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• The number of published scoping reviews conducted per year is increasing steadily while the number of published
papers is also growing rapidly across many fields, yet traditional scoping review methodology cannot keep up with this
deluge of data.

• We propose a semi-automated approach leveraging state-of-the-art representation learning and established clustering
techniques to rapidly accelerate the process of scoping reviews.

• We present results of our methods on two separate scoping review datasets of research papers, one large (N>1000) and
one small (N<500), and describe how our method successfully accomplishes our desiderata of replicability, objectivity,
automation & scalability, and discovery.
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A B S T R A C T
Scoping reviews are a type of research synthesis that aims to map the literature on a particular topic or
research area. Though originally intended to provide a quick overview of a field of research, scoping
review teams have been overwhelmed in recent years by a deluge of available research literature. This
work presents the interdisciplinary development of a semi-automated scoping review methodology
aimed at increasing the objectivity and speed of discovery in scoping reviews as well as the scalability
of the scoping review process to datasets with tens of thousands of publications. To this end we
leverage modern representation learning algorithms based on transformer models and established
clustering methods to discover evidence maps, key themes within the data, knowledge gaps within
the literature, and assess the feasibility of follow-on systematic reviews within a certain topic. To
demonstrate the wide applicability of this methodology, we apply the here proposed semi-automated
method to two separate datasets, a Virtual Human dataset with more than 30,000 peer-reviewed
academic articles and a smaller Self-Avatar dataset with less than 500 peer-reviewed articles. To
enable collaboration, we provide full access to analyzed datasets, keyword and author word clouds,
as well as interactive evidence maps.

1. Introduction
Scoping reviews, also called “mapping” reviews, are a

type of literature review commonly used for reconnaissance
to clarify working definitions and map conceptual bound-
aries of a topic or field (Peters, Godfrey, Khalil, McInerney,
Parker and Soares, 2015). Though originally intended to
provide a quick overview of a field of research (Arksey and
O’Malley, 2005), scoping review teams have been stymied
in recent years by the swift growth of available research
literature (Thomas, McNaught and Ananiadou, 2011). The
impact of this aptly named "data deluge" has been further
compounded by the explosion of new information technolo-
gies that enable the discovery of vast amounts of information
and provide immediate access to primary research across
multiple data collections (Hey and Trefethen, 2003; Bell,
Hey and Szalay, 2009).

Though increased access to research resources might
be considered an asset in the comprehensive mapping of
a field, traditional scoping review methodology struggles
to meet the expanding number of relevant and available
publications. Current attempts to rapidly execute scoping
reviews are often heavily involved with manual and bespoke
processes that are not easily translatable across domains.
While there have been attempts to leverage state-of-the-art
machine learning and automated text analysis techniques
in systematic reviews (Yamada, Yoneoka, Hiraike, Hino,
Toyoshiba, Shishido, Noma, Shojima, Yamauchi et al., 2020;
Thomas et al., 2011; Ananiadou, Rea, Okazaki, Procter and
Thomas, 2009; Tsafnat, Glasziou, Choong, Dunn, Galgani
and Coiera, 2014), research related to artificial intelligence
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and automated text mining with an application for scop-
ing reviews remains scarce. Hence, we seek to employ
replicable, programmatic, and automated steps that can be
leveraged across any scoping review to gain insights into the
extant literature.

Specifically, this approach follows a number of desider-
ata: (1) replicability, (2) objectivity, (3) automation & scal-
ability, and (4) discovery reporting. First, replicability
requires the approach to be applicable irrespective of domain
(e.g., computer science or medicine). For our approach to be
replicable we employ accessible and well-validated methods
for analysis and limit subjective methods wherever possi-
ble. Second, objectivity requires us to employ well-defined
automatic steps to evaluate and verify characteristics of the
scoping review without manual intervention. Third, scoping
reviews can vary significantly in size and hence automation
& scalability can be a crucial factor. We therefore require
the methods to be robust to both large and small scoping
reviews. Fourth, discovery & reporting of novel insights
are key for scoping reviews. We employ statistical methods
to describe the health of a specific field of research as well
as provide practical and accessible methods for researchers
to share their results. Specifically, we share our results as
an interactive evidence map of the dataset, as well as open-
source research code to improve reproducibility.

The aims of this work are the development of a document-
mining approach to support scoping reviews and to provide
new insights into defining a semi-automated process to fa-
cilitate scoping reviews. This paper will make the following
contributions:

• Introduce current manual scoping review methodol-
ogy and aims as well as an exploration of its limita-
tions.
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Figure 1: Scoping review stages.

• Present our semi-automated approach that system-
atizes and accelerates scoping review methodology
through novel representation learning approaches and
established clustering techniques.

• Validate the broad applicability and scalability of our
approach on two datasets that significantly differ in
size.

• Discuss how the semi-automated approach enables a
more rapid, objective, and scaleable process of dis-
covery within scoping reviews. Limitations of this
methodology are also explored.

