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ABSTRACT State-of-the-art open network visualization tools like Gephi, KeyLines, and Cytoscape are
not suitable for studying street networks with thousands of roads since they do not support simultaneously
polylines for edges, navigable maps, GPU-accelerated rendering, interactivity, and the means for visualizing
multivariate data. To fill this gap, the present paper presents Dash Sylvereye: a new Python library to produce
interactive visualizations of primal street networks on top of tiled web maps. Thanks to its integration
with the Dash framework, Dash Sylvereye can be used to develop web dashboards around temporal and
multivariate street data by coordinating the various elements of a Dash Sylvereye visualization with other
plotting and UI components provided by the Dash framework. Additionally, Dash Sylvereye provides
convenient functions to easily import OpenStreetMap street topologies obtained with the OSMnx library.
Moreover, Dash Sylvereye uses WebGL for GPU-accelerated rendering when redrawing the road network.
We conduct experiments to assess the performance of Dash Sylvereye on a commodity computer when
exploiting software acceleration in terms of frames per second, CPU time, and frame duration. We show
that Dash Sylvereye can offer fast panning speeds, close to 60 FPS, and CPU times below 20 ms, for street
networks with thousands of edges, and above 24 FPS, and CPU times below 40 ms, for networks with
dozens of thousands of edges. Additionally, we conduct a performance comparison against two state-of-
the-art street visualization tools. We found Dash Sylvereye to be competitive when compared to the state-
of-the-art visualization libraries Kepler.gl and city-roads. Finally, we describe a web dashboard application
that exploits Dash Sylvereye for the analysis of a SUMO vehicle traffic simulation.

INDEX TERMS Data visualization, data analysis, software libraries, component architectures, complex
networks, graphical user interfaces, graphics, vehicle dynamics

ONE of the primary objects of interest of urban re-
searchers and planners are street networks. They study

street networks for a variety of applications such as traffic
engineering, transportation, and urban planning. Recently,
academics from seemingly unrelated fields, such as Networks
Science and Computer Science, have joined to study the
complexity of large street networks and develop efficient
algorithms to process them.

With the advent of the OpenStreetMap (OSM) project [11]
the street topology of virtually any city in the world became
publicly available for analysis. Tools like OSMnx [5], [6]
make it easy for any researcher to download OSM street
network data with a simple query. However, the availability
of such networks has also revealed the limitations of current
tools like graph visualization.

Urban researchers need tools to make sense of multivariate
data associated with street networks. These data are hardly
static: vehicle counts, vehicle positions, traffic bottlenecks,

and other urban data change over time. Dashboards have
become a standard visual analytics tool when trying to make
sense of multivariate data. Prominent dashboard tools in
the industry include Tableau [3] and Google Data Studio1.
However, these kinds of open tools are too general to support
the practical analytical needs of real-world urban applications
[26].

On the other hand, the street network of large cities is made
of dozens of thousands of nodes and edges. This imposes the
need to push the processing capabilities of graphics adapters
to render such large structures. These complex visualizations
should also allow for user interactivity by enabling naviga-
tion, panning, zooming, and clicking.

The use of web technologies for developing visualization
solutions is currently a tendency among practitioners. Open-
source programming libraries like the Dash framework en-

1https://datastudio.google.com/
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able data analysts to develop their own rich and interactive
web dashboards by exploiting a variety of coordinated web
plotting and UI components. Such dashboards can be dis-
played in any modern web browser and be easily deployed
on the web.

State-of-the-art graph visualization tools like Gephi, Key-
Lines, and Cytoscape are not suitable for studying city-scale
street networks since they do not support simultaneously
polyline2 drawing for edges, navigable maps, interactiv-
ity, the means for visualizing multivariate data, and GPU-
accelerated rendering.

In this context, the research question we tackle is: how
to fill this gap and exploit state-of-the-art visual analytics
techniques and web technologies to produce interactive vi-
sualizations of street networks on a city scale, along with its
multivariate data, making this technology easily available to
researchers and practitioners alike?

To answer the posed question, this paper presents a new
Python library called Dash Sylvereye which produces inter-
active visualizations of primal street networks on top of tiled
web maps. Thanks to its integration with the Dash frame-
work, Dash Sylvereye can be easily exploited to develop
web dashboards around temporal and multivariate urban data
by coordinating the various elements of a Dash Sylvereye
visualization with other Dash plotting and UI components.

Dash Sylvereye can render large city-scale interactive
street networks as well as thousands of interactive markers
in commodity computers with the help of the system’s GPU
through WebGL.

The core contributions of this paper are as follows:
• A library tool for Python that generates street network

visualizations that can draw atop web tile maps and that
is designed from the ground up to be compatible with
the widely used Dash dashboard visualization frame-
work.

• A library tool that allows for the customization of
colors, sizes, transparency, and visibility of individual
street network elements as well as markers. Visual prop-
erties can be also automatically scaled based on the
values found in the street network’s data.

• A library tool that provides fast software acceleration
and exploits hardware acceleration for redrawing, show-
ing panning speeds of close to 60 FPS, and CPU times
below 20 ms, for street networks with thousands of
edges.

The rest of this paper is structured as follows. Section I
provides additional background on topics that are relevant to
the proposed solution. Section II offers a review of the state-
of-the-art on street graph visualization. Section III lists the
requirements we identified were needed to meet and presents
details on the internal design of the Dash Sylvereye library.
Section IV offers the reader a quick grasp of how coding with
the Dash Sylvereye library feels. In Section V we assess the
animation performance of Dash Sylvereye in terms of frames

2A sequence of connected segments that describe a curve.

per second, frame duration, and CPU time. In Section VI we
present a comparison of the animation performance among
Dash Sylvereye and other two state-of-the-art road network
visualization libraries. In Section VII we describe a non-
trivial example of a dashboard that uses Dash Sylvereye as
its central component. Finally, in Section VIII we offer final
conclusions and future work.

I. BACKGROUND
A. STREET NETWORKS
This paper is concerned with primal street graphs. A pri-
mal street graph is a non-planar directed multi-graph with
loops allowed where nodes represent street intersections or
junctions, and edges represent street segments [6]. A street
network is a kind of spatial network [1]: a graph that models
natural, sociological, or technological phenomena where the
elements of the graph are mapped to the spatial dimension,
usually to geographical coordinates. Urban networks have
become the focus of many works in recent years. An example
of such works is [14], which makes use of a new model for
analyzing urban network structures, combining them with the
information provided by taxi trajectory data.

B. WEB-BASED VISUALIZATION
The wide availability of web browsers has turned them into
an all-pervasive execution platform. Recently, an increasing
number of web-based visualization applications have been
proposed motivated by the new technologies offered by mod-
ern browsers [19]. The HTML5 standard gives programmers
an array of options to render graphics: the HTML canvas,
SVG graphics, CSS animations, and WebGL. WebGL is a
standardized JavaScript API for rendering GPU-accelerated
graphics in web browsers. A WebGL application consists
of two parts: control code written in JavaScript and shader
code written in the GLSL language. WebGL has particularly
attracted the interest of the data visualization community
since it allows programmers to exploit the GPU processor
regardless of the vendor.

