
network.

In this chapter, to address some of these challenges, we introduce a bio-
logically plausible algorithm for obtaining a sparse neural network. By taking
inspiration from the Hebbian learning theory, which states “neurons that fire
together, wire together” [Heb05], we introduce a new weight addition policy
in the context of sparse training algorithms. Our proposed method, “Cosine
similarity-based and Random Topology Exploration (CTRE)”1, takes advantage
of both the similarity of neurons as an importance metric for connections and the
random search simultaneously (CTREsim, Figure 2.1) or sequentially (CTREseq)
to find a performant subnetwork. In short, our contributions are as follows:

• We propose a novel and biologically plausible algorithm for training sparse
neural networks, which has a limited number of parameters during training.
Our proposed algorithm, CTRE, exploits both the similarity of neurons and
the random search to find a performant sparse topology.

• We introduce the Hebbian learning theory in the training of the sparse
neural networks. Using the cosine similarity of each pair of neurons in two
consecutive layers, we determine the most important connections at each
epoch during sparse training of the network. We discuss in detail why this
approach is an extension to the Hebbian learning theory in Section 2.3.2.

• Our proposed algorithms outperform state-of-the-art sparse training algo-
rithms in highly sparse neural networks.

While deep learning models have shown great success in vision and NLP
tasks, these models have not been fully explored in the domain of tabular
data [PMB19]. However, designing deep models that are capable of processing
tabular data is of great interest to researchers as it paves the way to building
multi-modal pipelines for problems [GRKB21]. This work mainly focuses on
Multi-Layer Perceptrons (MLPs), which are commonly used for tabular and
biological data. Despite the simple structure of MLPs and having only a few

1To enhance readability, CTRE is utilized in place of CRTE (the sequential order of the initial
letters).
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hyperparameters to adjust, they have shown good performance in classification
tasks [GS21, THK+21]. Furthermore, in [JYP+17], the authors investigated
that, despite the massive attention on CNN architectures, they utilize only 5%
of the neural network workload of TPUs in Google data centers, while MLPs
constitute 61% of the total workload. Therefore, it is crucial to develop an
efficient algorithm that can accelerate MLPs and be resource-efficient during
training and inference. To pursue this goal, in this research, we aim to design
sparse MLPs with a limited number of parameters during training and inference.
To demonstrate the validity of our proposed algorithm, in addition to evaluating
the methods on tabular and text datasets, we compare the methods on image
datasets such as MNIST, Fashion-MNIST, and CIFAR-10/100 datasets which are
commonly used as benchmarks in previous studies.

2.2 Background

In this section, we provide an overview of the background information regarding
this research.

2.2.1 Sparse Neural Networks

Methods to obtain and train sparse neural networks can be stratified into two
major categories: dense-to-sparse and sparse-to-sparse. In the following, we
shed light on each of these two approaches.

Dense-to-sparse

Dense-to-sparse methods to obtain sparse neural networks start training from
a dense model and then prune the unimportant connections. They can be
divided into three major subcategories: (1) Pruning after training: Most existing
dense-to-sparse methods start with a trained dense network and iteratively (one
or several iterations) prune and retrain the network to reach desired sparsity
level. Seminal works were performed in the 1990s in [LDS90, HS93], where
authors use hessian matrix information to prune a trained dense network. More
recently, in [HPTD15, FC19], authors use magnitude to remove unimportant
connections. Other metrics, such as gradient [LW19], Taylor expansion [MTK+17,
MMT+19], and low-rank decomposition [WGFZ19, LGM+20], have been also
employed to prune the network. While being effective techniques in terms of
the performance of the obtained sparse network, these methods suffer from high
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computational costs during training. (2) Pruning during training: To decrease
the computational cost, this group of methods performs pruning during training
[GEH19, JZR+19, KRS+20]. Various criteria can be used for pruning, such as
magnitude [GYC16, ZG17], L0 regularization [LWK18, SSM20], group Lasso
regularization [WWW+16], and variational dropout [MAV17]. (3) Pruning before
training: The first study to apply pruning prior to training was done by [LAT19]
in [LAT19], that used connection sensitivity to remove weights. Later works
have followed the same approach by pruning the network before training using
different approaches, such as gradient norm after pruning [WZG19], connection
sensitivity after pruning [dJSB+21], and Synaptic Flow [TKYG20].

Sparse-to-sparse

To lower the computational cost of dense-to-sparse methods, sparse-to-sparse
training algorithms (also known as sparse training) use a sparse network from
scratch with sparse connectivity, which might be static (static sparse train-
ing [MMN+16,KR19]) or dynamic (dynamic sparse training (DST) [MMS+18,
BKML18]). By allowing the topology to be optimized along with the weights,
sparse neural networks trained with DST have reached a comparable perfor-
mance to the equivalent dense networks or even outperform them.

DST methods can be divided into two main categories based on the weight
addition policy:

1. Random regrowth: Sparse Evolutionary Training (SET) [MMS+18] is one
of the earliest works that starts with a sparse neural network and performs
magnitude pruning and random weight regrowing at each epoch to update
the topology. In [MW19], the authors proposed the idea of parameter
reallocation automatically across layers during sparse training in CNNs.
Many works have further studied sparse training concept recently [GEN+18,
ASvdL+22,LCC+21,LvdLY+20,LMPP21,LYMP21].

2. Gradient information: A group of works tried to exploit gradient informa-
tion to speed up the training process in DST [RA20]. [DZ19] used the
momentum of the non-existing connections as a criterion to grow weights
instead of random addition in the SET algorithm; While being effective in
terms of accuracy, this method requires computing gradients and updat-
ing the momentum for all non-existing parameters. The Rigged Lottery
(RigL) [EGM+20] addressed the high computational cost by using infre-
quent gradient information. However, it still requires the computational
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cost for computing the periodic dense gradients. [JPR+20] tried to fur-
ther improve RigL by using the gradient for only a subset of non-existing
weights. In [DYJ19], authors exploit gradient information in the search for
a performant sub-network and discuss that gradient-based weight addition
is biologically plausible.

2.2.2 Hebbian Learning Theory

The Hebbian learning rule was proposed in 1949 by [Heb05] as the learning
rule for neurons inspired by biological systems. It describes how the neurons’
activations influence the connections among them. The classical Hebb’s rule
indicates “neurons that fire together, wire together”. This can be formulated as
∆wi j = ηpi q j , where ∆wi j is the change in synaptic weight wi j between two
neurons pi (presynaptic) and q j (postsynaptic) in two consecutive layers, and η

is the learning rate.
While some previous works have adapted Hebb’s rule to a few machine

learning tasks, [SB16, LGM17, SHK23], it has not been vastly investigated in
many others, particularly in the sparse neural networks. By adapting Hebb’s rule
to artificial neural networks, we can obtain powerful models that might be close
to the function of structures found in neural systems of various species [KMST15].
In [ABGM14], authors have incorporated the Hebbian learning theory to train a
newly introduced neural network. In [SWT16], the Hebbian learning concept
has been used to sparsify the neural networks for face recognition; they drop
the connections between the weakly correlated neurons. In [DYJ19], authors
proposed a gradient-based algorithm for obtaining a sparse neural network; they
discuss the gradient-based connection growth policy is mathematically close
to the Hebbian learning theory. In this work, by taking inspiration from the
Hebbian learning theory, we aim to introduce a new sparse training algorithm
for obtaining sparse neural networks.

2.2.3 Cosine Similarity

In most machine learning problems, the Euclidean distance is a common tool
to measure the distance due to its simplicity. However, the Euclidean distance is
highly sensitive to the vectors’ magnitude [XZL15]. Cosine similarity is another
metric that addresses this issue; it measures the similarity of the shapes of two
vectors as the cosine of the angle between them. In other words, it determines
whether the two vectors are pointing in the same direction or not [HKP+12].
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Due to its simplicity and efficiency, cosine similarity is a widely used metric in
machine learning and pattern recognition fields [XZL15]. It often measures the
document similarity in natural language processing tasks [SGGAP14,LH13]. Co-
sine Similarity has proven to be an effective tool in neural networks. In [LZX+18],
to bound the pre-activations in a multi-layer neural network that might disturb
the generalization, authors have proposed to use cosine similarity instead of the
dot product and showed that it reaches a better performance than the simple dot
product. In [NB10], authors have used this metric to improve face verification
using deep learning.

2.3 Proposed Method

In this section, we first formulate the problem. Secondly, we demonstrate that
cosine similarity can be leveraged as a tool for determining the importance of
weights in neural networks and how it relates to the Hebbian learning theory.
Finally, we present two new sparse training algorithms using cosine similarity-
based connection importance.

2.3.1 Problem Definition

Given a set of training samples X and target output y, a dense neural network
is trained to minimize J (θ) = 1

m

∑m
i=1 L( f (x(i );θ),y(i )), where m is the number of

training samples, L is the loss function, f is a neural network parameterized by
θ, f (x(i );θ) is the predicted output for input x(i ), and y(i ) is the true label. θ ∈RN

is consisted of parameters of each layer l ∈ {1,2, ..., H } of the network as θl ∈RN l
,

where N l = nl−1 ×nl is the number of parameters of layer l , nl is number of
neurons at layer l , and the total number of parameters of the dense network is
N . A sparse neural network, however, uses only a subset of θl , and discards sl

fraction of parameters of each layer θl (their weight values are equal to zero);
sl is referred to as the sparsity of layer l . The overall sparsity of the network is

S = 1−D, where D =
∑H

l=1 (1−sl )N l

N is the overall density of the network. We aim to
obtain a sparse neural network with sparsity level of S and parameters θ. We
aim to train this network to minimize the loss on the training set as follows:

θ∗ = argmin
θ∈RN , ∥θ∥0=D×N

1

m

m∑
i=1

L( f (x(i );θ),y(i )), (2.1)
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where ∥θ∥0 is the total number of non-zero connections of the network which is
determined by the density level.

Network Structure. The architecture we consider is a Multi-layer Perceptron
(MLP) with H layers. Initially, sparse connections between two consecutive
layers are initialized with an Erdős–Rényi random graph. Each connection in this
graph exists with a probability of P (θl

i ) = ε(nl−1+nl )
nl−1nl , i ∈ {1,2, ..., N l }, where ε ∈R+

denotes the hyperparameter that controls the sparsity level. The lower the value
of ε is, the sparser the network would be. In other words, by increasing ε, the
probability of P (θl

i ) would be higher which results in more connections and a
denser network. Each existing connection is initialized with a small value from a
normal distribution.

2.3.2 Cosine Similarity to Determine Connections Importance

In this work, we use cosine similarity as a metric to derive the importance of
non-existing connections and evolve the topology of a sparse neural network. We
first demonstrate how we measure the cosine similarity of two neurons. Then,
we argue why this choice has been made and how it relates to the Hebbian
Learning theory. We measure the similarity of two neurons p and q as:

Si ml
p,q =

∣∣∣∣∣∣ Al−1
:,p ·Al

:,q∥∥Al−1
:,p

∥∥∥∥∥Al
:,q

∥∥∥
∣∣∣∣∣∣, (2.2)

where Siml is the similarity matrix between neurons in two successive layers
l − 1 and l . Al−1

:,p and Al
:,q ∈ Rm are the activation vectors corresponding to

neurons p and q in layers l − 1 and l , respectively. If Si ml
p,q is high for two

unconnected neurons (close to 1), it means that they have a high similarity
among their activations. Therefore, we prefer to add a connection between them
as it suggests that this path contains important information about data. However,
if Si ml

p,q is low for two neurons (close to 0), it means that the activations of
neurons p and q are not similar, and the connection among them might not be
beneficial for the network.

We now argue why cosine similarity can be used to measure the importance
of a non-existing connection in sparse neural networks and how it connects to
the Hebbian learning theory. Basically, by taking inspiration from the Hebbian
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learning theory, we aim to rewire the neurons that fire together in the context of
sparse training algorithms, instead of only strengthening the existing connections
among neurons that fire together [Sch21]. It has been discussed in [Sch21] that
connecting a pair of neurons with strong coincident activations can be viewed as
a natural extension of Hebbian learning. Essentially, it is necessary to wire the
neurons that usually fire together in order to understand better the relationship
among the higher-order representation of those neurons. If a causal connection
between their higher-order representation does exist, growing a connection
among them will enable an effective inference about the relationship between
them. Therefore, we need to discover which pairs of neurons usually fire together
and then rewire them.

We employ cosine similarity to measure the relation between the activation
values of two neurons. Such as Hebb’s rule (Section 2.2.2), the importance of
a connection in our method is also determined by multiplying the activations
of its corresponding neurons, albeit normalized. In Equation 2.2, Al−1

:,p is the
pre-synaptic activation and Al

:,q is the post-synaptic activation. If the activations
of two connected neurons agree, by computing the dot product of activations,
both Equation 2.2 and Hebb’s rule assign higher importance to the corresponding
connection. This would result in increased weight and a better chance of adding
this connection. Thus, both methods reward connections between neurons that
exhibit similar behavior. As mentioned earlier, the main difference between
Hebb’s rule and Equation 2.2 is normalization. We will discuss in Section 2.5.3
why the normalization step is necessary for evolving the topology of a sparse
neural network.

In summary, if the cosine similarity of the activation vector of two neurons is
high, it indicates the necessity of the connection between them in the network’s
performance. Therefore, we use the cosine similarity information to find out
if the link between a pair of neurons should be rewired or not. Based on this
knowledge, we propose two new algorithms to evolve the sparse neural network
in the following sections.

2.3.3 Sequential Cosine Similarity-based and Random Topol-
ogy Exploration (CTREseq)

Our first proposed algorithm, Sequential Cosine Similarity-based and Random
Topology Exploration (CTREseq) evolves the network topology using both cosine
similarity between neurons of each pair of consecutive layers in the network and
random search. Overall, in the beginning, at each training epoch, it removes
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Algorithm 1 CTREseq

1: Input: Dataset X, sparsity hyperparameter ε, drop fraction ζ, early stop
epoch eear l y stop

2: Initialize the network with sparsity determined by ε, f l ag r andomsear ch =
F al se

3: for i ∈ {1, . . . ,#epochs} do
4: Perform standard feed-forward and back-propagation
5: for l ∈ {1, . . . , H } do
6: Remove ζN l of the weights with the smallest magnitude.
7: if f l ag r andomsear ch then
8: Add ζN l connections randomly
9: else

10: Compute Similarity matrix Siml according to Equation 2.2
11: Add ζN l connections with the highest similarity value in Siml

12: if Accuracy on validation set does not improve in eear l y stop then
13: Set f l ag r andomsear ch = Tr ue

unimportant connections based on their magnitude and adds new connections
to the network based on their cosine similarity. When the network performance
stops improving, the algorithm switches to a random topology search. In the
following, we will explain the algorithm in more detail.

After initializing the sparse network with a sparsity level determined by ε,
the training begins. The training procedure consists of two consecutive phases:

1. Cosine Similarity-based Exploration: The training starts with this phase in
which each epoch includes three steps:

(a) Firstly, a standard feed-forward and back-propagation are performed.

(b) Then, a proportion ζ of connections with the lowest magnitude in
each layer is removed. In Section 2.5.2, we further discuss why this
choice has been made.

(c) Subsequently, we add new connections to the network based on the
neurons’ similarity. Taking advantage of the cosine similarity metric,
we measure the similarity of two neurons as formulated in Equation
2.2. In each layer, we add connections (as many connections as the
removed connections in this layer) with the highest similarity between
the corresponding neurons. The new connections are initialized with
a small value from a uniform distribution.
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2. Random Exploration: The second phase begins when the performance
of the network on a validation set does not improve in eear l y stop epochs
(eear l y stop is a hyperparameter of CTREseq). This is due to the fact that the
activation values might not change significantly after some epochs and,
consequently, the similarity of neurons. As a result, the topology search
using cosine similarity might stop as well. To prevent this, we begin a
random search when the classification accuracy on the validation set stops
increasing. This phase is almost similar to phase 1, but they are different
in the weight-regrowing policy. In this phase, instead of using cosine
similarity information, we add connections randomly to the network. In
this way, we prevent the early stopping of the topology search. Algorithm
1 summarizes this method.

2.3.4 Simultaneous Cosine Similarity-based and Random Topol-
ogy Exploration (CTREsim)

To constantly exploit the cosine similarity information during training and avoid
the early stopping of topology exploration, we propose another method for
obtaining a sparse neural network, named Simultaneous Cosine Similarity-based
and Random Topology Exploration (CTREsim).

Prior to the training, we initialize a sparse neural network. After that, the
training procedure starts with three steps in each epoch. The first two steps are
similar to CTREseq.

(a) Standard feed-forward and back-propagation

(b) Magnitude-based weight removal

(c) In this step, instead of relying solely on cosine similarity information or ran-
dom addition, we combine both strategies. There are two reasons behind
this choice: (1) As discussed in Section 2.3.3, as the training proceeds, the
activation values become stable and might not change significantly after a
while and, consequently, the similarity values. In CTREseq, we addressed
this issue by switching completely to random search. However, the training
speed might slow down if we rely only on the random search. (2) If we
rely only on cosine similarity information, there is a possibility to add
some connections based on the similarity of the neurons, which have been
removed based on the magnitude in the weight removal step. It means that
in these cases, the path between these pairs of similar neurons does not
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Algorithm 2 CTREsim

1: Input: Dataset X, sparsity hyperparameter ε, drop fraction ζ

2: Initialize the network with sparsity determined by ε
3: for i ∈ {1, . . . ,#epochs} do
4: perform standard feed-forward and back-propagation
5: for l ∈ {1, . . . , H } do
6: Remove ζN l of the weights with smallest magnitude.
7: Compute Similarity matrix Siml according to Equation 2.2
8: Csi m = Set of ζN l connections with the highest similarity value in

Siml

9: for each c ∈Csi m do
10: if c was removed in the last weight removal step then
11: Add a random connection to the network
12: else
13: Add connection c to the network

contribute to the performance of the network. Therefore, we should not
add such connections to the network. These are the potential limitations
of CTREseq.
To address these limitations, CTREsim takes another approach to prevent
adding the removed connections which have a high cosine similarity to
the network, as follows. In step c, we add the connections with high
similarities to the network. However, if some connections with high cosine
similarity are earlier removed based on their magnitude in step b, we add
random connections to the network. In other words, we split our budget
between similarity-based and random exploration. More importantly, we
let the network dynamically decide how much budget should be allocated
to each exploration at each epoch. The benefits from this approach are
twofold; we prevent early stopping of the topology search and also prevent
re-adding connections that have shown to be unhelpful for the network’s
performance. Algorithm 2 summarizes this method.

2.4 Experiments and Results

In this section, we evaluate our proposed algorithms and compare them with
several state-of-the-art algorithms for obtaining a sparse neural network. First,
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we describe the settings of the conducted experiments, including the hyperpa-
rameter values, implementation details, and datasets. Then, we compare them in
terms of classification accuracy on several datasets and networks with different
sizes and sparsity levels.

2.4.1 Settings

This section gives a brief overview of the experiment settings, including hyperpa-
rameter values, implementation details, and datasets used for the evaluation of
the methods.

Hyperparameters

The network that we use to perform experiments is a 3-layer MLP as described
in Section 2.3.1. The activation functions used for hidden and output layers are
Relu and Softmax, respectively, and the loss function used is CrossEntropy. All
the experiments are performed using 500 training epochs. The values for most
hyperparameters have been selected using a grid search over a limited number of
values. Each hyperparameter was tuned independently and less than 10 values
was tested for each of the hyperparameters. The hyperparameter ζ has been
set to 0.2. In Algorithm 1, eear l y stop has been set to 40. We train the network
with Stochastic Gradient Decent (SGD) with momentum and L2 regularizer. The
momentum coefficient, the regularization coefficient, and the learning rate are
0.9, 0.0001, and 0.01, respectively. The datasets have been preprocessed using
the Min-Max Scaler so that each feature is normalized between 0 and 1, except
for Madelon, where we use a standard scaler (each feature will have zero mean
and unit variance). For the image datasets, data augmentation has not been
performed unless it has been explicitly stated.

Comparison

We compare the results with three state-of-the-art methods for obtaining sparse
neural networks, including, SNIP, RigL, and SET.

• SNIP [LAT19]. Single-shot network pruning (SNIP) is a dense-to-sparse
sparsification algorithm that prunes the network prior to initialization
based on connection sensitivity. It calculates this metric after a few iter-
ations of dense training. After pruning, SNIP starts the training with the
sparse neural network.
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• RigL [EGM+20]. The rigged lottery (RigL) is a sparse-to-sparse algorithm
for obtaining a sparse neural network that uses gradient information as
the weight addition criteria.

• SET [MMS+18]. Sparse evolutionary training (SET) is a sparse-to-sparse
training algorithm that uses random weight addition for updating the
topology.

Besides, we measure the classification performance of a fully connected MLP
as the baseline method.

SET and RigL are recognized as seminal works in the dynamic sparse train-
ing field, each employing distinct growth criteria. They serve as foundational
benchmarks for comparative analyses, as evidenced by numerous prior stud-
ies [YMN+21,LCC+21,LYMP21]. This choice is primarily driven by our specific
aim to evaluate various weight growth strategies. In this chapter of the doctoral
thesis, our objective is to compare the cosine-based weight growth strategy
(CTRE) with the purely random (SET) and gradient-driven (RigL) approaches to
weight growth. Thus, the main point of differentiation among these methods
lies in their respective weight growth strategies. While other methodologies may
incorporate additional components, we refrain from their examination as it falls
outside the scope of our study. This focused approach ensures a clear evaluation
of weight growth strategies within the context of our research.

SNIP stands as a seminal work in pruning prior to training, commonly em-
ployed as a benchmark in dynamic sparse training (DST) research. Its utilization
of training solely with sparse matrices renders it a pertinent baseline in our
studies.

Implementation

We evaluate our proposed methods and the considered baselines on eight
datasets. We implemented our proposed method using Tensorflow [AAB+15].
The baseline of this implementation is the RigL code from Github 2. It also
includes the implementation of SNIP, SET, and fully-connected MLP. This code
uses a binary mask over weights to implement sparsity. In addition, we provide
a purely sparse implementation that uses SciPy library sparse matrices. This
code is developed from the sparse implementation of SET, which is available on

2The implementation of RigL, SNIP, and SET is available at https://github.com/
google-research/rigl.

https://github.com/google-research/rigl
https://github.com/google-research/rigl
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Table 2.1: Datasets characteristics.

Dataset Dimensions Type Samples Train Test Classes

Isolet 617 Speech 7737 6237 1560 26
Madelon 500 Artificial 2600 2000 600 2
MNIST 784 Image 70000 60000 10000 10

Fashion_MNIST 784 Image 70000 60000 10000 10
CIFAR10 3072 Image 60000 50000 10000 10

CIFAR100 3072 Image 60000 50000 10000 100
PCMAC 3289 Text 1943 1554 389 2

BASEHOCK 4862 Text 1993 1594 399 2

Github3. For all the experiments, we use the Tensorflow implementation to have
a fair comparison among methods. However, we provide the results using the
sparse implementation in Appendix A.2. Most experiments were run on a Dell
R730 CPU. For image datasets, we used a Tesla-P100 GPU. All the experiments
were repeated with three random seeds. The only exception is the experiments
from Section 2.4.2 where we run 15 random seeds to analyze the statistical
significance of the obtained results with respect to the considered algorithms
(Section 2.4.2). To ensure a fair comparison, for the sparse training methods
(SET, RigL, and CTRE), the sparsity mask is updated at the end of each epoch,
and the drop fraction (ζ) and learning rate are constant during training.

Datasets

We conducted our experiments on eight benchmark datasets as follows:

• Madelon [GGNZ08] is an artificial dataset with 20 informative features
and 480 noise features.

• Isolet [FC91] has been created with the spoken name of each letter of the
English alphabet.

• MNIST [LeC98] is a database of 28×28 images of handwritten digits.

• Fashion-MNIST [XRV17] is a database of 28× 28 images of Zalando’s
articles.

3The pure sparse implementation of SET can be found on https://github.com/dcmocanu/
sparse-evolutionary-artificial-neural-networks.

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
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• CIFAR-10/100 [KH+09] are two datasets of 32×32 colour images catego-
rized in 10/100 classes.

• PCMAC & BASEHOCK [Lan95] are two subsets of the 20 Newsgroups
data.

The selection of these datasets has been meticulously curated to encompass a
broad spectrum of data types. Specifically, we have chosen datasets representing
four distinct categories: speech, image, text, and artificial data. Given our
focus on MLP networks, it’s imperative not only to demonstrate classification
performance on image datasets but also to evaluate the model across other
datasets common for MLP networks such as text, tabular, and speech data. This
deliberate inclusion allows us to assess the generalizability and applicability
of our proposed approach across various domains of application. More details
about the datasets are presented in Table 2.1.

2.4.2 Performance Evaluation

In this experiment, we compare the methods in terms of classification accuracy
on networks with varying sizes and sparsity levels. We consider three MLPs, each
having three hidden layers with 100, 500, and 1000 hidden neurons, respectively.
By changing the value of ε for each MLP, we study the effect of sparsity level
on the performance of the methods. Table 2.2 summarizes the results of these
experiments that are carried out on the five datasets, including tabular and image
datasets that have different characteristics. We have also included the density (in
percentage) and the number of connections (divided by 103) for each network in
this table. For training on each dataset, we allocate 10% of the training set to a
validation set. During training, each MLP is trained on the new training set. At
each epoch, we measure the performance on the validation set. Finally, Table 2.2
presents the results of each algorithm on an unseen test set and uses the model
that gives the highest validation accuracy during training. The learning curves
regarding each case are presented in Appendix A.1; however, we present some
interesting cases in Figure 2.2.

First, we analyze the performance of methods on the two tabular datasets. As
can be seen in Table 2.2, on the Madelon dataset, CTREsim is the best performer
in most cases. Interestingly, the accuracy increases when the network becomes
sparser. However, this can be explained intuitively; since the Madelon dataset
contains many noise features (> 95%), the higher the number of the connections
is, the higher the risk for over-fitting the noise features will be. CTREsim can find
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the most important information paths in the network, which most likely start
from the input neurons corresponding to the informative features. As a result,
it can reach an accuracy of 78.8% with only 0.3% of total connections of the
equivalent dense network (nl = 1000), while the maximum accuracy achieved
by other methods considered is 61.9% (SET). On the second tabular dataset,
Isolet, CTREsim is the best performer on two very sparse models, including 0.4%
(nl = 500) and 0.3% (nl = 1000) densities. In addition, in all the other cases,
CTREsim and CTREseq are the second and third-best performers. In terms of
learning speed, we can observe in Figure 2.2 that CTREsim can find a good
topology much faster than other methods, which results in an increase in the
accuracy within a short period after the training starts. From Figure 2.2, it
can be seen that RigL fails to find an informative sub-network in these cases
(D < 0.3%). This indicates that gradient information might not be informative in
highly sparse networks.

On the image dataset, CTREsim and CTREseq are the best and second-best
performers in most of the cases considered. When the network size is small
(nl = 100), SET is the major competitor of CTRE. However, when the model size
increases, CTRE outperforms SET. This indicates that the pure random weight
addition policy in SET can perform well in networks with a higher density, while
it is hard to find such sub-network randomly in high-sparsity scenarios due to the
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Figure 2.2: Classification accuracy (%) comparison among methods on a highly large and
sparse 3-layer MLP with a density lower than 0.3% (nl = 1000, ε = 1). The
shaded areas show the standard deviation of the results. CTRE shows high
learning speed among various datasets. On the Madelon dataset, CTREsim is
able to achieve a decent performance which is due to combining cosine-based
search and random search.
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Table 2.2: Classification accuracy (%) comparison among methods on networks with
various sizes and sparsity levels. The density (%) and number of connections
for each case is indicated in the table. Please note that N (total number of
parameters of the network) is scaled by ×103.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon
Baseline (N (×103)) 54.9±1.0 (70.2) 54.9±1.0 (751.0) 54.9±1.0 (2502.0)

D(%) (N (×103)) 1.6 (1.1) 7.8 (5.5) 20.4 (14.3) 0.5 (3.5) 2.3 (17.5) 6.1 (45.5) 0.3 (6.5) 1.3 (32.5) 3.4 (84.5)

SNIP 56.5±3.5 56.1±2.9 54.1±2.6 57.3±3.0 56.4±2.5 57.5±1.9 58.1±3.4 58.4±1.5 57.8±1.6
RigL 60.4±3.1 59.7±1.8 59.3±2.2 51.3±3.5 61.9±2.0 60.0±2.0 50.0±0.0 61.5±3.0 61.1±1.7
SET 60.4±2.1 57.8±3.2 58.1±1.7 61.4±2.6 59.4±2.4 57.9±3.9 61.7±1.2 59.0±1.8 58.2±2.3

CTREseq 82.2±2.482.2±2.482.2±2.4 72.5±2.0 63.9±1.2 61.2±2.4 81.5±1.481.5±1.481.5±1.4 71.8±2.0 61.1±1.9 83.9±2.083.9±2.083.9±2.0 76.5±1.976.5±1.976.5±1.9
CTREsim 81.6±1.3 73.0±1.673.0±1.673.0±1.6 65.6±3.065.6±3.065.6±3.0 79.4±1.779.4±1.779.4±1.7 77.7±1.4 73.0±1.573.0±1.573.0±1.5 78.8±2.278.8±2.278.8±2.2 78.5±1.0 74.6±1.4

Isolet
Baseline (N (×103)) 94.4±0.1 (84.3) 94.3±0.0 (821.5) 94.6±0.4 (2643.0)

D(%) (N (×103)) 1.5 (1.2) 7.4 (6.2) 19.2 (16.2) 0.4 (3.6) 2.2 (18.2) 5.8 (47.4) 0.3 (6.6) 1.3 (33.2) 3.3 (86.4)

SNIP 48.9±5.8 90.1±1.1 92.8±0.7 49.2±8.6 89.9±1.0 92.3±0.6 52.4±5.6 89.7±0.8 92.0±0.6
RigL 66.0±28.6 90.0±0.8 92.3±0.7 3.5±0.0 88.4±1.0 91.9±1.2 3.5±0.0 87.2±1.8 91.2±1.5
SET 89.1±1.289.1±1.289.1±1.2 94.2±0.794.2±0.794.2±0.7 94.9±0.494.9±0.494.9±0.4 86.5±1.2 93.2±0.793.2±0.793.2±0.7 94.7±0.594.7±0.594.7±0.5 75.2±4.7 92.9±0.592.9±0.592.9±0.5 94.4±0.894.4±0.894.4±0.8

CTREseq 86.7±1.8 92.4±1.1 94.3±0.5 87.2±2.0 92.3±0.6 94.0±0.4 86.7±1.6 91.5±1.0 93.7±0.5
CTREsim 87.5±0.8 93.4±0.7 94.3±0.8 87.8±1.187.8±1.187.8±1.1 91.7±1.1 93.9±0.5 88.3±0.788.3±0.788.3±0.7 91.3±1.3 93.1±0.6

MNIST
Baseline (N (×103)) 97.9±0.0 (99.4) 98.2±0.1 (897.0) 98.2±0.1 (2794.0)

D(%) (N (×103)) 1.4 (1.4) 7.0 (7.0) 18.2 (18.1) 0.4 (3.8) 2.1 (19.0) 5.5 (49.3) 0.2 (6.8) 1.2 (34.0) 3.2 (88.3)

SNIP 91.1±0.5 96.3±0.2 97.2±0.1 93.8±0.3 96.6±0.2 97.2±0.2 94.4±0.3 96.7±0.2 97.3±0.2
RigL 94.5±0.3 96.4±0.2 97.2±0.2 95.9±0.3 96.7±0.2 97.0±0.1 96.0±0.2 96.6±0.2 96.9±0.2
SET 95.6±0.3 97.1±0.1 97.6±0.1 95.9±0.2 97.4±0.1 97.8±0.1 95.8±0.1 97.4±0.2 97.7±0.1

CTREseq 95.7±0.295.7±0.295.7±0.2 97.3±0.297.3±0.297.3±0.2 97.7±0.1 97.0±0.297.0±0.297.0±0.2 97.6±0.2 97.8±0.1 97.3±0.197.3±0.197.3±0.1 97.7±0.197.7±0.197.7±0.1 97.8±0.1
CTREsim 95.5±0.2 97.3±0.197.3±0.197.3±0.1 97.8±0.197.8±0.197.8±0.1 96.4±0.2 97.7±0.197.7±0.197.7±0.1 98.0±0.198.0±0.198.0±0.1 96.6±0.2 97.7±0.197.7±0.197.7±0.1 97.9±0.197.9±0.197.9±0.1

Fashion-
MNIST

Baseline (N (×103)) 88.3±0.2 (99.4) 89.8±0.1 (897.0) 90.1±0.1 (2794.0)

D(%) (N (×103)) 1.4 (1.4) 7.0 (7.0) 18.2 (18.1) 0.4 (3.8) 2.1 (19.0) 5.5 (49.3) 0.2 (6.8) 1.2 (34.0) 3.2 (88.3)

SNIP 79.5±2.3 86.0±0.3 87.1±0.3 81.1±1.2 86.3±0.3 87.4±0.4 82.2±1.1 86.5±0.2 87.3±0.2
RigL 84.8±0.2 86.4±0.3 87.2±0.2 86.1±0.2 86.4±0.3 86.5±0.3 86.1±0.3 86.3±0.4 86.6±0.4
SET 85.8±0.385.8±0.385.8±0.3 87.4±0.4 87.8±0.3 86.5±0.2 87.6±0.2 88.0±0.2 86.3±0.2 87.8±0.3 87.8±0.2

CTREseq 85.8±0.585.8±0.585.8±0.5 87.5±0.387.5±0.387.5±0.3 87.4±0.3 87.1±0.487.1±0.487.1±0.4 87.9±0.3 88.0±0.2 87.3±0.287.3±0.287.3±0.2 88.0±0.3 88.3±0.288.3±0.288.3±0.2
CTREsim 85.8±0.385.8±0.385.8±0.3 87.5±0.387.5±0.387.5±0.3 88.0±0.288.0±0.288.0±0.2 86.4±0.5 88.1±0.288.1±0.288.1±0.2 88.3±0.288.3±0.288.3±0.2 86.5±0.3 88.1±0.388.1±0.388.1±0.3 88.3±0.288.3±0.288.3±0.2

CIFAR10
Baseline (N (×103)) 51.2±0.5 (328.2) 53.2±0.2 (2041.0) 55.2±0.2 (5082.0)

D(%) (N (×103)) 1.1 (3.7) 5.6 (18.4) 14.6 (47.9) 0.3 (6.1) 1.5 (30.4) 3.9 (79.1) 0.2 (9.1) 0.9 (45.4) 2.3 (118.1)

SNIP 35.8±3.8 47.6±0.7 49.5±0.7 39.4±1.8 48.9±0.6 50.7±0.6 40.2±1.4 49.3±1.0 50.9±0.6
RigL 46.0±0.6 49.3±0.6 50.5±0.5 46.4±9.8 50.0±1.0 49.9±1.1 36.4±18.7 50.3±1.1 49.9±0.8
SET 48.3±0.548.3±0.548.3±0.5 49.9±0.5 50.6±0.550.6±0.550.6±0.5 49.4±0.3 50.6±0.4 51.4±0.6 48.8±0.5 50.6±0.4 51.1±0.6

CTREseq 47.9±0.8 50.1±0.5 50.1±0.5 51.3±0.551.3±0.551.3±0.5 52.7±0.552.7±0.552.7±0.5 52.6±0.652.6±0.652.6±0.6 52.0±0.752.0±0.752.0±0.7 53.2±0.653.2±0.653.2±0.6 53.6±0.653.6±0.653.6±0.6
CTREsim 48.2±0.4 50.3±0.350.3±0.350.3±0.3 50.5±0.4 50.6±0.4 52.6±0.7 52.5±0.7 50.0±0.4 52.7±0.5 53.5±0.5

CIFAR100
Baseline (N (×103)) 23.1±0.6 (337.2) 23.1±0.6 (2086.0) 23.1±0.6 (5172.0)

D(%) (N (×103)) 1.1 (3.8) 5.6 (18.9) 14.5 (49.0) 0.3 (6.2) 1.5 (30.9) 3.8 (80.2) 0.2 (9.2) 0.9 (45.9) 2.3 (119.2)

SNIP 5.9±0.6 15.7±0.7 20.4±0.3 6.6±0.8 17.9±0.7 22.1±0.4 6.2±0.8 18.3±0.6 22.5±0.5
RigL 7.4±4.4 19.9±0.5 21.4±0.4 1.0±0.0 21.0±0.5 21.4±0.5 1.0±0.0 1.0±0.0 20.4±0.6
SET 14.7±0.414.7±0.414.7±0.4 20.3±0.3 21.7±0.3 14.3±1.5 22.7±0.3 24.1±0.4 1.0±0.0 23.3±0.3 24.5±0.3

CTREseq 12.7±0.7 21.1±0.321.1±0.321.1±0.3 21.8±0.5 18.7±0.418.7±0.418.7±0.4 23.6±0.423.6±0.423.6±0.4 24.0±0.4 21.4±0.421.4±0.421.4±0.4 23.9±0.523.9±0.523.9±0.5 24.7±0.4
CTREsim 13.8±0.4 20.6±0.4 21.9±0.421.9±0.421.9±0.4 17.0±0.3 23.0±0.3 24.6±0.424.6±0.424.6±0.4 17.3±0.4 23.5±0.3 25.1±0.325.1±0.325.1±0.3
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very large search space. RigL also has comparable performance to SET, except for
very sparse models. As discussed in the previous paragraph, on a highly sparse
network (D < 0.3%), RigL has poor performance. Besides, as shown in Figure 2.2,
SNIP starts with a steep increase in accuracy due to the few iterations of training
a dense network and thus, starting with good topology. However, as the training
proceeds, this topology cannot achieve the same performance as other methods.
Therefore, it indicates that dynamic weight update is an essential factor in the
sparse training of neural networks.

These observations confirm that cosine similarity is an informative criterion
for adding weight to the network compared to random (SET) and gradient-
based addition (RigL) in very sparse neural networks. CTRE can reach a better
performance than state-of-the-art sparse training algorithms in terms of learning
speed and accuracy when the network is highly sparse. Besides, by comparing the
results with the dense network, it is clear that it is possible to reach a comparable
performance to the dense network even with a network with 100 times fewer
connections which is an excellent choice for low-resource devices on edge. We
further compare the learning speed of the algorithms in Appendix A.1.2 and
their computational complexity in Appendix A.1.3.

Statistical Significance Analysis

In this section, we analyze the statistical significance of the results obtained
by CTRE compared to the other algorithms. To measure this, we perform
Kolmogorov-Smirnov test (KS-test). The null hypothesis is that the two indepen-
dent results/samples are drawn from the same continuous distribution. If the
p-value is very small (p-value < 0.05), it suggests that the difference between the
two sets of results is significant and the hypothesis is rejected. Otherwise, the
obtained results are close together and the hypothesis is true.

We perform the KS-test between the results obtained by CTRE (for simplicity,
we consider maximum results of C T REseq and C T REsi m) and the other con-
sidered algorithms for the experiments in Table 2.2. The results of the KS-test
are summarized in Table 2.3. In this table, Reject shows that the results are
sufficiently distinct, and True means that the obtained results are close together.
The * sign in Table 2.3 shows that an algorithm has achieved the maximum
accuracy in the corresponding experiment. Finally, the entries colored red show
an experiment where a compared method obtains a close result to CTRE while
having lower mean accuracy.

From Table 2.3, we can observe that in the majority of the experiments, CTRE
obtains higher mean accuracy than the other methods while being statistically
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Table 2.3: Statistical significance of the results. Each entry shows the result of the KS-test
among the results of CTRE and the compared methods for a specific network
size and sparsity level. Reject shows that the results are distinct, and True
indicates that the results are close together. The * sign shows that an algorithm
has achieved the maximum accuracy in the corresponding experiment.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon SNIP Reject Reject Reject Reject Reject Reject Reject Reject Reject
RigL Reject Reject Reject Reject Reject Reject Reject Reject Reject
SET Reject Reject Reject Reject Reject Reject Reject Reject Reject

CTRE -* -* -* -* -* -* -* -* -*

Isolet SNIP Reject Reject Reject Reject Reject Reject Reject Reject Reject
RigL Reject Reject Reject Reject Reject Reject Reject Reject Reject
SET Reject* Reject* Reject* Reject Reject* Reject* Reject Reject* Reject*

CTRE - - - -* - - -* - -

MNIST SNIP Reject Reject Reject Reject Reject Reject Reject Reject Reject
RigL Reject Reject Reject Reject Reject Reject Reject Reject Reject
SET True Reject Reject Reject Reject Reject Reject Reject Reject

CTRE -* -* -* -* -* -* -* -* -*

Fashion-
MNIST SNIP Reject Reject Reject Reject Reject Reject Reject Reject Reject

RigL Reject Reject Reject Reject Reject Reject Reject Reject Reject
SET True* True True Reject Reject Reject Reject True Reject

CTRE -* -* -* -* -* -* -* -* -*

CIFAR10 SNIP Reject Reject Reject Reject Reject Reject Reject Reject Reject
RigL Reject Reject True Reject Reject Reject Reject Reject Reject
SET True* Reject True* Reject Reject Reject Reject Reject Reject

CTRE - -* - -* -* -* -* -* -*

CIFAR100 SNIP Reject Reject Reject Reject Reject Reject Reject Reject Reject
RigL Reject Reject Reject Reject Reject Reject Reject Reject Reject
SET Reject* Reject True Reject Reject Reject Reject Reject Reject

CTRE - -* -* -* -* -* -* -* -*

different from them. The only dataset where the results in most cases are close
is the Fashion-MNIST dataset where SET has comparable results to CTRE. In
addition, in high sparsity regime and large network size (nl = 1000, ε= 1), CTRE
achieves the highest accuracy among the methods while being significantly
distinct from them. Overall, Table 2.3 indicates that CTRE is a well-performing
algorithm in terms of classification accuracy that achieves significantly different
results from the other methods.
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Figure 2.3: Sparsity-accuracy trade-off on highly sparse neural networks on three datasets.

