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Abstract. Hyperparameter optimization (HPO) is a key component
of machine learning models for achieving peak predictive performance.
While numerous methods and algorithms for HPO have been proposed
over the last years, little progress has been made in illuminating and ex-
amining the actual structure of these black-box optimization problems.
Exploratory landscape analysis (ELA) subsumes a set of techniques that
can be used to gain knowledge about properties of unknown optimiza-
tion problems. In this paper, we evaluate the performance of five different
black-box optimizers on 30 HPO problems, which consist of two-, three-
and five-dimensional continuous search spaces of the XGBoost learner
trained on 10 different data sets. This is contrasted with the perfor-
mance of the same optimizers evaluated on 360 problem instances from
the black-box optimization benchmark (BBOB). We then compute ELA
features on the HPO and BBOB problems and examine similarities and
differences. A cluster analysis of the HPO and BBOB problems in ELA
feature space allows us to identify how the HPO problems compare to
the BBOB problems on a structural meta-level. We identify a subset of
BBOB problems that are close to the HPO problems in ELA feature
space and show that optimizer performance is comparably similar on
these two sets of benchmark problems. We highlight open challenges of
ELA for HPO and discuss potential directions of future research and
applications.

Keywords: Hyperparameter Optimization · Exploratory Landscape Anal-
ysis · Machine Learning · Black-Box Optimization · Benchmarking

? Equal contributions.

ar
X

iv
:2

20
8.

00
22

0v
1 

 [
cs

.L
G

] 
 3

0 
Ju

l 2
02

2



2 L. Schneider et al.

1 Introduction

In machine learning (ML), hyperparameter optimization (HPO) constitutes one
of the most frequently used tools for improving the predictive performance of
a model [3]. The goal of classical single-objective HPO is to find a hyperpa-
rameter configuration that minimizes the estimated generalization error. Gen-
erally, neither a closed-form mathematical representation nor analytic gradient
information is available, making HPO a black-box optimization problem and
evolutionary algorithms (EAs) and model-based optimizers good candidate al-
gorithms. As a consequence, no prior information about the optimization land-
scape – which could allow comparisons of HPO and other black-box problems,
or provide guidance regarding the choice of optimizer – is available. This also
extends to automated ML (AutoML) [14], which builds upon HPO.

In contrast, in the domain of continuous black-box optimization, a sophisti-
cated toolbox for landscape analysis and the characterization of their properties
has been developed over the years. In exploratory landscape analysis (ELA),
optimization landscape features are calculated from small samples of evaluated
points from the original black-box problem. It has been shown in numerous
studies that ELA feature sets capture relevant landscape characteristics and
that they can be used for automated algorithm selection, improving upon the
state-of-the-art selector [5,17]. Particularly well-studied are the functions from
the black-box optimization benchmark (BBOB) [12].

Empirical studies [30,31] in the closely related area of algorithm configura-
tion hint that performance landscapes often are rather benign, i.e., unimodal
and convex, although this only holds for an aggregation over larger instance sets
and their analysis does not allow further characterization of individual problem
landscapes. There exists some work to circumvent HPO altogether, by automati-
cally configuring an algorithm for a given problem instance [1,28]. However, these
are limited to configuring optimization algorithms rather than ML models. In
addition, they are often restricted in the number and type of variables they are
able to configure. [26] apply fitness landscape analysis on AutoML landscapes,
computing fitness distance correlations and neutrality ratios on various AutoML
problems. They utilize these features only in an exploratory manner, characteriz-
ing the landscapes, without a link to optimizer performance, and cannot compare
the analyzed landscapes to other black-box problems in a natural way. Similar
work on fitness landscape analysis exists but focuses mostly on neural networks
[6,35]. Some preliminary work [9] on the hyperparameters of a (1 + 1)-EA on a
OneMax problem suggests that the ELA feature distribution of a HPO problem
can be significantly different from other benchmark problems. Recently, [32] de-
veloped statistical tests for the deviation of loss landscapes from uni-modality
and convexity and showed that loss landscapes of AutoML problems are highly
structured and often uni-modal.