The remainder of this paper is organized as follows.
Section 2 introduces the related work and existing research
in the field. Section 3 describes the scoping review datasets
included in the analysis and details the leveraged method-
ology to collate the documents. In Section 4 we detail the
semi-automated approach employed to facilitate the scoping
review. Section 5 provides specific results for the scoping
review datasets and Section 6 discusses the results of our
work and implications to scoping reviews writ large. Lastly,
Section 7 concludes the paper. To enable reproducibility, we
provide full access to the datasets, interactive evidence maps,
and source code.

2. Related work
2.1. Manual scoping review framework and

limitations
Scoping reviews are a relatively new approach to evi-

dence synthesis with a general purpose of identifying and
mapping the available evidence on a topic or field (Munn,
Peters, Stern, Tufanaru, McArthur and Aromataris, 2018).
Rather than being guided by a highly focused research
question that lends itself to a particular study design (com-
mon to systematic reviews), scoping reviews are guided
by the requirement to identify all relevant literature re-
gardless of study design (Levac, Colquhoun and O’Brien,
2010; Tricco, Lillie, Zarin, O’Brien, Colquhoun, Kastner,
Levac, Ng, Sharpe, Wilson et al., 2016) and can include
grey literature to address questions beyond those related
to intervention effectiveness (Arksey and O’Malley, 2005).
The ability to synthesize findings from a variety of stud-
ies, including both quantitative and qualitative approaches,
has contributed to the increased popularity of scoping re-
views (Logan, Webb, Singh, Walsh, Tanner, Wall and Ayala,
2021), making this type of review particularly relevant to
disciplines with emerging evidence, bodies of literature that

exhibit a large, complex, or heterogeneous nature, cross-
discipline investigations, or fields within the social sciences
that typically do not conduct randomized clinical trials mak-
ing it difficult to follow the methodology of traditional
systematic reviews (Peters et al., 2015; Logan et al., 2021).
The broad applicability of scoping reviews has led to their
exploding popularity. In fact, the number of published scop-
ing reviews conducted per year has increased steadily from
a single report published in 2000 to over 3,093 published in
2019 (Tricco et al., 2016; Raitskaya and Tikhonova, 2019;
Peters et al., 2015).

Though typically conducted with broader inclusion cri-
teria than systematic reviews, scoping reviews still require
rigorous and transparent methods to ensure that the results
are valid and trustworthy (Munn et al., 2018). A formalized
scoping review framework was initially proposed by Arksey
and O’Malley in 2005. This framework was advanced by
Levac et al. in 2010, Daudt et al., in 2013 and most recently
by the Joanna Briggs institute in 2020 (Peterson, Pearce,
Ferguson and Langford, 2017)). Despite this guidance, the
conduct and reporting of scoping reviews is often inconsis-
tent in the literature (Tricco et al., 2016), perhaps due to the
complexity inherent in manually managing and reviewing
the commonly large and diverse body of literature that is
aggregated. However, a recent scoping review of scoping
reviews published across multiple disciplines found that a
majority of researchers do in fact attempt to follow the five-
stage process originally outlined in the seminal work of
(Arksey and O’Malley, 2005; Tricco et al., 2016). Broadly,
this framework is as follows: Stage 1 includes refining re-
search questions to be investigated, in Stage 2 relevant stud-
ies are identified, Stage 3 focuses on study assessment and
selection, Stage 4 categorizes the data and finally, Stage 5
collates and summarizes the data (Raitskaya and Tikhonova,
2019) (cf. Fig. 1). Moreover, this scoping review revealed
that the major purposes Arksey and O’Malley first out-
lined for conducting a scoping review remain among the
most common goals pursued by published reviews. Research
teams commonly undertake scoping reviews to (1) create an
evidence map, (2) identify key themes and the breadth of the
research, (3) detect gaps in the existing literature, and, (4)
to determine the feasibility of conducting a full systematic
review (Arksey and O’Malley, 2005; Peterson et al., 2017).

Navigating this five-stage framework in a thorough and
thoughtful manner to achieve any of these aims takes a sig-
nificant amount of time (Daudt, van Mossel and Scott, 2013).
The rapid expansion of available evidence to be synthesised
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is paradoxically making it more difficult to make evidence-
informed decisions (Thomas et al., 2011). In fact, authors
have reported that scoping reviews can take up to 20 months
to complete (Peterson et al., 2017), evidence that researchers
can no longer keep up with the workload using traditional
manual methods of reviewing (Gusenbauer and Haddaway,
2020). Moreover, building a team that incorporates diverse
expertise in library sciences, review methods, as well as
searching and synthesis has been shown to significantly
improve the quality of the review, but the resources and time
needed to assemble these teams and execute a review may
be a daunting prospect to many researchers (Gusenbauer and
Haddaway, 2020). Thus, this paper builds on scoping review
methodology by applying novel representation learning ap-
proaches to support review teams in successfully meeting
this modern day data deluge.
2.2. Advances in knowledge synthesis