2.4.3 Sparsity-Performance Trade-off Analysis in Highly Sparse
MLPs

We carry out another experiment to study the trade-off between sparsity and
accuracy on very high sparsity cases. We perform this experiment for two
difficult classification tasks including, image classification on CIFAR-100, which
is considered a more difficult dataset than the earlier considered image datasets,
and text classification on PCMAC and BASESHOCK which are subsets of the
20-newsgroup dataset; they have a high number of features and a low number of
samples. This experiment uses a 3-layer MLP with 1000 and 3000 hidden neurons
for text datasets and the CIFAR-100 dataset, respectively. We change the density
value between 0 and 1 and compare our proposed approaches to SNIP, RigL, and
SET (due to the close performance of CTREsim and CTREseq on earlier considered
image datasets, on CIFAR-100, we perform the experiments with CTREsim). We
use data augmentation for CIFAR-100. Also, as the network is considerably large
on this dataset, we set the learning rate to 0.05 to speed up the training. The
results are presented in Figure 2.3.

As shown in Figure 2.3, in highly sparse networks (D < 0.5%), CTREsim
outperforms other methods by a large gap. As discussed in Section 2.4.2, RigL
performs poorly in these scenarios. SNIP outperforms SET and RigL at very
low densities while still having lower results than CTREsim in all cases. While
SET outperforms other methods for larger density values on CIFAR-100 and
BASESHOCK, it performs poorly on a very sparse network. On text datasets,
CTREseq has comparable performance to CTREsim and SET on higher densities,
and it achieves the highest accuracy on PCMAC. Overall, we can observe that
CTREsim has decent performance on these three datasets with a density value
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between 0.3% and 0.5%.

2.5 Discussion

In this section, we perform an in-depth analysis to understand the behavior of
CTRE better. First, in Section 2.5.1, we perform two ablation studies to study the
effectiveness of both random topology search and similarity importance metric
in the performance of CTRE. In Section 2.5.2, we discuss why we have chosen
magnitude over cosine similarity for the weight removal step. In Section 2.5.3,
we discuss why the insensitivity of cosine similarity to the vector’s magnitude is
important in the performance of CTRE. Finally, we discuss the convergence of
CTRE in Section 2.5.4.

2.5.1 Ablation Study: Analysis of Topology Search Policies

This section presents and discusses the results of two ablation studies designed
to understand better the effect of different topology search policies in CTRE. In
the following, we describe each ablation experiment separately.

Ablation Study 1: Random Topology Search

The first ablation study aims to analyze the effect of random connection addition
on the behavior of CTRE. Therefore, instead of using the similarity information
and random search (simultaneously in CTREsim and sequentially in CTREseq), we
only use the cosine similarity information at each epoch. We call this approach
CTREw/oRandom and repeat the experiments from Section 2.4.2. The detailed
results are available in Table 2.4.

As can be seen in Table 2.4, in most cases considered, CTREw/oRandom has
been outperformed by CTREsim and CTREseq. On the other hand, we can observe
that on image datasets, CTREw/oRandom has comparable performance to the
other two methods. This indicates the effectiveness of similarity information
on the image datasets. However, on tabular datasets, it performs poorly on
high-sparsity cases (ε = 1). Therefore, using only cosine information in these
scenarios can cause the topology search to be stuck in a local minimum. This
might have originated from the early stopping of changes in the activation values,
which leads to an early stop in the topology search. CTREseq solves this by
changing the weight update policy to random search. However, there is a risk
of early switching to random search when the cosine information has not been
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fully exploited. Finally, by considering both random and cosine information in
each epoch, the CTREsim algorithm will minimize the risk of staying in the local
minimum or switching to a completely random search, both of which might
slow the training process. In the context of network topology search, these
components can also be characterized as exploitation (local information based
on the similarity between neurons) and exploration (random search). As a result,
CTREsim can mitigate the limitations of CTREseq and find a performant sub-
network by leveraging these two components, which outperform state-of-the-art
algorithms.

Ablation Study 2: Cosine similarity-based Topology Search

To study the effectiveness of cosine similarity addition in the performance of
CTRE, we design an experiment. In this experiment, we add connections in the
reverse order of importance to the network. We expect that adding weights in
this order would result in poor performance. We perform this experiment on
CTREsim. Concretely, at each step, we add the weights with the lowest similarity

Table 2.4: Classification accuracy (%) comparison among Cosine similarity-based meth-
ods.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon CTREseq 82.2±2.482.2±2.482.2±2.4 72.5±2.0 63.9±1.2 61.2±2.4 81.5±1.481.5±1.481.5±1.4 71.8±2.0 61.1±1.9 83.9±2.083.9±2.083.9±2.0 76.5±1.976.5±1.976.5±1.9
CTREsim 81.6±1.3 73.0±1.673.0±1.673.0±1.6 65.6±3.065.6±3.065.6±3.0 79.4±1.779.4±1.779.4±1.7 77.7±1.4 73.0±1.573.0±1.573.0±1.5 78.8±2.278.8±2.278.8±2.2 78.5±1.0 74.6±1.4

CTREw/oRandom 79.6±2.0 59.0±2.3 57.6±1.2 58.6±12.0 72.7±5.3 61.4±1.6 50.0±0.0 71.2±1.4 56.3±3.7
CTREsim/LTH 61.3±3.4 58.0±2.6 56.9±1.7 53.2±0.7 59.6±1.4 58.2±1.7 51.1±0.2 58.9±1.6 58.3±1.2

Isolet CTREseq 86.7±1.8 92.4±1.1 94.3±0.5 87.2±2.0 92.3±0.692.3±0.692.3±0.6 94.0±0.4 86.7±1.6 91.5±1.0 93.7±0.5
CTREsim 87.5±0.887.5±0.887.5±0.8 93.4±0.793.4±0.793.4±0.7 94.3±0.8 87.8±1.187.8±1.187.8±1.1 91.7±1.1 93.9±0.5 88.3±0.788.3±0.788.3±0.7 91.3±1.3 93.1±0.6

CTREw/oRandom 66.7±11.3 91.9±0.3 93.5±0.2 84.5±0.8 89.9±0.3 92.8±0.5 83.9±1.9 87.6±1.1 92.1±0.9
CTREsim/LTH 81.1±1.3 93.3±0.6 95.0±0.295.0±0.295.0±0.2 66.3±4.9 91.7±0.6 94.6±0.494.6±0.494.6±0.4 61.2±11.8 91.8±1.191.8±1.191.8±1.1 93.8±0.293.8±0.293.8±0.2

MNIST CTREseq 95.7±0.295.7±0.295.7±0.2 97.3±0.297.3±0.297.3±0.2 97.7±0.1 97.0±0.297.0±0.297.0±0.2 97.6±0.2 97.8±0.1 97.3±0.197.3±0.197.3±0.1 97.7±0.197.7±0.197.7±0.1 97.8±0.1
CTREsim 95.5±0.2 97.3±0.197.3±0.197.3±0.1 97.8±0.197.8±0.197.8±0.1 96.4±0.2 97.7±0.197.7±0.197.7±0.1 98.0±0.198.0±0.198.0±0.1 96.6±0.2 97.7±0.197.7±0.197.7±0.1 97.9±0.197.9±0.197.9±0.1

CTREw/oRandom 94.8±0.3 97.0±0.2 97.5±0.1 96.9±0.0 97.4±0.1 97.4±0.1 97.2±0.3 97.5±0.2 97.5±0.1
CTREsim/LTH 94.6±0.2 96.9±0.1 97.4±0.1 94.2±0.1 97.3±0.2 97.4±0.0 93.9±0.0 97.1±0.0 97.5±0.1

Fashion-
MNIST

CTREseq 85.8±0.585.8±0.585.8±0.5 87.5±0.387.5±0.387.5±0.3 87.4±0.3 87.1±0.487.1±0.487.1±0.4 87.9±0.3 88.0±0.2 87.3±0.287.3±0.287.3±0.2 88.0±0.3 88.3±0.288.3±0.288.3±0.2
CTREsim 85.8±0.385.8±0.385.8±0.3 87.5±0.387.5±0.387.5±0.3 88.0±0.288.0±0.288.0±0.2 86.4±0.5 88.1±0.288.1±0.288.1±0.2 88.3±0.288.3±0.288.3±0.2 86.5±0.3 88.1±0.388.1±0.388.1±0.3 88.3±0.288.3±0.288.3±0.2

CTREw/oRandom 83.9±0.4 86.9±0.3 86.9±0.1 86.2±0.3 87.9±0.2 88.0±0.2 86.8±0.3 87.7±0.4 88.2±0.2
CTREsim/LTH 85.0±0.2 87.3±0.3 87.6±0.2 84.4±0.3 87.5±0.3 87.8±0.3 84.2±0.2 87.6±0.2 88.0±0.2

CIFAR10 CTREseq 47.9±0.8 50.1±0.5 50.1±0.5 51.3±0.551.3±0.551.3±0.5 52.7±0.552.7±0.552.7±0.5 52.6±0.6 52.0±0.7 53.2±0.6 53.6±0.653.6±0.653.6±0.6
CTREsim 48.2±0.448.2±0.448.2±0.4 50.3±0.350.3±0.350.3±0.3 50.5±0.450.5±0.450.5±0.4 50.6±0.4 52.6±0.7 52.5±0.7 50.0±0.4 52.7±0.5 53.5±0.5

CTREw/oRandom 45.4±0.2 49.4±0.3 49.9±0.4 50.9±0.3 52.2±0.6 52.7±0.452.7±0.452.7±0.4 52.3±0.252.3±0.252.3±0.2 53.3±0.553.3±0.553.3±0.5 53.5±0.4
CTREsim/LTH 46.7±0.5 49.6±0.5 50.4±0.3 45.4±0.5 50.9±0.2 51.2±0.4 44.9±0.5 50.6±0.1 50.9±0.3
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among the corresponding neurons. If a weight with a very low similarity has
been removed in the last weight removal step, we add a random connection
instead. We call this method CTREsim/LTH (LTH refers to low to high importance).

As can be seen in Table 2.4, CTREsim/LTH has been outperformed by CTREsim
and CTREseq in most of the cases considered. This shows that cosine similarity is a
useful metric to detect the most important weights in the network. By comparing
CTREsim/LTH with SET (Table 2.2), it is clear that in most cases CTREsim/LTH
has a close or slightly worse accuracy than SET. Therefore, it can be inferred
that CTREsim/LTH is selecting non-informative weights, which can be similar to
or worse than a random search. As a result, this can indicate the effectiveness
of the introduced similarity metric (Equation 2.2) in finding a well-performing
sparse neural network. It is worth noting that on the Isolet dataset, CTREsim/LTH
outperforms CTREsim and CTREseq in some cases, particularly in the networks
with higher density. This is similar to the results of SET as well. Therefore,
we can conclude that random search outperforms other methods on the Isolet
dataset and low sparsity levels. However, it is not easy to find a highly sparse
network using the random search policy.

2.5.2 Analysis of Weight Removal Policy

In this section, we aim to analyze the weight removal policy and further explain
the reason behind choosing magnitude-based pruning over the cosine similarity
(discussed in Section 2.3.2). In many previous studies [MMS+18, EGM+20],
magnitude-based pruning has been commonly used as a criterion to remove
unimportant weight from a neural network. We design an experiment to compare
the performance of magnitude-based and cosine similarity-based pruning in
neural networks.

In this experiment, we start with a trained network and gradually remove
weights based on the magnitude and cosine similarity value (Using Equation
2.2) of the corresponding connection. We also consider random pruning as the
baseline.

Settings. We perform this experiment using two networks: (1) A 3-layer dense
MLP with 1000 neurons in each layer, and (2) A 3-layer sparse MLP with 1000
neurons in each layer that is trained using the SET approach [MMS+18] (3.2%
density). The choice of SET instead of CTRE was made to avoid any biases on
the cosine similarity weight removal, as CTRE uses cosine information to add
weights. Both of these networks are trained on the MNIST dataset.



40 A Brain-inspired Algorithm for Training Highly Sparse Neural Networks

0 25 50 75 100

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Epoch 10

0 25 50 75 100

25

50

75

100
Epoch 30

0 25 50 75 100

25

50

75

100
Epoch 50

0 25 50 75 100

20

40

60

80

100
Epoch 100

0 25 50 75 100
Removed connections (%)

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0 25 50 75 100
Removed connections (%)

25

50

75

100

0 25 50 75 100
Removed connections (%)

25

50

75

100

0 25 50 75 100
Removed connections (%)

25

50

75

100

Cosine similarity Magnitude Random

Removing weights from least to most important

Removing weights from most to least important

Figure 2.4: Effect of weight removal using three criteria including magnitude, cosine
similarity, and random, on the classification accuracy (%) at different epochs.
The lines with higher transparency correspond to the weight removal of the
SET-MLP and the lines with lower transparency correspond to the dense-MLP

Weight Removal. We remove weights with two orders on each of the sparse
and dense networks: least to most important and vice versa. We remove weights
gradually such that at each step, we remove 1% of the connections and measure
the accuracy of the pruned network until no connection remains in the network.

Results. The results when the two networks are trained for 10, 30, 50, and
100 epochs are available in Figure 2.4. In this figure, the lines with higher
transparency correspond to the weight removal of the SET-MLP, and the lines
with lower transparency correspond to the dense-MLP. This experiment has been
repeated with three seeds for each case.

As shown in Figure 2.4, when weights are removed from least to most impor-
tant, magnitude-based pruning can order weights better than cosine similarity-
based pruning. When the networks are trained for 100 epochs, by dropping the
unimportant weights using magnitude, the major accuracy drop starts almost
after removing 70% of the connections, while it happens after removing 30% for
cosine similarity. This behavior exists in both the dense and the sparse networks.
As expected, the drop for random removal happens from the beginning of the
pruning procedure. In earlier epochs (10, 30, and 50), the drop in the accuracy
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happens earlier for both magnitude and cosine similarity.
It can be seen in Figure 2.4, by removing weights in the opposite order (from

most to least important), the behavior of drop in the accuracy is almost similar for
cosine similarity-based and magnitude-based pruning in SET-MLP, particularly
in the earlier epochs. Therefore, both magnitude and cosine similarity can
identify the most important connections in good order. However, this behavior is
different in the dense network and magnitude-based pruning can better detect
the most important weights. In the dense network, the drop in the accuracy for
magnitude-based pruning happens earlier than cosine similarity pruning.

Conclusions. These observations can lead us to conclude that, firstly, the
magnitude can be a good metric for weight removal in the dynamic sparse
training framework. Secondly, it can be inferred that cosine similarity can be a
good metric for adding the most important connections in the weight addition
phase in sparse neural networks in the absence of magnitude. As discussed
earlier, the cosine similarity information of each connection is an informative
criterion to detect the most important weights in a sparse neural network and
has similar behavior to magnitude-based pruning in these scenarios. Therefore,
in the absence of magnitude for non-existing connections in a sparse neural
network (during weight addition), cosine similarity can be a useful criterion to
detect the most important weights without requiring computing dense gradient
information.

2.5.3 Magnitude Insensitivity: The Favorable Feature of Co-
sine Similarity in Noisy Environments

This section further discusses why cosine similarity has been chosen as a metric
to determine the importance of non-existing connections. Specifically, we focus
on analyzing the importance of normalization in Equation 2.2 in the performance
of the algorithm. While based on the Hebbian learning rule, the connection
among a pair of neurons with high activations should be strengthened, we argue
that in the search for a performant sparse neural network, the magnitude of the
activations should be ignored.

Based on Hebb’s rule (Section 2.2.2), the connection among the neurons
with high activations receives higher synaptic updates. Therefore, if we evolve
the topology using this rule (without any normalization) the importance of a
non-existing connection should be determined by:

∣∣∣Al−1
:,p ·Al

:,q

∣∣∣. We evaluate the
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Table 2.5: Classification accuracy (%) comparison of Cosine similarity-based methods
and pure Hebbian-based evolution, on the Madelon dataset. Please note that
N (total number of parameters of the network) is scaled by ×103.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

D(%) (N (×103)) 1.6 (1.1) 7.8 (5.5) 20.4 (14.3) 0.5 (3.5) 2.3 (17.5) 6.1 (45.5) 0.3 (6.5) 1.3 (32.5) 3.4 (84.5)

Madelon CTREseq 82.2±2.482.2±2.482.2±2.4 72.5±2.0 63.9±1.2 61.2±2.4 81.5±1.481.5±1.481.5±1.4 71.8±2.0 61.1±1.9 83.9±2.083.9±2.083.9±2.0 76.5±1.976.5±1.976.5±1.9
CTREsim 81.6±1.3 73.0±1.673.0±1.673.0±1.6 65.6±3.065.6±3.065.6±3.0 79.4±1.779.4±1.779.4±1.7 77.7±1.4 73.0±1.573.0±1.573.0±1.5 78.8±2.278.8±2.278.8±2.2 78.5±1.0 74.6±1.4

CTREseq-Hebb 63.1±1.0 58.8±1.8 60.1±0.9 60.8±3.3 59.6±0.3 59.4±0.8 61.6±2.9 56.8±2.1 58.0±0.6
CTREsim-Hebb 59.6±3.1 56.9±7.9 60.1±3.0 58.8±4.2 62.7±1.0 59.1±1.1 60.2±4.3 59.1±2.1 59.4±3.3

performance of this metric by replacing it with Equation 2.2 in CTREsim and
CTREseq; we name these algorithms CTREsim-Hebb and CTREseq-Hebb, respectively.

We evaluate these methods on the Madelon dataset. The reason behind
choosing this dataset is due to its interesting properties; it contains 480 noisy
features (out of the 500 features). Therefore, finding informative information
paths through the network is considered to be a challenging task. The settings
of this experiment are similar to Section 2.4.2. We measure the performance on
networks with different sizes and sparsity levels. The results are presented in
Table 2.5 and the accuracy during training is plotted in Figure 2.5.

CTREsim-Hebb and CTREseq-Hebb have been outperformed by CTREsim and
CTREseq in all cases considered. Particularly, we can observe that as the network
becomes sparser, the gap between the performance of the pure Hebbian-based
methods and the cosine similarity-based methods increases. The poor perfor-
mance of CTREsim-Hebb and CTREseq-Hebb on the Madelon dataset resulted from
their sensitivity to the magnitude of activation values. As Madelon contains
many noisy features, some uninformative neurons likely receive a high activation
value. Therefore, if we use only the activation magnitude to find the informative
paths of information, the algorithm will be biased on the neurons with very
high activation, which might not be informative. Therefore, it is likely to assign
new connections to noisy features with high activation. This would cause the
algorithm to be stuck in a local minimum which might be difficult to escape as
these neurons continue to receive more and more connections at each epoch. Fur-
thermore, as the networks become sparser, the informative features have a lower
chance of receiving more connections (there are more noisy features compared
to the informative ones). Therefore, in sparse networks, the gap between the
performance of these methods is much larger than in denser networks. Based on
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Figure 2.5: Classification accuracy (%) comparison on Madelon for CTRE and pure
Hebbian-based updates.

these observations, it can be concluded that the insensitivity of cosine similarity
to the vector’s magnitude helps CTRE to be more robust in noisy environments.

2.5.4 Convergence Analysis

This section discusses the convergence of the proposed algorithm for training
sparse neural networks from scratch, CTRE. In short, we first discuss the effect
of the weight evolution process on the algorithm’s convergence. Secondly, we
explore whether cosine similarity causes CTRE to converge into a local minimum
or not.

First, we analyze if the weight evolution process in the CTRE algorithm



44 A Brain-inspired Algorithm for Training Highly Sparse Neural Networks

0 100 200 300 400 500

0.6

0.7

0.8

Lo
ss

Epochs (#) Epochs (#)

SNIP RigL SET CTREseq CTREsim

Epochs (#)

Madelon

0 100 200 300 400 500

1

2

3

Isolet

0 100 200 300 400 500
0.5

1.0

1.5

2.0

2.5

Lo
ss

Lo
ss

0 100 200 300 400 500

1

2

Lo
ss

Epochs (#)

MNIST

0 100 200 300 400 500
1.5

2.0

2.5

Lo
ss

CIFAR10

Epochs (#)
0 100 200 300 400 500

3.5

4.0

4.5

Lo
ss

CIFAR100

Epochs (#)

Figure 2.6: Test loss comparison during training for the high sparsity regime and a large
network (ε= 1, nl = 1000).

interferes with the convergence of the back-propagation algorithm or not. In the
CTRE algorithm, a number of connections are removed at each training epoch,
and the same number of connections are added based on the cosine or random
search policies. The weight evolution process is performed at each epoch after
the standard feed-forward and back-propagation steps. The removed connections
have a small magnitude compared to the other connections, and newly activated
connections also get a small value. Therefore, they do not change the loss value
significantly. The new weights will be updated in the next feed-forward and
back-propagation step, and they will grow or shrink. Therefore, the weight
evolution process does not disrupt the convergence of the model.

To validate this, we depict the test loss during training in Figure 2.6 for the
high sparsity regime and a large network (ε= 1, nl = 1000). It can be observed
that the loss function converges for the CTRE algorithm on all the datasets. In
addition, in most cases, its convergence speed is much faster than for the other
algorithms.

Secondly, we analyze whether CTRE is prone to converge to a local optimum.
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Figure 2.7: Test loss comparison during training for the high sparsity regime (ε= 1) on
the Isolet dataset.

As discussed in Section 2.5.2, cosine similarity is very successful at determining
the most and least important connections in the network. However, in the
mid-importance range, it might not be able to rank connections as well as the
magnitude criterion. Therefore, it might add some connections that do not
contribute to decreasing the network loss. In such cases, the cosine similarity
metric might prevent topology exploration and get stuck in local minima. CTRE
explores other weights and exits this local minimum by using a random search.
To validate this, in Figure 2.7, we have presented the loss during training for
CTREseq, CTREsim, and CTREw/oRandom on three highly sparse neural networks
trained on the Isolet dataset. The fast decrease in the loss in these plots indicates
that all three methods quickly find a good-performing sub-network. However,
the loss value of CTREw/oRandom does not improve significantly after 200 epochs,
and it converges to a higher value than the other two methods. Therefore, it is
important to use random exploration to keep improving the topology and avoid
local minima as it is done in CTRE.

2.6 Conclusions and Broader Impacts

In this chapter, we introduced a new biologically plausible sparse training al-
gorithm for finding well-performing highly sparse neural networks, named
CTRE. CTRE exploits both the similarity of neurons as an importance metric of
the connections and random search, sequentially (CTREseq) or simultaneously
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(CTREsim), to explore a performant sparse topology. Our findings indicate that
the cosine similarity between neurons’ activations can help to evolve a sparse
network in a purely sparse manner even in highly sparse scenarios, while most
state-of-the-art methods may fail in these cases.

As we demonstrate through extensive experiments CTRE enables a large
(having 3 hidden layers with 1000 neurons) and highly sparse (less than 3.4%
density level) MLP to reduce the performance gap with the dense counterpart
model compared to state-of-the-art methods to obtain sparse neural networks.
Therefore, CTRE can be a viable solution for designing Cost-effective Artificial
Neural Networks.

By using the neurons’ similarity to evolve the topology, our proposed approach
can be an excellent initial step toward explainable sparse neural networks.
Overall, due to the ability of CTRE to extract highly sparse neural networks, it
can be a viable alternative for saving energy in both low-resource devices and
data centers and pave the way to achieving environmentally friendly AI systems.
Nevertheless, the trade-off between accuracy and sparsity, with CTRE deployed
on real-world applications, should be considered carefully. Particularly, if any
loss of accuracy may pose safety risks to the user, the sparsity level of the network
needs to be analyzed with greater care.

An interesting future direction of this research is to extend CTRE to CNNs;
driven by the decent performance of CTRE on image datasets, we believe that it
has the potential to be extended to CNN architectures. However, in-depth theo-
retical analysis and systematic experiments are required to adapt this similarity
metric to CNN architectures. This is due to the fact that CNNs require weight
sharing, which does not exist in real neurons, and consequently, it is not straight-
forward to apply Hebbian learning directly [PMLL21]. There have been some
efforts to make CNNs more biologically plausible [PMLL21,BSR+18]. Therefore,
applying CTRE to CNNs should be done with great care and theoretical analysis.

Despite the remarkable performance of CTRE on tabular and image data, the
exploration of sparse neural networks for time series data remains limited. Given
the growing volume of large time series datasets generated daily, it is imperative
to minimize the computational and memory costs associated with training and
deploying neural networks on this type of data. Consequently, one promising
approach to tackle this issue is to develop sparse neural networks capable of
addressing the unique challenges posed by time series data.



Chapter 3
Adaptive Sparsity Level during
Training for Efficient Time
Series Forecasting

In the previous chapter, we proposed a solution to reduce the training and
deployment costs of neural networks on tabular and image datasets. Despite the
promising performance of sparse neural networks in vision and natural processing
tasks, there has not been much study on their application for efficient time series
analysis. With the growing volume of time series data and the need to forecast
millions of them, there is a pressing demand for the development of computationally
efficient forecasting models. In this chapter, first, we quantitatively study pruning
dense neural networks for time series forecasting. We show that determining the
appropriate sparsity level is challenging in this setting due to the heterogeneity in
the loss-sparsity tradeoffs across the datasets. Therefore, in the following of this
chapter, we propose Pruning with Adaptive Sparsity Level (PALS), to automatically
seek a balance between loss and sparsity, all without the need for a predefined
sparsity level. PALS puts together sparse training and during-training methods and
introduces the novel "expand" mechanism in training sparse neural networks. This

This Chapter is integrally based on: Zahra Atashgahi, Mykola Pechenizkiy, Raymond Veldhuis,
and Decebal Constantin Mocanu, Adaptive Sparsity Level during Training for Efficient Time Series
Forecasting with Transformers, arXiv preprint arXiv:2305.18382 (under review at ECML-PKDD 2024),
2023.
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allows the model to dynamically shrink, expand, or remain stable to find a proper
sparsity level, bringing a novel perspective to the training of sparse neural networks.
We focus on achieving efficiency in transformers known for their excellent time series
forecasting performance but high computational cost. Nevertheless, PALS can be
applied directly to any neural network architecture. To this aim, we demonstrate its
effectiveness also on the DLinear model. Our findings on six benchmark datasets
and five state-of-the-art transformer variants show that PALS substantially reduces
model size while maintaining comparable performance to the dense model. Our
source code is available at https://github.com/zahraatashgahi/PALS.

3.1 Introduction

The capabilities of transformers [VSP+17] for learning long-range dependen-
cies [WDS+20, DBK+20, SRC+21] make them an ideal model for time series
processing [WZZ+22]. Several transformer variants have been proposed for
the task of time series forecasting, which is crucial for real-world applications,
e.g., weather forecasting, energy management, and financial analysis, and have
proven to significantly increase the prediction capacity in long time series fore-
casting (LTSF) [LWWL22]. In addition, attention-based models are inherently
an approach for increasing the interpretability for time series analysis in critical
applications [LZ21]. Moreover, recent transformer time series forecasting mod-
els (e.g., [WXWL21,ZMW+22,LWWL22]) perform generally well in other time
series analysis tasks, including, classification, anomaly detection, and imputa-
tion [WHL+22].

Despite the outstanding performance of transformers, these models are com-
putationally expensive due to their large model sizes as shown in [SGM20]
for natural language processing. With the ever-increasing collection of large
time series and the need to forecast millions of them, the requirement to de-
velop computationally efficient forecasting models is becoming significantly
critical [THA+18,HLW16,RCM+12]. For industry-scale time series data, which
are often high-dimensional and long-length, deploying transformers requires
automatically discovering memory- and computationally-efficient architectures
that are scalable and practical for real-world applications [WZZ+22]. While there
have been some efforts to reduce the computational complexity of transformers
in time series forecasting [ZMW+22, ZZP+21], these models have in order of
millions of parameters, that can be too large for resource-limited applications,
e.g., mobile phones. The over-parameterization of these networks causes high
training and inference costs, and their deployment in low-resource environ-

https://github.com/zahraatashgahi/PALS
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Figure 3.1: Schematic overview of the proposed method, PALS (Algorithm 3), Dynamic
Sparse Training (DST) [MMS+18,EGM+20], During-training pruning (Grad-
ual Magnitude Pruning (GMP) [ZG17], and GraNet [LCC+21]). While DST
and during-training pruning use a fixed sparsity schedule to achieve a pre-
determined sparsity level at the end of the training, PALS updates the sparse
connectivity of the network at each ∆t iterations during training, by deciding
whether to "Shrink" (decrease density) or "Expand" (increase density) the
network or remain "Stable" (same density), to automatically find a proper
sparsity level.

ments (e.g., lack of GPUs) would be infeasible. To address these issues, we
raise the research question: How can we reduce the computational and memory
overheads of training and deploying transformers for time series forecasting without
compromising the model performance?

Seeking sparsity through sparse connectivity is a widely-used technique to
address the over-parameterization of deep learning models [HABN+21]. Early
approaches for deriving a sparse sub-network prune a trained dense model
[HPTD15], known as post-training pruning. While these methods can match the
performance of the dense network as shown by the Lottery Ticket Hypothesis1

(LTH) [FC19], they are computationally expensive during training due to the
training of the dense network. During-training pruning aims to maintain training
efficiency by gradually pruning a dense network during training [LCC+21].

1“A randomly-initialized, dense neural network contains a subnetwork that is initialized such
that—when trained in isolation—it can match the test accuracy of the original network after training
for at most the same number of iterations.”



50 Adaptive Sparsity Level during Training for Efficient Time Series Forecasting

Sparse training [MMS+18] pushed the limits further by starting with a sparse
network from scratch and optimizing the topology during training. However, as
we study in Section 3.3, the main challenge when using any of these techniques
for time series forecasting is to find the proper sparsity level automatically.

In this work, we aim to move beyond optimizing a single objective (e.g.
minimizing loss) and investigate sparsity in DNNs for time series prediction in
order to find a good trade-off between computational efficiency and performance
automatically. Our contributions are:

• We analyze the effect of sparsity (using unstructured pruning) in SOTA
transformers for time series prediction [LWWL22, ZMW+22, WXWL21,
ZZP+21], and vanilla transformer [VSP+17]. We show they can be pruned
up to 80% of their connections in most cases, without significant loss in
performance.

• We propose an algorithm, called “Pruning with Adaptive Sparsity Level”
(PALS) that finds a decent loss-sparsity trade-off by dynamically tuning the
sparsity level during training using the loss heuristics and deciding at each
connectivity update step weather to shrink or expand the network, or keep it
stable. PALS creates a bridge between during-training pruning and dynamic
sparse training research areas by inheriting and enhancing some of their
most successful mechanisms, while - up to our best knowledge - introducing
for the first time into play also the Expand mechanism. Consequently, PALS
does not require a desired pre-defined sparsity level which is necessary for
most pruning or sparse training algorithms. Figure 3.1 presents the general
concept behind PALS.

• We evaluate the performance of PALS in terms of the loss, parameter count,
and FLOPs on six widely-used benchmarks for time series prediction and
show that PALS can substantially sparsify the models and reduce parameter
count and FLOPs. Surprisingly, PALS can even outperform the dense model
on average, in 12 and 14 cases out of 30 cases in terms of Mean Squared
Error (MSE) and Mean Absolute Error (MAE) loss, respectively (Table 3.3).

3.2 Background

3.2.1 Sparse Neural Networks

Sparse neural networks (SNNs) use sparse connectivity among layers to reduce
the computational complexity of DNNs while maintaining a close performance
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to the dense counterpart in terms of prediction accuracy. SNNs can be achieved
using dense-to-sparse or sparse-to-sparse approaches [MMP+21].

Dense-to-sparse methods prune a dense network; based on the pruning
phase, they are categorized into three classes: post-training [HPTD15, FC19],
Before-training [LAT19], and during-training [ZG17,LWK18,LCC+21] pruning.
Post-training pruning suffers from high computational costs during training and
before-training approaches usually fall behind the performance of the dense
counter-part network. In contrast, during-training approaches, maintain close
or even better performance to the dense network while being efficient through
the training process. A standard during-training pruning is Gradual Magnitude
Pruning (GMP) [ZG17] which gradually drops unimportant weights based on
the magnitude during the training process. GraNet [LCC+21] is another during-
training algorithm that gradually shrinks (decreasing density) a network to reach
a pre-determined sparsity level. It prunes the weights (as performed in GMP)
while allowing for connection regeneration (as seen in Dynamic Sparse Training
(DST) which will be explained in the following). As the number of grown weights
is less than the pruned ones, the network is shrunk and the density is decreased.
For more details regarding GraNet, please refer to Appendix B.2.

Sparse-to-sparse methods start with a random sparse network from scratch
and the number of parameters is usually fixed during training and can be
determined based on the available computational budget. The sparse topology
can remain fixed (static) [MMN+16] or dynamically optimized during training
(a.k.a. Dynamic Sparse Training (DST)) [MMS+18,EGM+20,APL+22, JPR+20,
LYMP21, YMN+21, SMM+21]. At each topology update iteration, a fraction of
unimportant weights are dropped (usually based on magnitude), and the same
number of weights are grown. The growth criteria can be random, as in the
Sparse Evolutionary Training (SET) [MMS+18], or gradient, as in the Rigged
Lottery (RigL) [EGM+20].

Table 3.1: Comparison of related work.

Method Shrink Stable Expand Adaptive
sparsity schedule

Automatically tuning
sparsity level

RigL [EGM+20] ✗ ✓ ✗ ✗ ✗
GMP [ZG17] ✓ ✗ ✗ ✗ ✗

GraNet [LCC+21] ✓ ✓ ✗ ✗ ✗
PALS (ours) ✓ ✓ ✓ ✓ ✓
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In this work, we take advantage of the successful mechanism of “Shrink”
from during-training pruning (e.g., GraNet [LCC+21]) and “Stable” from DST
(e.g., RigL [EGM+20]) and propose for the first time the “Expand” mechanism,
to design a method to automatically optimize the sparsity level during training
without requiring to determine it beforehand. Each of these mechanisms is
explained in Section 3.4. In Table 3.1, we present a summarized comparison with
the closest related work in the literature. Figure 3.1 presents a comprehensive
embedding of our proposed method in the literature. Unlike these methods,
which update the network using fixed schedules to reach a pre-determined
sparsity level, PALS proposes an adaptive approach. It automatically determines
whether to shrink or expand the network or remain stable, in order to tune the
sparsity level and find a good trade-off between loss and sparsity.

Only a few works investigated SNNs for time series analysis [SHBB22].
[XWZ+22] investigates sparsity in convolutional neural networks (CNNs) for
the time series classification and shows their proposed method has superior
prediction accuracy while reducing computational costs. [KYGJ19] exploit sparse
recurrent neural networks (RNNs) for outlier detection. [LMPP21] and [FST+22]
explore sparsity in RNNs for sequence learning.

Sparsity in Transformers

Several works have sought sparsity in transformers [GCL+21, PRR20]. These
approaches can be categorized into structured (blocked) [MLN19] or unstruc-
tured (fine-grained) pruning [CFC+20]. As discussed in [HABN+21], structured
sparsity for transformers is able to only discover models with very low sparsity
levels; therefore, we focus on unstructured pruning. [LWS+20] analyses pruning
transformers for language modeling tasks and shows that large transformers
are robust to compression. [CCG+21] dynamically extract and train sparse sub-
networks from Vision Transformers (ViT) [DBK+20] while maintaining a fixed
small parameter budget, and they could even improve the accuracy of the ViT in
some cases. [DGO+22] investigates DST for BERT language modeling tasks and
shows Pareto improvement over the dense model in terms of FLOPs. However,
these works mostly focus on vision and NLP tasks. To the best of our knowledge,
there is no work that has investigated sparse connectivity in transformers for
time series analysis that faces domain-specific challenges as we will elaborate
in Section 3.3. Please note that there is a line of research focusing on sparse
attention [TDBM22] aiming to develop an efficient self-attention mechanism that
is orthogonal to our focus in this work (sparsity and pruning) [HABN+21].
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3.2.2 Time Series Forecasting

Initial studies for time series forecasting [HA18] exploit classical tools such as
ARIMA [BJRL15]. While traditional methods mostly rely on domain expertise
or assume temporal dependencies follow specific patterns, machine learning
techniques learn the temporal dependencies in a data-driven manner [LZ21,
WXZ+22, LLWD22]. In recent years, various deep learning models, including
RNNs [WTNM17, QSC+17, SFGJ20], multi-layer perceptrons (MLP) [ZCZX22,
ZZC+22], CNNs [LCYL18], and Temporal convolution networks [FDJ19] are
utilized to perform time series forecasting [Gam17,OCCB19,COO+22, JPM+22].

Transformers have been extensively used to perform time series forecasting
due to their strong ability for sequence modeling. A class of models aims at
improving the self-attention mechanism and addresses the computational com-
plexity of vanilla transformers such as LogTrans [LJX+19], Informer [ZZP+21],
Reformer [KKL20]. Another category of methods seeks to modify the model
to capture the inherent properties of the time series: Autoformer [WXWL21]
introduces a seasonal trend decomposition with an auto-correlation block as
the attention module. NSTransformer [LWWL22] proposes to add two modules
including series stationarization and de-stationary attention in the transformer
architecture. FEDformer [ZMW+22] proposes to combine transformers with a
seasonal-trend decomposition method to capture the global and detailed behav-
ior of the time series. The research into designing transformers for time series
forecasting is ongoing, and many other transformer variants have been pro-
posed, such as TDformer [ZJG+22], Crossformer [ZY23], ETSformer [WLS+22],
Pyraformer [LYL+21].

3.2.3 Problem Formulation and Notations

Let xt ∈ Rm denote the observation of a multivariate time series X with m
variables at time step t . Given a look-back window Xt−L:t = [xt−L , ...,xt−1] of size
L, time series forecasting task aims to predict time series over a horizon H as
X̃t :t+H = [x̃t , ...,x̃t+H−1] where x̃t is the prediction at time step t . To achieve this,
we need to train a function f (Xt−L:t ,θ) (e.g. a transformer network) that can
predict future values over horizon H .

In this work, we aim to reduce the model size by pruning the unimportant
parameters from θ such that we find the sparse model f (Xt−L:t ,θs ) where ∥θs∥0 ≪
∥θ∥0. D = ∥θs∥0

∥θ∥0
is called the density level of the model f and S = 1−D is called as

the sparsity level. The aim is to minimize the reconstruction loss between the
prediction and the ground truth L( f (Xt−L:t ,θs ),Xt :t+H ) while finding a proper
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sparsity level S automatically. We use Mean Squared Error (MSE) as the loss
function such that:

L(X̃t :t+H ,Xt :t+H ) = 1

H
ΣH−1

i=0 (x̃t+i −xt+i )2. (3.1)

3.3 Analyzing Sparsity Effect in Transformers for
Time Series Forecasting

In this section, we explore sparsity in several time series forecasting transformers.
In short, we apply our previous work, GraNet [LCC+21], to prune each model
and measure their performance over various sparsity levels.

Experimental Settings

We perform this experiment on six benchmark datasets, presented in Table 3.2.
We adapt GraNet [LCC+21], a during-training pruning algorithm developed
for CNNs, to sparsify transformer models for time series forecasting. GraNet
gradually shrinks a network (here, we start from a dense network) during the
training to reach a pre-determined sparsity level, while allowing for connection
regeneration inspired by DST. GraNet is described in Appendix B.2. For more
details regarding the experimental settings, please refer to Section 3.5.1. For each
sparsity level (%) in {25,50,65,80,90,95}, we measure the prediction performance
of each transformer model in terms of MSE loss. The results for prediction length
= 96 (except 24 for the Illness dataset) are presented in Figure 3.2. The results
for other prediction lengths are presented in Figure B.1 in Appendix B.2.

Sparsity Effect

We present the results for pruning various transformers in Figure 3.2. It can
be observed that most models can be pruned up to 80% or higher sparsity lev-
els without significantly affecting performance. Moreover, a counter-intuitive
observation is that in some cases, sparsity does not necessarily lead to worse per-
formance than the dense counterpart, and it can even improve the performance.
For example, while on the Electricity, Illness, and Traffic datasets, the behavior is
as usually expected (higher sparsity leads to lower performance), on the three
other datasets, higher sparsity might even lead to better performance (lower
loss) than the dense model. Previous studies have noted instances where sparse
models exhibit superior performance compared to dense models. For example,
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Figure 3.2: Sparsity effect on the performance of various transformer models for time
series forecasting on benchmark datasets in terms of MSE loss (prediction
length = 96, except 24 for the Illness dataset). Each model is sparsified
using GraNet [LCC+21] to sparsity levels (%) ∈ {25,50,65,80,90,95} and PALS.
Spar si t y = 0 indicates the original dense model.

in classification with MLPs [MMS+18], feature selection [ASvdL+22], and image
classification [LYMP21]. To the best of our knowledge, this phenomenon has not
been previously observed in time series analysis tasks. We speculate that this
behavior may arise from the overfitting of transformers when applied to straight-
forward learning tasks; therefore, sparsity improves generalization in such cases.
Nevertheless, we let the investigation of this phenomenon to future research
endeavors. In addition, the sparsity effect is different among various models,
particularly on the latter group of datasets, including the ETTm2, Exchange, and
Weather datasets. We discuss the potential reasons for different behavior among
datasets in Appendix B.8. Last but not least, by looking at Figure B.1 in Appendix
B.2, the prediction length can also be a contributing factor to the sparsity-loss
trade-off.
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Challenge

Based on the above observations, we can conclude that the sparsity effect is not
homogeneous across various time series datasets, forecasting models, and predic-
tion lengths for time series forecasting. Our findings in these experiments are not
aligned with the statements in [HABN+21] for CNNs (vision) and Transformers
(NLP), where for a given task and technique, increasing the sparsity level results
in decreasing the prediction performance. However, we observe in Figures 3.2
and B.1 that increasing the sparsity level does not necessarily lead to decreased
performance and it might even significantly improve the performance (e.g. for
the vanilla transformer on the Weather dataset). Therefore, it is challenging to
decide how much we can push the sparsity level and what is the decent sparsity
level without having prior knowledge of the data, model, and experimental
settings. While GraNet is the closest in spirit to our proposed method, it cannot
automatically tune the sparsity level since it needs the initial and the final spar-
sity level as its hyperparameters. In this work, we aim to address this challenge
by proposing an algorithm that can automatically tune the sparsity level during
training.