In this work, we characterize continuous HPO problems using ELA features,
enabling comparisons between different black-box optimization problems and
optimizers. Our main contributions are as follows:
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1. We examine similarities and differences of HPO and BBOB problems by
investigating the performance of different black-box optimizers.

2. We compute ELA features for all HPO and BBOB problems and demonstrate
their usefulness in distinguishing between HPO and BBOB.

3. We demonstrate how HPO problems position themselves in ELA feature
space on a meta-level by performing a cluster analysis on principle compo-
nents derived from ELA features of HPO and BBOB problems and inves-
tigate performance differences of optimizers on HPO problems and BBOB
problems that are close to the HPO problems in ELA feature space.

4. We discuss how ELA can be used for HPO in future work and highlight open
challenges of ELA in the context of HPO.

5. We release code and data of all our benchmark experiments hoping to facil-
itate future research (which currently may be hindered due to the computa-
tionally expensive HPO black-box evaluations).

The remainder of this paper is structured as follows: Fundamentals for HPO
and ELA are introduced in Section 2. The experimental setup is presented in
Section 3, with the results regarding the algorithm performance and ELA feature
space analysis in Sections 4 and 5, respectively. Section 6 concludes this paper
and offers future research directions.

2 Background

Hyperparameter Optimization Hyperparameter optimization (HPO) methods
aim to identify a well-performing hyperparameter configuration λ ∈ Λ̃ for an
ML algorithm Iλ [3]. An ML learner or inducer I configured by hyperparame-

ters λ ∈ Λ maps a data set D ∈ D to a model f̂ , i.e., I : D×Λ→ H, (D,λ) 7→ f̂ .
H denotes the so-called hypothesis space, i.e., the function space to which a
model belongs [3]. The considered search space Λ̃ ⊂ Λ is typically a subspace of
the set of all possible hyperparameter configurations: Λ̃ = Λ̃1 × Λ̃2 × · · · × Λ̃d,
where Λ̃i is a bounded subset of the domain of the i-th hyperparameter Λi. This
Λ̃i can be either real, integer, or category valued, and the search space can con-
tain dependent hyperparameters, leading to a possibly hierarchical search space.
The classical (single-objective) HPO problem is defined as:

λ∗ ∈ arg min
λ∈Λ̃

ĜE(λ), (1)

i.e., the goal is to minimize the estimated generalization error. This typically
involves a costly resampling procedure that can take a significant amount of
time, see [3] for further details. ĜE(λ) is a black-box function, as it generally
has no closed-form mathematical representation, and analytic gradient informa-
tion is generally not available. Therefore, the minimization of ĜE(λ) forms an

expensive black-box optimization problem. In general, ĜE(λ) is only a stochastic

estimate of the true unknown generalization error. Formally, ĜE(λ) depends on
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the concrete inducer, a resampling strategy (e.g., cross-validation) and a perfor-
mance metric, for more details see [3]. In the following, we use the logloss as
performance metric:

1

ntest

ntest∑
i=1

(
−

g∑
k=1

σk

(
y(i)
)

log
(
π̂k

(
x(i)
)))

. (2)

Here, g is the total number of classes, σk
(
y(i)
)

is 1 if y is class k, and 0 otherwise

(multi-class one-hot encoding), and π̂k
(
x(i)
)

is the estimated probability for

observation x(i) belonging to class k.

Exploratory Landscape Analysis The optimization landscapes of black-box func-
tions, by design, carry no prior problem information, beyond the definition of
their search parameters, which can be used for their characterization. In the
continuous domain, ELA [23] addresses this problem by computing features on
a small sample of evaluated points, which can be used for better understanding
optimizer performance [24], algorithm selection [17] and even algorithm config-
uration [28].

The original ELA features consist, e.g., of meta model features (ela meta)
such as adjusted R2 values for quadratic and linear models and y-distribution
features (ela distr) such as the skewness and kurtosis of the objective values.
Over time, researchers continued to propose further feature sets, including near-
est better clustering (nbc) [16] and dispersion (disp) [22] features to measure
multi-modality, and information content (ic) features [25], which extract fea-
tures from random walks across the problem landscape. The R package flacco

[18] and Python package pflacco [27] implement a collection of the most widely
used ELA feature sets.