Currently, there is focus on innovation in evidence syn-
thesis techniques that include the introduction of improved
tools to make it easier to conduct this work. Evidence syn-
thesis technologies such as reference management software
and web-based software platforms allow for the more ef-
fective and efficient identification, analysis, synthesis, and
reporting of research (Gusenbauer and Haddaway, 2020).
Additionally, there is an extensive body of research focused
on automating or assisting the tedious process of systematic
reviews (Beller, Clark, Tsafnat, Adams, Diehl, Lund, Ouz-
zani, Thayer, Thomas, Turner et al., 2018; Tsafnat et al.,
2014; Jonnalagadda, Goyal and Huffman, 2015). Available
tools and task automation algorithms range from assisted
meta-search tools (Tsafnat et al., 2014), machine learning
based abstract screening (Wallace, Trikalinos, Lau, Brod-
ley and Schmid, 2010; Wallace, Small, Brodley, Lau and
Trikalinos, 2012), and automated result synthesis tools, like
RevMan-HAL (Torres and Adams, 2017) and PRISMA
(Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow,
Shamseer, Tetzlaff, Akl, Brennan et al., 2021). For exam-
ple, the tool abstrackr discussed in (Wallace et al., 2012)
relies on a semi-automated active learning approach during
which the human reviewer iteratively trains a Support Vector
Machine (SVM) (Cortes and Vapnik, 1995) to categorize
titles and abstracts as either “relevant” or “irrelevant” for
the systematic review. The features leveraged for the pro-
cess rely on traditional representations of documents named
bag-of-words (Wallach, 2006). A bag-of-words is a vector
representation 𝑥 = 𝑥1, ..., 𝑥𝑉 of a document with a given
vocabulary size 𝑉 , where 𝑥𝑖 ∀𝑖 ∈ {1,… , 𝑉 } is either 1 if
the word 𝑖 is present in the document or 0 if it is not present
respectively. While these representations have the ability to
capture topics with standardized vocabulary - which is not
trivially extensible - they are not able to represent complex
relationships between words (e.g., word order in bag-of-
words is typically ignored) (Wallach, 2006). While exten-
sions to bag-of-words, such as n-grams (Damashek, 1995)
are possible, they are fundamentally limited to small 𝑛 « 10,
due to the combinatorial explosion of the vocabulary size. In

the recent past, document representation algorithms relying
on extremely large datasets and neural network models (e.g.,
transformer models) have been developed that are able to
learn latent concepts and representations of language that
go beyond any engineered approach (Vaswani, Shazeer, Par-
mar, Uszkoreit, Jones, Gomez, Kaiser and Polosukhin, 2017;
Cohan, Feldman, Beltagy, Downey and Weld, 2020). Such
neural models are specifically capable to represent complex
relationships across sentences as well as entire documents
and hence hold great promise for the automated analysis
of scientific research documents (Cer, Yang, Kong, Hua,
Limtiaco, John, Constant, Guajardo-Céspedes, Yuan, Tar
et al., 2018; Beltagy, Peters and Cohan, 2020).

We leverage such document representation algorithms
for the present work to identify relationships between docu-
ments present in the scoping review datasets.

3. Methods
3.1. Context

The here presented work is part of the Virtual Human
Fidelity Coalition (VHFC). The VHFC is a collaboration
between the University of Southern California Institute for
Creative Technologies (USC ICT) and USC Libraries, spon-
sored by the US Army DEVCOM Soldier Center with spe-
cific guidance from its Simulation and Training Technology
Center (STTC). Virtual humans are growing in cross-domain
application, both as self-avatars to represent a specific person
and as standalone artificial intelligence-controlled agents
(Cassell, Sullivan, Prevost and Churchill, 2000; Hartholt,
Traum, Marsella, Shapiro, Stratou, Leuski, Morency and
Gratch, 2013; Hartholt, Mozgai and Rizzo, 2019; Hartholt,
Fast, Reilly, Whitcup, Liewer and Mozgai, 2020). This cross-
disciplinary work aims to investigate virtual human fidelity,
defined as the degree to which a virtual human reproduces
the sensory experience of interacting with a real person.
While the technology to make a digital human look, sound
and feel more realistic is improving, we know little about
the differing levels of realism that may be required for a
virtual human to be deemed acceptable and effective across
different contexts and end users.
3.2. Datasets

The overarching goal of the VHFC is to explore the
optimal fidelity of virtual humans across domains and end
user demographics to maximize the efficacy of training
outcomes. This research began with a scoping review of the
literature related to virtual human fidelity to explore (1) Fi-
delity Domains (e.g., rendering style, voice quality, facial ex-
pressions, etc.), (2) Intervention Contexts (e.g., pedagogical,
mental health, physical health, etc.), (3) Fidelity Evaluation
Strategies (e.g., direct measures such as subjective surveys
and indirect measures such as physiological responses), and
(4) End Users (e.g., students, soldier, the elderly, etc.).

The date range for this review spans 1990 to 2021. Initial
inclusion criteria for the scoping review are: journal articles,
conference proceedings, dissertations and theses, and review
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Table 1
Scoping review datasets.