3.4 Proposed Methodology: PALS

This section presents our proposed method for automatically finding a proper
sparsity level of a DNN, called “Pruning with Adaptive Sparsity Level” (PALS)
(Algorithm 3). While our main focus in this chapter is to sparsify transformer
models, PALS is not specifically designed for transformers and can be applied
directly to other artificial neural network architectures (See Appendix B.6 for
experiments on training with PALS the DLinear [ZCZX22]) model.

3.4.1 Motivation and Broad Outline

As we discussed in Section 3.3, the main challenge when seeking sparsity for
time series forecasting is to find a good sparsity level automatically. Therefore,
PALS aims to tune the sparsity level during training without requiring prior
information about models or datasets. PALS is in essence inspired by the DST
framework [MMS+18] and gradual magnitude pruning (GMP) [ZG17,LCC+21].
While DST and GMP use fixed sparsification policies (fixed sparsity level (Stable
in Figure 3.1) and constantly prune the network until the desired sparsity level
is reached (Shrink in Figure 3.1), respectively) and require the final sparsity
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Algorithm 3 PALS

1: Input: Time series X ∈RT×m , number of training iterations tmax , Sequence
length L, Prediction length H , model dimension dmodel , pruning rate ζ, mask
update frequency ∆t , Initial density Di ni t , pruning rate factor γ> 1 and loss
freedom factor λ> 1, sparsity bound Smi n and Smax .

2: Initialization: Initialize the transformer model with density level Di ni t ,
S = 1−Di ni t , Lbest = inf.

3: Training:
4: for t ∈ {1, . . . ,#tmax } do
5: I. Standard feed-forward and back-propagation. The network is

trained on batcht of samples.
6: II. Update sparsity mask
7: if (t mod∆t ) = 0 then
8: Compute Validation Loss Lt

val i d
9: if (S < Smi n) or (Lt

val i d <=λ∗Lbest and S < Smax) then
10: update_mask (ζpr une = γ∗ζ, ζg r ow = ζ)
11: else if Lt

val i d >λ∗Lbest and S > Sbest then
12: update_mask (ζpr une = ζ, ζg r ow = γ∗ζ)
13: else
14: update_mask (ζpr une = ζ, ζg r ow = ζ)
15: if Lt

val i d < Lbest then
16: Lbest = Lt

val i d , Sbest = S

17: Set S to the current sparsity level of the network.

level before training, PALS exploits heuristic information from the network
at each iteration to automatically determine whether to increase, decrease, or
keep the sparsity level at each connectivity update step. While existing growing
methods [HPN+17,MQS+22] grow a network or a layer of it to dense connectivity,
to the best of our knowledge, this is the first work that allows the network
to expand by increasing the density during training without requiring dense
connectivity, and allows for automatic shrink or expand. If the training starts
from a dense neural network (Di ni t = 1) PALS can be seen as a dense-to-sparse
method, while if Di ni t < 1 then PALS is a sparse-to-sparse method.

3.4.2 Training

The training of PALS (Algorithm 3) starts with initializing a network with density
level Di ni t = 1−Si ni t . Then, the training procedure of PALS consists of two steps:
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1. Standard feed-forward and back-propagation. The network’s parame-
ters are updated each training iteration t using a batch of samples.

2. Update Sparse Connectivity. The novelty of the method lies in updating
the sparse connectivity. At every ∆t iteration, the connectivity is updated in
two steps. (2-1) The validation loss at step t is calculated as Lt

val i d . (2-2) The
sparsity mask is updated (upd ate_mask in Algorithm 3) by first pruning ζpr une

of weights with the lowest magnitude:

W̃l =Upd ate(Wl , top(|Wl |,1−ζpr une )), (3.2)

where Wl is the l th weight matrix of the network, Upd ate(A, i d x) keeps only
the indices i d x of the matrix A, top(A,ζ) returns the indices of a fraction ζ of
the largest elements of A. Then, we grow ζg r ow of the weights with the highest
gradients:

Wl = W̃l + top(|Gl ,i∉W̃l
|,ζg r ow ) (3.3)

where Gl ,i∉W̃l
is the gradient of zero weights in layer l . These new connections

are initialized with zero values. This process is repeated for each layer in the
model. Based on the values of ζpr une and ζg r ow , PALS determines whether to
decrease (shrink), increase (expand), or keep (stable) the density of the network:

• St > St−1 (Shrink). If the loss does not go beyond λ×Lbest , we decrease
the overall number of parameters such that ζpr une = γ×ζ, ζg r ow = ζ. The
loss freedom coefficient, λ > 1, is a hyperparameter of the network that
determines how much the loss value can deviate from the best validation
loss achieved so far Lbest during training. The lower λ is, the more strict
PALS becomes at allowing the network to go to the shrink phase, finally
resulting in a lower sparsity network. γ> 1 is the pruning factor coefficient,
which determines how much to prune or grow more in the shrink and
expand phases, respectively. We analyze the sensitivity of PALS to λ and γ in
Section 3.6.2. In addition, we define a boundary for sparsity determined by
Smi n and Smax which can be determined by the user based on the available
resources. If the sparsity level does not meet the minimum sparsity level
Smi n , we prune the network more than we grow. If the network sparsity
goes beyond Smax , we do not increase sparsity.

• St < St−1 (Expand). If S > Sbest (Sbest is the sparsity level corresponding
to Lbest ) and the loss goes higher than λ×Lbest , it means that the earlier
pruning step(s) were not beneficial to decreasing the loss (improving
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forecasting quality in the time series forecasting) and the network requires
a higher capacity to recover a good performance. Therefore, we expand
the network and grow more connections than the pruned ones at this step:
ζpr une = ζ, ζg r ow = γ×ζ.

• St = St−1 (Stable). If none of the above cases happened, we only update a
fraction ζ of the network’s parameters without changing the sparsity level:
ζpr une = ζ, ζg r ow = ζ.
For a better understanding of how the sparsity level evolves during the
training process of PALS, please refer to Appendix B.7.4.

3.5 Experiments and Results

In this section, we evaluate PALS on several transformers for time series forecast-
ing.

3.5.1 Experimental Settings

Datasets

The experiments are performed on six widely-used benchmark datasets for time
series forecasting. The datasets are summarized in Table 3.2 and described in
Appendix B.1. These datasets have different characteristics including stationary
and non-stationary with/without obvious periodicity.

Datasets in Table 3.2 have been carefully selected to encompass a diverse
array of characteristics. Such characteristics include: 1) Sampling frequency:
while the sampling frequency for some time series datasets is very high (e.g.,
Electricity (1 hour) and Weather datasets (10 minutes)), it might be very low
for some others (Exchange (1 day) and Illness (1 week)) 2) Periodicity of the

Table 3.2: Datasets characteristics.

Dataset # Variables Sampling Frequency # Observations

Electricity 321 1 Hour 26304
ETTm2 7 15 Miutes 69680

Exchange 8 1 Day 7588
Illness 7 1 Week 966
Traffic 862 1 Hour 17544

Weather 21 10 Minutes 52695
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variables: time series datasets can be periodic (ETTm2) or without obvious
periodicity (Exchange) 3) Number of variables: the number of variables can vary
significantly. Some datasets have below 10 variables (ETT, Illness) while others
have in order of hundreds (Traffic, Electricity). This characteristic results in
different levels of complexity. Therefore, automatically tuning the sparsity can
help to tune the complexity of the task at hand eventually helping prevent over-
fitting in simple tasks (e.g., Weather) and maintaining over-parameterization
for complex tasks (e.g., Traffic, Electricity). The beauty of our proposed method
consists in the fact that it does not have to consider any of these intrinsic
differences. We did not make any fine-tuning for PALS to account for these
differences, and it does everything automatically. Of course, fine-tuning PALS
per dataset specificity would improve its final performance, but it would reduce
the generality of our proposed work and we prefer not to do it.

Models

We consider five SOTA transformer models for time series forecasting, including
Non-Stationary Transformer (NSTransformer) [LWWL22], FEDformer [ZMW+22],
Autoformer [WXWL21], Informer [ZZP+21], and vanilla transformer [VSP+17].
Please refer to Section 3.2.2 for more details.

It is important to acknowledge that other time series forecasting models can
serve as baselines for comparison. In our evaluations, we specifically included the
state-of-the-art (SOTA) time series forecasting model to measure the performance
of our proposed approach.

Evaluation metrics

We evaluate the methods in two aspects: 1) Quality of the prediction in terms
of MSE and MAE, and 2) Computational complexity in terms of parameter
count and FLOPs (Floating-point operations). We report the theoretical FLOPs
to be independent of the used hardware, as it is done in the unstructured
pruning literature [LCC+21,EGM+20]. A lower value for these metrics indicates
higher prediction quality and lower computational complexity, respectively. We
measure the performance of each model for various prediction lengths H ∈
{96,192,336,720} (except H ∈ {24,36,48,60} for the Illness dataset).
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Implementation

Experiments are implemented in PyTorch. The start of implementation is the
NSTransformer2 and GraNet3. We repeat each experiment for three random
seeds and report the average of the runs. In the experiments, Di ni t was set to 1,
thus PALS can be seen as a during-training pruning method. We have run the
experiments on Intel Xeon Platinum 8360Y CPU and one NVIDIA A100 GPU. We
will discuss the hyperparameters’ settings in Appendix B.1.

3.5.2 Results

Multivariate Time Series Prediction

The results in terms of MSE and parameter count for the considered datasets and
models are presented in Table B.1 in Appendix B.3. In most cases considered,
PALS decreases the model size by more than 50% without a significant increase
in loss. More interestingly, in most cases on the ETTm2, Exchange, and Weather
datasets PALS even achieves lower MSE than the dense counterpart.

To summarize the results of Table B.1 (Appendix B.3) and have a general
overview of the performance of PALS on each model and dataset, we present
the average MSE and MAE, and parameters count in addition to the difference
between the dense and the sparse model using PALS (in percentage) in Table
3.3. Additionally, we include the inference FLOPs count (total FLOPs for all test
samples). It can be observed that PALS even outperforms the dense model in 12
and 14 cases out of 30 cases in terms of MSE and MAE loss, respectively, while
reducing 65% parameter count and 63% FLOPs on average. We summarize the
training FLOPs in Appendix B.7.1.

Based on the experiments conducted in Section 3.3 and the description of
datasets provided in Appendix B.1.1, we observed significant variations in the
sparsity-loss trade-off across different datasets and models. The beauty of our
proposed method consists in the fact that it does not have to consider any of
these differences. We did not make any finetuning for PALS to account for these
differences, and it does everything automatically. Of course, finetuning PALS per
dataset and model specificity would improve its final performance, but it would
reduce the generality of our proposed work and we prefer not to do it.

2https://github.com/thuml/Nonstationary_Transformers
3https://github.com/VITA-Group/GraNet

https://github.com/thuml/Nonstationary_Transformers
https://github.com/VITA-Group/GraNet
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Table 3.3: Summary of the results on the benchmark Datasets in Table B.1. For each
experiment on a transformer model and dataset, the average MSE, MAE,
number of parameters (×106), and the inference FLOPs count (×1012) for
various prediction lengths are reported before and after applying PALS. The
difference between these results is shown in % where the blue color means
improvement of PALS compared to the corresponding dense model.

Model Electricity ETTm2 Exchange
MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs

NSTransformer 0.19 0.30 12.0 9.25 0.49 0.43 10.6 19.82 0.54 0.49 10.6 1.89
+PALS 0.21 0.32 2.2 1.81 0.38 0.39 2.5 3.70 0.49 0.47 5.4 1.07

Difference 10.8% ↑ 7.3% ↑ 81.5% ↓ 80.5% ↓ 24.0% ↓ 11.2% ↓ 76.7% ↓ 81.3% ↓ 9.3% ↓ 3.6% ↓ 48.5% ↓ 43.3% ↓
FEDformer 0.21 0.32 19.5 9.30 0.30 0.35 17.9 19.82 0.50 0.49 17.9 1.89

+PALS 0.23 0.34 3.0 1.35 0.30 0.35 1.8 1.96 0.51 0.50 10.5 1.15
Difference 9.0% ↑ 4.9% ↑ 84.7% ↓ 85.5% ↓ 1.5% ↑ 0.5% ↓ 90.2% ↓ 90.1% ↓ 2.1% ↑ 1.1% ↑ 41.2% ↓ 38.9% ↓
Autoformer 0.24 0.34 12.1 9.30 0.33 0.37 10.5 19.82 0.58 0.53 10.5 1.89

+PALS 0.26 0.36 2.7 1.71 0.31 0.35 1.0 1.93 0.62 0.55 7.1 1.30
Difference 9.3% ↑ 4.6% ↑ 77.7% ↓ 81.6% ↓ 8.1% ↓ 5.6% ↓ 90.3% ↓ 90.3% ↓ 5.5% ↑ 4.4% ↑ 32.7% ↓ 31.0% ↓
Informer 0.36 0.43 12.5 8.51 1.53 0.88 11.3 18.15 1.59 1.00 11.3 1.71
+PALS 0.42 0.48 1.4 0.94 1.39 0.83 5.3 8.45 1.53 0.98 8.6 1.33

Difference 18.9% ↑ 11.3% ↑ 88.6% ↓ 88.9% ↓ 9.0% ↓ 5.8% ↓ 53.4% ↓ 53.4% ↓ 3.9% ↓ 1.6% ↓ 24.2% ↓ 22.4% ↓
Transformer 0.28 0.38 11.7 9.24 1.48 0.86 10.5 19.81 1.61 0.97 10.5 1.89

+PALS 0.31 0.40 2.5 2.24 1.08 0.75 3.2 8.17 1.41 0.91 6.6 1.16
Difference 10.5% ↑ 5.7% ↑ 78.3% ↓ 75.8% ↓ 26.7% ↓ 13.3% ↓ 69.9% ↓ 58.8% ↓ 12.5% ↓ 6.1% ↓ 37.5% ↓ 38.4% ↓

Differenceavg 11.7% ↑ 6.8% ↑ 82.1% ↓ 82.5% ↓ 13.3% ↓ 7.3% ↓ 76.1% ↓ 74.8% ↓ 3.6% ↓ 1.2% ↓ 36.8% ↓ 34.8% ↓
Model Illness Traffic Weather

MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs

NSTransformer 2.14 0.92 10.5 0.05 0.63 0.34 14.2 6.61 0.29 0.31 10.7 18.10
+PALS 2.33 0.97 7.4 0.04 0.67 0.37 4.3 2.05 0.26 0.29 1.0 1.77

Difference 9.1% ↑ 5.1% ↑ 30.0% ↓ 30.2% ↓ 5.2% ↑ 9.1% ↑ 70.1% ↓ 69.0% ↓ 10.2% ↓ 6.9% ↓ 90.3% ↓ 90.2% ↓
FEDformer 2.84 1.14 13.7 0.05 0.61 0.38 22.3 6.71 0.32 0.37 17.9 18.11

+PALS 3.05 1.19 8.3 0.03 0.62 0.38 5.6 1.83 0.31 0.36 1.8 1.81
Difference 7.2% ↑ 5.0% ↑ 39.5% ↓ 39.6% ↓ 1.0% ↑ 1.1% ↑ 74.6% ↓ 72.7% ↓ 2.8% ↓ 3.2% ↓ 90.0% ↓ 90.0% ↓
Autoformer 3.08 1.18 10.5 0.05 0.64 0.40 14.9 6.71 0.34 0.38 10.6 18.11

+PALS 3.19 1.22 6.7 0.03 0.65 0.41 4.5 1.94 0.34 0.38 1.3 2.52
Difference 3.5% ↑ 3.2% ↑ 36.6% ↓ 36.5% ↓ 1.9% ↑ 2.1% ↑ 69.5% ↓ 71.0% ↓ 0.1% ↑ 1.3% ↓ 87.7% ↓ 86.1% ↓
Informer 5.27 1.58 11.3 0.05 0.81 0.46 14.4 6.14 0.62 0.55 11.4 16.58
+PALS 5.23 1.57 7.4 0.03 0.94 0.53 2.3 1.19 0.69 0.56 4.3 8.35

Difference 0.8% ↓ 1.0% ↓ 34.9% ↓ 34.8% ↓ 15.5% ↑ 15.3% ↑ 83.9% ↓ 80.6% ↓ 12.1% ↑ 2.0% ↑ 61.9% ↓ 49.7% ↓
Transformer 4.94 1.49 10.5 0.05 0.67 0.36 13.6 6.61 0.64 0.56 10.6 18.10

+PALS 4.91 1.48 7.7 0.04 0.69 0.38 3.8 1.86 0.32 0.38 1.0 1.76
Difference 0.7% ↓ 0.9% ↓ 27.2% ↓ 27.3% ↓ 3.3% ↑ 5.4% ↑ 71.7% ↓ 71.8% ↓ 49.6% ↓ 32.5% ↓ 90.2% ↓ 90.3% ↓

Differenceavg 3.7% ↑ 2.3% ↑ 33.6% ↓ 33.7% ↓ 5.4% ↑ 6.6% ↑ 74.0% ↓ 73.0% ↓ 10.1% ↓ 9.0% ↓ 84.0% ↓ 81.3% ↓
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Univariate Time Series Prediction

The results of univariate prediction (using a single variable) on the ETTm2
and Exchange datasets are presented in Table B.2 and summarized in Table
B.3 in Appendix B.4. In short, PALS outperforms the dense counterpart model
on average, in 7 and 8 cases out of 12 cases in terms of MSE and MAE loss,
respectively.

3.6 Discussion

In this section, we study the performance of PALS in comparison with other
pruning and DST algorithms (3.6.1) and the hyperparameter sensitivity of PALS
(3.6.2). Additionally in the Appendix, we analyze the performance of PALS in
terms of model size (B.8), prediction quality by visualizing the predictions (B.9),
pruning DLinear [ZCZX22] (B.6), and computational efficiency from various
aspects (B.7).

3.6.1 Performance Comparison with Pruning and Sparse Train-
ing Algorithms

We compare PALS with a standard during-training pruning approach (GMP
[ZG17]), GraNet [LCC+21], and a well-known DST method (RigL [EGM+20]).
These are the closest methods in the literature in terms of including gradual
pruning and gradient-based weight regrowth.

While PALS derives a proper sparsity level automatically, other pruning
approaches require the sparsity level as an input of the algorithm. Therefore,
to compare PALS with existing pruning algorithms, the sparsity level should
be optimized for them. We apply GraNet, RigL, and GMP to NSTransformer
for prediction lengths of H ∈ {96,192,336,720} (except for the Illness dataset for
which H ∈ {24,36,48,60}). For each of these methods (GraNet, RigL, and GMP),
the sparsity level is optimized among values of {25,50,65,80,90,95}. This means
that for one run of PALS, we run the other methods 6 times. The model with
the lowest validation loss is used to report the test loss. Table 3.4 summarizes
the average loss, sparsity level, and training epochs (due to early stopping the
algorithms might not require the full training) over different prediction lengths.

The closest competitor of PALS is GraNet. In Table 3.4, for the Electricity
dataset, PALS achieves a sparsity level of 80.5% with a loss of 0.21, while GraNet
achieves a sparsity level of only 31.2% with a slightly lower loss of 0.20. Similarly,
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for the ETTm2 dataset, PALS achieves a sparsity level of 76.7% with a loss of 0.38,
while GraNet achieves a higher sparsity level of 95.0% but with a much higher
loss of 0.60. On the other datasets, they perform relatively close to each other.

By looking at the results of all methods in Table 3.4, PALS has the highest
average sparsity value (66.0%) compared to GraNet (63.73%), RigL (48.3%),
and GMP (62.4%). While RigL requires fewer training epochs (∼ 6.6 epochs)
compared to PALS (∼ 7.2 epochs), it finds lower sparsity networks and has a
higher average loss (RigL: 0.74 compared to PALS: 0.72). GraNet and GMP use
fixed pruning schedules, and as a result, they need almost full training time
(∼ 9.5 epochs). The only extra computational requirement of PALS compared to
GraNet is an additional step that involves determining the number of weights
to prune and grow. This is negligible when considering the overall computation
necessary for training the models. On the other hand, as PALS does not require
the full training epochs in contrast to GraNet, it needs much lower computational
costs. We additionally compared the convergence speed of PALS with the dense
model in Appendix B.7.3.

In short, PALS has the lowest average loss and highest sparsity values com-
pared to other algorithms, suggesting that PALS could build efficient and accurate
sparse neural networks for time series forecasting.

Table 3.4: Comparison with other during-training pruning methods (GMP, GraNet) and a
DST method (RigL) when sparsifying NSTransformer. The results are average
over four prediction lengths.

PALS GraNet* RigL* GMP*

Dataset l S e l S e l S e l S e

Electricity 0.21 80.5% 8.83 0.20 31.2% 9.75 0.20 31.2% 9.12 0.20 47.5% 9.62
ETTm2 0.38 76.7% 4.58 0.60 95.0% 9.00 0.49 77.5% 4.33 0.60 56.2% 9.12

Exchange 0.49 48.5% 5.83 0.47 95.0% 9.42 0.44 90.0% 4.25 0.45 95.0% 9.50
Illness 2.33 30.0% 7.97 2.32 25.0% 9.58 2.37 25.0% 9.58 2.22 31.2% 9.92
Traffic 0.67 70.1% 8.83 0.64 41.2% 9.50 0.64 25.0% 8.17 0.64 50.0% 9.79

Weather 0.26 90.3% 7.00 0.28 95.0% 9.08 0.27 41.2% 4.08 0.29 95.0% 9.08

Average 0.72 66.0% 7.17 0.75 63.73% 9.38 0.74 48.3% 6.60 0.73 62.4% 9.47

* Optimized sparsity level (%) in {25, 65, 50, 80, 90, 95}. GraNet, RigL, and GMP, each require 6
runs to optimize the sparsity level while PALS needs only one run.
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3.6.2 Hyperparameter Sensitivity

In this section, we discuss the sensitivity of PALS to its hyperparameters including
pruning rate factor γ and loss freedom factor λ. We have changed their values in
{1.05,1.1,1.2} and measured the performance of PALS (with NSTransformer) in
terms of MSE and parameter count on six benchmark datasets. The results are
presented in Table B.4 in Appendix B.5.

As shown in Table B.4, PALS is not very sensitive to its hyperparameters
and the results in each row are close in terms of loss in most cases considered.
However, by increasing γ and λ PALS tends to find a sparser model. A small λ
results in paying more attention to the loss value, while a large value gives more
freedom to PALS to explore a sparse sub-network that might sometimes result
in a higher loss value. A small γ limits the amount of additional grow/prune in
the expand/shrink phase, while a large γ gives more flexibility to the algorithm
for exploring various sparsity levels. In short, a small value for each of these
hyperparameters makes PALS more strict and allows for small changes in sparse
connectivity, while a large value increases the exploration rate which potentially
results in higher sparsity and/or reduced loss.

3.7 Conclusions

In this chapter, we showed that pruning neural networks for time series forecast-
ing can be challenging in terms of determining the proper sparsity level. This is
due to the heterogeneous loss-sparsity trade-off for various datasets, prediction
lengths, and models.

With the aim of decreasing the computational and memory costs of training
and deploying DNNs for time series forecasting, we proposed PALS. PALS is a
novel method to obtain sparse neural networks, that exploits loss heuristics to
automatically find the best trade-off between loss and sparsity in one round of
training. PALS leverages the effective strategies of "Shrink" from during-training
pruning and "Stable" from DST. Additionally, we introduce a novel strategy called
the "Expand" mechanism. The latter allows PALS to automatically optimize the
sparsity level during training, eliminating the need for prior determination.

We assessed the effectiveness of PALS in terms of prediction performance and
computational efficiency through extensive experimental evaluation. We showed
that PALS is able to (1) find a decent trade-off between loss and sparsity without a
predefined sparsity level, (2) outperform dense training in several cases in terms
of prediction performance and computational efficiency, (3) outperform DST and



66 Adaptive Sparsity Level during Training for Efficient Time Series Forecasting

pruning competitors in terms of convergence speed and the loss-sparsity trade-off
(4) be independent from the underlying forecasting model and performing well
on transformers (complex model) and MLP-based model (simple model).

An open direction to this research can be to start with a highly sparse neural
network (as opposed to starting from a dense network used in PALS) and
gradually expand the network to be even more efficient during training.

Up to this point in the thesis, we have introduced two solutions aimed at
mitigating the expenses associated with the over-parameterization of neural
networks during both their training and deployment phases. These solutions
have demonstrated their applicability across a wide range of data types, includ-
ing tabular, image, and time series data. Nevertheless, a significant lingering
challenge pertains to the costs incurred due to high-dimensional data. It is
imperative to be mindful of these expenses when seeking for a cost-effective
model.



Chapter 4
Quick and Robust Feature
Selection

Although the costs associated with the over-parametrization of neural networks
can be substantial, another critical bottleneck in reducing the training and deploy-
ment costs of these models pertains to the input data. Input to neural networks
can be high-dimensional which can result in increased size and the consequent
computational and memory overhead. Moreover, high-dimensional feature sets
frequently include noisy and irrelevant features that can decrease generalization
and slow down training convergence. While feature selection has historically been
a remedy, most existing feature selection methods are computationally inefficient,
resulting in increased energy consumption, an undesirable outcome for devices with
constrained computational and energy resources. In this chapter, we propose for
the first time to leverage sparse neural networks to perform feature selection and
introduce an energy-efficient method for unsupervised feature selection, named
QuickSelection. QuickSelection exploits the strength of the neuron in sparse neu-
ral networks as a criterion to measure the feature importance. This criterion,
blended with sparsely connected denoising autoencoders trained with the sparse
evolutionary training procedure, derives the importance of all input features simul-
taneously. We implement QuickSelection in a purely sparse manner as opposed

This Chapter is integrally based on: Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena
Mocanu, Decebal Constantin Mocanu, Raymond Veldhuis, and Mykola Pechenizkiy, Quick and robust
feature selection: the strength of energy-efficient sparse training for autoencoders, Machine Learning,
ECML-PKDD 2022 journal track, Vol. 111, pp. 377–414, (2022).
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to the typical approach of using a binary mask over connections to simulate spar-
sity. This design substantially accelerates processing speed and reduces memory
usage. When tested on several benchmark datasets, including five low-dimensional
and three high-dimensional datasets, the proposed method is able to achieve the
best trade-off of classification and clustering accuracy, running time, and maxi-
mum memory usage, among widely used approaches for feature selection. Besides,
our proposed method requires the least amount of energy among the state-of-the-
art autoencoder-based feature selection methods. The source code is available at:
https://github.com/zahraatashgahi/QuickSelection

4.1 Introduction

In the last few years, considerable attention has been paid to the problem of
dimensionality reduction and many approaches have been proposed [VDM-
PVdH09]. There are two main techniques for reducing the number of features
of a high-dimensional dataset: feature extraction and feature selection. Feature
extraction focuses on transforming the data into a lower-dimensional space.
This transformation is done through a mapping which results in a new set of
features [LM98]. Feature selection reduces the feature space by selecting a
subset of the original attributes without generating new features [CS14]. Based
on the availability of the labels, feature selection methods are divided into three
categories: supervised [AMHH15,CS14], semi-supervised [ZL07,SSGC17], and
unsupervised [MN16,DB04]. Supervised feature selection algorithms try to maxi-
mize some function of predictive accuracy given the class labels. In unsupervised
learning, the search for discriminative features is done blindly, without having
the class labels. Therefore, unsupervised feature selection is considered a much
harder problem [DB04].

Feature selection methods improve the scalability of machine learning algo-
rithms since they reduce the dimensionality of data. Besides, they reduce the
ever-increasing demands for computational and memory resources that are in-
troduced by the emergence of big data. This can lead to a considerable decrease
in energy consumption in data centers. This can ease not only the problem
of high energy costs in data centers but also the critical challenges imposed
on the environment [YXJ+18]. As outlined by the High-Level Expert Group
on Artificial Intelligence (AI) [Gro20], environmental well-being is one of the
requirements of a trustworthy AI system. The development, deployment, and
process of an AI system should be assessed to ensure that it would function in
the most environmentally friendly way possible. For example, resource usage

https://github.com/zahraatashgahi/QuickSelection
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and energy consumption through training can be evaluated.
However, a challenging problem that arises in the feature selection domain

is that selecting features from datasets that contain a huge number of fea-
tures and samples, may require a massive amount of memory, computational,
and energy resources. Since most of the existing feature selection techniques
were designed to process small-scale data, their efficiency can be downgraded
with high-dimensional data [BCSMAB15]. Only a few studies have focused
on designing feature selection algorithms that are efficient in terms of com-
putation [TTW14, ASL+18]. The main contributions of this chapter can be
summarized as follows:

• We propose a new fast and robust unsupervised feature selection method,
named QuickSelection. As briefly sketched in Figure 4.1, It has two key
components: (1) Inspired by node strength in graph theory, the method
proposes the neuron strength of sparse neural networks as a criterion to
measure the feature importance; and (2) The method introduces sparsely
connected Denoising Autoencoders (sparse DAEs) trained from scratch with
the sparse evolutionary training procedure to model the data distribution
efficiently. The imposed sparsity before training also reduces the amount
of required memory and the training running time.

• We implement QuickSelection in a completely sparse manner in Python
using the SciPy library and Cython rather than using a binary mask over
connections to simulate sparsity. This ensures minimum resource require-
ments, i.e., just Random-Access Memory (RAM) and a Central Processing
Unit (CPU), without demanding a Graphic Processing Unit (GPU).

The experiments performed on 8 benchmark datasets suggest that QuickSe-
lection has several advantages over the state-of-the-art, as follows:

• It is the first or the second-best performer in terms of both classification
and clustering accuracy in almost all scenarios considered.

• It is the best performer in terms of the trade-off between classification and
clustering accuracy, running time, and memory requirement.

• The proposed sparse architecture for feature selection has at least one
order of magnitude fewer parameters than its dense equivalent. This leads
to the outstanding fact that the wall clock training time of QuickSelection
running on the CPU is smaller than the wall clock training time of its
autoencoder-based competitors running on GPU in most cases.
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Figure 4.1: A high-level overview of the proposed method, “QuickSelection”. (a) At
epoch 0, connections are randomly initialized. (b) After initializing the sparse
structure, we start the training procedure. After 5 epochs, some connections
are changed during the training procedure, and as a result, the strength of
some neurons has increased or decreased. At epoch 10, the network has
converged, and we can observe which neurons are important (larger and
darker blue circles) and which are not. (c) When the network is converged,
we compute the strength of all input neurons. (d) Finally, we select K features
corresponding to neurons with the highest strength values.

• Last but not least, QuickSelection’s computational efficiency makes it have
the minimum energy consumption among the autoencoder-based feature
selection methods considered.

4.2 Related Work

4.2.1 Feature Selection

The literature on feature selection shows a variety of approaches that can be
divided into three major categories, including filter, wrapper, and embedded
methods. Filter methods use a ranking criterion to score the features and then re-
move the features with scores below a threshold. These criteria can be Laplacian
score [HCN06], Correlation, Mutual Information [CS14], and many other scor-
ing methods such as Bayesian scoring function, t-test scoring, and Information
theory-based criteria [LTM+12]. These methods are usually fast and compu-
tationally efficient. Wrapper methods evaluate different subsets of features to
detect the best subset. Wrapper methods usually give better performance than
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filter methods; they use a predictive model to score each subset of features. How-
ever, this results in high computation complexity. Seminal contributions for this
type of feature selection have been made by [KJ97]. In [KJ97], the authors used
a tree structure to evaluate the subsets of features. Embedded methods unify
the learning process, and the feature selection [LCWE06]. Multi-Cluster Feature
Selection (MCFS) [CZH10] is an unsupervised method for embedded feature
selection, which selects features using spectral regression with L1-norm regular-
ization. A key limitation of this algorithm is that it is computationally intensive
since it depends on computing the eigenvectors of the data similarity matrix and
then solving an L1-regularized regression problem for each eigenvector [FGK13].
Unsupervised Discriminative Feature Selection (UDFS) [YSM+11] is another
unsupervised embedded feature selection algorithm that simultaneously utilizes
both feature and discriminative information to select features [LCW+18].

A closely related body of research concentrates on applying evolutionary
algorithms for feature selection in reinforcement learning settings. FS-NEAT
[WSS+05] introduces an extension to the NEAT evolutionary algorithm and
performs automatic feature selection using a model-free approach. Follow-up
studies have used this evolutionary approach to perform model-based feature
selection [KW09] or in online settings [BM13]. Notably, our methodology differs
from these approaches as we undertake feature selection within unsupervised
learning paradigms, in contrast to the reinforcement learning settings explored in
these studies. Furthermore, our approach is only loosely inspired by evolutionary
algorithms. Due to the expansive search space involved, the direct application of
such algorithms to our problem would entail a notable increase in computational
time.

4.2.2 Autoencoders for Feature Selection

In the last few years, many deep learning-based models have been developed
to select features from the input data using the learning procedure of deep
neural networks [LCW16]. In [LFLN18], a Multi-Layer Perceptron (MLP) is
augmented with a pairwise-coupling layer to feed each input feature along with
its knockoff counterpart into the network. After the training, the authors use the
filter weights of the pairwise-coupling layer to rank input features. Autoencoders
which are generally known as a strong tool for feature extraction [BCV13],
are being explored to perform unsupervised feature selection. In [HWZ+18],
authors combine autoencoder regression and group lasso task for unsupervised
feature selection named Autoencoder Feature Selector (AEFS). In [DS19], an
autoencoder is combined with three variants of structural regularization to
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perform unsupervised feature selection. These regularizations are based on
slack variables, weights, and gradients, respectively. Another recently proposed
autoencoder-based embedded method is feature selection with Concrete Au-
toencoder (CAE) [BAZ19]. This method selects features by learning a concrete
distribution over input features. They proposed a concrete selector layer that
selects a linear combination of input features that converges to a discrete set of
K features during training. In [SY20], the authors showed that a large set of
parameters in CAE might lead to over-fitting in case of having a limited number
of samples. In addition, CAE may select features more than once since there
is no interaction between the neurons of the selector layer. To mitigate these
problems, they proposed a concrete neural network feature selection (FsNet)
method, which includes a selector layer and a supervised deep neural network.
The training procedure of FsNet considers reducing the reconstruction loss and
maximizing the classification accuracy simultaneously. In our research, we focus
mostly on unsupervised feature selection methods.

Denoising Autoencoder (DAE) is introduced to solve the problem of learning
the identity function in the autoencoders. This problem is most likely to happen
when we have more hidden neurons than inputs [Bal12]. As a result, the network
output may be equal to the inputs, which makes the autoencoder useless. DAEs
solve the aforementioned problem by introducing noise to the input data and
trying to reconstruct the original input from its noisy version [VLBM08]. As
a result, DAEs learn a representation of the input data that is robust to small
irrelevant changes in the input. In this research, we use the ability of this type
of neural network to encode the input data distribution and select the most
important features. Moreover, we demonstrate the effect of noise addition on
the feature selection results.

4.2.3 Sparse Training

Deep neural networks usually have at least some fully connected layers, which
results in a large number of parameters. In a high-dimensional space, this is not
desirable since it may cause a significant decrease in training speed and a rise in
memory requirement. To tackle this problem, sparse neural networks have been
proposed. Pruning the dense neural networks is one of the most well-known
methods to achieve a sparse neural network [LDS90,HS93]. [HPTD15] start from
a pre-trained network, prune the unimportant weights, and retrain the network.
Although this method can output a network with the desired sparsity level, the
minimum computation cost is as much as the cost of training a dense network.
To reduce this cost, [LAT19] start with a dense neural network, and prune it prior
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to training based on connection sensitivity. Then, the sparse network is trained
in the standard way. However, starting from a dense neural network requires
at least the memory size of the dense neural network and the computational
resources for one training iteration of a dense network. Therefore, this method
might not be suitable for low-resource devices.

In 2016, [MMN+16] introduced the idea of training sparse neural networks
from scratch, a concept that recently has started to be known as sparse training.
The sparse connectivity pattern was fixed before training using graph theory,
network science, and data statistics. While it showed promising results, outper-
forming the dense counterpart, the static sparsity pattern did not always model
the data optimally. In order to address these issues, in 2018, [MMS+18] proposed
the Sparse Evolutionary Training (SET) algorithm which makes use of dynamic
sparsity during training. The idea is to start with a sparse neural network before
training and dynamically change its connections during training to automatically
model the data distribution. This results in a significant decrease in the number
of parameters and increased performance. SET evolves the sparse connections
at each training epoch by removing a fraction ζ connections with the smallest
magnitude, and randomly adding new connections in each layer. [BPR+19]
have shown that a sparse MLP trained with SET achieves state-of-the-art results
on tabular data in predicting human decisions, outperforming fully-connected
neural networks and Random Forest, among others.

In this work, we introduce for the first time sparse training in the world
of denoising autoencoders, and we named the newly introduced model sparse
denoising autoencoder (sparse DAE). We train the sparse DAE with the SET
algorithm to keep the number of parameters low, during the training. Then, we
exploit the trained network to select the most important features.

4.3 Proposed Method

To address the problem of the high dimensionality of the data, we propose a
novel method, named “QuickSelection,” to select the most informative attributes
from the data, based on their strength (importance). In short, we train a sparse
denoising autoencoder network from scratch in an unsupervised adaptive manner.
Then, we use the trained network to derive the strength of each neuron in the
input features.

The basic idea of our proposed approach is to impose sparse connections
on DAE, which proved its success in the related field of feature extraction, to
efficiently handle the computational complexity of high-dimensional data in
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terms of memory resources. Sparse connections are evolved in an adaptive
manner that helps in identifying informative features.

A couple of methods have been proposed for training deep neural networks
from scratch using sparse connections and sparse training [DZ19, MMS+18,
BKML18, MW19, EGM+20, ZJ19]. All these methods are implemented using
a binary mask over connections to simulate sparsity since all standard deep
learning libraries and hardware (e.g. GPUs) are not optimized for sparse weight
matrix operations. Unlike the aforementioned methods, we implement our
proposed method in a purely sparse manner to meet our goal of actually using
the advantages of a very small number of parameters during training. We decided
to use SET in training our sparse DAE.

The choice of SET is due to its desirable characteristics. SET is a simple
method yet achieves satisfactory performance. Unlike other methods that calcu-
late and store information for all the network weights, including the non-existing
ones, SET is memory efficient. It stores the weights for the existing sparse
connections only. It does not need any high computational complexity as the
evolution procedure depends on the magnitude of the existing connections only.
This is a favorable advantage to our proposed method to select informative
features quickly. In the following subsections, we first present the structure of
our proposed sparse denoising autoencoder network and then explain the feature
selection method. The pseudo-code of our proposed method can be found in
Algorithm 4.

4.3.1 Sparse DAE

Structure. As the goal of our proposed method is to do fast feature selection in a
memory-efficient way, we consider here the model with the least possible number
of hidden layers, one hidden layer, as more layers mean more computation.
Initially, sparse connections between two consecutive layers of neurons are
initialized with an Erdős–Rényi random graph which has been shown to be more
effective than uniform (equal sparsity between layers) distribution [EGM+20,
GMB23]. In Erdős–Rényi distribution, the probability of the connection between
two neurons is given by

P (W l
i j ) = ϵ(nl−1 +nl )

nl−1 ×nl
, (4.1)

where ϵ denotes the parameter that controls the sparsity level, nl denotes number
of neurons at layer l , and W l

i j is the connection between neuron i in layer l −1
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and neuron j in layer l , stored in the sparse weight matrix Wl .

Input denoising. We use the additive noise model to corrupt the original data:

x̃ = x+nfN(µ, σ2), (4.2)

where x is the input data vector from dataset X , nf (noise factor) is a hyperpa-
rameter of the model which determines the level of corruption, and N(µ, σ2) is a
Gaussian noise. After denoising the data, we derive the hidden representation h
using this corrupted input. Then, the output z is reconstructed from the hidden
representation. Formally, the hidden representation h and the output z are
computed as follows:

h = a(W1x̃+b1), (4.3)

z = a(W2h+b2), (4.4)

where W1 and W2 are the sparse weight matrices of hidden and output layers
respectively, b1 and b2 are the bias vectors of their corresponding layer, and
a is the activation function of each layer. The objective of our network is to
reconstruct the original features in the output. For this reason, we use mean
squared error (MSE) as the loss function to measure the difference between
original features x and the reconstructed output z:

LMSE = ∥z−x∥2
2 . (4.5)

Finally, the weights can be optimized using the standard training algorithms
(e.g., Stochastic Gradient Descent (SGD), AdaGrad, and Adam) with the above
reconstruction error.

Training procedure. We adapt the SET training procedure [MMS+18] in train-
ing our proposed network for feature selection. SET works as follows. After each
training epoch, a fraction ζ of the smallest positive weights and a fraction ζ of
the largest negative weights at each layer is removed. The selection is based
on the magnitude of the weights. New connections in the same amount as the
removed ones are randomly added in each layer. Therefore the total number
of connections in each layer remains the same, while the number of connec-
tions per neuron varies, as represented in Figure 4.1. The weights of these new
connections are initialized from a standard normal distribution. The random
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addition of new connections does not have a high risk of not finding a good
sparse connectivity at the end of the training process because it has been shown
in [LvdLY+20] that sparse training can unveil a vast number of very different
sparse connectivity local optima which achieve very similar performance.

4.3.2 Feature Selection

We select the most important features of the data based on the weights of their
corresponding input neurons of the trained sparse DAE. Inspired by node strength
in graph theory [BBPSV04], we determine the importance of each neuron based
on its strength. We estimate the strength of each neuron (si ) by the summation
of absolute weights of its outgoing connections.

si =
n1∑
j=1

|W 1
i j |, (4.6)

where n1 is the number of neurons of the first hidden layer, and W 1
i j denotes the

weight of connection linking input neuron i to hidden neuron j .