ELA studies often focus on the noiseless BBOB functions, as they offer di-
verse, well-understood challenges (such as conditioning and multimodality) and
a wide range of algorithm performance data is readily available. BBOB consists
of 24 minimization problems, which are identified by their function ID (FID)
and scalable with respect to their dimensionality, which ranges from 2 to 40.
Furthermore, different instances, identified by instance IDs (IIDs), are defined
for each function, creating slightly different optimization problems with the same
fundamental characteristics by means of randomized transformations in the de-
cision and objective space. All D-dimensional BBOB problems share a decision
space of [−5, 5]D, which is guaranteed to contain the (known) optimum.

3 Experimental Setup

We compare the following optimizers: CMAES (a simple CMA-ES with σ0 = 0.5
and no restarts), GENSA (a generalized simulated annealing approach as described
in [37]), Grid (a grid search performed by generating a uniform sized grid over
the search space and evaluating configurations of the grid in random order),
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Random (random search performed by sampling configurations uniformly at ran-
dom), and MBO (Bayesian optimization using a Gaussian process as surrogate
model and expected improvement as acquisition function [15], similarly config-
ured as in [20]). All optimizers were given a budget of 50D function evaluations
in total (where D is the dimensionality of the problem). All optimizer runs were
replicated 10 times. We choose these optimizers for the following reasons: (1)
they cover a wide range of optimizers that can be used for a black-box problem,
(2) Grid and especially Random are frequently used for HPO and Random often
can be considered a strong baseline [2].

As HPO problems, we tune XGBoost5 [8] on ten different OpenML [36]
data sets (classification tasks) chosen from the OpenML-CC18 benchmarking
suite [4]. The specific data sets were chosen to cover a variety of the number of
classes, instances, and features (cf. Table 1). To reduce noise as much as possi-
ble, performance (logloss) is estimated via 10-fold cross-validation with a fixed
instantiating per data set. On each data set, we create 2, 3 and 5 dimensional XG-
Boost problems by tuning nrounds, eta (2D), lambda (3D), gamma and alpha

(5D), resulting in 30 problems in total. We selected these hyperparameters be-
cause (1) they can be incorporated in a purely continuous search space which
is generally required for the computation of ELA features, (2) they have been
shown to be influential on performance [29] and (3) have a straightforward in-
terpretation, i.e., nrounds controls the number of boosting iterations (typically
increasing performance but also the tendency to overfit) while the other hyper-
parameters counteract overfitting and control various aspects of regularization.
The full search space is described in Table 2. Note that nrounds is tuned on a
logarithmic scale and therefore all parameters are treated as continuous during
optimization. Missing values of numeric features were imputed using Histogram
imputation (values are drawn uniformly at random between lower and upper
histogram breakpoints with cells being sampled according to the relative fre-
quency of points contained in a cell). Missing values of factor variables were
imputed by adding a new factor level and factor variables were encoded using
one-hot-encoding. While XGBoost is a practically relevant learner we do have
to note that only considering a single learner is somewhat restrictive. We dis-
cuss this limitation in Section 6. In the following, individual HPO problems are
abbreviated by <name> <d>, i.e., wilt 2 for the 2D wilt problem.

As BBOB problems we select FIDs 1− 24 with IIDs 1− 5 with a dimension-
ality of {2, 3, 5}, resulting in 360 problems in total. We abbreviate individual
BBOB problems by <fid> <iid> <dim>, i.e., 24 1 5 for FID 24 with IID 1 in
the 5D setting. Experiments have been conducted in R [33], where the individ-
ual implementation of an optimizer is referenced in the mlr3 ecosystem [19]. The
package smoof [7] provides the aforementioned BBOB problems. We release all
data and code for running the benchmarks and analyzing results via the follow-
ing GitHub repository: https://github.com/slds-lmu/hpo ela. HPO benchmarks
took around 2.2 CPU years on Intel Xeon E5-2670 instances, with optimizer
overhead ranging from 10% (MBO for 5D) to less than 1% (Random or Grid).

5 using a gbtree booster

https://github.com/slds-lmu/hpo_ela


6 L. Schneider et al.

Table 1: OpenML data sets.