Name Search Terms Date Range Total Found Included

VH dataset virtual human(s), embodied conversation agent(s), virtual agent(s), digital human(s) 1990-2021 60640 32934
SA dataset self-avatar(s) 2000-2021 1182 447

articles published in English. To be included articles also
had to include all three of the following criteria: be a human
subject research topic with real humans interacting with at
least one virtual human, one aspect of the virtual human’s
fidelity needed to be varied, and both direct and indirect
measures had to be collected. Newspapers, magazines, press
releases, books, book chapters, conference reviews, edito-
rials, notes, letters, short surveys, retracted, erratum, and
undefined articles were excluded. Furthermore, articles that
discussed robots and conversational agents that were not
embodied were not included.

Given the breadth of the topic, the initial scoping review
resulted in a sizable body of research to be synthesized.
The total number of resources advancing to data screening
was 34,153 after removing duplicates. This incredibly large
dataset inspired us to investigate document-mining algo-
rithms to accelerate and facilitate a comprehensive scoping
review allowing us to explore the last thirty years of research
on the digital representation of humans.

To further show generalizability of the here presented
document-mining approach to a broad set of scoping reviews
we further added a much smaller dataset to the investiga-
tions. We apply the here proposed semi-automated method
to two separate datasets, the above described Virtual Human
dataset (VH dataset) as well as a smaller Self-Avatar dataset
(SA dataset). VH dataset is a large general scoping review
with more than 30,000 documents and SA dataset is a small
specific scoping review with around 450 documents (cf.
Table 1). Both datasets were collected following the same
protocols with different keyword terms as specified by the
research team. A summary of search terms, date ranges, total
number of works found (i.e., before removing duplicates or
illegal entries), and total number of included publications is
provided in Table 1.

Before processing the data, we clean the data of any
missing datapoints. Due to the semi-automatic collection
of the dataset using tools such as IEEEXplore or Web of
Science, it is expected that a number of extracted metadata is
missing, e.g., titles, abstracts, authors, and years. We there-
fore remove all entries with missing data from our analysis.
After this pre-processing step, 32,934 papers remain in the
VH dataset and 447 in the SA dataset respectively.

4. Semi-automatic document-mining
approach
In the following, we present the semi-automatic document-

mining approach ensuring the aforementioned desiderata of
(1) replicability, (2) objectivity, (3) automation & scalability,
and (4) discovery & reporting of results for both the VH

dataset and SA dataset (cf. Section 3). When not explicitly
discussed, methods, parameters, and approaches exactly
matched between the document-mining of either dataset. To
visualize complex relationships between papers, to discover
emerging trends and topic clusters, as well as evidence gaps
within a large unstructured document dataset, we devised a
multi-step process visualized in Figure 2.

First, we leverage the state-of-the-art document-level
representation learning method SPECTER trained directly
on academic paper titles and abstracts as well as their
citation-relationships (Cohan et al., 2020) to derive dense
high-dimensional numeric representations for each docu-
ment. Second, we employ t-SNE, a dimensionality reduction
algorithm, to render the high-dimensional embeddings on
a two-dimensional interactive mapping (Van der Maaten
and Hinton, 2008), enabling the visual inspection of the
relationships between papers. Third, to identify the number
of research topics and their cluster entries within the vast
field of research we employ the elbow method (Kodinariya
and Makwana, 2013) to optimally identify k for the k-means
clustering (Ahmed, Seraj and Islam, 2020). Fourth, we iden-
tify the topic of each cluster leveraging word cloud analysis
(Cui, Wu, Liu, Wei, Zhou and Qu, 2010). While the naming
of each cluster topic and its key terms is still a manual
process, the visualization of word clouds greatly improves
the comparability and accelerates the process considerably.
Fifth, we leverage descriptive statistics to assess the clusters’
overall characteristics and trends. Sixth, to identify possible
evidence gaps within the scoping reviews data, we employ
keyword matching to visualize how certain keywords appear
across the entire space of the scoping review data. This
process is further enabled by leveraging an interactive map
and clear visualizations of the dataset.
4.1. Document embedding and visualization

As shown in Figure 2, we embed all documents using the
document-level transformer model SPECTER (Cohan et al.,
2020)1 in a 768-dimensional representation space. For the
embeddings we feed the model paper titles and abstracts in
order for the model not to be biased by author names and
publication years. We do not conduct any fine-tuning on the
SPECTER model as we seek to make it as broadly applicable
as possible for any dataset.