Algorithm 4 QuickSelection

1: Input: Dataset X , noise factor nf , sparsity hyperparameter ϵ, number of
hidden neurons nh , number of selected features K

2: Input denoising: x̃ = x+nfN(µ, σ2)
3: Structure initialization: Initialize sparse-DAE with nh hidden neurons and

sparsity level determined by ϵ
4: procedure TRAINING SPARSE-DAE
5: Let the loss be LMSE = ∥z−x∥2

2 where z is the output of sparse-DAE
6: for i ∈ {1, . . . ,epochs} do
7: Perform standard forward propagation and backpropagation
8: Perform weight removal and addition for topology optimization
9: procedure QUICKSELECTION

10: Compute neurons strength:
11: for i ∈ {1, . . . ,#i nput f eatur es} do

12: si =
nh∑
j=1

|W 1
i j |

13: Select K features: F∗s = argmaxFs⊂F,|Fs |=K
∑

fi∈Fs

si ,
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As represented in Figure 4.1, the strength of the input neurons changes
during training. We have depicted the strength of the neurons according to
their size and color. After convergence, we compute the strength of all of the
input neurons; each input neuron corresponds to a feature. Then, we select the
features corresponding to the neurons with K largest strength values:

F∗s = argmax
Fs⊂F,|Fs |=k

∑
fi∈Fs

si , (4.7)

where F and F∗s are the original feature set and the final selected features
respectively, fi is the i th feature of F, and K is the number of features to be
selected. In addition, by sorting all the features based on their strength, we will
derive the importance of all features in the dataset. In short, we will be able to
rank all input features by training just once a single sparse DAE model.

For a deeper understanding of the above process, we analyze the strength of
each input neuron in a 2D map on the MNIST dataset. As illustrated in Figure
4.2, at the beginning of training, all the neurons have small strength due to
the random initialization of each weight to a small value. During the network
evolution, stronger connections are linked to important features gradually. We
can observe that after ten epochs, the neurons in the center of the map become
stronger. This pattern is similar to the pattern of MNIST data in which most of
the digits appear in the middle of the picture.

We studied other metrics for estimating the neuron importance such as the
strength of output neurons, degree of input and output neurons, and strength
and degree of neurons simultaneously. However, in our experiments, all these
methods have been outperformed by the strength of the input neurons in terms
of accuracy and stability.

4.4 Experiments

In order to verify the validity of our proposed method, we carry out several
experiments. In this section, first, we state the settings of the experiments,
including hyperparameters and datasets. Then, we perform feature selection
with QuickSelection and compare the results with other methods, including
MCFS, Laplacian Score, and three autoencoder-based feature selection methods.
After that, we do different analyses on QuickSelection to understand its behavior.
Finally, we discuss the scalability of QuickSelection and compare it with the other
methods considered.
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4.4.1 Settings

The experiment settings, including the values of hyperparameters, implementa-
tion details, the structure of the sparse DAE, datasets we use for evaluation, and
the evaluation metric, are as follows.

Hyperparameters and Implementation

For feature selection, we consider the case of the simplest sparse DAE with one
hidden layer consisting of 1000 neurons. This choice is made due to our main
objective to decrease the model complexity and the number of parameters. The
activation function used for the hidden and output layer neurons is “Sigmoid”
and “Linear” respectively, except for the Madelon dataset where we use “Tanh”
for the output activation function. We train the network with SGD and a learning
rate of 0.01. The hyperparameter ζ, the fraction of weights to be removed in the
SET procedure, is 0.2. Also, ϵ, which determines the sparsity level, is set to 13.
We set the noise factor (nf ) to 0.2 in the experiments. To improve the learning
process of our network, we standardize the features of our dataset such that
each attribute has zero mean and unit variance. However, for SMK and PCMAC
datasets, we use Min-Max scaling. The preprocessing method for each dataset is
determined with a small experiment of the two preprocessing methods.
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Figure 4.2: Neuron’s strength on the MNIST dataset. The heat maps above are a 2D
representation of the input neuron’s strength. It can be observed that the
strength of neurons is random at the beginning of training. After a few epochs,
the pattern changes, and neurons in the center become more important and
similar to the MNIST data pattern.
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We implement sparse DAE and QuickSelection1 in a purely sparse manner in
Python, using the Scipy library [JOP01] and Cython. We compare our proposed
method to MCFS, Laplacian score (LS), AEFS, and CAE, which have been men-
tioned in Section 4.2. We also performed some experiments with UDFS; however,
since we were not able to obtain many of the results within the considered time
limit (24 hours), we did not include the results for the comparison. We have
used the scikit-feature repository for the implementation of MCFS, and Laplacian
score [LCW+18]. Also, we use the implementation of feature selection with
CAE and AEFS from Github2. In addition, to highlight the advantages of using
sparse layers, we compare our results with a fully-connected autoencoder (FCAE)
using the neuron strength as a measure of the importance of each feature. To
have a fair comparison, the structure of this network is considered similar to our
DAE, one hidden layer containing 1000 neurons implemented using TensorFlow.
Furthermore, we have studied the effect of other components of QuickSelection,
including input denoising and SET training algorithm, in Appendix C.2.1 and
C.6, respectively.

For all the other methods (except FCAE for which all the hyperparameters
and preprocessing are similar to QuickSelection), we scaled the data between
zero and one, since it yields better performance than data standardization for
these methods. The hyperparameters of the aforementioned methods have been
set similarly to the ones reported in the corresponding code or paper. For AEFS,
we tuned the regularization hyperparameter between 0.0001 and 1000, since this
method is sensitive to this value. We perform our experiments on a single CPU
core, Intel Xeon Processor E5 v4, and for the methods that require GPU, we use
NVIDIA TESLA P100.

Datasets

We evaluate the performance of our proposed method on eight datasets, includ-
ing five low-dimensional datasets and three high-dimensional ones. Table 4.1
illustrates the characteristics of these datasets.

• COIL-20 [NNM+96] consists of 1440 images taken from 20 objects (72
poses for each object).

1The implementation of QuickSelection is available at: https://github.com/zahraatashgahi/
QuickSelection

2The implementation of AEFS and CAE is available at: https://github.com/mfbalin/
Concrete-Autoencoders

https://github.com/zahraatashgahi/QuickSelection
https://github.com/zahraatashgahi/QuickSelection
https://github.com/mfbalin/Concrete-Autoencoders
https://github.com/mfbalin/Concrete-Autoencoders
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Table 4.1: Datasets characteristics.

Dataset Dimensions Type Samples Train Test Classes

Coil20 1024 Image 1440 1152 288 20
Isolet 617 Speech 7737 6237 1560 26
HAR 561 Time Series 10299 7352 2947 6

Madelon 500 Artificial 2600 2000 600 2
MNIST 784 Image 70000 60000 10000 10

SMK-CAN-187 19993 Microarray 187 149 38 2
GLA-BRA-180 49151 Microarray 180 144 36 4

PCMAC 3289 Text 1943 1554 389 2

• Madelon [GGNZ08] is an artificial dataset with 5 informative features and
15 linear combinations of them. The rest of the features are distractor
features since they have no predictive power.

• Human Activity Recognition (HAR) [AGO+13] is created by collecting
the observations of 30 subjects performing 6 activities such as walking,
standing, and sitting. The data was recorded by a smartphone connected
to the subjects’ body.

• Isolet [FC91] has been created with the spoken name of each letter of the
English alphabet.

• MNIST [LeC98] is a database of 28x28 images of handwritten digits.

• SMK-CAN-187 [SBS+07] is a gene expression dataset with 19993 features.
This dataset compares smokers with and without lung cancer.

• GLA-BRA-180 [SHS+06] consists of the expression profile of Stem cell
factors useful to determine tumor angiogenesis.

• PCMAC [Lan95] is a subset of the 20 Newsgroups data.

We select diverse data types for evaluating our proposed algorithm. We
believe this is essential for several reasons. Firstly, different data types exhibit
unique characteristics, such as dimensionality, noise levels, and inherent struc-
tures, which can profoundly impact the performance and effectiveness of feature
selection techniques. By assessing the algorithm’s performance across varied
data types, we gain insights into its robustness and adaptability to different
scenarios. Secondly, real-world datasets often encompass a wide range of do-
mains, including text, image, audio, and tabular data, among others. A feature
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selection algorithm validated solely on one type of data may not generalize well
to others, potentially limiting its practical utility. Therefore, evaluating the algo-
rithm across diverse data types enables us to validate its efficacy across multiple
application domains, ensuring broader applicability and reliability in real-world
settings. Lastly, exploring diverse data types fosters a deeper understanding
of how the algorithm operates across different modalities, facilitating insights
into its strengths, weaknesses, and potential areas for improvement. Overall,
selecting different data types for evaluation provides us with a comprehensive
assessment of a feature selection algorithm’s performance, generalizability, and
suitability for real-world applications.

The datasets selected within each category type are frequently utilized in prior
feature selection studies. This deliberate choice facilitates our comparisons with
earlier works, as we leverage datasets that have already been well-established
within the field.

Evaluation Metrics

To evaluate our model, we compute two metrics: clustering accuracy and clas-
sification accuracy. To derive clustering accuracy [LCW+18], first, we perform
K-means using the subset of the dataset corresponding to the selected features
and get the cluster labels. Then, we find the best match between the class labels
and the cluster labels and report the clustering accuracy. We repeat the K-means
algorithm 10 times and report the average clustering results since K-means may
converge to a local optimal.

To compute classification accuracy, we use a supervised classification model
named “Extremely randomized trees” (ExtraTrees), which is an ensemble learn-
ing method that fits several randomized decision trees on different parts of
the data [GEW06]. The choice of the classification method is made due to the
computational efficiency of the ExtraTrees classifier. To compute classification
accuracy, first, we derive the K selected features using each feature selection
method considered. Then, we train the ExtraTrees classifier with 50 trees as
estimators on the K selected features of the training set. Finally, we compute
the classification accuracy on the unseen test data. For the datasets that do not
contain a test set, we split the data into training and testing sets, including 80%
of the total original samples for the training set and the remaining 20% for the
testing set. In addition, we have evaluated the classification accuracy of feature
selection using the random forest classifier [LW+02] in Appendix C.7.
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Table 4.2: Clustering accuracy (%) using 50 selected features (except Madelon for which
we select 20 features). On each dataset, the bold entry is the best performer,
and the italic one is the second-best performer.

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 67.0±0.7 33.8±0.5 62.4±0.0 57.2±0.0 35.2±0 51.6±0.2 65.8±0.3 50.6±0.0
LS 55.5±0.4 33.2±0.2 61.2±0.0 58.1±0.0 14.9±0.1 51.6±0.4 55.5±0.4 50.6±0.0

CAE 60.0±1.1 31.6±1.3 51.4±0.4 56.9±3.6 49.2±1.5 60.7±0.4 55.4±1.3 52.0±1.2
AEFS 51.2±1.7 31.0±2.7 55.0±2.2 50.8±0.2 40.0±1.9 52.4±1.8 56.1±5.2 50.9±0.5
FCAE 60.2±1.7 28.7±2.5 49.5±8.7 50.9±0.4 28.2±8.5 51.5±0.8 53.5±3.0 50.9±0.1

QS10 59.5±2.1 32.5±2.8 56.0±2.6 57.5±3.8 45.4±3.9 54.0±3.1 53.6±4.7 50.9±0.5
QS100 60.2±2.0 35.1±2.7 54.6±4.5 58.2±1.5 48.3±2.4 51.8±0.8 59.5±1.8 52.5±1.1
QSbest 63.8±1.5 42.2±2.6 59.5±4.3 58.6±0.9 48.3 ±2.4 54.9±1.39 59.5±1.8 53.1±0

4.4.2 Feature Selection

We set the hyperparameter for the number of the features to select to 50 for
all datasets except Madelon, for which we set this number to just 20 features
since most of its features are non-informative noise. Then, we compute the
clustering and classification accuracy on the selected subset of features; the
more informative features selected, the higher the accuracy will be achieved.
The clustering and classification accuracy results of our model and the other
methods are summarized in Tables 4.2 and 4.3, respectively. These results are
an average of 5 runs for each case. For the autoencoder-based feature selection
methods, including CAE, AEFS, and FCAE, we consider 100 training epochs.
However, we present the results of QuickSelection at epochs 10 and 100 named
QuickSelection10 and QuickSelection100, respectively. This is mainly due to the
fact that our proposed method is able to achieve a reasonable accuracy after the
first few epochs. Moreover, we perform hyperparameter tuning for ϵ and ζ using
the grid search method over a limited number of values for all datasets; the
best result is presented in Table 4.2 and 4.3 as QuickSelectionbest. The results
of hyperparameter selection can be found in Appendix C.7.1. However, we do
not perform hyperparameter optimization for the other methods (except AEFS).
Therefore, in order to have a fair comparison between all methods, we do not
compare the results of QuickSelectionbest with the other methods.

From Table 4.2, it can be observed that QuickSelection outperforms all
the other methods on Isolet, Madelon, and PCMAC, in terms of clustering
accuracy, while being the second-best performer on Coil20, MNIST, SMK, and
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Table 4.3: Classification accuracy (%) using 50 selected features (except Madelon for
which we select 20 features). On each dataset, the bold entry is the best-
performer, and the italic one is the second-best performer.

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 99.2±0.3 79.5±0.4 88.9±0.3 81.7±0.8 88.7±0 75.8±1.5 70.6±3.8 55.5±0.0
LS 89.8±0.4 83.0±0.2 86.4±0.4 91.4±0.9 20.7±0.1 71.6±5.6 71.7±1.1 50.4±0.0

CAE 99.6±0.3 89.8±0.6 91.7±1.0 87.5±2.0 95.4±0.1 71.6±3.1 70.0±4.1 59.9±1.5
AEFS 93.0±2.7 85.1±2.4 87.7±1.4 52.1±2.8 86.1±2.0 76.3±4.4 68.9±3.7 57.1±3.6
FCAE 99.7±0.2 81.6±5.9 87.4±2.4 53.5±8.1 68.8±28.7 71.6±3.5 72.8±4.8 58.1±1.9

QS10 98.8±0.6 86.9±1.1 88.8±0.7 86.6±3.6 93.8±0.6 76.9±4.6 69.4±3.0 58.9±4.4
QS100 99.7±0.3 89.0±1.3 90.2±1.2 90.3±0.7 93.5±0.5 75.7±3.9 73.3±3.3 58.0±2.9
QSbest 99.7±0.3 89.0±1.3 90.5±1.6 90.9 ±0.5 94.2±0.5 81.6 ±2.9 73.3±3.3 61.3±6.1

GLA. Furthermore, On the HAR dataset, it is the best performer among all the
autoencoder-based feature selection methods considered. As shown in Table 4.3,
QuickSelection outperforms all the other methods on Coil20, SMK, and GLA, in
terms of classification accuracy, while being the second-best performer on the
other datasets. From these Tables, it is clear that QuickSelection can outperform
its equivalent dense network (FCAE) in terms of classification and clustering
accuracy on all datasets.

It can be observed in Tables 4.2 and 4.3, that Lap_score has a poor perfor-
mance when the number of samples is large (e.g. MNIST). However, in the
tasks with a low number of samples and features, even in noisy environments
such as Madelon, Lap_score has a relatively good performance. In contrast, CAE
has a poor performance in noisy environments (e.g., Madelon), while it has a
decent classification accuracy on the other datasets considered. It is the best
or second-best performer on five datasets, in terms of classification accuracy,
when K = 50. AEFS and FCAE cannot achieve a good performance on Madelon,
either. We believe that the dense layers are the main cause of this behavior;
the dense connections try to learn all input features, even the noisy features.
Therefore, they fail to detect the most important attributes of the data. MCFS
performs decently on most of the datasets in terms of clustering accuracy. This is
due to the main objective of MCFS to preserve the multi-cluster structure of the
data. However, this method also has poor performance on datasets with a large
number of samples (e.g., MNIST) and noisy features (e.g., Madelon).

However, since evaluating the methods using a single value of K might not be
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Figure 4.3: Influence of feature removal on Madelon dataset. After deriving the impor-
tance of the features with QuickSelection, we sort and then remove them
based on the above two methods.

enough for comparison, we performed another experiment using different values
of K . In Appendix C.1.1, we test other values for K on all datasets and compare
the methods in terms of classification accuracy, clustering accuracy, running time,
and maximum memory usage. The summary of the results of this Appendix has
been summarized in Section 4.5.1.

Relevancy of Selected Features

To illustrate the ability of QuickSelection to find informative features, we analyze
thoroughly the Madelon dataset results, which have the interesting property of
containing many noisy features. We perform the following experiments; first,
we sort the features based on their strength. Then, we remove the features one
by one from the least important feature to the most important one. In each
step, we train an ExtraTrees classifier with the remained features. We repeat this
experiment by removing the features from the most important ones to the least
important ones. The result of classification accuracy for both experiments can be
seen in Figure 4.3. On the left side of Figure 4.3, we can observe that removing
the least important features, which are noise, increases the accuracy. The
maximum accuracy occurs after we remove 480 noise features. This corresponds
to the moment when all the noise features are supposed to be removed. In
Figure 4.3 (right), it can be seen that removing the features in a reverse order
results in a sudden decrease in the classification accuracy. After removing 20
features (indicated by the vertical blue line), the classifier performs like a random
classifier. We conclude that QuickSelection is able to find the most informative
features in good order.

To better show the relevancy of the features found by QuickSelection, we
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Figure 4.4: Average values of all data samples of each class corresponding to the 50
selected features on MNIST after 100 training epochs (bottom), along with
the average of the actual data samples of each class (top).

visualize the 50 features selected on the MNIST dataset per class, by averaging
their corresponding values from all data samples belonging to one class. As can
be observed in Figure 4.4, the resulting shape resembles the actual samples of
the corresponding digit. We discuss the results of all classes at different training
epochs in more detail in Appendix C.3.

4.5 Discussion

4.5.1 Accuracy and Computational Efficiency Trade-off

In this section, we perform a thorough comparison between the models in terms
of running time, energy consumption, memory requirement, clustering accuracy,
and classification accuracy. In short, we change the number of features to be
selected (K ) and measure the accuracy, running time, and maximum memory
usage across all methods. Then, we compute two scores to summarize the results
and compare methods.

We analyze the effect of changing K on QuickSelection performance and com-
pare it with other methods; the results are presented in Figure C.1 in Appendix
C.1.1. Figure C.1a compares the performance of all methods when K is changing
between 5 and 100 on low-dimensional datasets, including Coil20, Isolet, HAR,
and Madelon. Figure C.1b illustrates performance comparison for K between
5 and 300 on the MNIST dataset, which is also a low-dimensional dataset. We
discuss this dataset separately since it has a large number of samples that make
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Figure 4.5: Feature selection comparison in terms of classification accuracy, clustering
accuracy, speed, and memory requirement, on each dataset and for different
values of K , using two scoring variants.

it different from other low-dimensional datasets. Figure C.1c represents a simi-
lar comparison on three high-dimensional datasets, including SMK, GLA, and
PCMAC. It should be noted that to have a fair comparison, we use a single CPU
core to run these methods; however, since the implementations of CAE and AEFS
are optimized for parallel computation, we use a GPU to run these methods. We
also measure the running time of feature selection with CAE on CPU.

To compare the memory requirement of each method, we profile the max-
imum memory usage during feature selection for different values of K . The
results are presented in Figure C.2 in Appendix C.1.1, derived using a Python
library named resource3. Besides, to compare the memory occupied by the
autoencoder-based models, we count the number of parameters for each model.
The results are shown in Figure C.5 in the Appendix C.1.3.

However, comparing all of these methods only by looking into the graphs
in Figure C.1 and Figure C.2 is not easily possible, and the trade-off between
the factors is not clear. For this reason, we compute two scores to take all these
metrics into account simultaneously.

Score 1. To compute this score, on each dataset and for each value of K , we
rank the methods based on the running time, memory requirement, clustering
accuracy, and classification accuracy. Then, we give a score of 1 to the best
and second-best performers; this is mainly due to the fact that in most cases,
the difference between these two is negligible. After that, we compute the
summation of these scores for each method on all datasets. The results are

3https://docs.python.org/2/library/resource.html
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presented in Figure 4.5a; to ease the comparison of different components in the
score, a heat-map visualization of the scores is presented in Figure 4.5c. The
cumulative score for each method consists of four parts that correspond to each
metric considered. As it is obvious in this Figure, QuickSelection (cumulative
score of QuickSelection10 and QuickSelection100) outperforms all other methods
by a significant gap. Our proposed method is able to achieve the best trade-off
between accuracy, running time, and memory usage, among all these methods.
Laplacian score, the second-best performer, has a decent performance in terms
of running time and memory, while it cannot perform well in terms of accuracy.
On the other hand, CAE has a satisfactory performance in terms of accuracy.
However, it is not among the best two performers in terms of computational
resources for any values of K . Finally, FCAE and AEFS cannot achieve a decent
performance compared to the other methods. A more detailed version of Figure
4.5a is available in Figure C.3 in Appendix C.1.1.

Score 2. In addition to the ranking-based score, we calculate another score
to consider all the methods, even the lower-ranking ones. With this aim, on each
dataset and value of K , we normalize each performance metric between 0 and 1,
using the values of the best performer and worst performer on each metric. The
value of 1 in the accuracy score means the highest accuracy. However, for the
memory and running time, the value of 1 means the least memory requirement
and the least running time, respectively. After normalizing the metrics, we
accumulate the normalized values for each method and on all datasets. The
results are depicted in Figure 4.5b. As can be seen in this diagram, QuickSelection
(we consider the results of QuickSelection100) outperforms the other methods
by a large margin. CAE has a close performance to QuickSelection in terms
of both accuracy metrics, while it has a poor performance in terms of memory
and running time. In contrast, Lap_score is computationally efficient while
having the lowest accuracy score. In summary, it can be observed in Figure 4.5b,
that QuickSelection achieves the best trade-off of the four objectives among the
considered methods.

Energy Consumption. The next analysis we perform concerns the energy
consumption of each method. We estimate the energy consumption of each
method using the running time of the corresponding algorithm for each dataset
and the value of K . We assume that each method uses the maximum power of
the corresponding computational resources during its running time. Therefore,
we derive the power consumption of each method, using the running time and
maximum power consumption of CPU and/or GPU, which can be found within
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the specification of the corresponding CPU or GPU model. As shown in Figure
C.4 in Appendix C.1.2, the Laplacian score feature selection needs the least
amount of energy among the methods on all datasets except the MNIST dataset.
QuickSelection10 is the best performer on MNIST in terms of energy consumption.
Laplacian score and MCFS are sensitive to the number of samples. They cannot
perform well on MNIST, either in terms of accuracy or efficiency. The maximum
memory usage during feature selection for Laplacian score and MCFS on MNIST
is 56 GB and 85 GB, respectively. Therefore, they are not a good choice in
case of having a large number of samples. QuickSelection is the second-best
performer in terms of energy consumption, and also the best performer among
the autoencoder-based methods. QuickSelection is not sensitive to the number
of samples or the number of dimensions.

Efficiency vs. Accuracy. In order to study the trade-off between accuracy and
resource efficiency, we perform another in-depth analysis. In this analysis, we
plot the trade-off between accuracy (including, classification and clustering accu-
racy) and resource requirement (including, memory and energy consumption).
The results are shown in Figures 4.6 and 4.7 that correspond to the energy-
accuracy and memory-accuracy trade-off, respectively. Each point in these plots
refers to the results of a particular combination between a specific method and
dataset when selecting 50 features (except Madelon, for which we select 20 fea-
tures). As can be observed in these plots, QuickSelection, MCFS, and Lap_score
usually have a good trade-off between the considered metrics. A good trade-off
between a pair of metrics is to maximize the accuracy (classification or cluster-
ing accuracy) while minimizing the computational cost (power consumption or
memory requirement). However, when the number of samples increases (on the
MNIST dataset), both MCFS and Lap_score fail to maintain a low computational
cost and high accuracy. Therefore, when the dataset size increases, these two
methods are not an optimal choice. Among the autoencoder-based methods,
in most cases, QuickSelection10 and QuickSelection100 are among the Pareto
optimal points. Another significant advantage of our proposed method is that it
gives the ranking of the features as the output. Therefore, unlike the MCFS or
CAE that need the value of K as their input, QuickSelection is not dependent on
K and needs just a single training of the sparse DAE model for any values of K .
Therefore, the computational cost of QuickSelection is the same for all values
of K , and only a single run of this algorithm is required to get the hierarchical
importance of features.
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Figure 4.6: Estimated power consumption (Kwh) vs. accuracy (%) when selecting 50
features (except Madelon for which we select 20 features). Each point refers
to the result of a single dataset (specified by colors) and method (specified by
markers) where the x and y-axis show the accuracy and the estimated power
consumption, respectively.
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Figure 4.7: Maximum memory requirement (Kb) vs. accuracy (%) when selecting 50
features (except Madelon for which we select 20 features). Each point refers
to the result of a single dataset (specified by colors) and method (specified
by markers) where the x and y-axis show the accuracy and the maximum
memory requirement, respectively. Due to the high memory requirement
of MCFS and Lap_score on the MNIST dataset which makes it difficult to
compare the other results (upper plots), we zoom in on this section in the
bottom plots.
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Figure 4.8: Running time comparison on an artificially generated dataset. The features
are generated using a standard normal distribution and the number of samples
for each case is 5000.

4.5.2 Running Time Comparison on an Artificially Generated
Dataset

In this section, we perform a comparison of the running time of the autoencoder-
based feature selection methods on an artificially generated dataset. Since on
the benchmark datasets both the number of features and samples are different,
it is not easily possible to compare clearly the efficiency of the methods. This
experiment aims to compare the models’ real wall-clock training time in a
controlled environment with respect to the number of input features and hidden
neurons. In addition, in Appendix C.5, we have conducted another experiment
regarding the evaluation of the methods on a very large artificial dataset, in
terms of both computational resources and accuracy.

In this experiment, we aim to compare the speed of QuickSelection versus
other autoencoder-based feature selection methods for different numbers of input
features. We run all of them on an artificially generated dataset with various
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numbers of features and 5000 samples, for 100 training epochs (10 epochs for
QuickSelection10). The features of this dataset are generated using a standard
normal distribution. In addition, we aim to compare the running time of different
structures for these algorithms. The specifications of the network structure for
each method, the computational resources used for feature selection, and the
corresponding results can be seen in Figure 4.8.

For CAE, we consider two different values of K . The structure of CAE depends
on this value. CAE has two hidden layers including a concrete selector and a
decoder that have K and 1.5K neurons, respectively. Therefore, by increasing the
number of selected features, the running time of the model will also increase.
In addition, we consider the cases of CAE with 1000 and 10000 hidden neurons
in the decoder layer (manually changed in the code) to be able to compare it
with the other models. We also measure the running time of performing feature
selection with CAE using only a single CPU core. It can be seen from Figure
4.8 that its execution time is significantly long. The general structures of AEFS,
QuickSelection, and FCAE are similar in terms of the number of hidden layers.
They are basic autoencoders with a single hidden layer. For AEFS, we considered
three structures with different numbers of hidden neurons, including 300, 1000,
and 10000. Finally, for QuickSelection and FCAE, we consider two different
values for the number of hidden neurons, including 1000 and 10000.

It can be observed that the running time of AEFS with 1000 and 10000 hidden
neurons using a GPU, is much larger than the running time of QuickSelection100

with similar numbers of hidden neurons using only a single CPU core, respectively.
The same pattern is also visible in the case of CAE with 1000 and 10000 hidden
neurons. This pattern also repeats in the case of FCAE with 10000 hidden neurons.
The running time of FCAE with 1000 hidden neurons is approximately similar to
QuickSelection100. However, the difference between these two methods is more
significant when we increase the number of hidden neurons to 10000. This is
mainly due to the fact that the difference between the number of parameters of
QuickSelection and the other methods becomes much higher for large values of
K . Besides, these observations depict that the running time of QuickSelection
does not change significantly by increasing the number of hidden neurons.

As we have also mentioned before, QuickSelection gives the ranking of the
features as the output. Therefore, unlike CAE which should be run separately for
different values of K , QuickSelection is not affected by the choice of K because
it computes the importance of all features at the same time and after finishing
the training. In short, QuickSelection10 has the least running time among other
autoencoder-based methods while being independent of the value of K . In
addition, unlike the other methods, the running time of QuickSelection is not
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Figure 4.9: Strength of the 20 most informative and non-informative features of the Made-
lon dataset, selected by QS10 and QS100. Each line in the plots corresponds to
the strength values of a selected feature by QS10/QS100 during training. The
features selected by QS10 have been observed until epoch 100 to compare the
quality of these features with QS100.

sensitive to the number of hidden neurons since the number of parameters is
low even for a very large hidden layer.

4.5.3 Neuron Strength Analysis

In this section, we discuss the validity of neuron strength as a measure of the
feature importance. We observe the evolution of the network during training to
analyze how the neuron strength of important and unimportant neurons changes
during training.

We argue that the most important features that lead to the highest accuracy
of feature selection are the features corresponding to neurons with the highest
strength. In a neural network, weight magnitude is a metric that shows the
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importance of each connection [KM98]. This stems from the fact that weights
with a small magnitude have a small effect on the performance of the model.
At the beginning of training, we initialize all connections to a small random
value. Therefore, all the neurons have almost the same strength/importance.
As the training proceeds, some connections grow to a larger value while others
are pruned from the network during the dynamic connections removal and
regrowth of the SET training procedure. The growth of the stable connection
weights demonstrates their significance in the performance of the network. As
a result, the neurons connected to these important weights contain important
information. In contrast, the magnitude of the weights connected to unimportant
neurons gradually decreases until they are removed from the network. In short,
important neurons receive connections with a larger magnitude. As a result,
neuron strength, which is the summation of the magnitude of weights connected
to a neuron, can be a measure of the importance of an input neuron and its
corresponding feature.

To support our claim, we observe the evolution of neurons’ strength on the
Madelon dataset. This choice is made due to the distinction between informative
and non-informative features in the Madelon dataset. As described earlier,
this dataset has 20 informative features, and the rest of the features are non-
informative noise. We consider the 20 most informative and non-informative
features detected by QS10 and QS100, and monitor their strength during training
(as observed in Figure 4.3, the maximum accuracy is achieved using the 20
most informative features, while the least accuracy is achieved using the least
important features). The features selected by QS10 are also being monitored
after the algorithm is finished (epoch 10) until epoch 100, in order to compare
the quality of the selected features by QS10 with QS100. In other words, we
extract the index of important features using QS10, continue the training without
making any changes in the network, and monitor how the strength of the neurons
corresponding to the selected index would evolve after epoch 10. The results
are presented in Figure 4.9. At the initialization (epoch 0), the strength of
all these neurons is almost similar and below 5. As the training starts, the
strength of significant neurons increases, while the strength of unimportant
neurons does not change significantly. As can be seen in Figure 4.9, some of
the important features selected by QS10 are not among those of QS100; this can
explain the difference in the performance of these two methods in Table 4.2
and 4.3. However, QS10 is able to detect a large majority of the features found
by QS100; these features are among the most important ones among the final
20 selected features. Therefore, we can conclude that most of the important
features are detectable by QuickSelection, even at the first few epochs of the
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algorithm.

4.6 Conclusion

In this chapter, we propose QuickSelection, an energy-efficient unsupervised
feature selection algorithm. QuickSelection derives the importance ranking of
all input features simultaneously at one round of training. We demonstrate the
ability of QuickSelection to (1) achieve the best trade-off between clustering ac-
curacy, classification accuracy, maximum memory requirement, and running time,
among other methods considered, (2) significantly reduce memory and com-
putational costs compared to the dense model (3) be the most energy-efficient
among the autoencoder-based methods considered (4) perform decently in noisy
environments. Therefore, QuickSelection can be a good choice for reducing
the costs raised by the high-dimensional and noisy data in resource-constrained
environments while being able to find qualitative features. Additionally, this
can pave the way for reducing the ever-increasing computational costs of deep
learning models imposed on data centers. As a result, this will not only save the
energy costs of processing high-dimensional data but also will ease the challenges
of high energy consumption imposed on the environment.



Chapter 5
Supervised Feature Selection
with Neuron Evolution in
Sparse Neural Networks

Despite the promising results of QuickSelection, it performs feature selection
post-training in an unsupervised manner, posing challenges in tailoring feature
selection for specific classification goals. Additionally, the strength metric may not
accurately rank features in a very high-dimensional feature space. To tackle these
limitations, in this chapter, we propose a novel resource-efficient supervised feature
selection method using sparse neural networks, named NeuroFS, drawing inspiration
from evolutionary processes. By gradually pruning the uninformative features from
the input layer of a sparse neural network trained from scratch, NeuroFS reduces
the search space of features. This reduction in the feature space empowers the
strength metric to perform more effectively. Furthermore, by conducting supervised
training and integrating neuron updates during the training process, NeuroFS
tailors the selected features to the specific classification task at hand. By performing
several experiments on 11 low and high-dimensional real-world benchmarks of
different types, we demonstrate that NeuroFS achieves the highest ranking-based

This Chapter is integrally based on: Zahra Atashgahi, Xuhao Zhang, Neil Kichler, Shiwei Liu, Lu
Yin, Mykola Pechenizkiy, Raymond Veldhuis, and Decebal Constantin Mocanu, Supervised Feature
Selection with Neuron Evolution in Sparse Neural Networks, Transactions on Machine Learning Re-
search (TMLR), ISSN 2835-8856, 2023, URL: https://openreview.net/forum?id=GcO6ugrLKp.
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score among the considered state-of-the-art supervised feature selection models. The
code is available at https://github.com/zahraatashgahi/NeuroFS.

5.1 Introduction

Feature selection has been gaining increasing importance due to the growing
amount of big data. The high dimensionality of data can give rise to issues such
as the curse of dimensionality, over-fitting, and high memory and computation
demands [LCW+18]. By removing the irrelevant and redundant attributes in
a dataset, feature selection combats these issues while increasing data inter-
pretability and potentially improving the accuracy [CS14].

The literature on feature selection can be stratified into three major categories:
filter, wrapper, and embedded methods [CS14]. Unlike filter methods that
perform feature selection before the learning task and wrapper methods that use
a learning algorithm to evaluate a subset of the features, embedded methods
use learning algorithms to determine the informative features [ZNLW19]. Since
embedded methods combine feature selection and the learning task into a unified
problem, they usually perform more effectively than the other two categories in
terms of the quality of the selected features [HWZ+18,BAZ19]. Therefore, this
work focuses on embedded feature selection due to its superior performance.

In recent years, there has been a growing interest in using artificial neu-
ral networks (ANNs) to perform embedded feature selection. This is due to
their favorable characteristic of automatically exploring non-linear dependen-
cies among input features, which is often neglected in traditional embedded
feature selection methods [Tib96]. In addition, the performance of ANNs
scales with the dataset size [HNA+17], while most feature selection meth-
ods do not scale well on large datasets [LCW+18]. Moreover, many works
have demonstrated the efficacy of neural network-based feature selection in
both supervised [LFLN18, LRAT21, YLNK20, SY20, WC20] and unsupervised
[HWZ+18,CS15,BAZ19,DS19,ASvdL+22,SLSK22] settings.

However, while being effective in terms of the quality of the selected features,
feature selection with ANNs is still a challenging task. Over-parameterization of
neural networks results in high computational and memory costs, which make
their deployment and training on low-resource devices infeasible [HABN+21].
Only very few works have tried to increase the scalability of feature selection
using neural networks on low-resource devices. E.g., [ASvdL+22] proposes,
for the first time, that sparse neural networks [HABN+21] can be exploited
to perform efficient feature selection. Their proposed method, QuickSelection,

https://github.com/zahraatashgahi/NeuroFS
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which is designed for unsupervised feature selection, trains a sparse neural
network from scratch to derive the ranking of the features using the information
of the corresponding neurons in the neural network.

In this chapter, by introducing dynamic input neuron evolution into the train-
ing of a sparse neural network, we propose to use the sparse neural networks
to perform supervised feature selection and introduce an efficient feature selec-
tion method, named Feature Selection with Neuron Evolution (NeuroFS). Our
contributions can be summarized as follows:

• We introduce dynamic neuron pruning and regrowing in the input layer of
sparse neural networks during training.

• Based on the newly introduced dynamic neuron updating process, we
propose a novel efficient supervised feature selection algorithm named
“NeuroFS”.

• We evaluate NeuroFS on 11 real-world benchmarks for feature selection
and demonstrate that NeuroFS achieves the highest average ranking among
the considered feature selection methods on low and high-dimensional
datasets.

5.2 Background

In this section, we provide background information on feature selection and
sparse neural networks.

5.2.1 Feature Selection

Problem Formulation

In this section, we first describe the general supervised feature selection problem.
Consider a dataset X containing m samples (x(i ), y (i )), where x(i ) ∈ Rd is the
i -th sample in data matrix X ∈Rm×d , d is the dimensionality of the dataset or
the number of the features, and y (i ) is the corresponding label for supervised
learning. Feature selection aims to select a subset of the most discriminative
and informative features of X as Fs ⊂ F such that |Fs | = K , where F is the original
feature set, and K is a hyperparameter of the algorithm which indicates the
number of features to be selected.
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Objective function. In supervised feature selection, we seek to optimize:

F∗s = argmin
Fs⊂F,|Fs |=K

m∑
i=0

J ( f (x(i )
Fs

;θ), y (i )), (5.1)

where F∗s is the final selected feature set, J is a desired loss function, and f (x(i )
Fs

;θ)
is a classification function parameterized by θ aiming at estimating the target for
the i -th sample using a subset of features x(i )

Fs
.

Solving this optimization problem can be a challenging task. As the choice of
feature subset Fs grows exponentially when increasing the number of features d ,
solving Equation 5.1 is an NP-hard problem. Additionally, it is important that
function f can learn a fruitful representation and complex data dependencies
[LRAT21]. We choose artificial neural networks due to their high expressive
power; a simple one-hidden layer feed-forward neural network is known to be
a universal approximator [GBC16]. Finally, as we aim to select features in a
computationally efficient manner, in this work, we choose sparse neural networks
for training and performing feature selection.

Related Work

Feature selection methods are classified into three main categories: filter, wrapper,
and embedded methods. Filter methods use criteria such as correlation [GE03],
mutual information [CS14], Laplacian score [HCN06], to rank the features inde-
pendently from the learning task, which makes them fast and efficient. However,
they are prone to selecting redundant features [CS14]. Wrapper methods
find a subset of features that maximize an objective function [ZNLW19] using
various search strategies such as tree structures [KJ97] and evolutionary algo-
rithms [LS+96]. However, these methods are costly in terms of computation.
Embedded methods aim to address the drawbacks of the filter and wrapper
approaches by integrating feature selection and training tasks to optimize the
subset of features. Various approaches have been used to perform embedded
feature selection including, mutual information [Bat94,PLD05], the SVM classi-
fier [GWBV02], and neural networks [SL97].

Recently, neural network-based feature selection in both supervised [LFLN18,
LRAT21,YLNK20,SY20,WC20] and unsupervised [ASvdL+22,BAZ19,HWZ+18,
CS15, DS19] settings have gained increasing attention due to their favorable
advantages of capturing non-linear dependencies and showing good perfor-
mance on large datasets. However, most of these methods suffer from over-
parameterization, which leads to high computational costs, particularly on



5.2 Background 99

high-dimensional datasets. QuickSelection [ASvdL+22] addresses this issue
by exploiting sparse neural networks. However, due to the random growth of
connections in its topology update stage, it might not be able to detect fastly
enough the informative features on high-dimensional datasets due to the large
search space. As we show in the following sections, we address this issue by
gradually pruning uninformative input neurons and exploiting gradients to speed
up the learning process.

5.2.2 Sparse Neural Networks

Sparse neural networks have been proposed to address the high computational
costs of dense neural networks [HABN+21]. They aim to reduce the parameters
of a dense neural network while preserving a decent level of performance on the
task of interest.

There are two main approaches to obtain a sparse neural network: dense-to-
sparse and sparse-to-sparse methods [MMP+21].

• Dense-to-sparse algorithms start with a dense network and prune the
unimportant connections to obtain a sparse network [LDS90,HS93,HPTD15,
LAT19,FC19,MTK+17,MMT+19,GEH19]. As they start with a dense net-
work, they need the memory and computational resources to fit and train
the dense network for at least a couple of iterations. Therefore, they are
mostly efficient during the inference phase.

• Sparse-to-sparse algorithms aim to bring computational efficiency both
during the training and inference. These methods use a static [MMN+16]
or dynamic [MMS+18,BKML18] sparsity pattern during training. In the
following, we will elaborate on sparse training with dynamic sparsity (or
started to be known in the literature as dynamic sparse training (DST)),
which usually outperforms the static approach.

Dynamic Sparse Training (DST)

DST is a class of methods to train sparse neural networks sparsely from scratch.
DST methods aim at optimizing the sparse connectivity of a sparse neural network
during training, such that they never use dense network matrices during training
[MMP+21]. Formally, DST methods start with a sparse neural network f (x,θs )

with a sparsity level of S. We have S = 1− ∥θs∥0
∥θ∥0

, where θs is a subset of parameters
of the equivalent dense network parameterized by θ, ∥θs∥0 and ∥θ∥0 are the
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number of parameters of the sparse and dense network, respectively. They aim
to optimize the following problem:

θ∗
s = argmin

θs∈R∥θ∥0 , ∥θs∥0=D∥θ∥0

1

m

m∑
i=1

J ( f (x(i );θs ),y(i )), (5.2)

where D = 1−S is called density level. During training, DST methods periodi-
cally update the sparse connectivity of the network; e.g., in [MMS+18,EGM+20]
authors remove a fraction ζ of the parameters θs and add the same number of
parameters to the network to keep the sparsity level fixed. In the literature,
usually, weight magnitude has been used as a criterion for dropping the connec-
tions. However, there exists various approaches for weight regrowth including,
random [MMS+18, MW19], gradient-based [EGM+20, DYJ19, DZ19, JPR+20],
locality-based [HABN+21], and similarity-based [APL+22]. It has been shown
that in many cases, they can match or even outperform their dense counter-
parts [FC19, MMS+18, LCC+21, LYMP21]. [EIKD22] have discussed in-depth
that DST methods improve the gradient flow in the network by updating the
sparse connectivity that eventually leads to a good performance. In this chapter,
we exploit sparse neural network training from scratch to design an efficient
supervised feature selection method.

5.3 Proposed Method

In this section, we present our proposed methodology for feature selection
using sparse neural networks, named Feature Selection with Neuron evolution
(NeuroFS). We start by describing our proposed sparse training algorithm. Then,
we explain how the introduced sparse training algorithm can be used to perform
feature selection.

5.3.1 Dynamic Neuron Evolution

Inspired by the weights update policy in DST, we introduce dynamic neuron evo-
lution in the framework of DST to perform efficient feature selection. While ex-
isting DST methods update only the connections or the hidden neurons [DYJ19]
to evolve the topology of sparse neural networks, we propose to update also the
input neurons of the network to dynamically derive a set of relevant features of
the given input data.