A good example of a work that exploits state-of-the-art
web visualization technologies for graph analysis is Con-
traNA. ContraNA [8] is a visual analytics framework that
exploits machine learning to compare two networks for
learning the main specifications of one network with respect
to the other. Such comparison is challenging due to the
complex structure of large graphs. The authors developed
ContraNA as a web application. The back-end is developed in
Python whereas the front-end uses a combination of HTML5,
JavaScript, D3.js, and WebGL. WebSockets are used for
back-end and front-end communication. Examples of works
that exploit WebGL to produce visualizations of large graphs
include [7], [12], [17], [22].

JavaScript has become the lingua franca for front-end web
development. There already exists a mature ecosystem of
open-source JavaScript libraries which are being exploited
for data visualization. Prominent examples of such libraries
are D3.js and Three.js. More recently, WebAssembly has en-
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abled developers to write high-performance code that rivals
in speed with native applications written in C and C++. This
technology opens new possibilities for efficiently running
compute-intensive algorithms in the browser, such as graph
layout algorithms.

C. DASHBOARD VISUALIZATION

Dashboards are one of the most common use cases for data
visualization [21]. Interest in developing web dashboards
has recently increased in governments, universities, research
centers, and health institutions due to the need of sharing real-
time information about the state of the COVID-19 pandemic
in an open and accessible manner.

In urban studies, dashboards are being used to visualize
real-time urban data from a variety of sources to provide an
easy-to-understand tool to decision-makers [9]. Dashboards
can be used to visually assess urban performance to support
the sustainable development of smart cities [15], and for
transparent and accountable decision-making [18]. A good
example of a work that exploits dashboards for city analytics
purposes is [20], which proposes a dashboard-driven visual
tool for analyzing traffic accident and casualty trends.

Python is one of the most-used languages among develop-
ers who identify themselves as data scientists [13]. There is
a relatively new ecosystem of frameworks that are attracting
the attention of data science practitioners in need of develop-
ing web dashboard applications entirely in Python, without
the need of learning front-end web languages like HTML,
CSS, and JavaScript. One such library is the Plotly Dash
framework3.

The Dash framework is built around the concept of Dash
component. A Dash component is a Python class that pro-
vides an abstraction for a web UI element: from a single
HTML tag to more complex elements such as a slider, a chart,
a gauge meter, or a navigation bar. A Dash component has
properties that can be set, read, and updated. Under the hood,
Dash components are Python wrappers for components writ-
ten with the widely-used React.js front-end UI framework4.
This enables programmers to build their Dash components in
JavaScript.

Dash applications are composed of two parts. The first
part is the layout of the dashboard, which describes the
application’s appearance. It is specified as a tree of Dash
components. The second part is the callbacks, which defines
the interactivity of the application. Dash callbacks are Python
functions that are automatically triggered when the properties
of Dash components change.

A callback receives the values of the changed properties as
input and returns new values for other properties as output.
Every property of a Dash component can be updated through
a callback. A special kind of input is the states: input param-
eters that do not trigger a callback, only store the state of a

3https://plotly.com/dash/
4https://reactjs.org/

parameter at the moment the callback is triggered by another
input parameter.

II. RELATED WORK
Many graph visualization tools have been developed over
the last few years to generate graph visualizations. In con-
sequence, the landscape of such tools has become extensive.
We focus our state-of-the-art review on both open tools5 and
academic works that propose practical contributions with any
of the two following features: 1) support for the development
of visualization dashboards around the reported tool, 2) some
sort of geospatial visualization support, such as the ability to
render graphs on top of maps, and 3) rendering of large road
networks. We discuss in detail tools that provide any kind of
dashboard support in Section II-C.

A. TOOLS IN LITERATURE
The following are works in the academic literature that report
graph visualization libraries for a variety of programming
languages. We focus our review on tools that can render large
road networks (through GPU hardware acceleration).

ccNetViz [22] is an open-source WebGL-based JavaScript
library for network visualization. It supports animation fea-
tures (nodes and links). Node colors, size, and transparency
can be manipulated in real-time. Similarly, the animation
of edges can be used to display information transmission.
Animation features can be specified dynamically.

Carina [7] is a visualization tool that helps researchers to
explore and visualize large graphs with millions of nodes.
Carina supports fast graph drawing through WebGL and
supports both desktop (Electron) and mobile platforms. An
outstanding feature of Carina is it does not save the whole
graph in RAM, enabling the tool to handle networks as big
as 69 million edges.

Authors in [12] developed a visualization tool for large
graphs called NetV.js. It is a WebGL-based JavaScript library
that supports up to 50 thousand nodes and 1 million edges. It
exploits the GPU to enhance the drawing performance and
create an interface for manipulating graph components.

Argo Lite [17] is an interactive network visualization tool
for web browsers. Users are enabled to modify the character-
istics of nodes (size, shape, colors), links (colors), and labels
(size and length). It uses WebGL to draw graphs fast. Users
can import graph data from CSV, GEXF, and TSV files.

Authors in [23] developed a web-based application to
visualize detailed information of transportation networks for
mobility analytics by exploiting reachability maps. It is pow-
ered by GLSL.

Urban Network Analysis (UNA) [24] is a full-fledged
toolbox that can be used to visualize spatial networks, as
well as computing network measurements. It is provided as
an extension for ArcGIS and Rhinoceros 3D. Support for
GPU acceleration is not explicitly mentioned in the paper nor

5Tools that are publicly available as either open-source, free, or commer-
cial products.
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TABLE 1. Feature comparison of state-of-the-art network visualization tools. To grant support for a given feature, it should be provided out-of-the-box or via
plug-ins/extensions. A N/A in the Language column means that the work is not a library but a web or desktop application. Notes: (1) Support of the feature is
granted only if the tool can draw polylines for edges. (2) OSMnx can generate static Web visualizations with Folium. (3) By using the TimestampedGeoJson Folium
plugin. (4) By using the Cytoscape.js library. (5) By using the Cytoscape.js Dash component. (6) A KeyLines visualization can be embedded in a Kibi dashboard. (7)
There is a Tableau extension for embedding Kepler.gl visualizations. (8) By combining the Dash component with, for example, a Dash slider component that
implements a timeline. (9) Since the tools are built on top of the Leaflet.js library, they may be able to display non-OSM tilemaps. (10) It supports OpenCL for
accelerating compute-intensive tasks such as graph layout calculation. Cytoscape.js is not powered by WebGL. (11) With Gephi Toolkit. (12) With Cytoscape.js. (13)
With PyGraphistry and GraphistryJS. (14) GPU acceleration is used for computing graph layouts. (15) It supports non-georeferenced polylines. (16) It supports
JavaScript if the standalone React component is used. However, dashboard framework integration (and by extension timeline support) will not be available. (17)
With graph-app-kit. (18) Support for GPU acceleration is mentioned neither in the paper nor webpage. Nonetheless, given that UNA is an extension, GPU
acceleration support could be provided through the base packages (ArcGIS and Rhinoceros 3D) which support OpenGL. (19 Python support is provided through
the keplergl module.

.