Number of
ID Name Cl. Inst. Feat.

40983 wilt 2 4839 5
469 analcatdata dmft 6 797 4
41156 ada 2 4147 48
6332 cylinder-bands 2 540 37
23381 dresses-sales 2 500 12
1590 adult 2 48842 14
1461 bank-marketing 2 45211 16
40975 car 4 1728 6
41146 sylvine 2 5124 20
40685 shuttle 7 58000 9

IDs correspond to OpenML data set IDs, which enable
to query data set properties via https://www.openml.
org/d/〈id〉.

Table 2: XGBoost search space.

Hyper-
param. Type Range Trafo

nrounds int. [3, 2000] log
eta cont. [exp(−7), exp(0)] log
lambda cont. [exp(−7), exp(7)] log
gamma cont. [exp(−10), exp(2)] log
alpha cont. [exp(−7), exp(7)] log

“log” in the Trafo column indicates that this parameter
is optimized on a (continuous) logarithmic scale, i.e.,
the range is given by [log(lower), log(upper)], and values
are re-transformed via the exponential function prior to
their evaluation. Parameters part of the full XGBoost
search space that are not shown are set to their default.

1 2 3 4

CD

MBO
CMAES

GENSA
Grid
Random

(a) BBOB 2D.

1 2 3 4 5

CD

MBO
CMAES

GENSA
Random
Grid

(b) BBOB 3D.

1 2 3 4 5

CD

MBO
CMAES

GENSA
Random
Grid

(c) BBOB 5D.

1 2 3 4 5

CD

MBO
CMAES
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Random
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(d) HPO 2D.

1 2 3 4 5
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MBO
CMAES

Random
Grid
GENSA

(e) HPO 3D.

1 2 3 4 5

CD

MBO
CMAES

Random
Grid
GENSA

(f) HPO 5D.

Fig. 1: Critical differences plots for mean ranks of optimizers on BBOB and HPO
problems split with respect to the dimensionality.

4 Optimizer Performance

For each BBOB problem, we computed optimizer rankings based on the av-
erage final performance (best target value of an optimizer run averaged over
replications). Figures 1a to 1c visualize the differences in rankings on the BBOB
problems split for the dimensionality. Friedman tests indicated overall significant
differences in rankings (2D : χ2(4) = 154.55, p < 0.001, 3D : χ2(4) = 219.16, p <
0.001, 5D : χ2(4) = 258.69, p < 0.001). We observe that MBO and CMAES perform
well throughout all three dimensionalities, whereas GENSA only is significantly
better than Grid or Random for dimensionalities 3 and 5. Moreover, Grid only
falls behind Random for the 5D problems.

https://www.openml.org/d/<id>
https://www.openml.org/d/<id>
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Figures 1d to 1f analogously visualize differences in rankings on the HPO
problems split for the dimensionality. Friedman tests indicated overall signif-
icant differences in rankings (2D : χ2(4) = 36.32, p < 0.001, 3D : χ2(4) =
34.32, p < 0.001, 5D : χ2(4) = 34.80, p < 0.001). Again, MBO and CMAES perform
well throughout all three dimensionalities. Notably, GENSA shows lacklustre per-
formance regardless of the dimensionality, failing to outperform Grid or Random.
Similarly as on the BBOB problems, Grid tends to fall behind Random for the
higher-dimensional problems. We do want to note that critical difference plots for
the HPO problems are somewhat underpowered when compared to the BBOB
problems due to the difference in the number of benchmark problem which re-
sults in larger critical distances, as seen in the figures.

In Figure 2, we visualize the anytime performance of optimizers by the mean
normalized regret averaged over replications split for the dimensionality of prob-
lems. The normalized regret is defined for an optimizer trace on a benchmark
problem as the distance of the current best solution to the overall best solution
found across all optimizers and replications, scaled by the overall range of em-
pirical solution values for this benchmark problem. We choose this metric due to
the theoretical optimal solutions being unknown for HPO problems, and apply
it to both BBOB and HPO problems to enable performance comparisons. We
observe strong anytime performance of MBO and CMAES on both BBOB and HPO
problems regardless their dimensionality. GENSA shows good performance on the
5D BBOB problems but shows poor anytime performance on HPO problems in
general. Differences in anytime performance are less pronounced on the HPO
problems, although we do want to note that the width of the standard error
ribbons is strongly influenced by the number of benchmark problems.