5.3 Proposed Method 101

Our proposed neuron evolution process has two steps. Consider a network
in which only a fraction of input neurons have non-zero connections. We pe-
riodically update the input layer connectivity by first dropping a fraction of
unimportant neurons (neuron removal) and then adding a number of uncon-
nected neurons back to the network (neuron regrowth):

• Neuron Removal. The criterion used for dropping the neurons is strength,
which is introduced in [ASvdL+22]. Strength is the summation of the
absolute weights of existing connections for an input neuron. A higher
strength of a neuron indicates that the corresponding input feature has
higher importance in the data. Therefore, we drop a fraction of low-
strength neurons at each epoch. We call the neurons with at least one
non-zero weight connection, active, and the neurons without any non-zero
connections, inactive.

• Neuron Regrowth. After removing unimportant neurons, we explore
the inactive neurons. We activate a number of neurons with the high-
est potential to enhance the learned data representation. We exploit the
gradient magnitude of the non-existing connections for each neuron as a
criterion to choose the most important inactive neurons. It has been shown
in [EGM+20] that adding the zero-connections with the largest gradients
magnitude in the DST process accelerates the learning and improves the
accuracy. [EIKD22] also have shown that picking the connections with
the highest gradient magnitude increases the gradient flow, which eventu-
ally leads to a decent performance. We hypothesize that adding inactive
neurons connected to the zero-connections with the highest gradient mag-
nitude to the network would improve the data representation and increase
the likelihood of finding an informative set of features.

Dynamic neuron evolution is loosely inspired by evolutionary algorithms
[SM02]. Still, due to the large search space, the latter cannot be directly applied
to our problem without significantly increased computational time. To alleviate
this, we seek inspiration in the dynamics of the evolution process from the
biological brain at the epigenetic level, which performs cellular changes (seconds
to days time scale) [KBCD14], and not at the phylogenic level (generations
time scale) as it is usually performed in evolutionary computing. Accordingly,
NeuroFS removes and regrows neurons in the input layer of a sparsely trained
neural network based on chosen criteria at each epoch until a reduced optimal
set of input neurons remains active in the network. In the next section, we
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Figure 5.1: Overview of “NeuroFS”. At initialization, a sparse MLP is initialized (Section
5.3.2). During training, at each training epoch, after standard feed-forward
and back-propagation, input and hidden layers are updated such that a large
fraction of unimportant input neurons are gradually dropped while giving
a chance to the removed input neurons for regrowth (Section 5.3.2). After
convergence, NeuroFS selects the corresponding features to K active neurons
with the highest strength (Section 5.3.2).

will explain how NeuroFS uses dynamic neuron evolution to perform feature
selection.

5.3.2 NeuroFS

Our proposed algorithm is briefly sketched in Figure 5.1. In short, NeuroFS
aims at efficiently selecting a subset of features that can learn an effective
representation of the input data in a sparse neural network. In the following, we
describe the algorithm in more detail.

Problem Setup

We first start by describing the network structure and problem setup.

Network Architecture. We exploit a supervised deep neural network, Multi-
Layer Perceptron (MLP). We initialize a sparse MLP f (x,θs ), with L layers and a
sparsity level of S.
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Initialization. The sparse connectivity is initialized randomly as an Erdos-Renyi
random graph [MMS+18]. Sparsity level S is determined by a hyperparameter of
the model, named ε, such that the density of layer l is ε(n(l−1)+n(l ))/(n(l−1)×n(l )), and
the total number of parameters is equal to ∥θs∥0=

∑L
l=1

∥∥∥θ(l )
s

∥∥∥
0
, where l ∈ {1,2, ...,L}

is the layer index and n(l ) is number of neurons at layer l . The number of
connections at each layer is computed as

∥∥∥θ(l )
s

∥∥∥
0
=ε(n(l−1)+n(l )).

Training

After initializing the network, we start the training process. In summary, we start
with a sparse neural network and aim to optimize the topology of the network
and the selected subset of features simultaneously. During training, we gradually
remove the input neurons while giving a chance for the inactive neurons to be
re-added to the network. Finally, when the training is finished, we select the
important features from a limited number of active neurons. In the following,
we describe the training algorithm in more detail.

At each training epoch, NeuroFS performs the following three steps:
Step 1. Feed-forward and Back-propagation. At each epoch, first, standard

feed-forward and back-propagation are performed to train the weights of the
sparse neural network.

Step 2. Updating Input Layer. After each training epoch, we update the input
layer. The novelty of our proposed algorithm lies mainly in updating the input
layer. During training, NeuroFS gradually decreases the number of active input
features. In short, at epoch t , it gradually prunes a number of input neurons
(c(t )

pr une) and regrows a number of unconnected neurons (c(t )
g r ow ) back to the

network. Updating the input layer in NeuroFS consists of two phases:

• Removal Phase. From the beginning of the training until tr emoval , updating
the input layer is at the removal phase. In this phase, the total number
of active neurons decreases at each epoch such that c(t )

pr une > c(t )
g r ow , if t É

tr emoval . We have tr emoval = ⌈αtmax⌉, where 0 <α< 1 is a hyperparameter
of NeuroFS determining the neuron removal phase duration, ⌈⌉ is the
ceiling function, and tmax is the total number of epochs.

• Update Phase. From tr emoval until the end of the training, the number
of connected neurons remains fixed in the network and only a fraction of
neurons are updated. In other words, c(t )

pr une = c(t )
g r ow , if t > tr emoval .

Formally, we compute c(t )
pr une at epoch (t ) as follows:
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c(t )
pr une =

{
c(t )

r emove + c(t )
g r ow , t É tr emoval

c(t )
g r ow , otherwise

. (5.3)

c(t )
pr une in the removal phase consists of two parts: c(t )

r emove and c(t )
g r ow . As

the overall number of active neurons is decreasing in this phase, c(t )
r emove extra

neurons to the updated ones will be removed at each epoch. c(t )
r emove is computed

as:

c(t )
r emove = ⌈ R −R(t )

tr emoval − t
⌉, (5.4)

R(t ) =
t−1∑
i=1

c(i )
r emove , (5.5)

R = ⌈(1−ζi n)d −K ⌉, (5.6)

where R(t ) is the total number of inactive neurons at epoch t , R is the total
number of neurons to be removed in the removal phase, and ζi n ∈R,0 < ζi n < 1 is
the update fraction of the input layer. In other words, the total number of active
neurons after the removal phase is ζi nd +K . We keep ζi nd neurons extra to the
number of selected features K , so that the update phase does not disturb the
already found important features.

Finally, the number of neurons to grow at epoch t is computed as:

c(t )
g r ow = ⌈ζi n(1− t

tmax
)R(t )⌉. (5.7)

In other words, at each epoch, we add a fraction ζi n of the inactive neurons back
to the network. However, as the number of inactive neurons increases during
training, the number of updated neurons will increase consequently. A large
number of updated neurons might diverge the network training. Therefore, we
decrease the update fraction linearly during training. At epoch t , we update
ζi n(1− t

tmax
) proportion of the total inactive neurons.

After computing c(t )
pr une and c(t )

g r ow , the input layer is updated as follows:

1. Neuron pruning: c(t )
pr une neurons with lowest strength are dropped from

the input layer. The strength of input neuron i is computed as si =
∥∥w(i )

∥∥
1,

where w(i ) is the weights vector of neuron i .
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2. Weight pruning: a fraction ζi n of connections with the lowest magnitudes
are dropped from the active input features.

3. Neuron regrowth: c(t )
g r ow neurons are selected for being activated and

added to the network. As discussed in Section 5.3.1, these neurons are
the ones connected to the connections with the largest absolute gradient
among all non-existing connections of inactive neurons.

4. Weight growing: The same number as the number of removed connections
will be added to the network so that the sparsity remains fixed during
training. These connections are the ones with the largest absolute gradient
among all non-existing connections of the active neurons at the current
epoch.

Step 3. Updating Hidden Layers. Hidden layers will be updated by updating
the sparse connectivity, which is the standard approach in the DST process.
We use gradients for weight regrowth [EGM+20]. For each hidden layer h(l ),
NeuroFS performs the following two steps:

1. Weight pruning: a fraction ζh of connections with the lowest magnitude
are dropped from layer h(l ).

2. Weight growing: the same number as the number of removed connections
will be added to layer h(l ). These connections are the ones with the largest
absolute gradient among all non-existing connections.

Feature Selection

After the training process is finished, we perform feature selection. We select K
neurons with the highest strength out of the ζi nd +K remaining active neurons.
The corresponding features to these K neurons are the most informative and
relevant features in our dataset. NeuroFS is schematically described in Figure
5.1 and the corresponding pseudo-code is available at Algorithm 5.
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Algorithm 5 NeuroFS

1: Input: Dataset X, sparsity hyperparameter ε, drop fractions ζi n and ζh ,
neuron removal phase duration hyperparameter α, number of training epochs
tmax , number of features to select K .

2: Initialization: Initialize the network with sparsity level S determined by ε
(Section 5.3.2)

3: for t ∈ {1, . . . ,#tmax } do
4: I. Standard feed-forward and back-propagation
5: II. Update Input Layer:
6: 0. Compute c(t )

pr une (Equation 5.3) and c(t )
g r ow (Equation 5.7).

7: 1. Drop c(t )
pr une neurons with the lowest strength.

8: 2. Drop a fraction ζi n of connections with the lowest magnitude.
9: 3. Select c(t )

g r ow inactive neurons (that have connections with the highest
gradient magnitude), to be activated.

10: 4. Regrow as many connections as have been removed to the active
neurons.

11: III. Update Hidden Layers:
12: for l ∈ {1, . . . ,L} do
13: 1. Drop a fraction ζh of connections with the lowest magnitude from

layer hl .
14: 2. Regrow as many connections as have been removed in layer hl .
15: Feature Selection: Select K features corresponding to the active neurons

with the highest strength in the input layer.

5.4 Experiments and Results

In this section, we first describe the experimental settings and then analyze the
performance of NeuroFS and compare it with several state-of-the-art feature
selection methods.

5.4.1 Settings

This section describes the experimental settings, including, datasets, compared
methods, hyperparameters, implementation, and the evaluation metric.
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Table 5.1: Datasets characteristics.

Dataset Type # Features # Samples # Train # Test # Classes

COIL-20

Image

1024 1440 1152 288 20
USPS 256 9298 7438 1860 10

MNIST 784 70000 60000 10000 10
Fashion-MNIST 784 70000 60000 10000 10

Isolet Speech 617 7737 6237 1560 26

HAR Time Series 561 10299 7352 2947 6

BASEHOCK Text 4862 1993 1594 399 2

Arcene Mass Spectrometry 10000 200 160 40 2

Prostate_GE
Biological

5966 102 81 21 2
SMK-CAN-187 19993 187 149 38 2
GLA-BRA-180 49151 180 144 36 4

Datasets

We evaluate the effectiveness of NeuroFS on eleven datasets1 described in Table
5.1.

Comparison

We have selected seven state-of-the-art feature selection methods for comparison
as follows:

Embedded methods: LassoNet [LRAT21] exploits a neural network with resid-
ual connections to the input layer and solves a two-component (linear and
non-linear) optimization problem to find the feature importance. STG [YLNK20]
exploits a continuous relaxation of Bernoulli distribution in a neural network to
perform feature selection. QuickSelection [ASvdL+22] (denoted as QS in the
Figures) selects features using the strength of input neurons of a sparse neural
network. RFS [NHCD10] employs a joint ℓ2,1-norm minimization on the loss
function and regularization to select features.

Filter methods: Fisher_score [GLH11] selects features that maximizes sim-
ilarity of feature values among the same class. CIFE [LT06] maximizes the
conditional redundancy between unselected and selected features given the class
labels. Finally, ICAP [Jak05] iteratively selects features maximizing the mutual
information with the class labels given the selected features.

1Available at https://jundongl.github.io/scikit-feature/datasets.html

https://jundongl.github.io/scikit-feature/datasets.html
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Hyperparameters

The architecture of the network used in the experiments is a 3-layer sparse MLP
with 1000 neurons in each hidden layer. The activation function used for the
hidden layers is Tanh (except for Isolet dataset where Relu is used), and the
output layer activation function is Softmax. The values for the hyperparameters
were found through a grid search among a small set of values. We have used
stochastic gradient descent (SGD) with a momentum of 0.9 as the optimizer.
The parameters for training neural network-based methods, including batch
size, learning rate, and the number of epochs (tmax), have been set to 100, 0.01,
and 100, respectively. However, the batch size for datasets with few samples
(m ≤ 200) was set to 20. The hyperparameter determining the sparsity level ε
is set to 30. Update fraction for the input layer ζi n and hidden layer ζh have
been set to 0.2 and 0.3 respectively. Neuron removal duration hyperparameter
α is set to 0.65. ζi n and α are the only hyperparameters particular to NeuroFS.
We use min-max scaling for data preprocessing for all methods except for the
BASEHOCK dataset, where we perform standard scaling with zero mean and
unit variance.

Implementation

We implemented our proposed method using Keras [C+15]. The starting point of
our implementation is based on the sparse evolutionary training introduced as
SET in [MMS+18]2 to which we added the gradient-based connections growth
proposed in RigL [EGM+20]. For Fisher_score, CIFE, ICAP, and RFS, we have
used the implementations provided by the Scikit-Feature library [LCW+18]3. The
hyperparameter of RFS (γ) has been set to 10 (searched among [0.01,0.1,0.5,1,10]).
We implemented QuickSelection [ASvdL+22] in our code; we adapted it to su-
pervised feature selection, as this was not done in QuickSelection. We have used
a similar structure and sparsity level (ϵ= 30) to our method for a fair compar-
ison. For QuickSelection, we set ζ = 0.3. For STG and LassoNet, we used the
implementation provided by the authors45. For STG, we used a 3-layer MLP with
1000 hidden neurons in each layer and set the hyperparameter λ= 0.5 (searched
among [0.001,0.01,0.5,1,10])). For LassoNet, we used a 1-layer MLP with 1000
hidden neurons and set M = 10, as suggested by the authors [LRAT21]. Please

2https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
3https://jundongl.github.io/scikit-feature/
4https://github.com/lasso-net/lassonet
5https://github.com/runopti/stg

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
https://jundongl.github.io/scikit-feature/
 https://github.com/lasso-net/lassonet
https://github.com/runopti/stg
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note that we have also tried using a 3-layer MLP for LassoNet. However, it
significantly increased the running time, and particularly on large datasets, it
exceeded the 12-hour running time. In addition, in the other cases, it did not
lead to significantly different results than LassoNet with 1-layer MLP. To have a
fair comparison, for NN-based methods (NeuroFS, LassoNet, STG, and QS), we
used similar training hyperparameters, including learning rate (0.01), optimizer
(SGD), batch size (100, except 20 for datasets with few samples (m<=200)),
and training epoch (100). We consider a 12-hour limit on the running time
of each experiment. The results of the experiments that exceed this limit are
discarded. We used a Dell R730 processor to run the experiments. We run neural
network-based methods using Tesla-P100 GPU with 16G memory.

Evaluation Metrics

For evaluating the methods, we use classification accuracy of a SVM classifier
[KSBM01] with RBF kernel implemented by Scikit-Learn library6 and used the
default hyperparameters of this library. As some of the compared methods do
not exploit neural networks to perform feature selection, we intentionally use
a non-neural network-based classifier to ensure that the evaluation process is
objective and does not take advantage of the same underlying mechanisms as
our method. We first find the K important features using each method. Then,
we train a SVM classifier on the selected features subset of the training set. We
report the classification accuracy on the test set as a measure of performance. We
have also evaluated the methods using two other classifiers including KNN and
ExtraTrees in Appendix D.3. We have considered classification accuracy using all
features as the baseline method.

5.4.2 Feature Selection Evaluation

In this section, we evaluate the performance of NeuroFS and compare it with
several feature selection algorithms. We run all the methods on the datasets
described in Section 5.4.1 and for several values of K ∈ {25,50,75,100,150,200}.
Then, we evaluate the quality of the selected set of features by measuring the
classification accuracy on an unseen test set as described in Section 5.4.1. The
results are an average of five different seeds. The detailed results for low and
high-dimensional datasets, including accuracy for various values of K (below)
and average accuracy over K (above), are demonstrated in Figure 5.2. We have

6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Figure 5.2: Supervised feature selection comparison for low (a) and high-dimensional
(b) datasets, including accuracy for various values of K (below) and average
accuracy over K (above).

also presented the detailed results for each value of K in Table D.4 in Appendix
D.5. To summarize the results and have a general overview of the performance
of each method independent of a particular K value, we have shown the average
accuracy over the different values of K in Table 5.2.

As presented in Figure 5.2 and Table 5.2, NeuroFS is the best performer

Table 5.2: Supervised feature selection comparison (average classification accuracy over
various K values (%)). Empty entries show that the corresponding experiments
exceeded the time limit (12 hours). Bold and italic fonts indicate the best and
second-best performer, respectively.

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST F-MNIST USPS Isolet HAR BASEHOCKProstate_GE Arcene SMK GLA

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 98.79±0.22 95.48±0.3495.48±0.3495.48±0.34 85.03±0.1585.03±0.1585.03±0.15 96.68±0.1696.68±0.1696.68±0.16 93.22±0.1193.22±0.1193.22±0.11 92.74±0.23 90.42±0.80 89.70±0.72 78.00±1.78 82.36±0.9882.36±0.9882.36±0.98 80.46±0.9980.46±0.9980.46±0.99
LassoNet 98.03±0.31 94.80±0.23 83.81±0.12 96.41±0.05 89.31±0.13 94.63±0.1094.63±0.1094.63±0.10 89.77±0.56 89.86±0.78 71.33±1.94 78.67±2.09 77.70±1.84

STG 99.30±0.3199.30±0.3199.30±0.31 94.16±0.47 83.74±0.41 96.55±0.17 89.13±1.43 91.87±0.63 85.48±0.78 85.41±2.72 73.75±2.78 81.34±2.68 71.19±2.33
QS 97.23±1.34 94.57±0.35 82.69±0.24 96.22±0.20 90.20±1.23 92.70±0.57 87.93±0.40 76.39±7.44 77.08±1.56 82.01±2.69 72.91±0.69

Fisher_score 70.02±0.00 86.95±0.00 73.85±0.00 93.12±0.00 75.58±0.00 82.10±0.00 89.72±0.00 90.50±0.0090.50±0.0090.50±0.00 66.25±0.00 75.85±0.00 63.43±0.00
CIFE 64.18±0.00 92.07±0.00 70.27±0.00 73.90±0.00 74.15±0.00 84.38±0.00 76.85±0.00 63.48±0.00 61.67±0.00 80.27±0.00 63.40±0.00
ICAP 98.67±0.00 92.00±0.00 70.12±0.00 94.75±0.00 80.72±0.00 90.20±0.00 92.30±0.0092.30±0.0092.30±0.00 50.00±0.00 76.67±0.00 74.57±0.00 70.80±0.00
RFS 97.28±0.00 - - 96.68±0.0096.68±0.0096.68±0.00 91.32±0.00 94.08±0.00 85.93±0.00 90.50±0.0090.50±0.0090.50±0.00 79.17±0.0079.17±0.0079.17±0.00 - -
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in 6 datasets out of 11 considered datasets in terms of average accuracy, while
performing very closely to the best performer in the remaining cases. Filter
methods, such as ICAP, CIFE, and F-score, have been outperformed by embedded
methods on most datasets considered, as they select features independently from
the learning task. Among these methods, ICAP performs well on the text dataset
(BASEHOCK); this shows that mutual information is informative in feature
selection from the text datasets. Among the considered embedded methods, RFS
fails to find the informative features on datasets with a high number of samples
(e.g., MNIST, Fashion-MNIST) or dimensions (e.g., SMK, GLA-BRA-180) within
the considered time limit.

By looking into the results of all considered methods, it can be observed that
neural network-based feature selection methods outperform classical feature
selection methods in most cases. Therefore, it can be concluded that the complex
non-linear dependencies extracted by the neural network are beneficial for
the feature selection task. However, as will be discussed in Section 5.5.2, the
over-parameterization in dense neural networks, as used for STG and LassoNet,
leads to high computational costs and memory requirements, particularly on
high-dimensional datasets. NeuroFS and QuickSelection address this issue by
exploiting sparse layers instead of dense ones.

NeuroFS outperforms QuickSelection, which is the sparse competitor of
NeuroFS, in terms of average accuracy, particularly on the high-dimensional
datasets. This is because, for high-dimensional datasets, QuickSelection needs
more training time to find the optimal topology in the large connections search
space due to the random search. NeuroFS alleviate this problem by exploiting
the gradient of the connections to find the informative paths in the network
while removing the uninformative neurons gradually to reduce the search space.

To summarize the results and have a general overview of the methods’
performance, we use a ranking-based score. For each dataset and value of K , we
rank the methods based on their classification accuracy and give a score of 0 to
the worst performer, and the highest score (#method s −1) to the best performer.
For each method, we compute the average score for different values of K and
different datasets. The results are summarized in Figure 5.3. NeuroFS achieves

0 1 2 3 4 5 6
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Figure 5.3: Average ranking score over all datasets and K values.



112 Supervised Feature Selection with Neuron Evolution in Sparse Neural Networks
0 5 10 15 20 25

0
5

10
15
20
25

Initialization

0 5 10 15 20 25

Epoch 5

0 5 10 15 20 25

Epoch 10

0 5 10 15 20 25

Epoch 20

0 5 10 15 20 25

Epoch 50

0 5 10 15 20 25

Epoch 99

0

5

10

Figure 5.4: Feature importance visualization on the MNIST dataset (number of selected
features K=50).

the highest average ranking on both low and high-dimensional datasets.

Overall, it can be concluded that inspired by the evolutionary process, Neu-
roFS can find an effective subset of features by dynamically changing the sparsity
pattern in both input neurons and connections. By dropping the unimportant
input neurons (based on magnitude) and adding new neurons based on the
incoming gradient, it can mostly outperform its direct competitors, LassoNet,
STG, and QuickSelection, in terms of accuracy while being efficient by using
sparse layers instead of dense over-parameterized layers.

5.4.3 Feature Importance Visualization

In order to gain a better understanding of the NeuroFS algorithms, in this section,
we analyze the feature importance during the training of the network. We run
NeuroFS on the MNIST dataset and for K = 50 and visualize the strength of input
neurons as a heat-map at several epochs in Figure 5.4.

As shown in Figure 5.4, at the initialization, all the neurons have very close
strength/importance. This stems from the random initialization of the weights to
a small random value. During training, the number of active neurons gradually
decreases. The removed neurons are mostly located towards the edges of this
picture. This pattern is similar to the MNIST digits dataset, where most digits
appear in the middle of the image. Finally, at the last epoch, a limited number
of neurons have remained active. We select the most important features out
of the active features. In conclusion, this experiment shows that NeuroFS can
determine the most important region in the features accurately.
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5.5 Discussion

In this section, we present the results of several analyses on the performance
of NeuroFS, including robustness evaluation and hyperparameter’s effect. We
have additionally analyzed weight/neuron growth policy in Appendix D.1, and
compared NeuroFS with two HSICLasso-based feature selection methods and
RigL in Appendix D.2 and D.4, respectively.

5.5.1 Robustness Evaluation: Topology Variation

In this section, we analyze the robustness of NeuroFS to variation in the topology.
We aim to explore if different runs of NeuroFS converge to similar or distant
topologies and whether NeuroFS performance remains stable for these different
topologies.

To achieve this aim, we conduct two experiments. In the first experiment, we
analyze the topology of five networks that are trained and initialized with differ-
ent random seeds. In other words, they start with different sparse connectivities
at initialization and have different training paths. In the second experiment, we
analyze the topology of five networks initialized with the same sparse connec-
tivity (using a similar random seed) and trained with different random seeds.
For both experiments, we measure the topology distance among networks using
a metric introduced in [LvdLY+20], called NNSTD. It measures the distance of
two sparse networks; NNSTD of 0 means that two networks are identical, and 1
means completely different.

We perform both experiments on the MNIST dataset to find the K = 50 most
important features. The topology distance of the networks at different epochs
are depicted in Figure 5.5 as 2d heatmaps. Each row depicts the distances for
one layer of different networks. Each tile in the heatmaps refers to the distance
between two layers of two networks. In these figures, Ni refers to the network
trained with i th random seed. The corresponding accuracies are shown in Table
5.3.

In Figure 5.5a, the networks are very distant at the beginning as their sparse
connectivity (topology) initialized differently. During training, while their hidden
layers remain distant, their input layers become more similar. Considering these
figures and comparing them with the results in Table 5.3, it can be observed that
while the feature selection remains almost the same, the network topologies do
not. This indicates that NeuroFS can find several well-performing networks.

The similarity of the network topologies in Figure 5.5b almost match the pat-
tern of Figure 5.5a. While the networks start from the same sparse connectivity,
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they become distant at the next epoch when they start training with different
random seeds. This indicates that NeuroFS explores various connectivities during
training. Interestingly, in the end, the converged input layers are more similar
to each other than the experiment 1, due to the similar sparse connectivity at
initialization. As shown in Table 5.3, the corresponding accuracies are close to-
gether. Experiment 2 confirms the observations in experiment 1, where NeuroFS
finds distant topologies with very close feature selection performance.

To conclude, NeuroFS is robust to changes in topology. While it finds very
different topologies overall, the input layers converge to relatively similar topolo-
gies, resulting in close feature selection performance.
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Figure 5.5: Topology distance of five MLPs with (a) different and (b) similar initial sparse
connectivity (topology). Input layers converge to relatively similar topologies
in both cases, while hidden layers remain distant. Ni refers to the network
trained with i th random seed.
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Table 5.3: NeuroFS Classification Accuracy (%) on the MNIST dataset for five networks
(K = 50).

N0 N1 N2 N3 N4

NeuroFS (Different initial sparse connectivity) 95.6 95.3 95.5 94.6 95.2
NeuroFS (Similar initial sparse connectivity) 95.6 94.4 96.2 95.4 95.8

5.5.2 Computational Efficiency of NeuroFS

In this section, we analyze the computational efficiency of NeuroFS. We present
the number of training FLOPs and the number of parameters of NeuroFS and
compare it with its neural network-based competitors.

Estimating the FLOPs (floating-point operations) and parameter count is a
commonly used approach to analyze the efficiency gained by a sparse neural
network compared to its dense equivalent network [EGM+20,SMM+21]. Number
of parameters indicates the size of the model, which directly affects the mem-
ory consumption and also computational complexity. FLOPs estimates the time
complexity of an algorithm independently of its implementation. In addition,
since existing deep learning hardware is not optimized for sparse matrix com-
putations, most methods for obtaining sparse neural networks only simulate
sparsity using a binary mask over the weights. Consequently, the running time
of these methods does not reflect their efficiency. Besides, developing proper
pure sparse implementations for sparse neural networks is currently a highly
researched topic pursued by the community [Hoo21]. Thus, as our work is, in its
essence, theoretical, we decided to let this engineering research aspect for future
work. Therefore, we also use parameters and FLOPs count to analyze efficiency.

To give an intuitive overview of the efficiency of NeuroFS, we compare
NeuroFS with its neural network-based competitors. We compute the FLOPs
and number of parameters of two dense MLPs with one (Dense1) and three
hidden layers (Dense3). These are the architectures used by LassoNet and STG,
respectively. However, it should be noted that LassoNet might require several
rounds of training for the dense model. Therefore, we have also computed
the actual training FLOPs for LassoNet. In addition, as the computational cost
of QuickSelection is similar to our method, we refer to both NeuroFS and
QuickSelection as Spar se.

As explained in Section 5.3.2, the sparsity/density level is determined by
the ε. The density level of the network (D), the number of parameters and
FLOP count of NeuroFS, and the compared methods are shown in Table 5.4. We
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estimate the FLOP count for the considered methods, using the implementation
provided by [EGM+20].

As can be seen from Table 5.4, NeuroFS and QuickSelection (Spar se) have
the least number of parameters and FLOPs among the considered architectures
on all considered datasets, particularly on high-dimensional datasets. In addition,
as discussed in Section 5.4.2, NeuroFS outperforms LassoNet, STG, and Quick-
Selection, in terms of accuracy in most cases considered. In short, NeuroFS is
efficient in terms of memory requirements and computational costs while finding
the most informative subset of the features on real-world benchmarks, including
low and high-dimensional datasets.

5.5.3 Hyperparameters Effect

In this section, we analyze the effect of hyperparameters of NeuroFS on the
quality of the selected features. The hyperparameters include neuron removal
duration fraction α, hyperparameter determining sparsity level ε, and the update
fraction of the input layer ζi n . We try different sets of values for each of these
hyperparameters and measure the performance of NeuroFS when selecting
K = 100 features. The results are presented in Figure 5.6.

The results of most datasets are stable for different sets of hyperparameter
values. However, high-dimensional datasets with few samples (d ≥ 10000 and
m ≤ 200) are sensitive to the sparsity level hyperparameter. The feature selection
performance decreases for higher densities; this might come from over-fitting of

Table 5.4: Number of parameters (×105) and Number of training FLOPs (×1012) of Neu-
roFS (Spar se) and the equivalent dense MLPs on different datasets.

#parameters (×105) #FLOPs (×1012)
Dataset Densi t y Spar se Dense1 Dense3 Spar se Dense1 Dense3 LassoNet

COIL-20 6.29% 1.91 10.34 30.34 0.13 0.72 2.10 4.5
MNIST 6.57% 1.84 7.94 27.94 6.66 28.60 100.64 371.0

Fashion-MNIST 6.57% 1.84 7.94 27.94 6.66 28.60 100.64 439.8
USPS 7.40% 1.68 2.66 22.66 0.76 1.19 10.12 10.9
Isolet 7.36% 1.95 6.43 26.43 0.73 2.41 9.90 23.6
HAR 6.73% 1.73 5.67 25.67 0.77 2.50 11.33 20.3

BASEHOCK 4.34% 2.98 48.64 68.64 0.36 5.82 8.21 21.4
Arcene 3.77% 4.52 100.02 120.02 0.05 1.20 1.44 5.8

Prostate_GE 4.15% 3.31 59.68 79.68 0.02 0.37 0.49 1.9
SMK-CAN-187 3.42% 7.52 199.95 219.95 0.07 1.79 1.97 4.4
GLA-BRA-180 3.18% 16.29 491.55 511.55 0.18 5.31 5.52 12.6
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Figure 5.6: Effect of hyperparameters on the performance of the algorithm (K = 100).

the network for large parameter counts and a low number of training samples. We
select α= 0.65, ε= 30, and ζi n = 0.2 as the final values for the other experiments.

5.6 Conclusion

This chapter proposes a novel supervised feature selection method named Neu-
roFS. NeuroFS introduces dynamic neuron evolution in the training process of
a sparse neural network to find an informative set of features. By evaluating
NeuroFS on real-world benchmark datasets, we demonstrated that it achieves
the highest ranking-based score among the considered state-of-the-art supervised
feature selection models. We demonstrated that NeuroFS converges to a similar
input layer topology with different runs, showing the feature selection robustness
to the network topology. Overall, NeuroFS can be an effective and efficient tool
for feature selection in machine learning applications. It is interesting to study
in the future what other metrics can be used to measure neuron importance for
dynamic weight neuron updating.





Chapter 6
Conclusion, Impact and Future
Work

In this chapter, we summarize the main contributions of this thesis. We reflect
on the research questions raised in the introduction and provide insights into the
limitations, preliminary impacts, future directions, and potential extensions of
the work. We emphasize the significance of developing cost-effective artificial
neural networks and the potential impact of the proposed methods in advancing
the field of deep learning.

6.1 Conclusions

The pursuit for optimal performance in deep neural networks has driven a surge
in network size, resulting in increasing computational, memory, and energy de-
mands. This exponential growth, while yielding impressive results, emphasizes
the urgent need for efficiency improvements in AI research. High-dimensional
data, common in complex real-world problems, exacerbates these challenges,
introducing issues such as increased computational complexity, heightened mem-
ory consumption, and more intensive energy usage. As outlined in [SGM20],
researchers should prioritize computationally efficient algorithms, particularly
for deep learning models. Balancing performance and resource constraints re-
mains a critical challenge in the field. To pursue this, in this thesis, we introduced
Cost-effective Artificial Neural Networks (CeANNs) as ANNs that can achieve
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a targeted performance on the task of interest using minimum computational
power and memory and as a result minimum energy consumption (Definition
1.1).

In this thesis, we studied CeANNs from two main perspectives: model and
data. In the pursuit of CeANNs, we raised three research questions in Section
1.3. We provided answers to each of these questions in two parts.

6.1.1 Advancing Model Efficiency through Sparsity.

In Chapters 2 and 3, we showed that ANNs can be designed and trained more
efficiently, on various data types, compared to over-parameterized dense neural
networks that are considered to be computationally expensive.

(Q1) Reducing the costs of training and deploying ANNs. In Chapter 2, we
sought the answer to research question 1, which focused on designing ANNs that
can be trained and deployed efficiently in terms of computational and memory
resources. We exploited the dynamic sparse training (DST) framework to design
such networks. In Chapter 2, by taking inspiration from the Hebbian learning
theory, we designed a new DST algorithm, called the Cosine Similarity-based
and Random Topology Exploration (CTRE). CTRE utilizes the cosine similarity
between neuron activations to determine the importance of non-existing connec-
tions. By leveraging cosine similarity and random search to evolve the topology
in a sparse neural network it addresses several challenges of existing DST algo-
rithms such as slow convergence speed and being computationally expensive
(e.g. due to dense gradient computation). Extensive experiments across diverse
datasets, including tabular, image, and text data, demonstrate CTRE’s superiority
over existing sparse training algorithms, particularly in scenarios with high net-
work sparsity. The results also highlight its potential for efficiently training MLPs
for tabular data, which is a significant computational workload in data centers.
By dynamically evolving network topologies inspired by Hebbian learning, CTRE
offers a promising solution for efficiently developing and deploying artificial
neural networks across various domains, emphasizing both performance and
eco-friendliness.

(Q2) Learning from time series data efficiently. With the ever-increasing size
of the collected time series data, cost-effective models for time series analysis
are essential to mitigate the rising expenses associated with overly complex deep
learning models. In Chapter 3, we explored the challenges and opportunities
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in achieving efficient time series forecasting using sparse neural networks, with
a specific focus on transformers. While transformers have shown remarkable
performance in various time series analysis tasks, their computational demands
have made them less feasible for resource-limited applications. We proposed
PALS that can decrease the computational and memory costs of training and
deploying DNNs for time series forecasting by automatically finding a good trade-
off between model size and prediction performance. The experiments conducted
on six benchmark datasets and five state-of-the-art transformer variants for time
series forecasting demonstrated that PALS significantly reduces model size and
computational requirements while maintaining comparable performance to the
dense counterparts in terms of prediction loss. The results showed that PALS
outperforms other methods to obtain sparse neural networks like GraNet, RigL,
and GMP in terms of both loss and sparsity, making it a promising approach
for achieving efficient time series forecasting with sparse neural networks. This
research opens up possibilities for applying PALS in resource-constrained envi-
ronments and further advancing the efficiency of time series forecasting with
DNNs.

6.1.2 Leveraging Feature Selection for Designing Cost-effective
Models.

(Q3) Addressing the challenges of high-dimensional data efficiently. The
second part of the thesis, presents solutions to address existing challenges of the
high-dimensional data. In response to research question 3, we present two novel
algorithms to perform efficient feature selection. We leverage the power of SNNs
to advance the scalability of feature selection to high-dimensional datasets.

• QuickSelection. In Chapter 4, we proposed QuickSelection, the first
method to exploit the power of sparse neural networks and dynamic
sparse training to perform energy-efficient feature selection. QuickSelec-
tion blends the representation learning power of neural networks and
dimensionality reduction to perform efficient and effective learning. It
introduces neuron strength within sparse neural networks to determine
feature importance. QuickSelection employs sparsely connected denois-
ing autoencoders trained with the dynamic sparse training approach to
derive the ranking of the features efficiently. This efficiency is shown with
faster processing and reduced memory consumption. Through extensive
experimental evaluation, we show that QuickSelection is the top performer
in balancing accuracy and computational efficiency compared to neural
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network-based and classical feature selection methods. QuickSelection’s
early detection of relevant features adds to its effectiveness. Our proposed
method aligns with the growing emphasis on trustworthy AI that is both
accurate and environmentally responsible. In an era of high-dimensional
and complex datasets, QuickSelection addresses the need for cost-effective
and environmentally responsible AI in these challenging environments.

• NeuroFS. Despite the promising results of QuickSelection which exploits
the characteristics of a sparse neural network to perform efficient feature
selection, it might suffer from slow convergence (due to random topology
search) or subpar performance on very high-dimensional datasets (due to
large search space). To address these challenges, in Chapter 5, we propose
NeuroFS, a novel supervised feature selection method that leverages sparse
neural networks with dynamic neuron pruning and regrowing during train-
ing. We introduce for the first time neuron evolution into the dynamics
of the DST framework to gradually remove the unimportant features. In
addition, we exploit gradient weight regrowth to speed up the training con-
vergence. Comparative evaluations against various state-of-the-art feature
selection methods demonstrate that NeuroFS outperforms its competitors
in terms of classification accuracy. NeuroFS demonstrated robustness to
topology changes, finding various topologies with close feature selection
performance. Moreover, NeuroFS showcased superior computational ef-
ficiency compared to other methods like LassoNet, and STG that exploit
MLP with sparsity in the input layer. Overall, this work contributes to
the growing field of feature selection by presenting a resource-efficient
and high-performance solution for addressing the challenges posed by
high-dimensional data.

By addressing the research questions and providing innovative solutions to
enhance the efficiency of deep neural networks through sparsity and feature
selection, this thesis contributes to the development of cost-effective artificial
neural networks. The proposed methods open up new avenues for research
and pave the way for the practical deployment of deep learning models in
various environments with limited computational and memory resources and
high-dimensional data. This research contributes to making AI systems not only
economically efficient but also environmentally responsible.
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6.2 Insights for Practitioners

In this section, we provide practical guidelines for practitioners seeking to
integrate the methodologies outlined in this thesis into their projects. We offer
suggestions on when to utilize these methods over baselines and on which
datasets to apply them to achieve better performance for the task at hand.

Dynamic Sparse Training In Chapter 2, we introduced a new dynamic sparse
training model, named CTRE. We evaluated the performance of CTRE and the
baselines on various classification tasks. As shown by the experiments on a
noisy dataset, CTRE performs significantly better than the baselines in noisy
environments. Therefore, CTRE can be a good choice for the classification of
noisy datasets. Additionally, when analyzing the learning speed, CTRE showed
fast adaptation to the data and gained a reasonable performance earlier than the
baselines. In addition, we provided a truly sparse implementation of CTRE. As
a result, in environments with limited computational resources, CTRE can be a
viable choice.

Automatic Sparsity Tuning In Chapter 3, we presented a method for tuning
the sparsity level when pruning neural networks, particularly when pruning
transformers for time series forecasting. As observed in the experiments, trans-
formers can be pruned to be more computationally efficient in all datasets, and
even outperform the dense models in terms of prediction quality in simple tasks
(such as the weather dataset in our experiments) where over-parameterization
leads to over-fitting. However, when confronted with more intricate tasks such
as traffic and electricity forecasting, overparameterization tends to yield more
precise results. In comparison to alternative techniques for inducing sparsity,
PALS emerges as a favorable option owing to its ability to automatically adjust
the sparsity level without the need for a costly process for its tuning.

Feature Selection We proposed two feature selection methods for unsupervised
and supervised feature selection, named QuickSelection (Chapter 4) and NeuroFS
(Chapter 5), respectively.

• QuickSelection. Our experiments have demonstrated that QuickSelection
stands out as a promising choice for low-dimensional datasets, primarily
due to its efficiency and accuracy. When confronted with datasets with a
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high number of samples, exemplified by MNIST in our experiments, Quick-
Selection continues to beat the baseline methods in terms of cumulative
efficiency and accuracy score. Moreover, for high-dimensional datasets,
statistical-based approaches offer superior computational efficiency but lag
behind QuickSelection in terms of accuracy. Furthermore, QuickSelection
emerges as the preferred option in noisy environments owing to its ability
in identifying relevant features with high accuracy.

• NeuroFS. As shown in our experiments, NeuroFS is a favorable choice
when performing supervised feature selection due to its superior perfor-
mance, and low computational costs. It stands out overall as the best
performer in terms of feature selection performance in low and high-
dimensional datasets and can significantly reduce the memory and FLOPs
count when compared to the deep learning-based competitors. However,
we observed that NeuroFS can be sensitive to noise. Alternative feature
selection methods in noisy environments are QuickSelection (for unsuper-
vised tasks) and LassoNet (for supervised tasks).

6.3 Preliminary Impact

6.3.1 Energy efficiency

One of the main drawbacks of unstructured sparsity is the lack of support for
sparse matrix operations on commodity hardware. Most existing approaches
simulate sparsity by using a binary mask applied to the weights. Therefore, they
fail to fully benefit from the real speed-up of sparse neural networks and energy
consumption reduction. In this thesis, in Chapters 2 and 4, we implemented MLPs
and Autoencoders using a truly sparse code to benefit from the real speedup and
energy consumption reduction of sparse neural networks. Notably, in Appendix
C.1.2, our research demonstrates significant power consumption reductions of
up to an order of magnitude when applied to a high-dimensional dataset like
GLA, compared to its direct competitor, CAE. Moreover, we showed the linear
increase in running time for QuickSelection on CPU compared to the quadratic
growth for CAE on GPU as the number of input features rises. These findings
pave the way to more sustainable approaches in the field of deep learning.
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6.3.2 QuickSelection

QuickSelection has laid the foundation for a novel research direction at the
intersection of dynamic sparse training and feature selection, where performance
and efficiency meet. In [SAPM22], we further explore the idea of neuron strength
introduced in QuickSelection, by taking the sensitivity of the loss to the output
neurons into account for computing input neuron importance. In our analysis,
we show improved performance and speedup in convergence compared to the
baselines. [GSD+23] explores the principle from QuickSelection and takes it
to the world of Deep Reinforcement Learning, showing the effectiveness of
dynamic sparse agents in noisy environments, their ability to focus on task-
relevant features, and their rapid adaptability to new tasks. QuickSelection has
also inspired a range of noteworthy student theses, among which a B.Sc. thesis
won the best student thesis award at the University of Twente [KAM21] and an
M.Sc. thesis has received cum laude distinction at the Eindhoven University of
Technology.