Tool Language Polyline
drawing (1)

Rendering on
top of a map

layer

GPU-
accelerated
rendering

Programmable
interactivity

Timeline
support

Dashboard
framework
integration

city-roads JavaScript Yes No WebGL No No No

Folium Python Yes (2)
OSM,

Mapbox,
Stamen (9)

No No Yes (3) No

Gephi Java (11) No No OpenGL No Yes No
OSMnx Python Yes OSM (2) No No No No

Cytoscape JavaScript (12) No No No (10) Yes (4) Yes (8) Yes (5)
KeyLines JavaScript No OSM (9) WebGL Yes Yes Yes (6)

Kepler.gl Python,
JavaScript Yes Mapbox WebGL Yes Yes Yes (7)

Sigma.js JavaScript No No WebGL Yes No No
VivaGraphJS JavaScript No No WebGL Yes No No

Graphistry Python,
JavaScript (13) No No WebGL No Yes (17) Yes (17)

ReGraph JavaScript (19) No OSM (9) WebGL Yes Yes No
Ogma JavaScript No OSM (9) WebGL Yes Yes No

G6 JavaScript No (15) No No (14) Yes No No
yFiles JavaScript No (15) OSM (9) WebGL Yes Yes No

El Grapho JavaScript No No GLSL Yes No No
ngraph.pixel JavaScript No No GLSL Yes No No
react-force-

graph JavaScript No No WebGL Yes No No

ccNetViz JavaScript No No WebGL Yes No No
Carina N/A No No WebGL No No No
NetV.js JavaScript No No WebGL Yes No No

Argo Lite N/A No No WebGL No No No
Schoedon et

al. 2019 N/A Yes Yes GLSL No No No

UNA N/A Yes Yes ? (18) No No No
D. Sylvereye Python (16) Yes OSM (9) WebGL Yes Yes (8) Yes

webpage. Nonetheless, given that UNA is an extension, GPU
acceleration support could be provided through ArcGIS or
Rhinoceros 3D.

B. OPEN TOOLS
The following are tools that are made available openly
through code repositories across the web. We limited our
review on programming libraries that are still active, that
show the aforementioned mentioned features, or with an
associated programming library. For the sake of comparison
with the library reported in this paper, we gave priority to
JavaScript and Python libraries, but we also covered the
widely-used Gephi tool, which is Java-based.

Folium6 is an open-source Python tool that allows users
to visualize data on an interactive Leaflet.js map. Users can
zoom or click on the map to analyze the geo-referenced data.

OSMnx [5], [6] is an open-source Python library to easily
download, visualize, and analyze urban street networks. It

6https://github.com/python-visualization/folium

is built upon three widely used Python libraries, namely
GeoPandas, NetworkX, and Matplotlib. It allows the user to
extract street data from OSM for different transport modes
such as walking, cycling and driving with a single line of
code. OSMnx can also visualize isochrone maps.

Cytoscape [25] is an open-source graph visualization tool
originally developed for biological network analysis. Cy-
toscape provides visualization functions that make it easy for
researchers to interactively analyze complex graph datasets.
However, it doesn’t scale to high-volume graphs. Nonethe-
less, it supports offloading computationally intensive pro-
cessing on a GPU, multi-core CPU, or multi-processor card
by using OpenCL.

Gephi [2] is an open-source visualization tool for users
who seek to generate static visualizations of graphs. It is
a desktop application that supports a wide catalog of plug-
ins. It is simple to use for beginners. Also, it makes it easy
to create CSV files from the network’s data. Graphs can be
exported to a variety of formats. It is powered by OpenGL.

4



Gephi provides the Gephi Toolkit7, a standalone Java library
that programmers can use to generate visualizations pro-
grammatically.

Anvaka’s city-roads8 is an open-source visualization web
tool written in JavaScript that extracts data from OSM to
draw all the streets within a city. It is powered by WebGL.

Sigma.js9 is an open-source JavaScript library that sup-
ports HTML canvas and WebGL renderers for graph visu-
alization, as well as mouse and touch support. Thanks to its
plug-in architecture, the library is extensible. It can import
Gephi graphs in GEXF format.

VivaGraphJS10 is an open-source JavaScript library that
supports WebGL, Canvas, and SVG renderers for graph visu-
alization. It is built on top of the ngraph11 graph algorithms
library.

ReGraph12 is a commercial WebGL-powered React library
for graph visualization by Cambridge Intelligence. It imple-
ments two visualization components: a chart and a time bar.
It can render graphs on top of Leaflet.js web maps. Other
geospatial features supported are geo-fencing, overlays, and
multiple coordinate reference systems.

Ogma13 is a commercial graph visualization JavaScript
library by Linkurious. Ogma is powered by WebGL, but it
also supports HTML5, Canvas, and SVG renderers. Inserting
a custom UI on top of Ogma is possible. Geographical mode
allows the programmer to display the graph on top of a web
map from different map providers.

G614 is a graph visualization JavaScript library. It supports
drawing polylines for edges. However, it does not support
rendering graphs on top of maps. GPU acceleration is sup-
ported for computing graph layouts.

El Grapho15 is an open-source JavaScript library for graph
visualization that exploits GLSL shaders for quickly gener-
ating graph renderings of large graphs. The rendered graphs
can be zoomed and panned. It supports multiple graph layout
algorithms. Graph renderings in El Grapho are interactive.

ngraph.pixel16 is an open-source JavaScript library by the
creator of city-roads for visualizing non-road graphs. As city-
roads, ngraph.pixel is powered by WebGL. Unlike city-roads,
ngraph.pixel allows the programmer to listen to graph change
events.

react-force-graph17 is an open-source WebGL-powered
library for graph visualization. react-force-graph is imple-
mented as a React library. Its graph renderer is based on

7https://gephi.org/toolkit/
8https://github.com/anvaka/city-roads
9http://sigmajs.org/
10https://github.com/anvaka/VivaGraphJS
11https://github.com/anvaka/ngraph
12https://cambridge-intelligence.com/regraph/
13https://doc.linkurio.us/ogma/latest/
14https://g6.antv.vision/en
15https://www.elgrapho.com/
16https://github.com/anvaka/ngraph.pixel
17https://github.com/vasturiano/react-force-graph

ShaderMaterial from the Three.js 3D JavaScript library18. It
supports both 2D and 3D graph rendering.

C. TOOLS WITH DASHBOARD SUPPORT
The following are graph visualization tools that provide some
kind of integration with dashboard visualization frameworks.

Cytoscape.js19 is a JavaScript library for visualizing and
interacting with graphs. It provides a rich set of features
and APIs for creating graph visualizations, performing graph
analysis, and implementing custom graph algorithms. Cy-
toscape.js allows the creation and manipulation of nodes and
edges, apply various layout algorithms, customizing visual
styles, and the handling of user interactions. Cytoscape.js can
be integrated into Dash dashboards by exploiting the Dash
Cytoscape component20. It does not provide WebGL support.

KeyLines21 is a commercial JavaScript toolkit for visu-
alizing and interacting with network and graph data. It is
powered by WebGL. Since it is neither free nor open-source,
users must purchase a license to use it. It supports events
to react to user actions such as mouse clicks and drag-
and-drop. Kibi, now known as Kibana, is an open-source
data exploration and visualization platform primarily built
for Elasticsearch. Kibana provides its own set of visualiza-
tion components and plugins for creating dashboards and
exploring data. KeyLines visualizations can be integrated
into a Kibi dashboard by utilizing custom development and
integration techniques. This may involve embedding Key-
Lines visualizations within Kibana’s dashboard panels or
incorporating KeyLines as a separate component within a
Kibi dashboard.