As it is difficult for a human to grasp the meaning and
relationships of a high-dimensional representation of the
document embeddings, we employ t-SNE (Van der Maaten
and Hinton, 2008) to reduce the dimensionality of the doc-
ument embeddings to only two. t-SNE is a non-linear di-
mensionality reduction technique that is widely used in

1https://github.com/allenai/specter
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Figure 2: Approach overview. A collection of all papers’ titles and abstracts are processed through SPECTER to derive high-
dimensional semantic embeddings of each paper. To visualize the data in a relationship preserving two-dimensional representation
we leverage t-SNE, while the high-dimensional embeddings are evaluated and clustered on a separate path. Lastly, the cluster
assignments are used to color each datapoint in the two-dimensional representation.

the machine learning (Cohan et al., 2020; Ghosh, Chollet,
Laksana, Morency and Scherer, 2017) and other fields of
academic research. Using t-SNE we are able to visualize the
data as well as maintain complex non-linear relationships
between the datapoints. The goal of the t-SNE algorithm
is to render similar datapoints close to each other and dis-
similar datapoints further apart from each other on a low-
dimensional space (i.e., two dimensions for the present
work). For the purpose of this work we leverage the SciKit
Learn implementation of t-SNE with the default parameter
setting and a random seed of 0 for reproducibility.2

4.2. Topic clustering
For the clustering of the documents into topics we lever-

age the 768-dimensional representations. We use the high-
dimensional document embeddings as input to the well
known k-means clustering algorithm (Hamerly and Elkan,
2003). While k-means is a popular approach to cluster data
and reveal groupings in the data, the right choice of k is
not trivial and can severely bias the outcome. To identify
the optimal number of clusters k, we employ the elbow
metric (Satopaa, Albrecht, Irwin and Raghavan, 2011). The
principal idea of the elbow method is to iteratively run k-
means clustering on the dataset for a range of values of k. In
our analysis, we ran the clustering for k ∈ [2, 100] for the
VH dataset and k ∈ [2, 20] for the SA dataset respectively.
For each value of k we calculate the sum of squared errors
(SSE) as the distortion score. Then we choose the elbow as
the trade-off value between an optimal SSE and a small k.
Unfortunately, as seen in Fig. 3 no clear elbow is visible
as the data is likely not very well clustered and significant
overlap is expected. This finding may be an artifact of the
dataset or signal pointing toward the homogeneity of the
topic space within the dataset.

To further evaluate the quality of clusters created using
k-means, we calculate the Silhouette score. This score is
assessed by comparing for each cluster the intra-cluster
distance (i.e., how similar data points are within the same
cluster) and the mean nearest-cluster distance (i.e., how

2https://scikit-learn.org/stable/modules/generated/sklearn.
manifold.TSNE.html

different a data point within a cluster is to the closest one in a
different cluster). The Silhouette score is calculated for each
sample of different clusters. The value of the Silhouette score
ranges from -1 to 1. We observe a score of <0.1 for both
datasets, which represents that the clusters are overlapping.
4.3. Topic identification and topic trends

To understand what each of the clusters represents we
employed a word-cloud algorithm to distill each cluster’s
main topic in a human readable format. For the purpose of
this work we use a common Python word cloud package3.
Before running the algorithm we removed common words
known as stopwords (e.g., a, do, get, she, or I) to render the
word-cloud plots more meaningful and focused on the actual
topic rather than just common English words. Specifically,
we use the standard stopword dictionary that accompanies
the Python implementation of the word cloud library. Once
the word clouds (cf. Figure 4) were rendered, two reviewers
reviewed each plot carefully and identified keywords (see
Tables 3 and 4) present in each plot to provide a mean-
ingful label to each cluster. While the process of naming
the clusters may be somewhat subjective, the access to a
reproducible, digestible, and quantitative algorithm such as
the word cloud algorithm renders this process transparent
and efficient.

While it is possible to run any descriptive statistic across
the datasets, for the purpose of this work we were specifically
interested in understanding the size of each identified cluster
(i.e., the number of publications assigned to the cluster)
and the year over year (YoY) growth of each cluster. These
statistics provide us a rough understanding on the trends,
nascence, and possible decay of the topic within the scoping
review.
4.4. Keyword matching

To allow a researcher to understand how a specific topic
of their interest maps into the identified clusters and embed-
ding space of the scoping review documents, we also provide
access to regular expression based keyword matching. For

3https://github.com/amueller/word_cloud
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Figure 3: Visualization of k-Elbow distortion metric to identify the optimal k for the k-means clustering given the document
embeddings.

Figure 4: Visualization of four example word-clouds within VH dataset.

example, one might be interested how different demographic
constraints (e.g., “military population”) fit into the scoping
review documents to understand if further research is war-
ranted, a field is already crowded, or if a systematic review
is even possible to dive deeper into the topic area of interest
within the context of the scoping review’s documents. These
explorations require manual input to identify the keywords.
We provide a few examples of such explorations in the
evaluation section 5.

5. Evaluation
Here we present the outcomes of our document mining

approach for both datasets. We first present the outcome of
the topic clusters to summarize and map the state of evidence
in Section 5.1. Then we identify key themes in the literature
and present the breadth of research and yearly trends in
each cluster in Section 5.2. Lastly, we explore preliminary
steps towards identifying possible knowledge gaps within
the literature as well as the feasibility to conduct a systematic
review for specific topics within the realm of the scoping
review datasets in Sections 5.3 and 5.4 .
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Table 2
Mapping of Semi-automated Document-Mining Approach onto Scoping Review Goals.