6.4 Limitations

Although CeANNs can be a viable alternative for saving energy in low-resource
devices and data centers and pave the way to achieving environmentally friendly
AI systems, it is crucial to acknowledge their limitations. In this section, we
summarize the current limitations of this research.

The proposed CeANNs leverage unstructured sparsity to reduce compu-
tational costs posed by over-parametrized models or high-dimensional data.
However, they may not fully take advantage of their potential computational
and memory benefits due to the lack of appropriate hardware support for un-
structured sparsity for on-GPU training, as many other methods for obtaining
sparse neural networks. As demonstrated in Chapter 4, we illustrated a sig-
nificant increase in speed by implementing QuickSelection using sparse matrix
operations on the CPU. However, for on-GPU processing, sparsity is simulated
using a binary mask overweight, therefore, the potential gain is shown the-
oretically. This presents a formidable challenge addressing which requires a
deep understanding of hardware architecture and a substantial research effort.
Nonetheless, as the body of work concerning sparse neural networks continues to
expand, there is increasing support for sparsity software and hardware develop-
ment [GZYE20,CGG+21,ZLL+22,EDGS20,HSRN+19,WJH+18,ABB+19,LCC+21].
This ongoing development could lead to enhanced training and inference speeds,
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as well as reduced memory requirements, thereby offering tangible benefits of
CeANNs in real-world applications.

Optimizing the balance between computational efficiency and the desired
performance is a very challenging task. There are instances where reducing
computational costs may lead to slight performance degradation. While the
derived sparsity in model and input features in this thesis can substantially
reduce computational costs and energy consumption in low-resource devices
and data centers, it is essential to recognize that this trade-off could raise
concerns in situations where any reduction in accuracy might compromise user
safety [CDP+19,MUL+20]. Therefore, a thorough examination and adjustment of
the network’s sparsity level and the dimension of selected features are necessary
to ensure the optimal balance between energy efficiency and performance for
specific applications.

6.5 Future Work

In this section, we suggest future directions for researchers to contribute to the
advancement of CeANNs.

Feature Selection for Time Series Data. A promising future direction is the
development of feature selection techniques tailored to handle very large time
series datasets. With the proliferation of large time series data across domains
such as finance, healthcare, and environmental monitoring, the need to efficiently
extract relevant features from these massive and complex datasets has become
increasingly critical [SYD19,DSSK19]. Existing feature selection methods mostly
are designed for tabular datasets and may not adequately address the unique
challenges posed by time series data, including temporal dependencies and noisy
observations. Future research can focus on designing algorithms that select
important features from time series data while reducing computational overhead.
These techniques should be designed to enhance the interpretability, accuracy,
and scalability of time series analysis.

Enhancing Explainability in CeANNs. The integration of explainable AI (XAI)
into this research represents a promising future direction, with the potential to
improve not only the efficiency of artificial neural networks (ANNs) but also
their transparency and interpretability. The developed feature selection models
significantly contribute to enhancing interpretability across various domains by
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providing valuable insights into the datasets and how neural network models
learn the importance of input features in the initial layer. By further developing
methods to make CeANNs models more explainable and interpretable in sub-
sequent layers and decision-making processes (e.g., by studying hidden layer
neuron importance), the research can contribute to comprehending the reasons
and mechanisms governing ANNs’ decision-making, which is crucial for real-
world applications and regulatory compliance [KKS+19,PNBAJ+23,MUL+20].
This approach aligns with the growing demand for AI models that are not
just efficient but also transparent and accountable, particularly in domains like
healthcare, finance, and autonomous systems.

Efficient Architecture Search. One interesting future direction is to efficiently
optimize neural network architectures. Currently, the developed methods in
this thesis focus on fine-tuning sparse connections within fixed network capacity
and/or adjusting sparsity levels. The resource-intensive nature of Neural Architec-
ture Search (NAS) demonstrates the need for more efficient approaches [SGM20].
Therefore, an interesting future study is how such architectural optimization
can be integrated effectively within cost-efficient artificial neural networks. This
investigation has the potential to mitigate the computational burden of architec-
tural exploration while still delivering tailored solutions for diverse applications.
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Appendix A
Additional Experiments and
Analysis for Chapter 2

A.1 Performance Evaluation

In this Appendix, we conduct a comprehensive performance evaluation of the
algorithms discussed in Chapter 2. Particularly, we analyze the results obtained
in Section 2.4.2 in more depth. Our analysis encompasses key dimensions such
as accuracy, learning speed, and computational complexity. We present learning
curves that showcase how these algorithms evolve in terms of classification accu-
racy across multiple datasets. We introduce a novel metric, Training Delay (TD),
to assess learning speed, enabling us to quantify the trade-off between accuracy
and efficiency. Furthermore, we delve into the computational complexity of the
algorithms during training, comparing CTRE with similar methods and exploring
strategies to reduce computational costs. This section offers valuable insights
into the overall performance of these algorithms in different scenarios.

A.1.1 Learning Curves

In this section, we include the learning curves for the experiments of Section
2.4.2 in Figures A.1, A.2, A.3, A.4, A.5, and A.6, which corresponds to Madelon,
Isolet, MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, respectively. The
characteristics of these datasets are presented in Table 2.1 in Chapter 2.
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Figure A.1: Classification accuracy (%) results on Madelon.
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Figure A.2: Classification accuracy (%) results on Isolet.
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Figure A.3: Classification accuracy (%) results on MNIST.
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Figure A.4: Classification accuracy (%) results on Fashion-MNIST.
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Figure A.5: Classification accuracy (%) results on CIFAR10.
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Figure A.6: Classification accuracy (%) results on CIFAR100.
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A.1.2 Learning Speed

To compare the training speed, we define a metric that computes the fraction of
the total training time required to reach a certain level of accuracy. We call this
metric Training Delay (TD) and compute it as follows:

T D = minacciÊth×accmax , i∈{1,2,...,# epochs} i

# epochs
, (A.1)

where acci is the test accuracy at epoch i , th is the threshold hyperparameter
between 0 and 1, accmax is the maximum accuracy achieved by the training
methods for the model with nl hidden neurons and sparsity level ε, and # epochs
is the total number of training epochs. In other words, TD shows the trade-
off between accuracy and learning speed. The lower TD is for a method, the
faster it can be trained to reach a certain desired level of accuracy (determined
by th). Therefore, it gains a better trade-off between accuracy and learning
speed. We believe that minimizing this metric is crucial for low-resource devices
where accuracy is not the only important aspect for evaluating the method’s
performance. Instead, achieving a decent level of accuracy within a minimum
number of training epochs is the primary concern.

For each network with different sizes and training methods, we measure
TD on all datasets. We consider only the high sparsity case (when ε= 1) since
when the network is dense, all the methods have very low TD, and the difference
between them is negligible. However, when we are looking for a highly sparse
sub-network, it takes longer for each method to find the well-performing sub-
network, and the difference among the methods is more apparent. We set the

Table A.1: Training delay (TD) (%) comparison among methods. Empty fields indicate
that the method cannot reach the considered level of accuracy in 500 training
epochs.

Madelon Isolet MNIST Fashion-MNIST CIFAR10 CIFAR100

nlnlnl nlnlnl nlnlnl nlnlnl nlnlnl nlnlnl

εεε Method 100 500 1000 100 500 1000 1005001000 100500 1000 100 500 1000 100 500 1000

SNIP − − − − − − 1.8 2.8 3.2 5.6 8.8 8.6 − − − − − −
RigL − − − − − − 3.2 5.8 9.6 2.8 3.6 4.6 25.2 65.8 − − − −

1 SET − − − 40.0 74.0 − 4.4 11.8 18.2 3.4 9.4 14.2 11.4 39.4 68.4 40.2 − −
CTREseq 16.0 − − 48.0 52.8 52.4 2.2 2.6 3.0 3.6 9.2 12.8 13.4 14.6 16.8 − 40.4 36.6
CTREsim 9.8 20.6 24.8 38.630.6 35.6 2.2 3.0 3.2 3.0 6.2 7.2 11.4 22.4 33.2 66.8 88.6 −
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threshold th to 0.9. Therefore, we compute the training delay for reaching 0.9
of the maximum accuracy achieved on this model. The results are presented in
Table A.1. If a method cannot reach the th ×accmax within the total number of
epochs (500 in these experiments), we keep the corresponding entry empty.

As can be seen in Table A.1, CTRE (including CTREsim and CTREseq) has the
lowest training delay (TD) in 13 out of 18 cases considered. On the Isolet and
the Madelon datasets, some methods cannot reach the required level of accuracy
(0.9 of the maximum accuracy) within the 500 training epochs. SNIP has the
worst performance among these methods and cannot reach the required level
of accuracy on Madelon, Isolet, and CIFAR10. RigL has a similar performance
to SNIP; while it has a decent performance on Fashion-MNIST and MNIST, it
has a poor performance on the other datasets. Finally, SET has comparable
performance to other methods on Fashion-MNIST and MNIST. However, when
the network is highly sparse and large (ε= 1 and nl > 100) on the Isolet dataset,
it does not have a good performance.

A.1.3 Computational Complexity

In this appendix, we compare the algorithms in terms of the computational
complexity. While the computational cost during inference is equal for all
methods (in the case of having the same sparsity level), the computational
complexity during training is different.

We compare the computational complexity with the two closest sparse train-
ing algorithms to CTRE: SET and RigL. Our proposed methods require an extra
cost of computing the cosine similarity matrix for the connections compared to
SET. For each layer in each epoch, CTRE requires computing three dot products
of size m (number of samples) for each connection in this layer to compute the
similarity matrix in Equation 2.2. Therefore, for each layer l , CTRE requires in
the order of O(mN l ) extra computations at each epoch, where N l is the number
of parameters of layer l . However, this additional cost considerably improves the
accuracy and the learning speed (discussed in Appendix A.1.2), particularly on
tabular datasets and highly sparse neural networks. Therefore, depending on
the application, the specialists should choose the trade-off between accuracy and
the computational cost when finding highly sparse neural networks. Compared
to RigL, which requires computing occasional dense gradients, CTRE has the
same order of complexity. This is because the order of computing gradients for
back-propagation is also O(mN l ). However, CTRE outperforms RigL, especially
in the high-sparsity region.
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Table A.2: Classification accuracy (%) of CTREsim with different number of training
samples for computing the similarity matrices.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon CTREsim 81.6±1.3 73.0±1.673.0±1.673.0±1.6 65.6±3.065.6±3.065.6±3.0 79.4±1.7 77.7±1.4 73.0±1.573.0±1.573.0±1.5 78.8±2.2 78.5±1.0 74.6±1.474.6±1.474.6±1.4
CTREsample2 81.0±2.3 72.4±1.4 65.3±1.6 79.7±0.579.7±0.579.7±0.5 77.9±0.977.9±0.977.9±0.9 71.7±2.8 80.6±0.780.6±0.780.6±0.7 78.6±1.0 74.1±0.4
CTREsample4 81.9±1.081.9±1.081.9±1.0 71.3±1.8 64.4±1.0 79.0±1.1 77.8±0.8 72.7±1.6 78.7±1.1 79.1±1.479.1±1.479.1±1.4 74.1±0.7

Isolet CTREsim 87.5±0.887.5±0.887.5±0.8 93.4±0.793.4±0.793.4±0.7 94.3±0.8 87.8±1.1 91.7±1.1 93.9±0.5 88.3±0.7 91.3±1.3 93.1±0.6
CTREsample2 81.9±4.2 92.8±0.3 94.7±0.3 88.4±0.888.4±0.888.4±0.8 92.6±0.492.6±0.492.6±0.4 94.0±1.194.0±1.194.0±1.1 88.7±0.5 92.4±0.7 94.0±0.294.0±0.294.0±0.2
CTREsample4 85.0±1.3 93.0±0.8 94.9±0.594.9±0.594.9±0.5 87.9±0.5 91.7±1.1 93.8±0.1 89.4±1.089.4±1.089.4±1.0 92.5±0.292.5±0.292.5±0.2 93.8±0.5

MNIST CTREsim 95.5±0.2 97.3±0.197.3±0.197.3±0.1 97.8±0.197.8±0.197.8±0.1 96.4±0.296.4±0.296.4±0.2 97.7±0.1 98.0±0.198.0±0.198.0±0.1 96.6±0.296.6±0.296.6±0.2 97.7±0.1 97.9±0.197.9±0.197.9±0.1
CTREsample2 95.7±0.095.7±0.095.7±0.0 97.0±0.1 97.7±0.0 96.3±0.0 97.8±0.097.8±0.097.8±0.0 97.8±0.0 96.2±0.0 97.9±0.197.9±0.197.9±0.1 97.8±0.1
CTREsample4 95.1±0.2 97.3±0.197.3±0.197.3±0.1 97.6±0.2 96.1±0.2 97.7±0.1 97.8±0.1 96.6±0.196.6±0.196.6±0.1 97.7±0.1 97.8±0.0

Fashion-
MNIST

CTREsim 85.8±0.385.8±0.385.8±0.3 87.5±0.3 88.0±0.288.0±0.288.0±0.2 86.4±0.5 88.1±0.288.1±0.288.1±0.2 88.3±0.2 86.5±0.3 88.1±0.3 88.3±0.2
CTREsample2 85.7±0.1 87.4±0.1 87.7±0.3 86.3±0.7 87.9±0.1 88.1±0.2 86.3±0.2 88.3±0.088.3±0.088.3±0.0 88.0±0.2
CTREsample4 85.6±0.4 87.6±0.187.6±0.187.6±0.1 88.0±0.188.0±0.188.0±0.1 87.2±0.187.2±0.187.2±0.1 87.5±0.1 88.6±0.188.6±0.188.6±0.1 86.6±0.386.6±0.386.6±0.3 88.0±0.1 88.4±0.288.4±0.288.4±0.2

CIFAR10 CTREsim 48.2±0.448.2±0.448.2±0.4 50.3±0.3 50.5±0.4 50.6±0.4 52.6±0.7 52.5±0.7 50.0±0.4 52.7±0.5 53.5±0.5
CTREsample2 47.8±0.1 49.4±0.4 50.9±0.4 50.9±0.3 52.8±0.452.8±0.452.8±0.4 52.9±0.452.9±0.452.9±0.4 50.4±0.5 53.9±0.153.9±0.153.9±0.1 53.4±0.2
CTREsample4 47.8±0.1 50.8±0.250.8±0.250.8±0.2 51.1±0.451.1±0.451.1±0.4 52.0±0.152.0±0.152.0±0.1 52.7±0.3 52.9±0.652.9±0.652.9±0.6 51.6±0.551.6±0.551.6±0.5 53.6±0.3 53.6±0.553.6±0.553.6±0.5

To further decrease the computational cost of CTRE, we have tried to reduce
the cost of cosine similarity computation by considering a proportion of the
samples to compute the similarity matrix. We run CTREsim with half of the
samples ( CTREsample2) and a quarter of samples ( CTREsample4) to compute the
cosine similarity matrix. The results can be observed in Table A.2. It is clear that
even with half of the samples, CTRE can still achieve a close performance as the
original method on all datasets. Based on these observations, it can be concluded
that only a fraction of samples can be used to compute the similarity matrix. In
this way, we would be able to decrease the computational cost without affecting
the performance.

Further studies can be performed to decrease the computational cost of
deriving the similarity matrix. In short, CTRE is the first step in finding highly
sparse neural networks using neuron characteristics and can be further explored
in future works.
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A.2 Performance Evaluation Using Pure Sparse Im-
plementation

In this appendix, we present the results using the pure sparse implementation.
This code is developed from the sparse implementation of SET1. While the other
training methods for obtaining sparse neural networks mostly use a binary mask
over weights to simulate sparsity, this code is implemented in a purely sparse
manner using Cython and SciPy sparse matrices. We have implemented our
proposed method using this sparse implementation and repeated the experiments
from Section 2.4.2. The results are summarized in Table A.3.

Table A.3: Classification accuracy (%) comparison using pure sparse implementation.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon SET 58.7±2.0 60.4±3.3 58.1±1.5 65.1±2.2 59.6±5.1 61.8±1.0 61.8±1.9 62.1±4.7 61.6±3.9
CTREseq 85.3±0.3 75.1±0.6 67.1±1.4 87.2±1.287.2±1.287.2±1.2 82.1±2.0 75.3±1.0 87.2±0.2 86.6±0.786.6±0.786.6±0.7 75.7±2.7
CTREsim 82.9±1.0 73.9±2.3 66.8±2.7 82.5±1.1 79.4±1.0 74.9±1.2 82.9±1.1 80.4±1.6 74.6±0.6

CTREw/oRandom 86.4±1.286.4±1.286.4±1.2 75.6±1.275.6±1.275.6±1.2 68.5±0.668.5±0.668.5±0.6 87.2±1.287.2±1.287.2±1.2 82.8±1.182.8±1.182.8±1.1 77.0±0.677.0±0.677.0±0.6 88.2±0.688.2±0.688.2±0.6 84.5±0.6 77.9±1.477.9±1.477.9±1.4

Isolet SET 87.6±1.087.6±1.087.6±1.0 94.1±0.194.1±0.194.1±0.1 94.5±0.4 86.2±1.2 93.7±0.7 94.4±0.1 86.1±0.5 94.1±0.1 94.7±0.1
CTREseq 83.1±1.2 93.7±0.4 94.6±0.794.6±0.794.6±0.7 91.1±0.391.1±0.391.1±0.3 94.2±0.394.2±0.394.2±0.3 94.5±0.494.5±0.494.5±0.4 90.9±1.190.9±1.190.9±1.1 94.3±0.494.3±0.494.3±0.4 94.8±0.394.8±0.394.8±0.3
CTREsim 85.6±0.6 93.2±0.7 94.6±0.694.6±0.694.6±0.6 88.6±1.3 93.7±0.4 94.4±0.2 88.8±0.6 93.5±0.1 94.0±0.1

CTREw/oRandom 81.1±1.1 92.9±1.6 94.6±0.294.6±0.294.6±0.2 89.1±0.5 93.8±0.1 93.9±0.3 90.6±0.9 93.9±0.4 93.4±0.7

MNIST SET 95.0±0.2 97.5±0.1 97.8±0.1 94.9±0.2 97.5±0.0 97.8±0.1 95.2±0.2 97.3±0.1 97.6±0.0
CTREseq 95.7±0.295.7±0.295.7±0.2 97.8±0.197.8±0.197.8±0.1 97.9±0.097.9±0.097.9±0.0 97.3±0.2 97.9±0.297.9±0.297.9±0.2 98.0±0.098.0±0.098.0±0.0 97.6±0.097.6±0.097.6±0.0 97.9±0.197.9±0.197.9±0.1 97.9±0.197.9±0.197.9±0.1
CTREsim 95.4±0.1 97.6±0.0 97.7±0.0 96.4±0.6 97.4±0.1 97.8±0.0 96.7±0.6 97.2±0.0 97.7±0.1

CTREw/oRandom 95.5±0.1 97.4±0.0 97.7±0.1 97.4±0.197.4±0.197.4±0.1 97.7±0.1 97.5±0.2 97.6±0.197.6±0.197.6±0.1 97.8±0.0 97.8±0.2

Fashion-
MNIST

SET 85.6±0.185.6±0.185.6±0.1 87.7±0.1 88.5±0.188.5±0.188.5±0.1 85.2±0.2 87.9±0.1 88.4±0.3 85.2±0.2 87.8±0.0 88.5±0.2
CTREseq 85.4±0.4 88.0±0.188.0±0.188.0±0.1 88.4±0.0 86.8±0.186.8±0.186.8±0.1 88.5±0.288.5±0.288.5±0.2 88.6±0.188.6±0.188.6±0.1 87.1±0.487.1±0.487.1±0.4 88.6±0.288.6±0.288.6±0.2 88.7±0.288.7±0.288.7±0.2
CTREsim 84.9±0.8 87.4±0.3 88.1±0.1 85.7±0.6 87.7±0.1 88.2±0.1 85.9±0.7 87.5±0.1 88.4±0.2

CTREw/oRandom 83.7±0.2 87.3±0.2 87.7±0.2 85.9±0.2 87.9±0.3 88.0±0.1 86.5±0.4 88.0±0.2 87.9±0.0

CIFAR10 SET 48.5±0.4 52.7±0.5 54.0±0.454.0±0.454.0±0.4 47.7±0.4 53.3±0.3 54.3±0.4 46.2±0.2 52.8±0.2 54.5±0.7
CTREseq 48.5±0.5 53.3±0.353.3±0.353.3±0.3 53.0±0.6 52.2±0.352.2±0.352.2±0.3 55.7±0.655.7±0.655.7±0.6 55.6±0.355.6±0.355.6±0.3 54.2±0.354.2±0.354.2±0.3 55.8±0.155.8±0.155.8±0.1 56.2±0.156.2±0.156.2±0.1
CTREsim 48.6±0.048.6±0.048.6±0.0 51.0±0.0 51.3±0.0 50.1±0.6 55.4±0.1 54.3±0.2 50.2±0.9 55.8±0.455.8±0.455.8±0.4 55.8±0.0

CTREw/oRandom 45.5±0.5 49.6±0.3 49.0±0.4 51.2±0.3 53.5±0.3 53.0±0.1 53.8±0.4 53.6±0.0 54.7±0.1

As can be seen in Table A.3, the results are subtly different from Table
2.2 in Section 2.4.2. This difference arises from some small differences in
the implementation. One of the main differences is that in Section 2.4.2, the
TensorFlow library is used for implementing the neural network. However,

1The pure sparse implementation of SET can be found on
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks.

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
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this implementation uses Numpy, Scipy, and Cython to perform sparse matrix
operations. Another difference is the weight initialization policy. While in the
experiments of Section 2.4.2, weights are initialized using a uniform distribution,
in the sparse implementation weights are initialized using a normal distribution
which seems more beneficial to this implementation. Overall, in most cases, the
results in Table A.3 are higher than the results in Table 2.2.

A.3 Cosine vs. Euclidean-based Similarity Metric

In this section, we analyze the effectiveness of the cosine similarity metric in
evolving the topology of the sparse neural network compared to other similarity
metrics. To achieve this, we consider Euclidean-based similarity metric. In-
stead of computing the importance of the non-existing connections using cosine
similarity (Equation 2.2), we compute it as:

Si ml
p,q = 1

1+d(Al
:,q ,Al−1

:,p )
, (A.2)

where d(a,b) is the Euclidean distance between vectors a and b. We replace
Equation A.2 with Equation 2.2 in Algorithm 2 and we call this method as
CTREsim-euclidean. We compare CTREsim-euclidean with CTREsim. The results are
presented in Table A.4.

As shown in Table A.4, CTREsim outperforms CTREsim-euclidean in most cases
considered. Particularly, in the high sparsity regime (ε= 1), there is a consider-
able gap between the performance of these two methods. It can be concluded that
the Euclidean-based similarity metric is not very informative in evolving the topol-
ogy of sparse neural networks. This might stem from the sensitivity of this metric
to the vectors’ magnitude. Cosine-similarity metric, a magnitude-insensitive
metric that also presents a biologically plausible approach for measuring the
importance of the connections, is a good choice for obtaining sparse neural
networks in the CTRE algorithm.

A.4 Ablation Study: Cosine and Random-based Weight
Addition Order in CTREseq

In this section, we perform an ablation study on the CTREseq algorithm to
measure the effectiveness of the cosine-based and random search order in the
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Table A.4: Classification accuracy (%) comparison among cosine and euclidean-based
similarity metrics in CTRE algorithm.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon CTREsim 81.6±1.381.6±1.381.6±1.3 73.0±1.673.0±1.673.0±1.6 65.6±3.065.6±3.065.6±3.0 79.4±1.779.4±1.779.4±1.7 77.7±1.477.7±1.477.7±1.4 73.0±1.573.0±1.573.0±1.5 78.8±2.278.8±2.278.8±2.2 78.5±1.078.5±1.078.5±1.0 74.6±1.474.6±1.474.6±1.4
CTREsim-euclidean 77.2±1.7 65.6±1.3 63.7±0.7 71.5±4.2 74.2±1.6 65.8±4.3 70.6±4.5 76.9±1.8 67.8±2.2

Isolet CTREsim 87.5±0.887.5±0.887.5±0.8 93.4±0.7 94.3±0.8 87.8±1.187.8±1.187.8±1.1 91.7±1.191.7±1.191.7±1.1 93.9±0.593.9±0.593.9±0.5 88.3±0.788.3±0.788.3±0.7 91.3±1.3 93.1±0.6
CTREsim-euclidean 83.0±1.3 93.7±0.693.7±0.693.7±0.6 94.5±0.794.5±0.794.5±0.7 72.0±4.1 91.6±0.3 93.7±0.8 49.8±6.1 91.4±0.791.4±0.791.4±0.7 93.6±0.593.6±0.593.6±0.5

MNIST CTREsim 95.5±0.295.5±0.295.5±0.2 97.3±0.197.3±0.197.3±0.1 97.8±0.197.8±0.197.8±0.1 96.4±0.296.4±0.296.4±0.2 97.7±0.197.7±0.197.7±0.1 98.0±0.198.0±0.198.0±0.1 96.6±0.296.6±0.296.6±0.2 97.7±0.197.7±0.197.7±0.1 97.9±0.197.9±0.197.9±0.1
CTREsim-euclidean 94.6±0.2 97.0±0.1 97.3±0.1 94.3±0.2 97.2±0.1 97.4±0.0 93.8±0.1 96.9±0.0 97.1±0.3

Fashion-
MNIST

CTREsim 85.8±0.385.8±0.385.8±0.3 87.5±0.387.5±0.387.5±0.3 88.0±0.288.0±0.288.0±0.2 86.4±0.586.4±0.586.4±0.5 88.1±0.288.1±0.288.1±0.2 88.3±0.288.3±0.288.3±0.2 86.5±0.386.5±0.386.5±0.3 88.1±0.388.1±0.388.1±0.3 88.3±0.288.3±0.288.3±0.2
CTREsim-euclidean 84.9±0.2 87.1±0.1 87.7±0.1 84.6±0.2 87.4±0.2 87.8±0.2 83.8±0.3 87.4±0.1 87.4±0.4

CIFAR10 CTREsim 48.2±0.448.2±0.448.2±0.4 50.3±0.350.3±0.350.3±0.3 50.5±0.4 50.6±0.450.6±0.450.6±0.4 52.6±0.752.6±0.752.6±0.7 52.5±0.752.5±0.752.5±0.7 50.0±0.450.0±0.450.0±0.4 52.7±0.552.7±0.552.7±0.5 53.5±0.553.5±0.553.5±0.5
CTREsim-euclidean 46.1±0.4 50.1±0.4 50.7±0.450.7±0.450.7±0.4 46.1±1.4 50.5±0.5 51.6±0.2 44.8±0.5 49.5±0.6 51.2±0.3

CIFAR100 CTREsim 13.8±0.413.8±0.413.8±0.4 20.6±0.4 21.9±0.421.9±0.421.9±0.4 17.0±0.317.0±0.317.0±0.3 23.0±0.323.0±0.323.0±0.3 24.6±0.424.6±0.424.6±0.4 17.3±0.417.3±0.417.3±0.4 23.5±0.323.5±0.323.5±0.3 25.1±0.325.1±0.325.1±0.3
CTREsim-euclidean 12.2±0.4 20.7±0.420.7±0.420.7±0.4 21.8±0.3 11.8±0.7 22.5±0.3 24.0±0.2 9.4±1.0 21.9±0.3 23.8±0.4

performance of the algorithm. With this aim, we measure the performance of
two variants of CTREseq (Algorithm 1) that are different from CTREseq in the
order of the cosine and random weight addition:

• CTREabl1:seq starts training with random weight addition, and switches
to cosine-based addition when there is no improvement in the validation
accuracy for eear l y stop epochs.

• CTREabl2:seq splits the training process into two equal phases in terms of
the number of epochs. In the first phase, it adds weights randomly, and
in the second phase, it uses the cosine-similarity information for weight
addition.

We compare the performance of these two algorithms with CTREseq in Table
A.5. CTREseq outperforms CTREabl1:seq and CTREabl2:seq in the majority of the
experiments. In high sparsity regime and large network size (ε= 1, nl = 1000),
there is a considerable gap between their performance. The reason behind
this difference is that by using cosine similarity-based weight addition at the
beginning of the algorithm, the algorithm finds a well-performing sub-network
very fast. Then, in the rest of the algorithm, this topology is improved using
cosine information and random search. However, by starting with random
weight addition, it might take longer for the algorithm to reach a reasonable
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Table A.5: Classification accuracy (%) comparison among variants of CTREseq algorithm.

nl = 100nl = 100nl = 100 nl = 500nl = 500nl = 500 nl = 1000nl = 1000nl = 1000

ϵ ϵ ϵ

Dataset Method 1 5 13 1 5 13 1 5 13

Madelon CTREseq 82.2±2.482.2±2.482.2±2.4 72.5±2.072.5±2.072.5±2.0 63.9±1.263.9±1.263.9±1.2 61.2±2.461.2±2.461.2±2.4 81.5±1.481.5±1.481.5±1.4 71.8±2.071.8±2.071.8±2.0 61.1±1.9 83.9±2.083.9±2.083.9±2.0 76.5±1.976.5±1.976.5±1.9
CTREabl1:seq 57.8±2.3 58.1±3.1 57.8±2.1 61.0±3.1 59.6±3.0 59.4±2.0 61.1±2.9 59.7±1.1 58.3±2.4
CTREabl2:seq 59.2±3.0 58.0±3.5 58.4±2.3 61.1±2.0 58.7±2.9 58.8±2.4 61.6±0.961.6±0.961.6±0.9 58.4±1.6 58.7±1.9

Isolet CTREseq 86.7±1.8 92.4±1.1 94.3±0.5 87.2±2.087.2±2.087.2±2.0 92.3±0.6 94.0±0.4 86.7±1.686.7±1.686.7±1.6 91.5±1.0 93.7±0.593.7±0.593.7±0.5
CTREabl1:seq 89.5±1.189.5±1.189.5±1.1 93.7±0.5 94.9±0.594.9±0.594.9±0.5 85.8±1.0 93.3±0.893.3±0.893.3±0.8 94.4±0.494.4±0.494.4±0.4 72.5±2.3 92.3±0.6 93.5±0.9
CTREabl2:seq 89.0±1.3 93.8±0.693.8±0.693.8±0.6 94.6±0.7 85.8±1.5 93.1±0.8 94.2±0.9 75.1±3.9 92.4±0.992.4±0.992.4±0.9 93.3±0.7

MNIST CTREseq 95.7±0.295.7±0.295.7±0.2 97.3±0.297.3±0.297.3±0.2 97.7±0.197.7±0.197.7±0.1 97.0±0.297.0±0.297.0±0.2 97.6±0.297.6±0.297.6±0.2 97.8±0.197.8±0.197.8±0.1 97.3±0.197.3±0.197.3±0.1 97.7±0.197.7±0.197.7±0.1 97.8±0.197.8±0.197.8±0.1
CTREabl1:seq 95.5±0.3 97.1±0.1 97.6±0.1 95.8±0.2 97.3±0.1 97.5±0.1 95.9±0.1 97.3±0.1 97.2±0.1
CTREabl2:seq 95.5±0.2 97.1±0.1 97.6±0.1 96.1±0.1 97.4±0.2 97.5±0.1 96.0±0.1 97.4±0.1 97.3±0.0

Fashion-
MNIST

CTREseq 85.8±0.5 87.5±0.387.5±0.387.5±0.3 87.4±0.3 87.1±0.487.1±0.487.1±0.4 87.9±0.387.9±0.387.9±0.3 88.0±0.288.0±0.288.0±0.2 87.3±0.287.3±0.287.3±0.2 88.0±0.388.0±0.388.0±0.3 88.3±0.288.3±0.288.3±0.2
CTREabl1:seq 85.7±0.2 87.5±0.287.5±0.287.5±0.2 87.8±0.2 86.3±0.3 87.7±0.2 87.9±0.3 86.0±0.2 87.7±0.3 87.5±0.3
CTREabl2:seq 85.9±0.385.9±0.385.9±0.3 87.4±0.2 87.9±0.287.9±0.287.9±0.2 86.4±0.2 87.7±0.0 87.7±0.2 86.2±0.1 87.7±0.1 87.6±0.2

CIFAR10 CTREseq 47.9±0.8 50.1±0.550.1±0.550.1±0.5 50.1±0.5 51.3±0.551.3±0.551.3±0.5 52.7±0.552.7±0.552.7±0.5 52.6±0.652.6±0.652.6±0.6 52.0±0.752.0±0.752.0±0.7 53.2±0.653.2±0.653.2±0.6 53.6±0.653.6±0.653.6±0.6
CTREabl1:seq 48.1±0.448.1±0.448.1±0.4 49.3±0.6 50.5±0.450.5±0.450.5±0.4 49.3±0.4 50.9±0.4 51.1±0.5 48.9±0.4 50.9±0.4 50.8±0.7
CTREabl2:seq 47.8±0.2 49.9±0.4 50.3±0.2 49.2±0.4 50.8±0.4 51.1±0.2 48.6±0.1 51.0±0.1 50.7±0.3

CIFAR100 CTREseq 12.7±0.7 21.1±0.321.1±0.321.1±0.3 21.8±0.521.8±0.521.8±0.5 18.7±0.418.7±0.418.7±0.4 23.6±0.423.6±0.423.6±0.4 24.0±0.424.0±0.424.0±0.4 21.4±0.421.4±0.421.4±0.4 23.9±0.523.9±0.523.9±0.5 24.7±0.424.7±0.424.7±0.4
CTREabl1:seq 14.9±0.614.9±0.614.9±0.6 20.5±0.3 21.5±0.5 13.9±2.3 22.8±0.3 23.8±0.6 1.0±0.0 23.6±0.3 24.3±0.4
CTREabl2:seq 14.5±0.3 20.4±0.1 21.4±0.3 14.1±0.9 22.8±0.0 24.0±0.124.0±0.124.0±0.1 1.0±0.0 23.4±0.4 24.6±0.2

level of performance. This results in a lower accuracy than CTREseq at the end of
training.

To summarize, while starting with cosine similarity-based weight addition
and switching to random search might seem counter-intuitive, we show that this
strategy is beneficial for the CTRE algorithm.





Appendix B
Additional Experiments and
Analysis for Chapter 3

B.1 Experimental Settings

B.1.1 Datasets

The datasets are summarized in Table 3.2.

1. Electricity1 dataset includes the hourly electricity consumption for 321
consumers between 2012 and 2014.

2. ETT [ZZP+21] (Electricity Transformer Temperature) dataset contains load
and oil temperature measurements from electricity transformers. 3)

3. Exchange [LCYL18] dataset consists of daily exchange rates from 8 coun-
tries between 1990 and 2016.

4. Illness2 dataset includes weekly collected data from influenza-like illness
patients between 2002 and 2021 reported by Centers for Disease Control
and Prevention of the United States.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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5. Traffic3 dataset contains road occupancy rates in San Francisco Bay area
freeways.

6. Weather4 consists of measurements of 21 weather indicators collected every
10 minutes in 2020.

All datasets are divided in chronological order into the train, validation, and
test sets with a split ratio of 7:2:2 (except for the ETT dataset where we use
6:2:2 split ratio).

B.1.2 Prediction Quality Evaluation Metrics

We use MSE and MAE as the evaluation metrics, which can be computed as
below:

MSE(X̃t :t+H ,Xt :t+H ) = 1

H
ΣH−1

i=0 (x̃t+i −xt+i )2. (B.1)

M AE(X̃t :t+H ,Xt :t+H ) = 1

H
ΣH−1

i=0 |x̃t+i −xt+i |. (B.2)

B.1.3 Hyperparameters

The settings of the transformer models and the hyperparameter values are
adopted from the NSTransformer implementation5. Sequence length L was set
to 36 for the Illness dataset and 96 for the other datasets. Several values for
prediction length were tested in the experiments: H ∈ {96,192,336,720} (except
for the Illness dataset for which H ∈ {24,36,48,60}). The models considered in the
experiments are all trained with the ADAM optimizer with a learning rate of 10−4.
The batch size used in the experiments was equal to 32. A maximum number of
10 epochs was used for each experiment. Each transformer model consisted of
two encoder layers and one decoder layer. Model dimension dmodel was set to
512 in the experiments unless stated otherwise. PALS starts from a dense model
(Initial density Di ni t = 1). The pruning rate ζ is initialized to 0.5 and decreased
during training with a cosine decay schedule. The values of pruning rate factor
γ and loss freedom factor λ are optimized in {1.05,1.1,1.2} on the validation set
using a single random seed for each experiment. Minimum sparsity Smi n and

3https://pems.dot.ca.gov/
4https://www.bgc-jena.mpg.de/wetter/
5https://github.com/thuml/Nonstationary_Transformers

https://pems.dot.ca.gov/
https://www.bgc-jena.mpg.de/wetter/
https://github.com/thuml/Nonstationary_Transformers
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maximum sparsity Smax are set to 20 and 90, respectively. These values give
the flexibility to the user to tune the range of the model sparsity based on the
resource availability in their application. The mask update frequency ∆t was
equal to 5 for the Illness dataset and 20 for the other datasets. Each experiment
was run on three different random seeds and the average measurements are
reported for each metric.

B.2 Analyzing Sparsity Effect in Transformers for
Time Series Forecasting

This section presents the results for the sparsity effect in various time series
forecasting transformers. Specifically, we employ GraNet [LCC+21] to prune
each transformer model, and then evaluate their effectiveness at different sparsity
levels.

GraNet gradually prunes a network (in this work, we start from a dense
network) during the training to reach a pre-determined sparsity level while
allowing for connection regeneration. Therefore, it takes advantage of dense-
to-sparse and sparse-to-sparse training by exploring faster the search space and
dynamically optimizing the sparse connectivity during training, respectively, to
find a decent connectivity pattern efficiently. During training, GraNet executes
gradual pruning and zero-cost Neuroregeneration every δt iterations. Gradual
pruning gradually reduces network density towards a specific sparsity level
across multiple pruning iterations. The initial sparsity level can be zero (creating
a dense network, resulting in a dense-to-sparse approach) or higher (starting
from a random sparse topology, resulting in a sparse-to-sparse approach). At
each pruning step, a portion of weights with the lowest magnitudes is pruned,
based on a fixed schedule. This stage is similar to gradual magnitude pruning
(GMP) [ZG17]. Following each pruning step, a zero-cost Neuroregeneration is
executed. This involves dropping a portion of the existing connections with low
magnitudes, which are considered damaged, and adding an equal number of
new connections back to the network. The new connections are chosen from
non-existing connections with the highest gradient value.

The results for the sparsity effect on the performance of various transformer
models are presented in Figure 3.2 in Chapter 3 and Figure B.1. The findings are
discussed in depth in Section 3.3 in Chapter 3.
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(a) Sparsity effect for H = 192 (H = 36 for the Illness dataset) in terms of MSE loss.
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(b) Sparsity effect for H = 336 (H = 48 for the Illness dataset) in terms of MSE loss.
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(c) Sparsity effect for H = 720 (H = 60 for the Illness dataset) in terms of MSE loss.

Figure B.1: Sparsity effect on the performance of various transformer models for time
series forecasting on benchmark datasets in terms of MSE loss for various
prediction lengths as indicated in each figure. Each model is sparsified using
GraNet [LCC+21] to sparsity levels (%) ∈ {25,50,65,80,90,95}. Sparsity=0
indicates the original dense model.

B.3 Comparison Results

The detailed results of the experiments performed in Section 3.5.2 are presented
in Table B.1.

B.4 Univariate results

The results are presented in Figures B.2 and B.3 and discussed in Section 3.5.2
in Chapter 3.
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Table B.3: Summary of the results on the ETTm2 and Exchange datasets in Table B.2.
For each experiment on a transformer model and dataset, the average MSE,
MAE, and number of parameters (×106) for various prediction lengths are
reported before and after applying PALS. The difference between these results
is shown in % where the blue color means improvement of PALS compared to
the corresponding dense model.

Model ETTm2-uni Exchange-uni
MSE MAE #Params MSE MAE #Params

NSTransformer 0.143 0.285 10.6 0.440 0.485 10.5
+PALS 0.140 0.277 1.7 0.425 0.470 8.4

Difference 2.4% ↓ 2.6% ↓ 83.9% ↓ 3.3% ↓ 3.1% ↓ 19.8% ↓
FEDformer 0.122 0.265 17.8 0.534 0.520 17.8

+PALS 0.121 0.262 2.2 0.557 0.531 12.2
Difference 1.1% ↓ 1.0% ↓ 87.9% ↓ 4.2% ↑ 2.2% ↑ 31.5% ↓
Autoformer 0.152 0.300 10.5 0.605 0.561 10.5

+PALS 0.149 0.297 1.4 0.608 0.561 7.7
Difference 2.1% ↓ 0.9% ↓ 86.9% ↓ 0.5% ↑ 0.1% ↓ 27.1% ↓
Informer 0.153 0.304 11.3 1.206 0.852 11.3
+PALS 0.151 0.303 3.8 1.223 0.866 8.4

Difference 1.7% ↓ 0.4% ↓ 66.4% ↓ 1.4% ↑ 1.6% ↑ 25.7% ↓
Transformer 0.140 0.286 10.5 1.698 0.928 10.5

+PALS 0.128 0.274 3.8 1.487 0.887 8.3
Difference 8.5% ↓ 4.2% ↓ 63.9% ↓ 12.4% ↓ 4.4% ↓ 21.2% ↓

B.5 Hyperparameter Sensitivity Analysis

In this Appendix, we present the results for the hyperparameter sensitivity of
PALS. We vary the values of γ and λ in {1.05,1.1,1.2}. The results are presented
in Table B.4 and discussed in Section 3.6.2.

B.6 Pruning DLinear with PALS

In this Appendix, we train PALS with the DLinear [ZCZX22] model which is
an MLP-based model for time series forecasting and has proven to be effective
across various datasets. While our focus in this work is to reduce the complexity
of transformers for time series forecasting, we want to show the generality of
our proposed approach to other models. We demonstrate that PALS can be also
applied to these models (which are computationally cheaper than transformers)
to decrease the model size even more. As an example, we apply PALS to DLinear.