Kepler.gl is an open-source geospatial data visualization
library. Kepler.gl has the ability to display millions of data
points representing numerous trips and perform real-time
spatial aggregations by exploiting WebGL. By presenting
geospatial data within a unified interface, Kepler.gl enables
users to validate concepts and extract insights from these
visualizations. Users have the flexibility to visualize spatial
datasets with various map layers and explore the data through
filtering, animation, and aggregation. The Kepler.gl Tableau
extension integrates a Kepler.gl map visualization directly
into the Tableau Desktop App, allowing users to interact with
the map using the same user interface found in the Kepler.gl
demo app. Additionally, the map can be configured to interact
with other Tableau charts.

Graphistry is a commercial graph-based analysis tool. It
supports WebGL acceleration and provides a Python library
called PyGraphistry22 which acts as a client to extract,
transform, and load graphs into Graphistry. An alternative
Graphistry client is the GraphistryJS JavaScript library23.

18https://threejs.org/
19https://js.cytoscape.org/
20https://dash.plotly.com/cytoscape
21http://www.keylines.com
22https://github.com/graphistry/pygraphistry
23https://github.com/graphistry/graphistry-js
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Graphistry provides the graph-app-kit 24, which is a toolkit
designed to help build custom graph analytics applications
and dashboards. More specifically, the graph-app kit pro-
vides integration with a dashboard environment based on the
Streamlit library that can be deployed on the cloud. graph-
app-kit provides a set of reusable components and utilities to
assist with the integration of Graphistry’s graph visualization
and analysis capabilities into dashboard applications.

D. DISCUSSION
Table 1 shows a comparison of the discussed network visu-
alization tools and academic works in terms of the following
features: 1) programming language (for libraries), 2) support
for polyline drawing for edges, 3) support for rendering
graphs on top of a map layer, 4) support for GPU-accelerated
rendering, 5) support for programmable interactivity, 6) sup-
port for a timeline and 7) support for integration with a
dashboard framework. We believe that these are the feature
a street network visualization tool or library should possess
to make it useful for real-world urban street analysis.

As shown in Table 1, to the best of our knowledge, Dash
Sylvereye is the only tool written for Python that generates
street network visualizations that can draw atop web tile
maps, that supports programmable user interactivity, that
exploits hardware acceleration, and, most importantly, that is
designed from the ground up to be compatible with a larger
dashboard visualization framework.

When ignoring the target programming language, Ke-
pler.gl is the one tool that holds the most similarities with
Dash Sylvereye’s feature set. However, unlike Dash Sylver-
eye, Kepler.gl is not written with dashboard integration as
one of its core features.

III. DASH SYLVEREYE DESIGN
A. REQUIREMENTS
We aim to provide a flexible and accessible tool that allows
for the visualization of large road networks with associated
multivariate data on commodity systems. This aim involves a
series of design requirements:

• R1. Support for polyline drawing on top of web tilemaps.
An edge in a road network is defined as a sequence
of coordinates that represent its shape in the actual
geography. Visualizations should be able to show edges
as a sequence of lines given the sequence of coordinates.
Also, the road network should be rendered on top of
an interactive web tilemap such as those provided by
Mapbox or OSM, which allow the user to navigate
through the map by panning and zooming.

• R2. Support for markers. Street network visualization
is useful for practical applications insofar as it allows
for the graphical representation of events that happen
around the street network itself, such as traffic warnings,
car accidents, and bottleneck spots, as well as places
of interest (POI). A common practice in the industry to

24https://github.com/graphistry/graph-app-kit

represent such information in products such as Google
Maps and Waze is the use of markers. With this in
mind, a street network visualization tool should provide
support for drawing customizable markers on top of the
map and the road network.

• R3. Good frame rate for large street networks on com-
modity hardware. The visualization tool should provide
an animation frame rate of 24 FPS25 or higher, for street
networks with thousands of nodes and edges, to pro-
vide the user a responsive experience when navigating
through the visualization (zooming and panning). Such
responsive experience should be achievable without the
need for a high-end GPU, on commodity hardware
such as a laptop computer with a commodity integrated
graphics processor (e.g. Intel HD Graphics and AMD
Ryzen with Radeon graphics).

• R4. Styles for nodes, links, and markers. The tool should
enable the user to customize the visual styles (e.g. color
and size) of individual nodes, edges, and markers. Also,
it should facilitate the use of the data associated with the
street network for styling.

• R5. Interactions. The tool should allow the programmer
to listen for events triggered when the user interacts
with the elements of the visualization to define custom
behavior such as retrieving and showing the data of a
clicked node, or showing a popup with custom data on
top of a clicked marker.

• R6. Support for nodes, edges, and markers to store
arbitrary data. The tool should enable the user to as-
sociate arbitrary data with individual elements of the
visualization. For example, edges obtained from OSM
should be able to store its length, its road type (bridge,
highway), maximum speed, etc.

• R7. Integration with a dashboard framework. Most im-
portantly, the tool should enable the street network visu-
alization to work natively with a well-known dashboard
framework to allow for the creation of dashboard visual-
izations of multivariate urban data that complement and
enrich the street network visualization.

Requirements R3, R4, and R5 have been previously iden-
tified by the authors in [12] as relevant for high-performance
complex graph visualization after interviewing experts in the
field and reviewing a series of state-of-the-art tools. Authors
in [14] also acknowledge that, when it comes to studying
urban networks with trajectory data, “the approach needs to
handle a large number of city streets and massive trajectory
data.” Regarding requirement R6, authors in [10] note that
“node properties and edge weights play a fundamental role in
the field of multivariate network visualization,” in the context
of multifaceted graph visualization.

To address the aforementioned requirements, we devel-
oped Dash Sylvereye, a visual analytics library for generat-
ing graph-based and interactive visualizations of large street

25The standard minimum speed needed to experience realistic motion
[16].
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(a)

(b)

(c)

FIGURE 1. Screenshots of a Dash Sylvereye visualization displaying the street network of Queretaro City, Mexico, on top of an OSM tilemap layer, at different
zoom levels and by showing different visualization layers. The visualized street network has 20,385 nodes and 49,137 edges.
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networks and their associated multivariate data. It offers the
following solutions to the identified requirements:

• R1. GPU-accelerated rendering of nodes to represent
junctions and street road polylines on top of Leaflet.js
interactive web maps.

• R2. GPU-accelerated rendering of fully customizable
markers. Popups with custom text are supported.

• R3. Nodes, edges, and markers are rendered with We-
bGL for responsive and “smooth” navigation on net-
works with thousands of elements on any graphics
adapter supported by modern web browsers.

• R4. Nodes, edges, and markers styles are customizable:
color, size/width, transparency, and visibility. In the case
of markers, the user can also customize the marker icon
by providing a custom image. Color scales are supported
and computed by the library.

• R5. Dash callback triggering when clicking individual
nodes, edges, and markers. The user can also listen for
changes in the map zoom level and any other property
of the visualization component.

• R6. Individual nodes, edges, and markers can be asso-
ciated with any arbitrary data. Functions are provided
to load not only street network topologies but the data
associated with them from OSM. The library uses sim-
ple list-of-dictionaries data structures for easy loading
of networks from any other source.

• R7. The library is implemented as a component of
the widely-used Dash framework. This enables Dash
Sylvereye visualizations to be natively embedded into
custom dashboards. In this way, Dash Sylvereye allows
for the display of multivariate data with the help of the
plotting components available in Dash, such as bar plots,
line plots, and scatter plots. Dash integration also allows
the user to coordinate Dash Sylvereye visualizations
with a variety of Dash UI elements such as buttons,
sliders, dropdown lists, etc.