Goal Method Automation Level Description Evaluation

Evidence Map k-means Clustering Automatic 4.2 5.1
Key Themes and Breadth of Research Statistics/Word-Cloud Automatic 4.3 5.2

Knowledge Gap Detection Keyword Matching Semi-Automatic 4.4 5.3
Feasibility of Systematic Review Keyword Matching Semi-Automatic 4.4 5.4

t-SNE Dimension 1

t-
SN

E 
D

im
en

si
on

 2

Figure 5: Visualization of the final k = 29 clustering for VH dataset. The axis correspond to the t-SNE projections. The clustering
itself was computed by the high-dimensional document embeddings.

5.1. Evidence map
The optimal number of clusters was identified to be k =

29 for the VH dataset and k = 9 for the SA dataset respec-
tively, as seen in Fig. 3. With these k values, we calculated
a k-means clustering of the embeddings and visualized it in
the two dimensional space for both datasets. The final cluster
visualization is provided in Fig. 5 for the VH dataset4. Note
that the clustering was computed with the 768-dimensional
embedding vectors while the visualization in Fig. 5 is based
on the t-SNE projections to only two dimensions. Based off
of the Silhouette score, it is expected that the clusters are
overlapping.
5.2. Key themes and breadth of research

To assign actual human interpretable topics to each of
the clusters, we employ word-cloud analysis to each of the
clusters and identify topics based on the keywords identified
in each (Heimerl, Lohmann, Lange and Ertl, 2014). Figure
4 exemplifies clusters for the VH dataset from this analysis.
Table 3 lists all clusters with accompanying keywords for the
VH dataset and Table 4 for the SA dataset, respectively.

In order to assess the overall health (i.e., the growth in
publications) of each cluster we calculate the average per-
centage growth (YoY) over the past 10 years in the number

4Interactive figures can be found at https://github.com/USC-ICT/VHFC

of publications. To illustrate the difference between a healthy
and a lower trending cluster we provide histograms of the
Healthcare cluster (Mean YoY growth = 35.3%) and the
Animation cluster (Mean YoY growth = -3.4%) identified
within the VH dataset. Fig. 6 visualizes the growth between
the two clusters. Overall, the entire field of VH dataset
appears to be growing at a steady pace of about 8% YoY
for the past 10 years.

Due to the small number of documents in the SA dataset
a YoY growth analysis is not possible as in some years
no publications appeared in some clusters. Therefore we
provide the bi-yearly growth for single clusters in Table 4.
However, the field itself is rapidly growing overall at a 34.3%
YoY growth, which is outpacing the larger field presented in
the VH dataset.
5.3. Knowledge gap detection

One of the main purposes of scoping reviews is to
determine knowledge gaps within the literature. To identify
if a knowledge gap exists within the large and small scoping
review datasets, we propose the use of keyword matching
techniques applied to the title of the documents. To illustrate
the approach we conduct a keyword matching example for
the broader topic of military by searching for the keywords
military, soldier, veteran, weapon, army, air force, navy,
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Figure 6: Year over year (YoY) growth comparison for Healthcare and Animation clusters respectively in VH dataset. Healthcare
is shown in blue with a rapid growth trend and Animation is shown in purple with a longer history in the field and a slow decline
over the years.

Table 3
Extracted clusters for the VH dataset with year over year (YoY) growth and total number of publications over the last ten years
(i.e., 2010-2020).

ID Name Keywords Growth Pubs

0 virtual agents interaction, social, realistic, multi agent, behavior 1.02% 982
1 biophysiology cardiac, heart, arrhythmia, fibrillation 31.67% 211
2 human robot interaction social robots, children, assistive robot, humanoid robot, multimodal, care 18.75% 1149
3 emotion affective, facial expression, emotion recognition, behavior, speech, nonverbal behavior 0.64% 876
4 interfaces user, interaction, multimodal, framework, model 14.06% 988
5 market research design, digital, brand, loyalty, satisfaction, e commerce, service, customer 16.51% 786
6 biomechanics ergonomics, force, muscle, joint, performance, motion, rehab 11.99% 789
7 system architecture system, simulation, network, control, multi agent 11.19% 948
8 robot navigation path planning, collision avoidance, swarm, tracking, navigation, UAV 2.21% 665
9 virtual interaction avatar, virtual environments, virtual reality, agent, influence 8.92% 1166
10 vehicle driving, ergonomics, passenger, seat, accident, driver simulation, car, safety 15.70% 678
11 VR training training, virtual agents, virtual reality, simulation, medical, AR, surgery 20.23% 593
12 machine learning representation learning, data, classification, prediction, reinforcement learning, neural network 7.30% 1165
13 animation motion, 3d, model, character animation -3.88% 570
14 gaming serious games, storytelling, narrative, gamification, video game 6.27% 911
15 textiles wearables, clothing, design, cloth, assembly, virtual fitting 22.95% 504
16 conversational agents dialog, chatbot, conversation, communication, embodied conversational 13.23% 1178
17 modeling motion movement, kinematic, motion simulation, motion tracking, posture 8.56% 882
18 medical imaging patient, anatomy, CT, voxel, body, imaging, MRI, surgery 8.76% 598
19 social behavior negotiation, trust, culture, empathy, social, presence, ethical, decision making, personality 11.91% 1172
20 multimodal interaction speech, gesture, sign language, audiovisual, prosody 8.09% 814
21 virtual reality virtual reality, virtual environment, augmented reality, immersive, mixed reality 11.91% 904
22 mental health patient, treatment, depression, disorder, clinical, assessment, pain 35.39% 848
23 3d modeling 3d, model, shape, image, face, reconstruction, mapping, pose estimation -0.82% 782
24 face facial expression, face animation, perception, emotion, gender, eye, expression recognition 6.49% 483
25 ergonomics design, evaluation, application, workplace, manufacturing, workstation, safety 14.64% 793
26 crowd simulation pedestrian, crowd behavior, traffic, animation density 5.33% 776
27 learning student, learner, education technology, children, pedagogical agent 7.82% 1209
28 pharmacokinetics drugs, cardiac, atrial fibrillation, metabolism, physiology, treatment 13.07% 339