In Table B.5, the results of applying PALS to DLinear in terms of MSE and the
sparsity level are presented. In most cases considered, PALS can prune DLinear
without compromising loss. On the Electricity, ETTm2, Traffic, and Weather
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datasets, PALS can prune ∼ 90% of the connections while achieving comparable
loss. This shows the effectiveness of PALS when applied to an MLP-based model.

Finally, we want to highlight that our goal in this work is not to propose a
new forecasting model and beat the state-of-the-art for time series forecasting.
Instead, we aim to decrease the high computational costs of models for time series
forecasting while finding automatically a decent sparsity level and potentially
improving their generalization. The reason that we focus on transformers is
that they are considered to be computationally expensive while performing
well in time series forecasting, and as shown in [WHL+22], transformer-based
models perform generally well in other time series analysis tasks, including,
classification, anomaly detection, and imputation compared to the MLP-based
models [ZCZX22]. Therefore, they can be a promising direction for future time
series analysis research. However, PALS is orthogonal to forecasting models and
can be applied to any deep learning-based model to reduce its computational
costs.

Table B.5: Effectiveness of PALS for pruning DLinear model [ZCZX22]. Each row presents
the results of DLinear before and after applying PALS in terms of MSE, for each
prediction length. The achieved sparsity level is shown in parenthesis as %.

Model Electricity ETTm2 Exchange Illness Traffic Weather

96/24 DLinear 0.140 0.172 0.094 1.997 0.413 0.175
+PALS 0.141 (90.2%) 0.181 (90.0%) 0.086 (25.5%) 1.984 (34.1%) 0.412 (90.3%) 0.177 (90.2%)

192/36 DLinear 0.153 0.235 0.168 2.090 0.424 0.217
+PALS 0.154 (90.2%) 0.249 (90.1%) 0.173 (20.8%) 2.130 (29.8%) 0.424 (90.2%) 0.218 (90.2%)

336/48 DLinear 0.169 0.307 0.322 2.058 0.437 0.263
+PALS 0.170 (90.2%) 0.301 (82.7%) 0.324 (24.7%) 2.124 (32.6%) 0.436 (90.1%) 0.262 (90.2%)

720/60 DLinear 0.204 0.390 0.959 2.375 0.467 0.328
+PALS 0.204 (90.1%) 0.433 (90.3%) 0.963 (38.0%) 2.358 (44.3%) 0.467 (90.2%) 0.324 (90.2%)

B.7 Efficiency of PALS

In this appendix, we discuss the efficiency of PALS in terms of computational
costs from various perspectives.

B.7.1 Training FLOPs

In this section, we present a comprehensive analysis of the training computa-
tional efficiency, as outlined in Table B.6. By looking into the inference FLOPs in
Table 3.3 in Chapter 3, we can observe that the efficiency gain during training is
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even higher than inference. This observation underscores the significance of op-
timizing computational resources for training, a critical aspect in the deployment
of machine learning algorithms.

B.7.2 Pruning Capabilities

Based on the observations in Section 3.6.1, PALS achieves the highest average
sparsity level among the considered pruning and sparse training methods. More
importantly, it finds the optimal sparsity level automatically without requiring
any prior information, while most pruning and sparse training algorithms need
to receive the sparsity level as an input of the algorithm. In short, PALS can find
a network with higher sparsity than the competitors (GMP, GraNet, and RigL),
where the sparsity level is found automatically.

B.7.3 Convergence Speed

Another factor that we consider regarding the efficiency of the methods is the
convergence speed. If a method converges faster than the others, it can be
considered to be more efficient in terms of resource usage.

To compare the convergence speed of each model, we compare the training
epochs. As we use early stopping during training, each training round might
not need the full training epochs (which is set to 10). In Table B.7, we report
the average number of training epochs for various datasets. The results are an
average for different prediction lengths and three random seeds. While GraNet
needs almost full training time due to using a fixed pruning schedule which is
determined based on the number of epochs, PALS can automate the pruning
speed based on the loss. On four out of six datasets, PALS converges faster than
GraNet and the dense model. On the Weather dataset, PALS requires longer
training time than the dense model. As will be explained in Section B.7.4, PALS
performs most of this training at a very high sparsity level (∼ 90%), thus being
resource-efficient. Overall, PALS can achieve a higher or comparable speed to
the dense model in most cases considered.

B.7.4 Sparsity During Training

Another factor affecting the efficiency of PALS is the sparsity during training.
As in our experiments, PALS starts from a dense network, we analyze when it
reaches the final sparsity and how the sparsity changes during training. Then, we
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Table B.7: Comparison of convergence speed in terms of the number of training epochs
on the NSTransformer model. The results are average over various prediction
lengths of H ∈ {96,192,336,720} (except for the Illness dataset for which H ∈
{24,36,48,60} ).

Dataset PALS GraNet Dense

Electricity 8.83 9.75 8.92
ETTm2 4.58 9.00 4.92

Exchange 5.83 9.42 4.33
Illness 7.97 9.58 8.92
Traffic 8.83 9.50 9.5

Weather 7.00 9.08 4.08

would be able to analyze whether the forward pass is mostly performed sparsely
or not.

To achieve this, we plot the sparsity level during the training of PALS for each
transformer model and dataset for various prediction lengths. The sparsity levels
are measured after each pruning iteration which is repeated every 5 batches on
the Illness dataset and every 20 batches on the other datasets. These values are
measured till the last pruning iteration before saving the model. The results for
all models are presented in Figure B.2.

In Figure B.2, due to different convergence speeds on each dataset, each
model requires a different number of training epochs. As the pruning is tuned
based on the loss value, the pruning speed varies for each dataset and model.
For example, on the Weather, Electricity, and Ettm2 datasets, for most of the
considered transformer models and prediction lengths, the models reach the
final sparsity level within a few training epochs. However, for the Exchange,
Illness, and Traffic datasets, the convergence speed can be different among
different models and prediction lengths. Also, in these datasets, the final sparsity
is reached slower than the earlier category (Weather, Electricity, and Ettm2
datasets). However, in most cases considered, the final sparsity is reached only
within half of the training period.

Overall, it can be observed that in most cases PALS reaches the final sparsity
level in a few epochs. Therefore, the forward pass during training is performed
sparsely for a large fraction of the training process.
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(c) FEDformer.
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(e) Transformer.

Figure B.2: Sparsity level of each network during training of PALS. In most cases, the final
sparsity is achieved within a few epochs after the training starts. Therefore,
the forward pass during training is performed sparsely for a large fraction of
the training process.

B.7.5 Sparse Implementation.

Another aspect regarding efficiency is concerned with the true sparse implemen-
tation. Further steps are required to achieve the full advantage of GPU speedup.
However, this is a challenging research question that is out of the scope of the
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current work. Unstructured sparsity (e.g., pruning connections of a network as
we use in this work) still suffers from hardware support [LW23], while proven
to be more effective than structured sparsity (e.g., pruning neurons or other
units) [HABN+21]. Although there have been some works that have implemented
truly sparse neural networks efficiently on CPUs [LCC+21,CMP21,ASvdL+22]
and just for MLPs and Autoencoders, proper and efficient GPU support for sparse
matrix computation is yet to be developed. In this work, we focus on the al-
gorithmic aspect of developing resource-efficient algorithms, while getting full
advantage of sparsity requires a large amount of research that we cannot address
with our current human resources. We hope that works such as ours can light an
awareness signal, bringing more researchers from the community together to
start addressing seriously the “elephant in the room”.

B.8 Model Size Effect

In this Appendix, we study the effect of model size on the performance of PALS by
changing the hidden dimension (dmodel ) in {256, 512 (default), 768} to analyze
the trade-off between loss and parameters count. We have also considered the
results of the original dense model (dmodel = 512). The results for all models in
terms of MSE and parameters count (which are the average results over different
prediction lengths) are presented in Figure B.3.

In Figure B.3, we can observe that in most cases considered, the model can
be pruned significantly with little or no increase in loss. Similar to our discussion
in Section 3.3, we see consistent behavior among the Electricity, Illness, and
traffic datasets, where a higher number of parameters is mostly in favor of loss
reduction. This might come from the inherent complexity of predicting these
datasets due to either a high number of variables (such as Electricity and Traffic
datasets) or the relatively non-stationary nature of data (such as the illness
datasets as shown in [LWWL22]). While being a non-stationary dataset, on
the Exchange dataset, a small (dmodel = 256) sparse model can perform very
closely or better than the original (dmodel = 512) dense model on average among
various transformer architectures. This might be caused by the abilities of the
transformer variants to learn this behavior such that even a pruned small model
can substitute this model. On the other datasets (ETTm2 and Weather which are
relatively stationary with a low number of variables), sparsity results mostly in
a better performance than the dense model.

In short, it can be concluded that various time-series datasets do not demon-
strate homogenous behavior due to their intrinsic differences. Therefore, we
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need to consider these differences when choosing the model size or the right
sparsity level (Section 3.3).

B.9 Prediction Quality

In this Appendix, we evaluate the prediction of different models and discuss how
PALS affects this prediction when pruning them.

The predictions for the transformer on the Weather, ETTm2, and Exchange
datasets, where the most significant changes in loss and parameters count were
seen, are visualized in Figure B.4. It can be observed that PALS significantly
improves the prediction of this model on these three datasets. As summarized in
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Figure B.3: Model size effect
by varying dmodel ∈
{256,512(de f aul t ),768}) on
the prediction performance of
PALS compared to the original
dense model.
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Figure B.4: Forecasting Visualization on
Transformer with and without
PALS on three datasets.
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Table B.1 (Appendix B.3), PALS is able to gain very close prediction performance
on the transformer to the best performer on the Weather dataset (NStransformer)
while pruning 90% of unimportant connections.

Next, we visualize the predictions for each model with and without PALS on
the Weather, Illness, ETTm2 (periodic dataset), and Exchange (without obvious
periodicity) datasets for all transformer variants in Figures B.5, B.6, B.7, and B.8,
respectively. In most cases considered in these figures, PALS is able to gain very
similar or better performance than the dense counterpart model. By removing
unimportant connections, the prediction using PALS is mostly smoother than the
prediction of the dense model. Therefore, it can be concluded that it is possible
to significantly prune transformers for time series forecasting using PALS without
compromising performance.
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Figure B.5: Forecasting Visualization on transformers with and without PALS on the
Weather dataset (H = 192).
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Figure B.6: Forecasting Visualization on transformers with and without PALS on the illness
dataset (H = 60).
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Figure B.7: Forecasting Visualization on transformers with and without PALS on the
ETTm2 dataset (H = 336).
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Figure B.8: Forecasting Visualization on transformers with and without PALS on the
Exchange dataset (H = 720).





Appendix C
Additional Experiments and
Analysis for Chapter 4

C.1 Performance Evaluation

In this appendix, we compare all methods from different aspects including
accuracy, memory usage, running time, energy consumption, and the number of
parameters. We perform different experiments to gain a deep insight into the
performance of QuickSelection.

C.1.1 Discussion: Accuracy and Computational Efficiency Trade-
off

In this section, we compare the performance of all methods in more detail. We
run feature selection for different values of K on each dataset and then measure
the performance.

As shown in Figure C.1, we compare clustering accuracy, classification ac-
curacy, and running time among the methods for different values of K . The
comparison of maximum memory (RAM) requirement is also depicted in Figure
C.2. For all methods except CAE and AEFS, we run the experiments on a single
CPU core. Since the implementations of CAE and AEFS are optimized for GPU,
we measure the running time of these methods using a GPU. However, we also
consider the running time of CAE using a single CPU core. It should be noticed
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(a) Low-dimensional datasets
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(b) MNIST
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(c) High-dimensional datasets

Figure C.1: Comparison of clustering accuracy, classification accuracy, and running time
for various values of K among all the methods considered on eight datasets,
including low-dimensional and high-dimensional datasets. The running time
of CAE and AEFS is measured using a GPU, while all the other methods use
only a single CPU core.
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that since Laplacian score, AEFS, FCAE, and QuickSelection give the ranking of
the features as the output of the feature selection process, we need to run them
just once for all values of K . However, MCFS and CAE need the K value as an
input of their algorithm. So, the running time depends on the value of K . In the
implementation of AEFS, K is used to set the number of hidden values. However,
it is not a requirement of the algorithm.

We summarize the results of the aforementioned plots in Figure C.3; we
compare the methods using the score 1, which is introduced in Section 4.5.1.
This score is computed based on the methods’ ranking in clustering accuracy,
classification accuracy, running time, and memory. As explained in Section 4.5.1,
we give a score of one to each method that is the first or second-best performer in
each of the considered metrics. Then, we compute a sum over all of these scores
on all datasets and on all values of K ; the final scores for each method can be seen
in Figure C.3. The first column depicts the results on low-dimensional datasets
with a low number of samples, including Coil20, Isolet, HAR, and Madelon.
The second column shows the results corresponding to MNIST. Similarly, the
third column corresponds to high-dimensional datasets, including SMK, GLA,
and PCMAC. The total score over all of these datasets is shown in the 4th

column. In Figure C.3, there exist four rows; the first row corresponds to
considering QuickSelection10 and QuickSelection100 simultaneously, and the sum
of their scores are depicted in the second row. The last two rows correspond to
considering each of these two methods separately.

However, since the performance of each method can be different in each
of the three groups of datasets, we compute a normalized version of the score
1, based on the number of datasets in each group. For example, the Laplacian
score has a poor performance on MNIST, and this pattern would be similar
on other datasets with a large number of samples. However, there is just one
dataset with a large number of samples in this experiment. On the other hand,
on high-dimensional datasets with a low number of samples, this method has a
good performance in terms of running time, and we have three datasets with
such characteristics. So, we normalize the values of score 1, such that instead
of giving a score of one to each method, we give a score of one divided by the
number of datasets in the corresponding group. The results of the normalized
score 1 are shown in the last column of Figure C.3.

C.1.2 Energy Consumption

We perform another experiment regarding the comparison of energy consumption
among all methods. The results are presented in Figure C.4. More details
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Figure C.2: Maximum memory usage during feature selection for different values of K .
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regarding this plot are given in Chapter 4, Section 4.5.1.
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Figure C.4: Energy consumption of all methods for different values of K .

C.1.3 Number of Parameters

In Figure C.5, we compare the number of parameters of the autoencoder-based
methods. FCAE, a fully connected-autoencoder with 1000 hidden neurons,
has the highest number of parameters on all datasets. Our proposed network,
sparse DAE, has the lowest number of parameters in most cases. It has 1000
hidden neurons that are sparsely connected to input and output neurons. The
number of parameters of AEFS and CAE depends on the number of selected
features. As also mentioned earlier, the structure of AEFS is similar to FCAE with
a difference in the number of hidden neurons. The number of hidden neurons in
the implementation of AEFS is set to K .

C.2 Parameter Selection

In this appendix, we discuss the effect of three hyperparameters of QuickSelection
on feature selection performance.
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Figure C.5: Number of parameters of autoencoder-based models for different values of K .

C.2.1 Noise Factor

To analyze the effect of the noise level on QuickSelection behavior, we evaluate
the sparse DAE model with different noise factors. To this end, we test different
noise factors between 0 and 0.8. The results can be observed in Figure C.6. These
results are an average of 5 runs for each case.

We can observe that adding 20% to 40% noise on the data seems to be optimal;
it improves the performance on most of the datasets for QuickSelection10 and
QuickSelection100 compared to the model without any noise. We choose the
noise factor of 0.2 for all the experiments.

It is clear in Figure C.6, that setting the noise factor to a large value may
corrupt the input data in such a way that the network would not be able to
model the data distribution accurately. For example, on the Isolet dataset, the
clustering accuracy degrades for 10% when we add 80% noise on the input data
compared to the model with the noise factor of 0.2. Also, the result is less stable
when we add a large amount of noise. In this example, we can observe that
adding 20% noise to the original data improves both classification and clustering
accuracy of QuickSelection100 by approximately 3%.

From this figure, it can be observed that the improvement of adding noise, is
more obvious in QuickSelection100 than QuickSelection10. When we add noise
to the data, it needs more time to learn the original structure of the data. So, we
need to run it for more epochs to get a proper result.
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Figure C.6: Clustering and classification accuracy for feature selection using
QuickSelection10 and QuickSelection100 with different values of noise factor.
We select 50 features from all datasets except Madelon for which we select
20 features.

C.3 Visualization of Selected Features on MNIST

In Figure C.7, we visualize the 50 best features found by QuickSelection on the
MNIST dataset at different epochs. These features are mostly at the center of the
image, similar to the pattern of MNIST digits.

Then, we visualize the features selected for each class separately. In Figure
C.8, each picture at different epochs is the average of the 50 selected features of
all the samples of each class along with the average of the actual samples of the
corresponding class. As we can see, during training, these features become more
similar to the pattern of digits of each class. Thus, QuickSelection is able to find
the most relevant features for all classes.



202 Additional Experiments and Analysis for Chapter 4
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Figure C.7: 50 most informative features of MNIST dataset selected by QuickSelection
after 1, 10, and 100 epochs of training.

 

Epoch 1 Epoch 10 Epoch 100 Class Epoch 1 Epoch 10 Epoch 100 Class 

        

        

        

        

        

Figure C.8: Average of the data samples of each MNIST class corresponding to the 50
selected features after 1, 10, and 100 epochs of training along with the
average of the actual samples of each class.

C.4 Feature Extraction

Although it is not the main focus of this work, we perform a small analysis on
the MNIST dataset to study the performance of sparse DAE as a feature extractor.
We train it to map the high-dimensional features into a lower-dimensional space.

The structure we consider for feature extraction has three hidden layers
with 1000, 50, and 1000 neurons, respectively; the middle layer (50 neurons)
is the extracted low-dimensional representation. We compare the results with
fully-connected DAE (FC-DAE - implemented in Keras [C+15]). We also extract
features using the Principal Component Analysis (PCA) [WEG87] technique as
a baseline method. Then, we train an ExtraTrees classifier on these extracted
features and compute the classification accuracy. The results are presented in
Figure C.9.
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Figure C.9: Classification accuracy for feature extraction using sparse DAE with different
density level on the MNIST dataset (number of extracted features = 50)
compared with FC-DAE and PCA.

To achieve the best density level that suits our network, we test different
ϵ values. As shown in Figure C.9, sparse DAE (density = 3.26%) has the best
performance among them. Sparse DAE (density = 3.26%), FC-DAE, and PCA
achieve 95.2%, 96.2%, and 95.6% accuracy, respectively. Although sparse DAE
can not perform as well as the FC-DAE, it approximately has 54 k parameters
compared to 1.67 m parameters of FC-DAE. Such a small number of parameters
of this model results in a high rise in the running speed and a significant drop
in the memory requirement. Furthermore, it is interesting to observe that a
very sparse DAE (below 1% density) can achieve more than 90.0% accuracy on
MNIST while having about 150 times fewer parameters than FC-DAE.

C.5 Feature Selection on a Large Dataset

In this appendix, we evaluate the performance of the methods on a very large
dataset, in terms of both number of samples and dimensions.

In this experiment, first, we generate two artificial datasets with high number
of samples and features. The choice of an artificial dataset was made to easily
control the number of relevant features of the dataset, as in most of the real-
world datasets the number of informative features are not clear. These datasets
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are generated using sklearn1 library tools, make_classification function, which
generates datasets with a desired number of features and samples. This function
allows us to adjust the number of informative, redundant, and non-informative
features. Table C.1 shows the characteristics of the two artificially generated
datasets. We generated 2 datasets with 40000 samples and 8000 features. How-
ever, the number of informative and redundant features are different in these
datasets. Artificial2 dataset is much noisier than Artificial1; therefore, finding
relevant features of Artificial2 is more difficult compared to finding them on the
Artificial1 dataset.

Table C.1: Characteristics of the two artificially generated datasets. The classification and
clustering accuracy have been obtained using all the features.

Dataset Samples Features
Informative

Features
Redundant
Features Classes

Classification
Accuracy (%)

Clustering
Accuracy (%)

Artificial1 40000 8000 500 3000 5 59.8 30.6
Artificial2 40000 8000 1000 0 5 26.6 22.7

After generating the datasets, we evaluate feature selection performance
of the methods considered in the manuscript, and compare the results with
QuickSelection. The hyperparameters used in this experiment are similar to the
ones used in Section 4.4.1, except for hidden neurons and the sparsity level.
The number of hidden neurons for autoencoder-based methods has been set to
2000, and the hyperparameter of QuickSelection, ϵ, has been adjusted to 40. The
number of selected features (K ) is 1000. The number of training epochs for the
autoencoder-based methods is 100. However, since the QuickSelection did not
converge in 100 epochs on the Artificial2 dataset, we continued the training until
epoch 200. The results of this experiment are presented in Table C.2.

As can be seen in Table C.2, QuickSelection100 outperforms all the other
methods in terms of classification accuracy on both datasets. It can also out-
perform the other methods in terms of clustering accuracy on the Artificial2
dataset. As mentioned earlier, QuickSelection achieves a higher accuracy on the
Artificial2 dataset when it is trained for more than 100 epochs. However, since
for all the other methods we use 100 epochs, we only consider the results of
QuickSelection100 to have a fair comparison (it should be noted that increasing
the number of training epochs did not improve the results of the other methods).

1https://scikit-learn.org/
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Table C.2: Feature selection results on two artificially generated datasets (K = 1000)

Artificial1 Dataset Artificial2 Dataset Number of Parameters

Method
Classification
Accuracy (%)

Clustering
Accuracy (%)

Classification
Accuracy (%)

Clustering
Accuracy (%)

Lap_score 49.4 24.4 22.0 21.3 -
MCFS 68.2 29.3 24.6 21.7 -
CAE 23.4 20.6 21.1 20.4 ∼26×106

AEFS 34.7 23.3 22.8 21.4 ∼32×106

FCAE 43.8 24.3 22.9 21.5 ∼32×106

QS10 68.1 25.7 24.8 21.21 ∼0.8×106

QS100 68.4 24.8 34.5 24.6 ∼0.8×106

QS200 - - 39.7 29.6 ∼0.8×106

On noisy and very large datasets, CAE, AEFS, and FCAE have a poor performance
in feature selection. In addition, they have around 30 times more parameters
than QuickSelection. CAE has the lowest accuracy among these methods; this
method is very sensitive to noise. Lap_score and MCFS have a poor performance
on the Artificial2 dataset that is noisier than Artificial1. On the Artificial1 dataset,
MCFS achieves the highest clustering accuracy. However, the memory require-
ment of MCFS and Lap_score is noticeably large. On this dataset, they need
about 26GB of RAM. However, QuickSelection needs only about 8GB memory.
In summary, QuickSelection100 has a decent performance on these large datasets,
while having the lowest number of parameters.

C.6 Sparse Training Algorithm Analysis

In this appendix, we aim to analyze the effect of the SET training procedure on
the performance of QuickSelection.

We perform QuickSelection using another algorithm to obtain and train the
sparse network, and then, compare the result with the original QuickSelection.
We derive the sparse denoising autoencoder using the lottery ticket hypothesis
algorithm [FC19], as follows. The lottery ticket hypothesis (LTH), first, starts
with training a dense network. After that, it derives the topology of the sparse
network by pruning the unimportant weights of the trained dense network. Then,
using both the sparse topology and the initial weight values of the connections
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in the dense training phase, the network is retrained. On the final obtained
sparse model, we apply QuickSelection principles to select the most informative
features.

In this experiment, the structure, sparsity level, and other hyperparameters
are similar to the settings described in Section 4.4.1; we use a simple autoencoder
with one hidden layer containing 1000 hidden neurons, trained for 100 epochs.
The results of feature selection (K = 50) are available in Tables C.3 and C.4. We
refer to the feature selection performed using QuickSelection principles and the
Sparse DAE obtained with LTH as QSLT H

100 . We use QS100 for the QuickSelection
that is done using the Sparse DAE obtained with SET.

As can be observed in Tables C.3 and C.4, in most of the cases QS100 outper-
forms QSLT H

100 . We believe that optimizing the sparse topology and the weights,

Table C.3: Clustering accuracy (%) using 50 selected features (except Madelon for which
we select 20 features).

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS100 60.2±2.0 35.1±2.7 54.6±4.5 58.2±1.5 48.3±2.4 51.8±0.8 59.5±1.8 52.5±1.1
QSLT H

100 58.8±3.3 31.2±2.4 50.2±6.3 50.8±0.5 37.5±4.0 54.6±2.7 54.6±3.7 50.8±0.6

Table C.4: Classification accuracy (%) using 50 selected features (except Madelon for
which we select 20 features).

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS100 99.7±0.3 89.0±1.3 90.2±1.2 90.3±0.7 93.5±0.5 75.7±3.9 73.3±3.3 58.0±2.9
QSLT H

100 99.6±0.6 84.5±3.9 86.3±6.3 53.0±7.2 82.6±2.4 74.2±2.7 71.3±4.2 59.5±5.9

Table C.5: Number of parameters of QS100 and QSLT H
100 (divided by 106).

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS100 0.054 0.043 0.042 0.040 0.048 0.566 1.3 0.115
QSLT H

100 2.054 1.243 1.142 1.040 1.548 40.566 99.3 6.715
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simultaneously, results in feature strength that are more meaningful for the
feature selection. We discussed neuron strength in more detail in Section 4.5.3.
In addition, due to having an extra phase of dense training, the computational
resource requirements of LTH are much higher than the ones of SET. To clarify
this aspect, we present a comparison for the number of parameters between
these two methods. The results can be found in Table C.5. The much higher
number of parameters in QSLT H

100 in comparison with the number of parameters
in QS100 is given by the dense training phase of LTH.

C.7 Performance Evaluation using Random Forest
Classifier

In this appendix, we validate the classification accuracy results using another
classifier. We repeat the experiment from Section 4.4.2 in the manuscript;
however, we measure the accuracy of selecting 50 features (for Madelon, we
select 20 features) using the RandomForest classifier [LW+02] instead of the
ExtraTrees classifier. The results are presented in Table C.6.

Table C.6: Classification accuracy (%) using 50 selected features (except Madelon for
which we select 20 features). On each dataset, the bold entry is the best
performer, and the italic one is the second-best performer. The classifier used
for evaluation is the random forest classifier.

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 99.5±0.3 79.9±0.4 88.5±0.4 81.9±0.7 89.2±0.0 76.3±3.7 69.4±3.9 56.5±0.16
LS 88.9±0.8 83.4±0.2 86.4±0.3 88.9±0.6 20.7±0.1 67.9±3.1 71.1±2.8 50.13±0

CAE 99.3±0.6 89.0±0.7 89.8±1.0 84.2±0.9 95.2±0.2 76.7±4.7 76.6±3.8 61.6±2.3
AEFS 92.4±2.3 84.9±1.7 87.8±1.1 59.6±4.0 87.6±0.8 71.1±6.2 67.2±4.8 57.7±2.2
FCAE 99.0±0.6 85.8±5.2 83.6±2.6 62.7±13.1 69.6±2.9 74.2±2.6 68.9±4.0 58.8±2.5

QS10 98.5±0.9 87.0±0.7 87.6±0.5 81.5±3.8 93.6±0.6 75.1±2.3 68.1±4.6 60.0±3.7
QS100 99.5±0.3 89.1±1.3 89.0±1.2 88.9±0.7 93.2±0.5 78.5±3.5 73.3±3.1 67.9±3.8

As can be seen in Table C.6, QuickSelection100 is the best performer in 5
out of 8 cases. By comparing the results with Table 4.3 which demonstrates
the classification accuracy measured by the ExtraTrees classifier, it is clear that
there have been subtle changes in the accuracy values. This has resulted in some
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changes in the ranking of the methods in terms of performance, as in several
cases, the performance of the methods is very close. The reason behind choosing
ExtraTrees classifier in the experiment was due to the low computational cost.
However, as discussed in Chapter 4, to perform an extensive evaluation, we have
also measured the performance using clustering accuracy. Overall, by looking
into the results of the three approaches to compute accuracy, it is clear that
QuickSelection is a performant feature selection method in terms of the quality
of the selected features.

C.7.1 SET Hyperparameters

As explained in Chapter 4, ζ and ϵ are the hyperparameters of the SET algorithm
which control the number of connections to remove/add for each topology
change and the sparsity level, respectively. The corresponding density level of
each ϵ value for each dataset can be observed in Table C.7.

Table C.7: ϵ values and their corresponding density level.

Density [%]

ϵ COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

2 0.39 0.52 0.39 0.59 0.45 0.20 0.2 0.26

5 0.98 1.30 0.98 1.48 1.13 0.53 0.51 0.65

10 1.95 2.58 1.95 2.95 2.25 1.04 1.02 1.13

13 2.53 3.35 2.53 3.82 2.91 1.35 1.32 1.69

20 3.87 5.10 3.87 5.82 4.45 2.07 2.04 2.6

25 4.87 6.45 4.87 7.37 5.63 2.65 2.55 3.26

To illustrate the effect of the hyperparameters ζ and ϵ, we perform a grid
search within a small set of values on all of the datasets. The obtained results
can be found in Tables C.8 and C.9. As we increase the ϵ value, the number of
connections in our model increases, and therefore, the computation time will
increase. So, we prefer using small values for this parameter. Additionally, for a
large value of ϵ, in some cases the model is not able to converge in 100 epochs;
for example, on the MNIST dataset, we can observe that for an ϵ value of 25, the
model has lower performance in terms of clustering and classification accuracy.

It can be observed that ζ = 0.2 and ϵ = 13 (as chosen for the experiments
performed in Chapter 4) lead to a decent performance on all datasets. For
these values, QuickSelection is able to achieve high clustering and classification



C.7 Performance Evaluation using Random Forest Classifier 209

accuracy.
Overall, although searching for the best pair of ζ and ϵ will improve the

performance, QuickSelection is not extremely sensitive to these values. As can be
seen in Tables C.8 and C.9, for all values of these hyperparameters QuickSelection
has a reasonable performance. Even with ϵ = 2 which leads to a very sparse
model, QuickSelection has decent performance, and in some cases better than a
denser network.

Table C.8: Hyper-parameter selection for QuickSelection10. Each entry of a table contains
clustering accuracy and classification accuracy in percentages (%), respectively.

(a) Coil20

ϵ

ζ 2 5 10 13 20 25

0.1 61.4±2.3, 98.6±1.5 59.7±1.8, 96.9±1.6 61.7±2.8, 98.3±0.8 60.3±2.0, 98.6±1.7 61.9±0.9, 99.5±0.3 60.8±2.4, 99.7±0.2

0.2 59.4±3.8, 97.9±1.4 59.3±0.9, 98.5±1.2 60.1±2.6, 98.9±0.6 59.5±2.1, 98.8±0.6 63.6±2.5, 99.7±0.3 61.0±3.0, 99.7±0.4

0.3 61.3±2.1, 98.7±1.6 59.5±1.9, 96.7±0.6 60.3±0.9, 99.1±0.6 60.1±1.9, 98.2±1.0 59.9±2.6, 98.7±0.9 60.8±1.9, 99.4±0.4

0.4 60.5±3.2, 97.5±1.3 59.0±2.4, 96.8±1.8 57.2±1.5, 97.7±1.7 62.0±2.5, 99.2±0.3 62.1±2.5, 99.7±0.3 63.8±1.5, 99.4±0.6

0.5 61.2±2.3, 98.0±0.9 58.4±2.6, 97.8±1.2 58.9±2.6, 97.3±1.3 60.6±1.6, 98.2±1.6 59.1±2.9, 99.0±0.6 62.8±1.6, 99.0±1.0

(b) Isolet

ϵ

ζ 2 5 10 13 20 25

0.1 28.6±2.1, 82.5±3.7 31.7±2.4, 84.9±2.4 31.2±2.2, 87.4±1.7 29.4±1.5, 88.4±1.3 32.4±1.8, 86.9±1.5 31.7±1.0, 86.9±0.7

0.2 26.1±2.2, 81.5±1.8 30.2±2.4, 86.2±2.8 30.9±2.3, 88.2±0.6 32.5±2.8, 86.9±1.1 32.4±1.6, 87.8±1.6 33.4±2.1, 87.5±1.0

0.3 27.9±2.0, 83.0±3.6 30.6±3.3, 87.2±2.1 31.9±2.5, 87.3±1.1 32.9±1.1, 87.7±1.1 32.2±1.8, 87.3±0.9 32.3±2.4, 88.1±1.7

0.4 26.9±2.0, 82.5±2.5 30.0±0.8, 86.4±3.3 31.5±2.3, 86.2±2.6 29.0±1.4, 85.4±1.6 34.5±2.9, 86.5±2.3 31.9±3.4, 87.1±1.1

0.5 26.9±1.9, 81.8±1.7 30.7±1.9, 84.9±3.1 30.7±2.3, 86.7±2.3 31.2±3.5, 86.9±1.7 33.1±1.5, 87.4±0.8 33.8±2.1, 87.1±0.6

(c) HAR

ϵ

ζ 2 5 10 13 20 25

0.1 43.0±2.7, 83.2±1.6 56.8±1.0, 88.6±1.5 55.8±3.8, 88.4±0.6 56.0±2.6, 87.7±0.8 56.6±4.9, 90.1±1.9 56.4±4.7, 88.4±1.3

0.2 43.8±2.1, 82.7±2.6 56.5±0.9, 89.2±2.2 58.8±1.1, 88.4±0.5 56.0±2.6, 88.8±0.7 54.5±4.1, 88.9±1.3 55.0±2.8, 89.7±0.8

0.3 43.0±2.1, 84.5±2.2 55.7±1.7, 89.6±1.4 59.2±1.0, 88.4±1.1 54.7±5.2, 88.4±1.5 56.3±2.4, 89.1±1.8 57.7±2.1, 89.3±1.7

0.4 42.4±3.7, 82.9±1.4 55.5±1.4, 89.8±1.5 56.9±1.8, 88.7±0.6 59.1±0.7, 89.4±0.6 56.7±3.2, 89.7±1.2 56.9±2.2, 89.1±1.8

0.5 45.9±7.0, 84.0±3.1 52.2±5.2, 89.9±0.7 57.9±1.9, 89.2±0.6 59.5±4.3, 89.7±1.1 55.3±2.7, 89.5±0.6 52.6±2.6, 89.9±0.8

(d) Madelon

ϵ

ζ 2 5 10 13 20 25

0.1 53.5±1.3, 55.3±1.9 54.0±4.0, 62.1±7.9 56.7±3.8, 78.5±7.0 56.6±2.5, 86.2±2.1 58.1±2.5, 87.6±1.9 56.5±3.9, 89.4±1.1

0.2 52.9±2.8, 61.4±5.6 57.0±3.2, 68.6±4.2 57.6±2.9, 83.6±3.5 57.5±3.8, 86.6±3.6 55.5±3.7, 88.3±0.7 59.1±0.9, 86.0±1.5

0.3 53.4±2.5, 58.7±10.3 56.4±3.5, 67.1±9.1 53.9±3.1, 81.4±5.6 54.4±3.3, 86.4±2.0 58.2±2.7, 88.3±1.8 55.5±2.6, 88.5±0.8

0.4 53.8±4.1, 55.3±6.3 55.9±4.3, 62.6±6.4 54.4±2.4, 80.1±3.6 53.6±2.4, 84.9±3.2 56.8±3.0, 89.7±0.8 58.1±1.8, 86.4±2.8

0.5 55.2±3.8, 56.0±3.9 52.2±2.3, 61.3±9.0 56.0±2.4, 81.7±3.9 57.9±2.8, 84.2±4.6 57.8±2.3, 86.9±0.6 57.2±2.5, 89.0±2.1
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(e) MNIST
ϵ

ζ 2 5 10 13 20 25

0.1 42.6±3.5, 91.4±0.5 41.2±1.8, 93.2±0.4 46.8±4.4, 94.3±0.2 46.9±1.3, 93.9±0.3 43.3±1.7, 93.5±0.4 39.5±1.7, 92.4±1.2

0.2 43.8±2.3, 92.5±0.6 43.9±1.4, 93.4±0.6 43.0±3.2, 93.6±0.4 45.4±3.9, 93.8±0.6 38.5±2.9, 92.7±0.6 37.6±3.4, 91.2±1.1

0.3 42.1±1.8, 91.9±0.5 45.4±2.4, 94.2±0.4 47.4±1.2, 94.0±0.1 45.5±3.3, 94.0±0.4 39.7±1.9, 92.8±0.7 33.9±3.3, 88.3±2.1

0.4 41.9±2.0, 92.9±0.7 46.9±2.6, 93.7±0.4 46.2±0.9, 94.1±0.3 43.4±1.5, 93.7±0.3 37.0±3.6, 90.9±1.5 27.9±2.2, 81.7±3.1

0.5 43.3±3.6, 92.3±0.5 45.9±4.8, 93.8±0.6 45.2±2.9, 93.8±0.4 42.8±2.7, 93.8±0.7 39.7±2.8, 91.3±0.6 28.0±2.5, 77.7±6.1

(f) SMK
ϵ

ζ 2 5 10 13 20 25

0.1 52.4±1.3, 72.1±7.0 53.8±3.0, 79.5±2.0 52.7±1.6, 76.8±4.5 56.0±1.7, 73.7±4.1 55.0±2.3, 74.2±7.3 53.7±2.4, 76.3±4.4

0.2 54.1±1.7, 73.7±4.7 53.5±2.7, 74.2±8.4 55.3±2.6, 75.3±4.9 54.0±3.1, 76.9±4.6 52.9±1.2, 81.6±5.0 54.5±3.0, 76.8±6.3

0.3 56.9±2.7, 76.8±6.1 54.7±1.3, 75.3±5.2 53.9±2.4, 74.7±4.9 53.9±2.3, 74.2±4.5 54.5±0.7, 76.3±3.7 54.8±2.9, 75.8±3.9

0.4 55.4±3.7, 74.7±2.1 55.5±1.7, 74.2±2.6 53.1±1.8, 72.6±4.9 52.8±1.6, 74.7±4.6 53.4±2.9, 72.6±4.3 53.1±2.5, 72.6±4.3

0.5 53.3±1.3, 77.4±5.4 55.2±3.0, 76.3±3.7 53.6±2.5, 76.3±6.0 52.5±1.5, 78.9±4.4 52.3±1.0, 77.4±7.7 51.9±1.5, 77.9±2.7

(g) GLA
ϵ

ζ 2 5 10 13 20 25

0.1 54.1±2.8, 66.7±5.0 54.7±3.5, 67.2±5.9 55.0±4.6, 66.7±1.8 54.5±1.5, 67.8±5.7 56.6±4.0, 75.0±6.3 55.9±3.2, 68.9±5.4

0.2 50.2±3.5, 67.8±3.8 53.4±3.3, 67.2±6.2 56.6±2.5, 70.0±4.4 53.6±4.7, 69.4±3.0 56.7±2.2, 68.3±2.8 52.6±1.5, 68.9±1.1

0.3 56.2±3.5, 68.9±4.8 53.3±4.8, 68.3±3.8 54.4±2.4, 67.8±2.8 57.8±4.3, 70.0±3.2 56.1±1.9, 70.6±3.8 56.0±3.0, 71.1±4.5

0.4 55.6±3.5, 68.9±2.1 54.2±1.5, 68.3±4.5 57.5±3.1, 68.3±2.2 56.9±1.1, 70.6±2.8 55.7±3.6, 68.3±4.5 55.4±2.4, 68.9±6.9

0.5 54.9±2.6, 68.9±4.1 54.0±2.5, 66.1±3.7 54.8±2.4, 71.1±4.5 54.5±5.1, 67.2±6.4 56.5±5.6, 71.1±1.4 55.8±2.0, 65.6±3.8

(h) PCMAC
ϵ

ζ 2 5 10 13 20 25

0.1 51.0±0.5, 61.1±4.2 51.0±0.6, 57.0±2.0 51.1±1.1, 59.3±3.4 51.4±0.5, 56.6±3.0 50.9±0.2, 55.5±3.5 51.3±0.5, 59.4±2.2

0.2 50.5±0.4, 61.3±6.1 50.8±0.5, 57.0±3.5 50.7±0.4, 55.8±2.1 50.9±0.5, 58.9±4.4 51.0±0.2, 59.2±4.0 51.0±0.6, 57.8±2.1

0.3 51.3±1.0, 58.7±2.9 50.9±0.3, 57.4±1.1 51.0±0.4, 57.0±2.0 51.2±0.5, 59.2±3.2 50.7±0.3, 58.2±1.9 51.1±0.6, 58.3±1.9

0.4 50.7±0.3, 58.1±2.4 51.3±0.4, 55.7±2.8 50.9±0.5, 55.2±1.0 51.1±0.3, 58.1±2.5 51.1±0.2, 57.9±3.7 51.6±0.9, 55.4±2.2

0.5 51.1±0.5, 57.4±2.4 51.1±0.4, 57.0±1.6 51.2±0.9, 58.1±3.0 51.0±0.6, 56.4±1.4 50.9±0.3, 55.8±1.9 51.6±0.9, 58.0±2.4
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Table C.9: Hyper-parameter selection for QuickSelection100. Each entry of each table
contains clustering accuracy and classification accuracy in percentages (%),
respectively.