A fully working and complete version of Dash Sylver-
eye for the Python programming language has been im-
plemented. The following sections describe its design and
implementation.

B. DESIGN

1) Layers

Dash Sylvereye is implemented as a Dash framework compo-
nent. A Dash Sylvereye visualization is made of four layers:

1) Tile layer. Displays a zoomable and pannable web map
generated by joining dozens of individually requested
images in real time. Dash Sylvereye is built on top
of Leaflet.js, enabling the user to select the tilemap
provider of his/her preference (e.g. OSM and Mapbox).

2) Edge layer. Displays a clickable polygon for each edge
in the street network. It also displays a direction arrow
sprite for each edge. It can display edges with different
widths, transparency, and color.

3) Node layer. Displays a clickable sprite for each node in
the street network. It can display nodes with different
sizes, transparency, and color.

4) Marker layer. Displays a clickable sprite for each
marker. It can display markers with different sizes,
transparency, color, and icon.

Fig. 1 shows screenshots of a Dash Sylvereye visualization
displaying the street network of Queretaro City, Mexico, on
top of an OSM tilemap, at different zoom levels and with
different layers activated. The user can navigate through the
visualization by panning and zooming it.

2) Data loading
Dash Sylvereye provides various convenient routines for
loading street networks out of NetworkX graphs and
GraphML files generated by the OSMnx library. In this way,
the user can retrieve the street network of any city from OSM
for visualization with a simple query in a single line of code.

3) Styling
The style of individual nodes, edges, and markers is cus-
tomizable, allowing for the programmatic manipulation of
colors, sizes, transparency, and visibility of individual graph
elements. The user can also instruct Dash Sylvereye to
automatically scale the size, color, and transparency based
on values found in the street network’s data. When using
this coloring option, the user can decide whether to use
a predefined or a custom color scale. Markers can show
custom popup messages and the default marker’s icon can
be replaced by a custom SVG image.

4) Interactivity and coordination
As previously mentioned, nodes, edges, and markers are
clickable, allowing for the definition of custom behavior at
the user interaction. In addition, the callback architecture
of the Dash framework enables the interaction between a
Dash Sylvereye visualization and other Dash components.
More specifically, any of the visual styles, the street network
data, and the street network itself can be updated at runtime
as a reaction to events emitted by other Dash components,
such as time sliders and buttons. In this way, for example,
the transparency and color of edges can be scaled to their
vehicle count at different points in time selected via a Dash
slider. This specific example would add support for the time
dimension to Dash Sylvereye, allowing for the visualization
of dynamic events in the street network.

5) Software and GPU acceleration
Dash Sylvereye exploits synchronous software (CPU) and
GPU acceleration for displaying a large graph on a tiled web
map as follows.

Dash Sylvereye uses PixiJS to draw the network. In a
regular multimedia application (e.g. a videogame) written
with PixiJS the main job of the GPU is to draw each frame
efficiently to give the feeling of a smooth animation. In Dash
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FIGURE 2. Stack of the main libraries used to build the Dash Sylvereye library. The diagram can be read in the top-down direction as follows: the library in a given
layer uses the libraries in the layer located immediately below. The boxes in blue are Python libraries. Boxes in yellow are JavaScript libraries.

Sylvereye the drawing of a road network and the markers
represents the redrawing of a single frame of such an ani-
mation. Thus, the GPU function is to render that animation
frame as fast as possible. To that end, Dash Sylvereye uses
Leaflet.PixiOverlay which allows to draw over a Leaflet.js
overlay with PixiJS, which in turn uses WebGL for GPU-
accelerated drawing of thousands of objects.

Due to the use of Leaflet.PixiOverlay, the GPU acceler-
ation is involved when: (1) drawing the road network and
markers for the first time and (2) redrawing the road network
and markers after the user has interacted with it. More
specifically, drawing/redrawing (and thus GPU acceleration)
is triggered at three specific times:

1) At startup (first draw).
2) After panning the map, i.e. after releasing the left

mouse button after panning.
3) After panning the map, i.e. after zooming in or zoom-

ing out.

The rest of the time (i.e. during the panning and zooming
animations) the CPU handles the drawing work with software
acceleration since the road network was already rendered.

C. SOFTWARE STACK

The Dash Sylvereye library is built on top of the following
open-source JavaScript and Python libraries:

JavaScript libraries:

• PixiJS26: Cross-device 2D rendering library accelerated
by WebGL for creating interactive graphics on web
browsers. It acts as an abstraction layer for the WebGL
API.

• Leaflet.js27: Mapping library for rendering interactive
tiled web maps hosted on public servers with (optional)
tiled overlays. Supports HTML5 and CSS3. It can create
interactive layers.

26https://www.pixijs.com/
27https://leafletjs.com/

• Leaflet.PixiOverlay28: Overlay class for Leaflet.js for
WebGL-accelerated drawing on top of tiled web maps
using PixiJS.

• Chroma.js29: Library for computing color conversions
and color scales in the web browser.

• JSTS30: Library of spatial predicates and functions
for processing geometries in web browsers. It is a
JavaScript port of the JTS Java library.

• RBush31: Library for 2D spatial indexing of points and
rectangles in web browsers. It is built around a custom
R-tree data structure with bulk insertion support.

• React.js: Component-driven front-end library for build-
ing UI components maintained by Facebook.

• React Leaflet32: Bindings between React.js and
Leaflet.js. Exposes Leaflet.js layers as React compo-
nents.

Python libraries:
• Plotly Dash: User interface library for creating data-

driven web applications around dashboard visualiza-
tions entirely in Python.

• NetworkX33: Social Network Analysis library for net-
work reading, creation, generation, manipulation, mea-
suring, and visualization.

• Shapely34: Library for manipulating geometric objects
in the Cartesian plane.

Fig. 2 shows the library stack used to develop Dash
Sylvereye. Leaflet.js provides a layer of tiled web maps as
well as zooming and panning capabilities, whereas the Pix-
iJS library provides WebGL-powered street network draw-
ing primitives (polygons and sprites). This is done by us-
ing Leaflet.PixiOverlay which provides a Leaflet.js overlay
where PixiJS can draw.

28https://github.com/manubb/Leaflet.PixiOverlay
29https://gka.github.io/chroma.js/
30https://bjornharrtell.github.io/jsts/
31https://github.com/mourner/rbush
32https://react-leaflet.js.org/
33https://networkx.org/
34https://github.com/Toblerity/Shapely
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Dash Sylvereye also makes use of other third-party
JavaScript libraries, such as JSTS for defining edge-hit poly-
gons, RBush for efficiently finding edge-hit polygons that
have been clicked by the user, and Chroma.js for computing
color scales for edges, nodes, and markers.

React Leaflet is used to bring everything together: the
Leaflet.js map, the tilemap layer, and the road network vi-
sualization layer that exploits Leaflet.PixiOverlay. All these
elements are encapsulated into the SylvereyeRoadNetwork
React Component. The React component is then wrapped
to produce the SylvereyeRoadNetwork Dash component by
using the toolchain provided by Dash.

On the Python side, Dash Sylvereye network loading rou-
tines make use of NetworkX and Shapely, enabling Dash
Sylvereye to import street networks from the OSM project
via OSMnx or from OSMnx-generated GraphML files.