armor in both scoping review datasets. We visualize the
result in Fig. 7. In the VH dataset, research regarding the
military is spread out amongst topic clusters, providing
evidence that there is diffuse research across topics, however,
there is a lack of thematic concentration in a single domain.
This example also clearly shows a significant knowledge gap
within the literature on self-avatars with respect to the topic
of military.

5.4. Feasibility of systematic review
The fourth aim of scoping reviews is to answer the

question if a certain topic within the broader scoping review
dataset warrants an in-depth systematic review to further our
understanding of that particular topic (Tricco et al., 2016).
As discussed in (Tricco et al., 2016, p. 9), one primary way
to assess if an in-depth systematic review is feasible is for
example “when at least ten studies are available on a specific
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Table 4
Extracted clusters for the SA dataset with bi-yearly growth and total number of publications over the last ten years (i.e.,
2010-2020).

ID Name Keywords Growth Publications

0 mental health stress, therapy, body, addiction, emotion, image, anorexia, mindfulness 93.75% 26
1 virtual reality HMD, virtual environment, egocentric distance, motion 39.52% 77
2 virtual worlds media, social, second life, identity, community 57.78% 33
3 avatar creation creation, intention, customization, identity, brand, consumer 50.16% 50
4 evaluation participant, presence, experience, study, user 136.21% 79
5 data analysis data, design, guidelines, learning, tangible, information 78.24% 23
6 gaming player, game, massively multiplayer, gaming, Fortnite 117.22% 45
7 education school, learning, student, science, mathematics 58.33% 24
8 therapeutic applications rehabilitation, ASD, walking, Kinect, aging, effectiveness 46.30% 45
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Figure 7: Visualization of the spread of the ”military” topic within the two datasets. The topic is identified using a set of keywords
related to the military, including: military, soldier, veteran, weapon, army, air force, navy, armor. Matching documents in the
dataset are visualized with an orange dot and those which do not are visualized with a blue dot.

topic”. Leveraging the semi-automatic clustering techniques
in Section 4.2 and keyword spotting discussed in Section
5.3, we believe it is possible to, for example, conduct a
systematic review of the use of virtual humans in the context
of “military” simulation and training.

6. Discussion
As introduced above, the here proposed method seeks

to follow the desiderata: (1) replicability, (2) objectivity, (3)
automation & scalability, and (4) discovery to support the
key objectives of scoping reviews (cf. Table 2). Within this
section, we discuss how the proposed approach attempts to
accomplish these characteristics, how they support the goals
of scoping reviews, and where we identify shortcomings and
possible improvements for future work.
Replicability. Replicability should be a core tenet of any
study. Yet, due to the variations in approaches, absence of
tools, and lack of consistency in focus of scoping reviews
(Pham, Rajić, Greig, Sargeant, Papadopoulos and McEwen,
2014), replicability is traditionally not guaranteed. Within
this work we follow a few strategies to facilitate replicability.
First, we make all the data, search criteria, source code, and
parameters used in the approach available through an open
source repository hosted on GitHub.5 Second, we leverage
only open source software and well established algorithms

5https://github.com/USC-ICT/VHFC

within the work. Third, we further provide interactive in-
terfaces whenever possible for readers and colleagues to
investigate and experience the data themselves.
Objectivity. Whenever possible, we seek to reduce bias
by eliminating subjective judgement from the approach. For
example, we employ well defined automatic steps to evaluate
and verify characteristics of the learned representations,
such as the number of discovered topics within a scoping
review dataset (cf. Section 4.2) and use the elbow method
to identify an optimal number of k clusters for the k-means
algorithm. However, it needs to be noted that this method
is not perfect in the sense that it always identifies the true
number of clusters in any given dataset, but rather identifies a
trade-off between the number of clusters and their associated
distortion score.