(a) Coil20

ϵ

ζ 2 5 10 13 20 25

0.1 63.2±0.7, 99.7±0.2 62.8±1.1, 99.4±0.7 60.2±3.5, 99.2±0.4 61.8±1.5, 99.7±0.5 56.0±2.3, 98.8±1.0 53.4±1.7, 98.8±0.5

0.2 61.3±0.9, 99.1±0.7 62.1±3.2, 99.7±0.1 61.7±2.3, 99.6±0.4 60.2±2.0, 99.7±0.3 56.9±1.8, 99.1±0.6 53.9±1.5, 98.9±0.7

0.3 62.1±1.5, 98.5±0.8 62.0±2.6, 99.4±0.7 60.0±1.8, 99.5±0.2 60.2±2.5, 99.3±0.2 55.0±1.6, 98.8±0.9 53.8±1.7, 98.3±0.8

0.4 58.9±1.3, 98.3±0.6 62.9±1.0, 99.7±0.3 62.0±3.0, 99.5±0.5 62.3±1.4, 99.7±0.4 57.8±2.5, 99.2±0.2 57.2±2.2, 99.0±0.7

0.5 58.1±1.9, 97.1±1.7 59.9±1.5, 99.4±0.4 63.2±2.6, 99.0±0.8 64.2±1.3, 99.6±0.3 59.2±2.9, 98.8±1.1 58.0±1.4, 99.1±1.0

(b) Isolet

ϵ

ζ 2 5 10 13 20 25

0.1 29.4±2.2, 87.1±1.1 29.7±1.5, 84.8±3.2 28.3±2.7, 83.4±4.2 33.2±3.0, 89.3±1.8 37.7±1.9, 87.5±1.8 36.2±2.4, 88.3±1.2

0.2 29.4±2.2, 85.9±2.1 29.6±2.7, 86.0±1.8 31.5±2.0, 85.5±3.7 35.1±2.7, 89.0±1.3 35.5±2.5, 87.5±2.2 38.9±1.7, 87.5±0.4

0.3 30.3±2.2, 85.7±3.1 30.2±1.8, 84.2±3.8 30.0±2.6, 84.5±1.8 33.5±2.3, 87.6±1.8 35.7±3.0, 87.1±2.5 38.1±1.7, 87.4±1.7

0.4 31.1±3.3, 85.9±3.8 29.5±2.5, 86.1±3.2 30.4±3.4, 83.7±3.5 29.6±1.3, 85.4±0.8 33.1±3.6, 87.6±2.7 35.4±1.5, 87.9±1.2

0.5 30.4±2.5, 88.0±2.1 29.5±1.8, 86.2±2.7 31.5±2.7, 86.4±1.9 31.4±2.1, 86.2±1.9 33.3±2.0, 86.4±2.1 35.7±2.0, 89.5±0.6

(c) HAR

ϵ

ζ 2 5 10 13 20 25

0.1 52.7±5.2, 88.4±2.3 57.0±1.4, 89.5±1.2 56.1±1.9, 88.8±1.2 54.2±4.1, 88.5±2.1 56.0±2.0, 89.2±2.5 55.2±3.5, 87.5±2.1

0.2 48.9±4.0, 85.8±1.7 57.4±0.4, 90.0±0.6 52.1±4.5, 88.6±2.7 54.6±4.5, 90.2±1.2 54.2±1.8, 89.4±0.7 53.9±3.0, 89.2±1.9

0.3 50.9±6.7, 88.5±2.8 56.3±6.4, 89.5±1.2 54.2±3.6, 90.8±1.5 53.6±4.4, 90.5±3.2 52.0±6.3, 88.0±1.4 51.1±3.1, 89.4±1.1

0.4 48.9±6.1, 88.7±2.6 55.7±6.6, 90.5±1.4 54.1±4.1, 91.1±0.3 50.8±4.1, 89.2±1.3 49.7±3.2, 90.2±1.1 54.1±4.4, 89.0±1.9

0.5 46.0±5.7, 87.3±3.2 55.5±8.1, 90.5±1.6 52.8±5.3, 90.2±1.3 55.4±0.7, 90.4±1.0 50.4±4.3, 89.4±0.4 49.6±5.3, 88.3±1.1

(d) Madelon

ϵ

ζ 2 5 10 13 20 25

0.1 53.7±3.3, 75.1±6.8 58.5±2.8, 86.1±3.5 57.1±2.2, 90.3±1.0 56.7±2.2, 89.9±1.2 58.4±0.5, 90.3±0.8 58.3±0.5, 89.8±1.1

0.2 54.3±2.4, 81.2±4.7 55.6±2.5, 88.2±2.1 57.1±2.6, 89.6±0.9 58.2±1.5, 90.3±0.7 58.1±0.1, 90.3±1.3 58.1±0.0, 90.8±0.5

0.3 53.1±2.6, 82.0±4.5 60.1±0.8, 87.5±1.3 57.6±2.0, 89.6±1.2 57.6±1.5, 89.4±1.3 58.1±0.0, 90.9±0.4 58.3±0.5, 89.5±1.5

0.4 55.0±2.8, 78.6±8.3 58.4±2.9, 87.0±4.6 55.8±2.2, 90.6±0.6 58.4±0.7, 90.1±0.9 57.4±1.6, 90.3±0.7 58.1±0.0, 90.9±1.2

0.5 55.6±3.2, 74.3±3.3 57.1±3.2, 87.1±2.4 57.1±3.5, 90.0±0.6 58.9±0.4, 90.3±0.3 58.5±0.6, 89.3±0.7 58.5±0.4, 89.4±1.3

(e) MNIST

ϵ

ζ 2 5 10 13 20 25

0.1 44.1±2.2, 92.8±1.0 46.3±3.4, 94.0±0.4 48.3±1.7, 94.0±0.6 44.3±2.7, 93.8±0.5 43.5±3.4, 92.8±0.5 31.3±4.3, 85.2±4.9

0.2 43.3±5.1, 93.5±1.2 44.3±1.4, 93.7±0.3 47.1±3.1, 93.7±0.6 48.3±2.4, 93.5±0.5 37.7±1.3, 91.3±0.4 33.7±3.5, 87.8±1.5

0.3 45.1±2.8, 93.2±0.3 48.4±4.5, 93.7±0.8 46.0±4.6, 93.4±0.3 44.9±4.4, 93.8±0.4 35.8±3.0, 91.6±0.9 38.1±1.3, 90.8±0.6

0.4 45.1±2.4, 93.4±0.3 45.4±2.3, 94.2±0.3 45.0±2.1, 93.4±0.5 40.1±4.0, 92.4±0.7 41.5±4.9, 91.8±1.3 32.5±2.7, 87.7±3.7

0.5 45.7±2.6, 93.8±0.7 44.1±2.6, 93.7±0.6 43.8±2.6, 93.8±0.5 43.2±1.8, 92.6±0.7 36.6±4.5, 91.5±1.0 36.0±2.7, 88.5±1.4
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(f) SMK
ϵ

ζ 2 5 10 13 20 25

0.1 53.1±1.3, 72.6±5.9 52.6±1.6, 76.3±2.4 51.6±0.9, 76.8±4.8 53.5±1.6, 75.8±2.6 54.6±3.2, 72.6±2.1 51.4±0.9, 76.8±5.4

0.2 53.3±2.3, 74.2±5.4 53.0±1.5, 76.8±3.1 51.1±0.6, 78.4±5.9 51.8±0.8, 75.7±3.9 51.3±0.6, 78.4±3.5 51.9±1.6, 78.4±6.5

0.3 53.3±1.7, 74.2±4.5 50.7±0.3, 76.3±6.5 51.6±0.9, 76.8±6.1 50.9±0.5, 74.7±3.6 51.2±0.6, 77.4±2.7 51.4±0.7, 77.4±5.4

0.4 52.4±2.6, 78.4±4.5 51.6±0.7, 78.4±2.6 50.9±0.4, 75.8±5.4 51.9±0.8, 75.3±7.2 51.1±0.5, 76.8±4.5 50.8±0.3, 76.3±2.4

0.5 53.0±1.3, 76.8±6.1 52.1±1.1, 74.7±2.7 51.9±0.8, 74.2±3.5 50.7±0.4, 75.8±3.9 50.3±0.0, 78.9±4.1 51.1±0.5, 81.0±4.2

(g) GLA
ϵ

ζ 2 5 10 13 20 25

0.1 57.6±2.6, 68.9±5.9 57.1±1.9, 67.2±1.1 57.4±2.8, 72.2±3.9 57.7±2.9, 68.9±3.2 57.4±2.9, 73.3±4.8 59.2±2.7, 71.7±4.1

0.2 57.0±3.4, 64.4±3.2 60.8±3.8, 71.1±3.3 58.7±3.5, 67.8±6.0 59.5±1.8, 73.3±3.3 58.6±2.0, 72.8±2.1 55.6±1.3, 70.6±7.2

0.3 57.7±3.5, 73.9±3.3 58.3±4.1, 67.2±3.2 54.8±0.9, 72.2±3.5 58.0±4.3, 67.8±3.8 56.4±3.5, 68.3±4.2 57.3±2.8, 66.7±2.5

0.4 56.1±2.6, 71.1±3.3 57.9±2.9, 67.2±4.8 54.4±2.5, 67.2±3.2 59.0±4.0, 69.4±4.6 56.9±2.3, 69.4±2.5 59.9±3.6, 69.4±4.6

0.5 55.2±2.2, 67.2±6.4 56.0±1.7, 63.9±1.8 58.0±2.2, 68.3±6.0 59.0±3.1, 70.0±5.4 59.5±3.2, 71.1±6.2 53.6±1.7, 68.3±4.2

(h) PCMAC
ϵ

ζ 2 5 10 13 20 25

0.1 50.6±0.3, 58.1±3.8 50.8±0.4, 57.4±3.1 51.4±1.2, 58.5±2.3 51.0±0.4, 59.2±3.2 50.8±0.2, 59.2±3.1 52.6±1.0, 58.8±3.4

0.2 50.7±0.4, 59.4±2.9 50.7±0.5, 60.6±3.4 52.1±1.7, 57.2±3.4 52.5±1.1, 58.0±2.9 53.1±0.0, 58.6±2.6 53.1±0.0, 60.1±2.0

0.3 51.5±0.9, 57.2±2.9 51.4±0.9, 56.0±2.2 51.7±1.2, 58.1±0.9 52.2±1.1, 56.5±1.7 53.1±0.0, 59.5±2.4 53.1±0.0, 57.3±4.1

0.4 50.9±0.4, 59.8±6.7 51.3±0.9, 56.3±4.1 52.0±1.3, 57.3±3.0 53.1±0.0, 56.7±2.2 53.1±0.0, 56.6±2.0 53.1±0.0, 57.6±2.0

0.5 50.7±0.2, 56.9±0.5 51.3±0.9, 57.1±2.1 52.6±0.9, 59.6±1.9 53.1±0.0, 57.7±1.8 53.1±0.0, 56.8±3.4 53.1±0.0, 59.8±1.6
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D.1 Ablation Study: Gradient vs Random Policy for
Weight and Neuron Selection

This Appendix discusses the effect of gradient-based weights and neuron selec-
tion in NeuroFS by performing an ablation study. We use random growth instead
of the gradient to measure the importance of weights and neurons. We call this
method NeuroFS[w/oGradient]. The settings of this experiment is similar to
Section 5.4.2. The results are presented in Figure D.1.

In Figure D.1, NeuroFS outperforms NeuroFS[w/oGradient] in most cases.
While the results of these methods are relatively close on some datasets, on the
Coil-20, SMK, GLA-BRA-180, and Arcene datasets, there is a large gap between
the results. It can be concluded that NeuroFS performs more stable than Neu-
roFS[w/oGradient]. While random growth of weights and neurons might lead
to better results in some cases, it can not ensure a stable performance across
different datasets.
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Figure D.1: Gradient (left) vs. random (right) weight and neuron growth policy compari-
son.

D.2 Comparison with HSICLasso-based Feature Se-
lection Methods

In this section, we compare NeuroFS with two HSIC-based feature selection
methods. We select two algorithms including, HSICLasso1 [YJS+14] and HSI-

1https://github.com/riken-aip/pyHSICLasso

https://github.com/riken-aip/pyHSICLasso
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CLassoVI2 [KKOI22] and used the default hyperparameters used in the corre-
sponding code repositories. The results are presented in Table D.1. As can be
seen in this table, NeuroFS outperforms these methods in seven cases while
performing very close to the best performer in the other cases (less than a 1%
difference in accuracy).

Table D.1: Supervised feature selection comparison (average classification accuracy for
K values in [25, 50, 75, 100, 150, 200] (%)) with HSICLasso-based methods.
Empty entries show that the corresponding experiments ran into error. Bold
and italic fonts indicate the best and second-best performer, respectively.

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST F-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 98.79±0.22 95.48±0.3495.48±0.3495.48±0.34 85.03±0.1585.03±0.1585.03±0.15 96.68±0.1696.68±0.1696.68±0.16 93.22±0.1193.22±0.1193.22±0.11 92.74±0.2392.74±0.2392.74±0.23 90.42±0.8090.42±0.8090.42±0.80 89.70±0.72 78.00±1.7878.00±1.7878.00±1.78 82.36±0.98 80.46±0.99

HSICLasso 99.32±0.0099.32±0.0099.32±0.00 93.80±0.00 82.73±0.00 96.03±0.00 91.07±0.00 92.68±0.00 88.62±0.00 90.50±0.0090.50±0.0090.50±0.00 77.50±0.00 70.60±0.00 80.55±0.0080.55±0.0080.55±0.00

HSICLassoVI 92.83±0.00 - 75.72±0.00 96.15±0.00 75.43±0.00 89.10±0.00 - - - 83.33±0.0083.33±0.0083.33±0.00 -

D.3 Feature Selection Comparison using Different
Classifiers for Evaluation

To show that the evaluation results are not biased by the chosen classifier, we
measure the classification accuracy by using two other widely-used classifiers
including KNN3 and ExtraTrees4. The classification accuracy results are presented
in Table D.2 for K = 50. As can be seen in this table, the overall performance of
all methods is consistent across different classifiers in most cases.

D.4 Comparison to RigL

In this section, we compare NeuroFS with RigL [EGM+20], which is a DST
method mainly designed for classification; it uses gradient for weight regrowth
when updating the sparse connectivity in the DST framework. To adapt RigL to
perform feature selection, while trying to keep a fair comparison, we take the

2https://github.com/nttcom/HSICLassoVI
3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

ExtraTreesClassifier.html

https://github.com/nttcom/HSICLassoVI
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
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Table D.2: Supervised feature selection comparison (classification accuracy for K = 50
(%)) using different classifiers. Empty entries show that the corresponding
experiments exceeded the time limit (12 hours). Bold and italic fonts indicate
the best and second-best performer, respectively.

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST F-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA

SVM

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 98.78±0.29 95.30±0.4195.30±0.4195.30±0.41 83.78±0.6483.78±0.6483.78±0.64 96.78±0.1796.78±0.1796.78±0.17 92.62±0.4092.62±0.4092.62±0.40 91.46±0.72 89.06±2.46 90.50±0.0090.50±0.0090.50±0.00 76.50±2.55 81.58±1.68 80.54±4.9680.54±4.9680.54±4.96

LassoNet 97.16±1.06 94.46±0.21 82.58±0.10 95.94±0.15 84.90±0.22 93.74±0.39 87.18±0.58 88.58±2.35 71.00±2.00 80.52±2.69 74.46±4.78
STG 99.32±0.4099.32±0.4099.32±0.40 93.20±0.62 82.36±0.52 96.62±0.34 85.82±2.83 91.22±1.23 85.12±1.86 84.78±3.55 71.00±2.55 80.25±2.95 70.00±4.08

QS 96.52±1.53 93.62±0.49 80.82±0.51 95.52±0.27 89.78±1.80 91.96±1.04 87.22±1.22 76.20±7.53 74.38±4.80 80.90±2.20 72.20±2.80

Fisher_score 74.00±0.00 81.90±0.00 67.80±0.00 91.00±0.00 67.40±0.00 79.80±0.00 90.20±0.0090.20±0.0090.20±0.00 90.50±0.0090.50±0.0090.50±0.00 67.50±0.00 73.70±0.00 63.90±0.00

CIFE 59.40±0.00 89.30±0.00 66.90±0.00 61.30±0.00 59.80±0.00 84.20±0.00 77.40±0.00 47.60±0.00 52.50±0.00 81.60±0.0081.60±0.0081.60±0.00 58.30±0.00

ICAP 99.30±0.00 89.00±0.00 59.50±0.00 95.20±0.00 75.10±0.00 88.70±0.00 90.20±0.0090.20±0.0090.20±0.00 57.10±0.00 70.00±0.00 73.70±0.00 72.20±0.00

RFS 95.80±0.00 - - 95.80±0.00 91.50±0.00 94.00±0.0094.00±0.0094.00±0.00 85.00±0.00 90.50±0.0090.50±0.0090.50±0.00 77.50±0.0077.50±0.0077.50±0.00 - -

KNN

Baseline 100.0 96.91 84.96 97.37 88.14 87.85 78.7 76.19 92.5 73.68 69.44
NeuroFS 99.80±0.28 91.64±0.5791.64±0.5791.64±0.57 80.12±0.8780.12±0.8780.12±0.87 96.18±0.4996.18±0.4996.18±0.49 85.96±1.53 84.64±1.77 87.14±2.69 85.86±4.67 74.00±5.15 78.97±4.5578.97±4.5578.97±4.55 64.42±5.38

LassoNet 98.84±0.20 91.38±0.36 79.30±0.20 95.70±0.26 79.22±0.47 88.70±0.57 88.96±1.20 82.86±3.80 67.50±7.75 74.74±6.34 68.90±4.0768.90±4.0768.90±4.07

STG 99.94±0.1299.94±0.1299.94±0.12 87.16±0.64 77.65±0.48 95.14±0.45 83.16±3.42 87.86±0.39 81.10±1.93 81.00±0.00 75.00±5.24 71.08±6.44 58.90±7.52

QS 98.80±0.38 89.30±0.76 76.65±0.51 95.17±0.45 82.38±3.12 85.88±1.13 86.02±0.97 65.47±8.37 75.00±3.54 69.08±2.87 66.70±0.00
Fisher_score 95.80±0.00 80.20±0.00 63.70±0.00 88.80±0.00 74.10±0.00 81.10±0.00 89.50±0.00 85.70±0.00 70.00±0.00 65.80±0.00 50.00±0.00

CIFE 71.20±0.00 82.90±0.00 61.60±0.00 59.60±0.00 44.60±0.00 71.80±0.00 68.40±0.00 57.10±0.00 70.00±0.00 71.10±0.00 44.40±0.00

ICAP 98.60±0.00 83.40±0.00 59.30±0.00 94.00±0.00 59.00±0.00 82.70±0.00 91.70±0.0091.70±0.0091.70±0.00 66.70±0.00 65.00±0.00 71.10±0.00 61.10±0.00

RFS 97.20±0.00 - - 95.40±0.00 87.20±0.0087.20±0.0087.20±0.00 90.30±0.0090.30±0.0090.30±0.00 78.70±0.00 90.50±0.0090.50±0.0090.50±0.00 85.00±0.0085.00±0.0085.00±0.00 - -

ExtraTrees

Baseline 100.0 96.9 87.39 96.51 94.04 93.59 96.99 85.71 82.5 78.95 69.44
NeuroFS 99.94±0.12 93.68±0.4393.68±0.4393.68±0.43 84.26±0.5584.26±0.5584.26±0.55 95.44±0.2795.44±0.2795.44±0.27 91.46±0.7391.46±0.7391.46±0.73 85.48±1.46 89.96±1.89 90.50±0.0090.50±0.0090.50±0.00 75.00±5.24 81.75±4.1681.75±4.1681.75±4.16 75.46±6.71
LassoNet 99.76±0.12 92.96±0.15 83.68±0.13 94.86±0.22 84.94±0.62 91.12±0.3091.12±0.3091.12±0.30 92.08±0.36 89.54±1.92 73.50±4.64 77.88±6.77 76.12±3.8076.12±3.8076.12±3.80

STG 100.00±0.00100.00±0.00100.00±0.00 90.38±0.42 82.05±0.48 94.32±0.21 88.50±2.15 88.68±0.42 83.56±1.62 83.84±3.80 79.00±3.39 75.78±5.10 71.08±2.24

QS 99.25±0.47 91.95±0.58 81.28±0.54 94.28±0.40 88.78±1.86 87.86±0.72 86.80±0.91 77.38±5.19 73.75±4.15 75.00±1.30 75.00±0.00

Fisher_score 96.86±0.43 84.86±0.15 72.06±0.08 90.94±0.24 81.42±0.59 85.50±0.30 92.50±0.00 90.50±0.0090.50±0.0090.50±0.00 60.00±1.58 74.22±1.95 63.90±0.00

CIFE 74.70±0.00 87.60±0.00 68.40±0.00 82.70±0.00 55.40±0.00 85.30±0.00 85.20±0.00 52.40±0.00 50.00±0.00 81.60±0.00 69.40±0.00

ICAP 99.70±0.00 87.80±0.00 65.50±0.00 93.50±0.00 70.60±0.00 89.20±0.00 95.00±0.0095.00±0.0095.00±0.00 81.00±0.00 80.00±0.0080.00±0.0080.00±0.00 78.90±0.00 63.90±0.00

RFS 98.30±0.00 - - 94.70±0.00 90.40±0.00 89.70±0.00 86.50±0.00 90.50±0.0090.50±0.0090.50±0.00 75.00±0.00 - -

most straightforward approach: at the end of the training process with RigL,
we use neuron strength (same as in NeuroFS) on the trained network to derive
the indices of the important features. We train a 3-layer MLP with Rigl for 100
epochs. RigL training algorithm updates the sparse connectivity at each epoch
by removing ζh of the weights with the lowest magnitude and adding the same
number of connections as the dropped ones to the network, among the non-
existing connections with the highest gradient magnitude. When the training
is finished we select the top K features corresponding to the neurons with the
highest neuron strength as the selected features. The main difference between
NeuroFS and feature selection using RigL is the input layer neuron removal and
addition. While RigL updates only the sparse connectivity in all layers, NeuroFS
updates also the neurons in the input layer to gradually decrease the number of
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active neurons (neurons with at least one non-zero connection) to be suited for
feature selection. All the experimental settings are similar to NeuroFS (Section
5.4.2), such as ϵ= 30, ζh = 0.2, training epochs, activation functions, batch size,
learning rate, and etc. We measure the performance of feature selection using
RigL for several values of K ∈ {25,50,75,100,150,200}. The results are presented
in Table D.3 and Figure D.2.
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Figure D.2: NeuroFS (left) vs. feature selection using RigL (right) comparison.

As can be seen in Table D.3, NeuroFS outperforms feature selection with
RigL in most cases in terms of classification accuracy. On low-dimensional
datasets, RigL performs closely to NeuroFS and even outperforms it in some
cases, particularly for large values of K ; while for small values of K , e.g., 25 or
50, the performance gap is larger than the larger K values. On the other hand
on high-dimensional datasets, NeuroFS outperforms RigL with a large gap in
most datasets considered except SMK where they perform very closely. It can be
concluded that the performance gap is usually high in cases where the proportion
of selected features to the total number of features is low, e.g., selecting a low
number of features in low-dimensional datasets and feature selection from high-
dimensional datasets. Relatively similar behavior exists in feature selection using
QuickSelection, particularly in high-dimensional datasets such as BASEHOCK,
Prostate_GE, and GLA-BRA-180 (See Table D.4). The reason behind this is that
when the search space becomes large (all input features), finding a low fraction
of informative features becomes difficult for QuickSelection and RigL and the
neuron strength might not be informative on its own. Therefore, NeuroFS
reduces the search space by removing uninformative features during training,
thus allowing the high-magnitude weights to be assigned to a limited set of the
most informative features. This indicates the importance of the neuron removal
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scheme in NeuroFS.

Table D.3: Supervised feature selection comparison (classification accuracy (%)) with
RigL for K ∈ {25,50,75,100,150,200}. Bold fonts indicate the best performer for
each dataset.

Dataset Method K = 25 K = 50 K = 75 K = 100 K = 150 K = 200

COIL-20 NeuroFS 95.86±1.3195.86±1.3195.86±1.31 98.78±0.2998.78±0.2998.78±0.29 99.06±0.12 99.18±0.5 99.86±0.2899.86±0.2899.86±0.28 100.0±0.0100.0±0.0100.0±0.0

RigL 92.38±3.2 97.86±1.32 99.2±0.4399.2±0.4399.2±0.43 99.4±0.4399.4±0.4399.4±0.43 99.8±0.28 99.94±0.12

MNIST NeuroFS 87.86±1.7787.86±1.7787.86±1.77 95.3±0.4195.3±0.4195.3±0.41 96.76±0.2296.76±0.2296.76±0.22 97.32±0.1797.32±0.1797.32±0.17 97.72±0.197.72±0.197.72±0.1 97.92±0.07

RigL 82.06±0.99 93.94±0.63 95.98±0.51 96.88±0.22 97.62±0.07 98.0±0.0998.0±0.0998.0±0.09

Fashion-MNIST NeuroFS 79.38±0.9679.38±0.9679.38±0.96 83.78±0.6483.78±0.6483.78±0.64 85.7±0.2885.7±0.2885.7±0.28 86.64±0.2186.64±0.2186.64±0.21 87.18±0.1687.18±0.1687.18±0.16 87.5±0.1787.5±0.1787.5±0.17

RigL 74.12±1.59 81.92±0.87 84.52±0.72 85.82±0.23 86.98±0.12 87.4±0.23

USPS NeuroFS 93.98±0.8793.98±0.8793.98±0.87 96.78±0.1796.78±0.1796.78±0.17 97.06±0.1597.06±0.1597.06±0.15 97.22±0.1297.22±0.1297.22±0.12 97.48±0.0497.48±0.0497.48±0.04 97.54±0.197.54±0.197.54±0.1

RigL 93.1±0.62 96.04±0.58 96.9±0.24 97.14±0.1 97.44±0.1 97.5±0.11

Isolet NeuroFS 86.22±0.8486.22±0.8486.22±0.84 92.62±0.492.62±0.492.62±0.4 94.04±0.3494.04±0.3494.04±0.34 95.06±0.3195.06±0.3195.06±0.31 95.58±0.2995.58±0.2995.58±0.29 95.82±0.3195.82±0.3195.82±0.31

RigL 79.98±2.25 89.58±1.24 92.32±0.56 93.66±0.58 94.9±0.56 95.4±0.32

HAR NeuroFS 87.46±0.7987.46±0.7987.46±0.79 91.46±0.72 93.16±0.79 94.18±0.2994.18±0.2994.18±0.29 95.02±0.35 95.14±0.2195.14±0.2195.14±0.21

RigL 86.46±1.47 91.82±0.391.82±0.391.82±0.3 93.34±0.4793.34±0.4793.34±0.47 94.08±0.26 95.08±0.2695.08±0.2695.08±0.26 95.14±0.3795.14±0.3795.14±0.37

BASEHOCK NeuroFS 83.86±3.3883.86±3.3883.86±3.38 89.06±2.4689.06±2.4689.06±2.46 90.64±2.3590.64±2.3590.64±2.35 92.72±1.592.72±1.592.72±1.5 93.44±0.9193.44±0.9193.44±0.91 92.82±1.1392.82±1.1392.82±1.13

RigL 82.38±2.85 84.86±3.04 85.88±2.32 86.7±1.54 88.24±1.7 88.08±1.92

Prostate_GE NeuroFS 88.58±2.3588.58±2.3588.58±2.35 90.5±0.090.5±0.090.5±0.0 89.54±1.9289.54±1.9289.54±1.92 89.54±1.9289.54±1.9289.54±1.92 89.54±1.9289.54±1.9289.54±1.92 90.5±0.090.5±0.090.5±0.0

RigL 78.08±6.46 79.06±7.11 79.06±8.83 81.92±8.18 81.92±6.33 84.76±1.88

Arcene NeuroFS 63.0±4.85 76.5±2.55 82.0±4.082.0±4.082.0±4.0 82.0±1.8782.0±1.8782.0±1.87 80.5±4.380.5±4.380.5±4.3 84.0±3.3984.0±3.3984.0±3.39

RigL 74.5±4.374.5±4.374.5±4.3 77.0±3.3277.0±3.3277.0±3.32 81.5±4.64 80.0±4.47 79.5±4.3 80.0±4.18

SMK NeuroFS 78.92±1.68 81.58±1.6881.58±1.6881.58±1.68 82.62±2.12 83.16±1.27 83.68±1.04 84.2±0.084.2±0.084.2±0.0

RigL 81.04±1.9981.04±1.9981.04±1.99 79.48±4.81 83.14±3.1583.14±3.1583.14±3.15 84.72±1.9584.72±1.9584.72±1.95 84.2±3.7384.2±3.7384.2±3.73 83.68±2.55

GLA-BRA-180 NeuroFS 73.88±3.873.88±3.873.88±3.8 80.54±4.9680.54±4.9680.54±4.96 82.24±3.3182.24±3.3182.24±3.31 81.12±2.0581.12±2.0581.12±2.05 82.22±1.3282.22±1.3282.22±1.32 82.76±2.7182.76±2.7182.76±2.71

RigL 66.1±3.22 70.54±4.16 72.22±4.98 73.9±3.76 75.0±3.07 76.1±4.16

D.5 Comparison Results

The detailed results for each K value are presented in Table D.4.
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Table D.4: Supervised feature selection comparison (classification accuracy for various K
values (%)). Empty entries show that the corresponding experiments exceeded
the time limit (12 hours). Bold and italic fonts indicate the best and second-
best performer, respectively.

(a) K = 25

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 95.86±1.31 87.86±1.7787.86±1.7787.86±1.77 79.38±0.9679.38±0.9679.38±0.96 93.98±0.87 86.22±0.8486.22±0.8486.22±0.84 87.46±0.79 83.86±3.38 88.58±2.35 63.00±4.85 78.92±1.68 73.88±3.80
LassoNet 92.72±0.85 86.40±1.26 78.68±0.55 94.04±0.38 76.48±0.39 93.00±0.3193.00±0.3193.00±0.31 84.48±0.86 88.58±2.35 69.00±2.55 76.84±5.34 76.12±4.1976.12±4.1976.12±4.19

STG 97.02±1.4197.02±1.4197.02±1.41 85.24±1.89 77.44±0.53 94.04±0.46 77.16±4.34 87.48±0.80 82.38±1.36 85.72±3.00 69.00±5.15 77.38±3.57 67.22±4.78

QS 91.00±4.21 85.25±1.47 71.57±1.97 93.00±0.81 72.56±6.53 87.14±1.74 83.80±1.61 71.43±12.16 73.75±8.20 76.97±7.52 69.45±2.75

Fisher_score 24.70±0.00 74.40±0.00 53.10±0.00 82.00±0.00 57.40±0.00 77.10±0.00 85.50±0.00 90.50±0.0090.50±0.0090.50±0.00 65.00±0.00 68.40±0.00 58.30±0.00

CIFE 50.70±0.00 80.90±0.00 63.40±0.00 50.20±0.00 56.00±0.00 80.20±0.00 76.20±0.00 61.90±0.00 67.50±0.00 81.60±0.0081.60±0.0081.60±0.00 61.10±0.00

ICAP 94.40±0.00 81.60±0.00 50.10±0.00 89.90±0.00 67.10±0.00 84.50±0.00 89.20±0.0089.20±0.0089.20±0.00 47.60±0.00 77.50±0.0077.50±0.0077.50±0.00 78.90±0.00 69.40±0.00

RFS 88.20±0.00 - - 94.80±0.0094.80±0.0094.80±0.00 76.50±0.00 88.90±0.00 80.20±0.00 90.50±0.0090.50±0.0090.50±0.00 77.50±0.0077.50±0.0077.50±0.00 - -

(b) K = 50

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 98.78±0.29 95.30±0.4195.30±0.4195.30±0.41 83.78±0.6483.78±0.6483.78±0.64 96.78±0.1796.78±0.1796.78±0.17 92.62±0.4092.62±0.4092.62±0.40 91.46±0.72 89.06±2.46 90.50±0.0090.50±0.0090.50±0.00 76.50±2.55 81.58±1.68 80.54±4.9680.54±4.9680.54±4.96

LassoNet 97.16±1.06 94.46±0.21 82.58±0.10 95.94±0.15 84.90±0.22 93.74±0.39 87.18±0.58 88.58±2.35 71.00±2.00 80.52±2.69 74.46±4.78
STG 99.32±0.4099.32±0.4099.32±0.40 93.20±0.62 82.36±0.52 96.62±0.34 85.82±2.83 91.22±1.23 85.12±1.86 84.78±3.55 71.00±2.55 80.25±2.95 70.00±4.08

QS 96.52±1.53 93.62±0.49 80.82±0.51 95.52±0.27 89.78±1.80 91.96±1.04 87.22±1.22 76.20±7.53 74.38±4.80 80.90±2.20 72.20±2.80

Fisher_score 74.00±0.00 81.90±0.00 67.80±0.00 91.00±0.00 67.40±0.00 79.80±0.00 90.20±0.0090.20±0.0090.20±0.00 90.50±0.0090.50±0.0090.50±0.00 67.50±0.00 73.70±0.00 63.90±0.00

CIFE 59.40±0.00 89.30±0.00 66.90±0.00 61.30±0.00 59.80±0.00 84.20±0.00 77.40±0.00 47.60±0.00 52.50±0.00 81.60±0.0081.60±0.0081.60±0.00 58.30±0.00

ICAP 99.30±0.00 89.00±0.00 59.50±0.00 95.20±0.00 75.10±0.00 88.70±0.00 90.20±0.0090.20±0.0090.20±0.00 57.10±0.00 70.00±0.00 73.70±0.00 72.20±0.00

RFS 95.80±0.00 - - 95.80±0.00 91.50±0.00 94.00±0.0094.00±0.0094.00±0.00 85.00±0.00 90.50±0.0090.50±0.0090.50±0.00 77.50±0.0077.50±0.0077.50±0.00 - -

(c) K = 75

Low-dimensional Datasets High-dimensional Datasets
Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 99.06±0.12 96.76±0.2296.76±0.2296.76±0.22 85.70±0.2885.70±0.2885.70±0.28 97.06±0.15 94.04±0.3494.04±0.3494.04±0.34 93.16±0.79 90.64±2.35 89.54±1.92 82.00±4.0082.00±4.0082.00±4.00 82.62±2.1282.62±2.1282.62±2.12 82.24±3.3182.24±3.3182.24±3.31

LassoNet 99.46±0.35 96.00±0.09 83.92±0.13 96.36±0.08 91.00±0.62 94.62±0.17 90.52±0.27 90.50±0.0090.50±0.0090.50±0.00 70.50±2.45 78.94±3.72 76.64±5.44
STG 99.68±0.22 95.52±0.22 84.14±0.43 96.88±0.23 90.10±2.17 92.42±1.11 85.52±1.22 84.78±3.55 75.00±2.74 81.04±4.21 71.08±1.37

QS 98.17±1.16 95.98±0.33 83.80±0.53 96.85±0.05 93.04±0.46 93.50±0.77 87.55±1.30 72.62±9.78 76.88±2.72 82.22±2.86 73.60±1.40

Fisher_score 76.00±0.00 87.10±0.00 74.30±0.00 94.40±0.00 76.00±0.00 81.70±0.00 89.00±0.00 90.50±0.0090.50±0.0090.50±0.00 70.00±0.00 76.30±0.00 66.70±0.00

CIFE 63.20±0.00 92.70±0.00 67.70±0.00 68.00±0.00 74.30±0.00 84.80±0.00 74.70±0.00 47.60±0.00 72.50±0.00 76.30±0.00 58.30±0.00

ICAP 99.00±0.00 92.40±0.00 67.20±0.00 95.30±0.00 79.70±0.00 89.20±0.00 93.50±0.0093.50±0.0093.50±0.00 57.10±0.00 72.50±0.00 71.10±0.00 72.20±0.00

RFS 99.70±0.0099.70±0.0099.70±0.00 - - 97.20±0.0097.20±0.0097.20±0.00 93.90±0.00 94.90±0.0094.90±0.0094.90±0.00 86.50±0.00 90.50±0.0090.50±0.0090.50±0.00 80.00±0.00 - -
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(d) K = 100
Low-dimensional Datasets High-dimensional Datasets

Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 99.18±0.50 97.32±0.1797.32±0.1797.32±0.17 86.64±0.2186.64±0.2186.64±0.21 97.22±0.12 95.06±0.3195.06±0.3195.06±0.31 94.18±0.29 92.72±1.50 89.54±1.92 82.00±1.87 83.16±1.27 81.12±2.0581.12±2.0581.12±2.05

LassoNet 99.30±0.00 96.64±0.14 84.98±0.18 97.04±0.12 93.18±0.22 95.14±0.29 90.96±1.36 90.50±0.0090.50±0.0090.50±0.00 72.00±4.30 78.42±4.20 79.46±2.83
STG 99.76±0.12 96.38±0.35 85.20±0.58 97.08±0.18 92.64±0.56 92.82±0.74 85.96±1.24 85.72±3.00 75.50±3.67 82.08±3.87 72.20±3.07

QS 98.28±1.15 96.85±0.09 85.52±0.15 97.00±0.14 94.22±0.28 94.06±0.48 89.02±1.26 78.58±9.82 78.12±1.08 84.85±2.1684.85±2.1684.85±2.16 73.60±1.40

Fisher_score 80.20±0.00 90.70±0.00 79.60±0.00 96.50±0.00 79.80±0.00 83.80±0.00 89.70±0.00 90.50±0.0090.50±0.0090.50±0.00 65.00±0.00 78.90±0.00 66.70±0.00

CIFE 67.70±0.00 95.10±0.00 69.20±0.00 78.00±0.00 81.20±0.00 85.30±0.00 74.40±0.00 71.40±0.00 65.00±0.00 81.60±0.00 58.30±0.00

ICAP 100.00±0.00100.00±0.00100.00±0.00 95.00±0.00 77.70±0.00 95.40±0.00 82.80±0.00 92.10±0.00 94.00±0.0094.00±0.0094.00±0.00 52.40±0.00 82.50±0.0082.50±0.0082.50±0.00 76.30±0.00 69.40±0.00

RFS 100.00±0.00100.00±0.00100.00±0.00 - - 97.40±0.0097.40±0.0097.40±0.00 94.40±0.00 95.40±0.0095.40±0.0095.40±0.00 86.70±0.00 90.50±0.0090.50±0.0090.50±0.00 80.00±0.00 - -

(e) K = 150
Low-dimensional Datasets High-dimensional Datasets

Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 99.86±0.28 97.72±0.1097.72±0.1097.72±0.10 87.18±0.1687.18±0.1687.18±0.16 97.48±0.0497.48±0.0497.48±0.04 95.58±0.29 95.02±0.35 93.44±0.9193.44±0.9193.44±0.91 89.54±1.92 80.50±4.3080.50±4.3080.50±4.30 83.68±1.04 82.22±1.3282.22±1.3282.22±1.32

LassoNet 99.54±0.20 97.42±0.07 86.02±0.15 97.48±0.0797.48±0.0797.48±0.07 94.96±0.15 95.72±0.2095.72±0.2095.72±0.20 92.58±0.62 90.50±0.0090.50±0.0090.50±0.00 72.00±1.87 78.38±1.04 79.48±1.37
STG 100.00±0.00100.00±0.00100.00±0.00 97.14±0.08 86.28±0.35 97.28±0.12 94.20±0.35 93.56±0.59 86.42±1.74 84.76±4.67 75.00±3.16 82.60±4.27 72.76±3.27

QS 99.92±0.13 97.70±0.12 86.88±0.32 97.42±0.11 95.48±0.32 94.80±0.24 89.80±0.83 79.75±6.19 78.75±1.25 84.22±3.2384.22±3.2384.22±3.23 75.00±0.00

Fisher_score 81.20±0.00 93.10±0.00 83.60±0.00 97.30±0.00 83.00±0.00 84.40±0.00 91.70±0.00 90.50±0.0090.50±0.0090.50±0.00 65.00±0.00 78.90±0.00 63.90±0.00

CIFE 71.90±0.00 96.80±0.00 75.60±0.00 89.60±0.00 85.70±0.00 85.90±0.00 79.20±0.00 76.20±0.00 55.00±0.00 81.60±0.00 72.20±0.00

ICAP 100.00±0.00100.00±0.00100.00±0.00 96.40±0.00 81.70±0.00 95.80±0.00 89.30±0.00 93.40±0.00 93.20±0.00 42.90±0.00 77.50±0.00 71.10±0.00 69.40±0.00

RFS 100.00±0.00100.00±0.00100.00±0.00 - - 97.40±0.00 95.90±0.0095.90±0.0095.90±0.00 95.50±0.00 88.20±0.00 90.50±0.0090.50±0.0090.50±0.00 80.00±0.00 - -

(f) K = 200
Low-dimensional Datasets High-dimensional Datasets

Method COIL-20 MNIST Fashion-MNIST USPS Isolet HAR BASEHOCK Prostate_GE Arcene SMK GLA-BRA-180

Baseline 100.0 97.92 88.3 97.58 96.03 95.05 91.98 80.95 77.5 86.84 72.22
NeuroFS 100.00±0.00100.00±0.00100.00±0.00 97.92±0.07 87.50±0.17 97.54±0.10 95.82±0.31 95.14±0.21 92.82±1.13 90.50±0.0090.50±0.0090.50±0.00 84.00±3.3984.00±3.3984.00±3.39 84.20±0.0084.20±0.0084.20±0.00 82.76±2.7182.76±2.7182.76±2.71

LassoNet 100.00±0.00100.00±0.00100.00±0.00 97.90±0.00 86.66±0.14 97.58±0.0797.58±0.0797.58±0.07 95.34±0.05 95.58±0.12 92.92±1.06 90.50±0.0090.50±0.0090.50±0.00 73.50±2.55 78.92±1.68 80.02±2.06
STG 100.00±0.00100.00±0.00100.00±0.00 97.46±0.20 87.00±0.26 97.38±0.04 94.88±0.07 93.70±0.66 87.46±1.03 86.68±3.56 77.00±3.32 81.54±3.34 73.88±3.80

QS 99.50±0.53 98.00±0.0798.00±0.0798.00±0.07 87.52±0.1587.52±0.1587.52±0.15 97.50±0.00 96.14±0.0896.14±0.0896.14±0.08 94.76±0.29 90.18±0.66 79.75±6.19 80.62±3.25 82.88±5.44 73.60±1.40

Fisher_score 84.00±0.00 94.50±0.00 84.70±0.00 97.50±0.00 89.90±0.00 85.80±0.00 92.20±0.00 90.50±0.0090.50±0.0090.50±0.00 65.00±0.00 78.90±0.00 61.10±0.00

CIFE 72.20±0.00 97.60±0.00 78.80±0.00 96.30±0.00 87.90±0.00 85.90±0.00 79.20±0.00 76.20±0.00 57.50±0.00 78.90±0.00 72.20±0.00

ICAP 99.30±0.00 97.60±0.00 84.50±0.00 96.90±0.00 90.30±0.00 93.30±0.00 93.70±0.0093.70±0.0093.70±0.00 42.90±0.00 80.00±0.00 76.30±0.00 72.20±0.00

RFS 100.00±0.00100.00±0.00100.00±0.00 - - 97.50±0.00 95.70±0.00 95.80±0.0095.80±0.0095.80±0.00 89.00±0.00 90.50±0.0090.50±0.0090.50±0.00 80.00±0.00 - -
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