IV. USAGE EXAMPLE
This section presents a simple usage example to illustrate
what programming with Dash Sylvereye looks like. The
example is separated into three parts, namely initialization,
interactivity, and styling.

In Fig. 3, the street network of Queretaro City
is retrieved from OSM with the OSMnx library
and then transformed to Dash Sylvereye’s list-of-
dictionaries data structure by using the utility function
load_from_osmnx_graph(). Dash Sylvereye also pro-
vides the function load_from_osmnx_graphml() to
load a street network from a graph file in GraphML format
generated by OSMnx.

To insert a street network visualization in a Dash dash-
board, the programmer only has to insert an instance of
the class SylvereyeRoadNetwork in the dashboard ap-
plication layout. The street network topology (and data) is
provided via the nodes_data and edges_data param-
eters. Apart from the road network, the user can provide
information about the map and the web tile layer by using
an interface similar to that of Leaflet.js.

Table 2 shows the list of currently supported properties
in the SylvereyeRoadNetwork class. These properties
allow the user to set up the tilemap (e.g. tilemap provider and
attribution), the road network data (e.g. nodes and edges),
node/edge/marker style options, the layer visibility, and the
map itself (e.g. zoom level and center). Recall that any of
these parameters can be updated at runtime, triggering the
automatic update of the visualization when changed. For
example, if the user wants to update the street network
topology, it is enough to update the nodes_data and the
edges_data parameters in a callback.

Fig. 4 shows an example on the use of callbacks for
reacting to user interaction by using the clicked_node
and clicked_edge callback parameters listed in Table
2. Every time the user clicks a node, a callback provided
by the programmer is triggered to update an H2 Dash label
component with the node’s coordinates. Likewise, every time
the user clicks an edge the provided callback is triggered to

update an H2 label component label with the edge’s polyline
coordinates.

The programmer can fine-tune the visuals of the street
network visualization on an element-by-element basis by
filling option dictionaries available for nodes, edges, and
markers. Table 3 lists the currently supported style option
methods. The user only needs to: 1) get an options dictionary
pre-filled with default settings, 2) customize the options
dictionary by selecting and setting up one or more visual
option methods listed in Table 3, and 3) pass the dictionary to
the Dash Sylvereye component. Again, if the user passes an
updated options dictionary to Dash Sylvereye at runtime, the
visualization will update accordingly in an automatic fashion.

In Fig. 5, the transparency level (alpha) of all nodes is
set to 0.25 to make them translucent. Also, the size method
is set to NodeSizeMethod.SCALE in order to set the
diameter of all nodes in proportion to their weight. As for
the visuals of edges, both the edge width and edge color
methods are also set to EdgeWidthMethod.SCALE and
EdgeColorMethod.SCALE, respectively, in order to be
scaled in proportion to edge weights. Fig. 6 shows the result-
ing web dashboard when putting together the code provided
in Figs. 3-5.

V. ANIMATION PERFORMANCE ASSESSMENT
We quantitatively assessed how “responsive” is to the user in-
teraction with Dash Sylvereye visualizations on a commodity
computer for a set of OSM street networks of varying sizes
when exploiting software acceleration.

Panning35 of a web map is an important operation since,
in our case, it lets the user navigate the road network and
explore its elements. We, therefore, assessed how smooth
is the panning of a network visualization by measuring the
screen refresh rate of a web page in terms of the animation
frames per second (FPS). The CPU time and frame duration
can offer insights for explaining the observed FPS.

We conducted the assessment on a commodity computer
with a dual-core AMD A9-9425 processor at 3.1 GHz, with
an Integrated AMD Radeon R5 (Stoney Ridge) GPU, and
7.2 GiB in RAM. The computer was running Linux Ubuntu
18.04.4 LTS 64-bits. Note that the processor used in the
experiments is a mid-end mobile CPU with an integrated
GPU that can be found in budget laptops.

The assessment methodology consisted of two main
stages. In the first stage, we retrieved the data of street
networks from OSM by running OSMnx with the query
strings listed in Table 4 for four cities. We used the OSM
website to get initial map center coordinates to open the test
dashboards and then choose the final map centers and zoom
levels. Final map centers and zoom levels were chosen in
such a way that the whole street network was visible.

In the second stage, we conducted the following experi-
ment for each street network. We used the performance tab

35Panning consists in holding the left button of the mouse and moving the
mouse to navigate on the map.
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FIGURE 3. Example showing how to embed a SylvereyeRoadNetwork component in a minimal Dash dashboard to display a street network obtained with OSMnx.

FIGURE 4. Example showing how to use Dash callbacks to react to mouse clicks on the street network’s nodes and edges.
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FIGURE 5. Example showing how to configure the visual styles of nodes (transparency and size) and edges (width and color scale) in a Dash Sylvereye
visualization.

of the Chrome DevTools console to record the dashboard
while manually panning the whole visualization by perform-
ing circular dragging movements. We used Google Chrome
v85.0.4183.121.

Next, we manually registered the frame duration, frame
FPS, and frame CPU time of 31 recorded animation frames
from the Chrome DevTools performance tab to obtain statis-
tically valid results. We repeated this experiment 10 times for
each street network.

Fig. 7 shows the median frame FPS, duration, and CPU
time for each experiment and each city. Fig. 8 shows the
median values when merging all experiments for each city.
We use the median because it is less sensitive to outliers than
the average. Cities are sorted from smaller to larger from left
to right.

Figures show that lower FPS values are associated with
larger CPU times and frame durations. This might be ex-
plained by the fact that the more the CPU has to work
the more the duration of an animation frame, negatively
impacting the FPS in that animation frame.

From the FPS perspective, figures show that the larger
the city the lower the FPS, ranging from around 60 FPS
for the Alameda city to around 10 FPS for the Beijing
city. Nonetheless, Queretaro city, with 20k nodes and 49k
edges, shows an FPS of above 24 FPS, suggesting that Dash
Sylvereye can smoothly handle the panning of networks with
dozens of thousands of nodes and edges on the experiment

machine.

VI. ANIMATION PERFORMANCE COMPARISON
We also present a performance comparison between Dash
Sylvereye and other state-of-the-art visualization libraries
that can render large road networks: Kepler.gl and city-roads.
We quantitatively measured and compared the responsive-
ness to the user interaction of the three tools on a commodity
computer for the Alameda, Enschede, Queretaro, and Beijing
road networks.

The hardware setup and the two-stage methodology were
the same as in Section V. We conducted the 10 experiments
for each tool sequentially and continuously in time, without
interruptions (no computer reset, no login-logout, etc.) to get
numbers as accurate as possible. There were no other apps
and tabs other than the web browser was open. The full city
map was always visible during the movements in all exper-
iments. All circular movements were performed manually,
and clockwise in all experiments. We used the same manual
movements with regard to speed and diameter as humanly
possible. The center and zoom level in Kepler.gl and Dash
Sylvereye were adjusted programmatically whereas for city-
roads we had to set the center and zoom level manually. For
this experimentation, we used Google Chrome v87.0.4280.88
on Ubuntu 20.04.1 LTS (64-bit).

Fig. 9 shows the median frame FPS, duration, and CPU
time for each experiment and each city for the three tools.
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FIGURE 6. Screenshot of the resulting dashboard example after putting together the code snippets shown in Figs. 3-5.