When analyzing the topic of each cluster, we also re-
sorted to a method that only assists human subjective judge-
ments rather than a fully automated term recognition (ATR)
algorithm (Kageura and Umino, 1996). This is motivated by
the fact that due to the nature of the collected dataset often
ATR algorithms would identify terms that are present in the
search criteria of the scoping review, such as “virtual human”
instead of the actual topic of the cluster within the realm of
virtual human research. When leveraging pyate (Lu, 2021)
for ATR, for example, we found that the algorithm for Clus-
ter 22 correctly identified “Mental Health” as the topic of
the cluster, however, for Cluster 3 the automatically inferred
term was “Virtual Agents”, while “Emotion Recognition”

Mozgai et al.: Preprint submitted to Elsevier Page 9 of 11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4218678

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Machine Learning for Semi-Automated Scoping Reviews

came in a close second. We believe that these ATR methods
have the potential to further refine the approach taken in this
work, but this will require further iterations, subject to future
investigations.
Scalability & Automation. The third desiderata seeks to
show that the here presented approach can be applied to
datasets of any size (including very large datasets) and help
automate some of the most tedious steps of scoping reviews.
Specifically, the approach was able to significantly speed up
the identification of topics, their trends, and the presence of
studies covering certain topics. There is no doubt about the
immense workload of manual screening in scoping reviews.
In both the abstract and full-text screening phases, two inde-
pendent researchers must read and evaluate each resource for
inclusion and exclusion variables. Even with small datasets
this is a time-consuming and subjective process that can
introduce bias, while large datasets exacerbate the issue of
time commitments and efficiency. By reducing the amount of
time dedicated to the screening process and by enabling the
ability to rapidly discover patterns within the data, which can
be a challenging process when employing manual screening
procedures, we facilitate a more systematic and efficient
scoping review process that can scale to even the largest of
datasets.
Discovery. Last but not least, we seek to provide a set of
tools and approaches that render scoping review datasets
more accessible and discovery easier. Specifically, we would
like to highlight the t-SNE algorithm (Van der Maaten
and Hinton, 2008) that renders high dimensional document
representations human consumable by projecting them to a
2D space. Together with an interactive system that allows
the user to hover over titles6 and explore similar fields with
ease, this represents a significant step towards more accessi-
ble scoping review data discovery. Representation learning
techniques and well established clustering algorithms, such
as SPECTER and k-means employed in our work, transform
text to meaningful representations and enable more targeted
searching without increasing manual screening workload.
Additionally, clustering in scoping reviews introduces a
quantitative approach to the analysis of article datasets that
can accelerate knowledge synthesis while hereto increasing
objectivity and reducing some of the bias that can be intro-
duced by subjective reviewers.

Together, these desiderata support scoping reviews on
all aspects. The here introduced methods specifically sup-
port the mapping of the evidence, the identification of key
themes and their breadth of research, the identification of
knowledge gaps, and the assessment of feasibility to conduct
a systematic review for a certain topic.
6.1. Limitations

Of course the here presented work is not without limita-
tions. We discuss the main limitations of the present work in
this section.

6To access the interactive maps go to our GitHub: https://github.com/
USC-ICT/VHFC

While the semi-automated approach speeds up data syn-
thesis, it still requires the qualitative analysis of clusters by
domain experts. The here employed elbow method provides
a mathematically optimal trade-off between the number of
clusters k and the distortion score, however, it by no means
always corresponds to the exact subjective clustering that a
domain expert would potentially identify. Specifically, the
domain experts need to verify and validate topics manu-
ally while inspecting the synthesized word-cloud plots to
validate the cluster and identify specific cluster themes.
Researchers should employ their own judgement when as-
sessing the exact number of clusters and may need to discuss
merging or splitting clusters given their observations. Within
this work, we support this process of revising the clusters
by enabling interactive analysis and word-cloud methods
that allow rapid inspection of the articles associated with a
certain cluster.

While our approach controls for the subjective bias in-
troduced by manual screening, automated methods are cer-
tainly not without their own biases. We suggest to continu-
ously screen for novel and improved representation learning
algorithms that could replace the SPECTER model lever-
aged in this work. Further, while a full manual screening
approach likely has a higher chance of identifying irrele-
vant articles that were introduced into the dataset during
the initial search process (e.g., tables of content, articles
with missing fields, irrelevant articles retrieved by keyword
search, etc.), the automated process right now does not
include a strong filtering approach. This could be introduced
in a future update of the work, but is out of scope for this
initial version.
7. Conclusions

Our work reports on the partnership of social science
researchers, computer scientists, and librarians in the devel-
opment of a document mining approach to support scoping
reviews. We demonstrate the efficacy of our semi-automated
technique in rapidly identifying patterns in both a large and
small dataset of academic articles. This methodology can
rapidly identify literature that should be further reviewed by
researchers wishing to establish the current state of knowl-
edge in a particular field or across multiple disciplines. As
advances in information sciences increase the access to and
volume of articles available to researchers, the application
of validated semi-automated reviews will be a valuable tool
that improves the efficiency of evidence synthesis projects
and increases communication across disciplines.
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Appendix A. Supplementary data
Supplementary material related to this article can be

found at https://github.com/USC-ICT/VHFC
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