TABLE 2. The SylvereyeRoadNetwork Dash component supports an array of properties classified as follows: 1) data properties, 2) (style) option properties, 3)
show/hide properties, map properties, 4) tile layer properties, and 5) callback properties. All but the callback properties are provided and updated by the user to set
up and tune the street network visualization. Callback properties, on the other hand, are updated by Dash as a reaction to user-click interaction.

Property Category Brief description Observations
nodes_data Data List of the road network’s nodes Nodes can hold arbitrary data in the ’data’ field
edges_data Data List of the road network’s edges Edges can hold arbitrary data in the ’data’ field
markers_data Data List of map markers Markers can hold arbitrary data in the ’data’ field
node_options Options Visual options dictionary for nodes -
edge_options Options Visual options dictionary for edges -
marker_options Options Visual options dictionary for markers -
show_nodes Show/hide If false, all nodes will be hidden Hidden nodes will cease to be interactive
show_edges Show/hide If false, all edges will be hidden Hidden edges will cease to be interactive
show_arrows Show/hide If false, all direction arrows will be hidden -
show_markers Show/hide If false, all markers will be hidden Hidden markers will cease to be interactive
map_center Map Map center coordinates In (latitude, longitude) format
map_zoom Map Map zoom level As specified by Leaflet.js
map_min_zoom Map Minimum allowed map level As specified by Leaflet.js
map_max_zoom Map Maximum allowed map level As specified by Leaflet.js
map_style Map Map CSS styles Provided in dictionary form: {’style’: ’value’}
tile_layer_url Tile layer Tile layer URL template As specified by Leaflet.js
tile_layer_subdomains Tile layer Tile layer attribution HTML text As specified by Leaflet.js
tile_layer_attribution Tile layer Tile layer subdomains As specified by Leaflet.js
tile_layer_opacity Tile layer Tile layer opacity A value between 0 and 1
clicked_node Callback Used to invoke a callback when a node is clicked Data will be available as the property’s value
clicked_edge Callback Used to invoke a callback when an edge is clicked Data will be available as the property’s value
clicked_marker Callback Used to invoke a callback when a marker is

clicked
Data will be available as the property’s value

TABLE 3. Style methods available for nodes, edges, and markers. For example, there are three color methods for nodes: NodeColorMethod.DEFAULT,
NodeColorMethod.SCALE, and NodeColorMethod.CUSTOM. DEAFAULT methods use the predefined settings provided by Dash Sylvereye, which can be
customized. SCALE methods, on the other hand, scale visual style values in proportion to a weight field. CUSTOM methods allow styling based on the data
associated with individual nodes, edges, and markers. For the case of visibility methods, ALWAYS instructs Dash Sylvereye to turn the visibility of all elements on.
Some other style methods are more specific to a given kind of element, such as the ORIGINAL method for marker icons, which makes Dash Sylvereye use the
original color of the SVG image specified as an icon.

Style Node methods Edges methods Marker methods
Color DEAFAULT, SCALE, CUSTOM DEAFAULT, SCALE, CUSTOM DEAFAULT, SCALE, CUSTOM, ORIGINAL
Size DEAFAULT, SCALE, CUSTOM N/A DEAFAULT, SCALE, CUSTOM
Alpha DEAFAULT, SCALE, CUSTOM DEAFAULT, SCALE, CUSTOM DEAFAULT, SCALE, CUSTOM
Visibility ALWAYS, CUSTOM ALWAYS, CUSTOM ALWAYS, CUSTOM
Width N/A DEAFAULT, SCALE, CUSTOM N/A
Icon N/A N/A DEFAULT, CUSTOM
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TABLE 4. Details of the OSM street networks and the tilemap configuration used for the animation performance assessment.

City name OSMnx query string Number of
nodes

Number of
edges Center (lat, lon) Zoom level

Alameda, US Alameda, Alameda County, CA, USA 1,830 4,842 37.7618235,
−122.2429843

15

Enschede, NL Enschede, Overijssel, Netherlands, The
Netherlands 5,337 13,587 52.2271595,

6.9046205 12

Queretaro, MX Santiago de Querétaro, Querétaro, México 20,385 49,137 20.6025256,
−100.3886302

12

Beijing, CN Beijing, China 63,347 153,120 39.9116304,
116.4010405 9
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FIGURE 7. Dash Sylvereye’s median frame FPS, duration, and CPU time for each experiment and each city. Cities are sorted from smaller to bigger from left to
right.
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FIGURE 8. Dash Sylvereye’s median frame FPS, duration, and CPU time when merging all experiments for each city. Cities are sorted from smaller to bigger from
left to right.

Fig. 10 shows the median values when merging all experi-
ments for each city for the three tools.

Figures show that, for the three tools, lower FPS values
are associated with larger CPU times and frame durations.
However, Figures also show that, unlike Dash Sylvereye,
Kepler.gl and city-roads seem to be unaffected by the road
network size. This suggests that these tools might exploit
hardware acceleration during the panning process. In con-
trast, recall that Dash Sylvereye exploits hardware acceler-
ation only after panning (and zooming) for redrawing.

Nonetheless, note in Fig. 9 that Kepler.gl showed FPSs
lower than 10 in one experiment for Alameda, one exper-
iment for Enschede, and two experiments for Queretaro.
In contrast, for Alameda, Enschede, and Queretaro, Dash
Sylvereye’s FPS was higher than 20 whereas the duration
and CPU remained low. For the largest city, Beijing, Dash
Sylvereye’s FPS was higher than 20 for three experiments.

Overall, Figures 9 and 10 show that Dash Sylvereye’s

performance was inversely proportional to the road network
size. However, Fig. 9 also shows that Dash Sylvereye FPS
outperformed Kepler.gl in three out of four cities (Alameda,
Enschede, and Queretaro), whereas it outperformed city-
roads in one out of four cities (Alameda). Additionally, as
city-roads, Dash Sylvereye showed FPSs above 24 for three
out of four cities (Alameda, Enschede, and Queretaro). With
these results, Dash Sylvereye showed to be competitive when
compared to both Kepler.gl and city-roads for road networks
with dozens of thousands of nodes and edges.

VII. DASHBOARD EXAMPLE: QUERETARO CITY
TRAFFIC SIMULATION
This section presents the design and implementation of an
example dashboard application written with the Dash frame-
work that exploits Dash Sylvereye for the analysis of post-
mortem simulation data on the street network of Queretaro
City, Mexico. For simulations, we made use of the SUMO
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FIGURE 9. Median frame FPS, duration, and CPU time shown by Dash Sylvereye, Kepler.gl, and city-roads on each experiment and each city. Cities are sorted
from smaller to bigger from left to right.
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FIGURE 10. Dash Sylvereye’s median frame FPS, duration, and CPU time shown by Dash Sylvereye, Kepler.gl, and city-roads when merging all experiments for
each city. Cities are sorted from smaller to bigger from left to right.
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FIGURE 11. Layout of the dashboard made with Dash and the Dash Sylvereye library for analyzing a SUMO traffic simulation. Labels in orange are the Dash
component identifiers referred to in Fig. 12.

urban traffic simulator [4], a well-known simulator in the
field of urban analysis.

The purpose of this section is twofold. Firstly, we intend to
better illustrate the usefulness of Dash Sylvereye in assisting
a traffic analyst to observe how traffic bottlenecks build up
with time in a busy transportation area made of thousands of
street roads and junctions through a dashboard visualization
centered around Dash Sylvereye. Secondly, we intend to
offer the reader more details about how the Dash Slyvereye
component can be integrated into a non-trivial dashboard
by coordinating it with other charts and UI controls for
multivariate data visualization.

A. STREET NETWORK RETRIEVAL AND SIMULATION
A street network from the center of the metropolitan area of
Queretaro City, Mexico, was manually selected and down-
loaded in OSM format by taking advantage of the export fea-
tures of the OSM website. The resulting street network had
8,713 nodes and 17,099 edges. The OSM network was con-
verted to SUMO’s XML format by using SUMO’s netconvert
tool. Finally, the SUMO XML network was converted to
Dash Sylvereye’s list-of-dictionaries format with the help of
the Sumolib Python library36.

To create synthetic vehicle trip data, a simulation was
run by using SUMO as follows: random trips for vehicles

36https://sumo.dlr.de/docs/Tools/Sumolib.html
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FIGURE 12. Callback graph of the SUMO simulator dashboard example, as generated by the Dash Dev Tools. Gray boxes represent Dash components. Labels on
top of gray boxes are the Dash component identifiers. Green rounded boxes represent callback functions. Blue boxes represent the input and output properties.
Solid gray arrows pointing to green rounded boxes come from input callback parameters. Solid blue arrows going out of green rounded boxes point to output
callback parameters. Dashed gray arrows pointing to green circles represent states.

were generated with SUMO’s randomTrips.py script.
A SUMO simulation was run for 3,500 timesteps with the
--fcd-output flag to save the Floating Car Data (FCD)
of all timesteps in XML format. The produced FCD data was
then processed to get CSV files that could be conveniently
imported into the Dash dashboard application. CSV files
included the vehicle count for edges at each timestep, the
speed of vehicles at each timestep, total vehicle counts for
each timestep, and average vehicle speed at each timestep.

B. LAYOUT DESIGN

Recall from Section I that a Dash dashboard application is
composed of two parts: 1) the layout which describes what
the application looks like and 2) the callbacks that define the
interactivity of the application. Fig. 11 shows a screenshot of
the resulting dashboard layout.

The dashboard includes a Dash Sylvereye visualiza-
tion as its main element (sylvereye-roadnet). The
user can select which layers are visible through the
show-layers-checklist checklist. Markers are dis-
played at either the middle of edges with the highest vehicle
counts or atop the slowest vehicles, depending on the option
selected by the user in the markers-at-select selection
list.

The user can also select which visual attributes of edges

(transparency, width) to scale in proportion to the edge ve-
hicle count through the scale-by-checklist checklist.
The dashboard shows a slider to allow the user to select the
desired simulation time to display (time-slider). When
the user changes the simulation time, a callback is triggered
to update:

• The network edges, width, and transparency.
• The position and the popup texts of markers.
• A bar plot of the top-10 edges with the highest vehicle

count in the network (top-edges-graph)
• A bar plot of the speed for the top-10 slowest vehicles

(top-vehicles-graph)
When the user clicks either an edge, a node, or a marker,

data about the clicked element is shown in the label at the top-
right corner (clicked-edge-h5). Finally, the dashboard
also shows a line plot showing the vehicle count over time
and a line plot showing the average vehicle speed over time.
However, these two plots are static in the sense that they do
not need to change as a result of the interaction of the user
with the dashboard.

C. CALLBACK DESIGN
Fig. 12 shows the callback graph of the SUMO simulator
dashboard example, as generated by the Dash Dev Tools.
The application contains four main callbacks, callbacks A
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(a)

(b)

(c)

FIGURE 13. Radiography-like visualizations centered at the “Alameda Hidalgo” park at three arbitrarily selected but consecutive simulation time steps. The
visualization style was configured through the GUI components of the SUMO traffic dashboard developed with Dash and the Dash Sylvereye library. Note that the
large blue arrows are street roads rendered by Dash Sylvereye (images were not edited).
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to D, which together define the interactivity of the whole
application.

Callback A triggers when either:
1) The value of markers-at-select changes its

value, in which case the callback outputs a new set of
markers.

2) The time-slider changes its value, in which case
the callback updates the markers and both bar plots
top-vehicles-graph and top-edges-graph
to reflect the data at the new time step.

Callback B triggers when any of the click attributes of the
Dash Sylvereye component changes its value as the result of
a user clicking on a node, an edge, or a marker. The callback
updates the label clicked-edge-h5 with info about the
clicked element.

Callback C triggers when show-layers-checklist
changes its value because the user selected a different set of
layers to show. The callback updates the show/hide properties
of the Dash Sylvereye component accordingly.

Finally, callback D triggers when the component
scale-by-checklist changes its value because the
user selected different scale options. The callback updates the
edge_options attribute of the Dash Sylvereye component
accordingly to update the edge’s alpha and width style meth-
ods.

D. VISUALIZATION INSIGHTS
Fig. 13 shows screenshots of the Dash Sylvereye compo-
nent at three arbitrarily selected simulation time steps. The
tilemap is centered at the “Alameda Hidalgo” park, a centric
place where traffic bottlenecks build up in real life. Edges
transparency and width were scaled to the vehicle count by
checking the corresponding checkboxes in the dashboard.
The map tile layer, as well as the nodes and markers layers,
were hidden by unchecking the corresponding checkboxes.
The result was a radiography-like visualization of the vehicle
traffic. The “radiography” in Fig. 13 clearly shows that, even
with random trips, vehicle traffic builds up on the main street
roads surrounding the park.

VIII. CONCLUSION
This paper presented Dash Sylvereye, a new Python library
for generating web-based visualizations of large street net-
works, delivered as a component for the widely-used Dash
framework. To the best of our knowledge, Dash Sylvereye
is the first tool written for Python that generates street net-
work visualizations atop web tile maps that supports pro-
grammable user interactivity, that is designed as a component
of a dashboard framework from the ground up, and that sup-
ports WebGL. Dash Sylvereye can be combined with other
Dash UI and chart components to enable the development
of interactive dashboard visualizations around street network
data.

We showed that Dash Sylvereye can offer fast response
speeds (close to 60 FPS) for street networks with thousands

of edges. We also found Dash Sylvereye to be competitive
when compared to the state-of-the-art visualization libraries
Kepler.gl and city-roads for road networks with dozens of
thousands of nodes and edges. With the help of a dashboard
application example, we explored how Dash Sylvereye can
be utilized as a convenient tool for interactively analyzing
multivariate traffic data.

Visualization generation time is an important factor that
impacts the experience of the end-user. Even with WebGL
acceleration, we have observed that the visualization first
drawing and redrawing of very large graphs in Dash Sylver-
eye may take non-negligible time on a commodity system,
an overhead not present in other libraries like Kepler.gl and
city-roads. This overhead includes the time needed for the
generation of the graphics (sprites and polygons) of the street
network and the computation of hit polygons for edge click
detection. Future work includes methodologically assessing
visualization generation times on commodity computers and
evaluating optimization options.

Similar to other web-based visualization tools, one of
Dash Sylvereye’s main drawbacks is that the size of a street
network the library can handle is limited by the system’s
physical memory and the GPU memory capacity. In this
regard, an interesting research venue is to study efficient
graph coarsening algorithms for edge bundling that 1) al-
low the tool to handle very large networks and 2) help
the researcher’s cognitive process of making sense of such
complex structures.

We plan to release Dash Sylvereye under an open-source
license, enabling anyone to use it for their specific street
network visualization needs.
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