As an additional performance evaluation, we calculated the Expected Run-
ning Time (ERT) [11]. In essence, for a given algorithm and problem, the ERT

is defined as ERT = 1
n

∑10
i=1 FEi, where n is the number of repetitions which

are able to reach a specific target, i refers to an individual repetition, and FEi
denotes the number of function evaluations used. We investigated the ERT of
optimizers with the target given as the median of the best Random solutions
(using 50D evaluations) over the ten replications per benchmark problem. We
choose this (for BBOB unusual) target due to (1) the theoretical optimum of
HPO problems being unknown and (2) Random being considered a strong base-
line in HPO [2]. To bring all ERTs on the same scale, we computed the ERT
ratios between optimizers and Random per benchmark problem which further al-
lows us to aggregate these ratios over benchmark problems6. We visualize these
aggregated ERT ratios separately for the dimensionality of benchmark problems
in Figure 3. We observe that average ERT ratios of MBO and CMAES are compa-
rably similar for BBOB and HPO problems although the tendency that these
optimizers become even more efficient with increasing dimensionality is less pro-
nounced on the HPO problems. Grid generally falls behind and GENSA shows
lacklustre performance on HPO.

6 Following [17], optimizers that did not meet the target in any run were assigned an
ERT of the worst ERT on a benchmark problem multiplied by a factor of 10.
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Fig. 2: Anytime mean normalized regret of optimizers on BBOB and HPO prob-
lems averaged over replications split for the dimensionality of problems. Ribbons
represent standard errors. The x-axis starts after 8% of the optimization budget
has been used (initial MBO design).
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Fig. 3: Average ERT ratios (optimizers to Random) for HPO and BBOB problems.

5 ELA Feature Space Analysis

For each HPO and BBOB problem, we use 50D points sampled by LHS (Min-
Max) as an initial design for computing ELA features. We normalize the search
space to the unit cube and standardize objective function values per benchmark
problem ((y − µ̂)/σ̂) prior to calculating ELA features. This is done to counter
potential artefacts that could be seen in ELA features solely due to different
value ranges in decision and, in particular, in objective space. We calculate the
feature sets ela meta, ic, ela distr, nbc and disp, which were introduced in
Section 2, using the flacco R package [18].
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Fig. 4: Decision trees for classifying benchmark problems into HPO or BBOB
problems (left) and classifying the dimensionality of BBOB problems (right).

To answer the question whether ELA can be used to distinguish HPO from
BBOB problems, we construct a binary classification task using ELA features
to predict the label “HPO” vs. “BBOB”. We use a decision tree and estimate
the generalization error via 10 times repeated 10-fold cross-validation (strati-
fied for the target). We obtain an estimated classification error of 3.54%. Fig-
ure 4a illustrates the decision tree obtained after training on all data. We ob-
serve that only few ELA features are needed to correctly classify problems:
HPO problems tend to exhibit a lower ela distr.kurtosis combined with
more ela distr.number of peaks or show a higher nbc.nb fitness.cor than
BBOB problems if the first split with respect to the kurtosis has not been af-
firmed. This finding is supported by visualizations of the 2D HPO problems,
which we present in our online appendix, i.e., most 2D HPO problems have
large plateaus resulting in negative kurtosis.

To answer the question whether dimensionality is a different concept for HPO
compared to BBOB problems7 we perform the following analysis: We construct
a classification task using ELA features to predict the dimensionality of the
problem but only use the BBOB subset for the training of a decision tree. We
estimate the generalization error via 10 times repeated 10-fold cross-validation
(stratified for the target) and obtain an estimated classification error of 7.39%.
We then train the decision tree on all BBOB problems (illustrated in Figure 4b)
and determine the holdout performance on the HPO problems and obtain a
classification error of 10%. Only few ELA features of the disp and nbc group are
needed to predict the dimensionality of problems with high accuracy. Intuitively,
this is sensible, due to nbc features involving the calculation of distance metrics
(which themselves should be affected by the dimensionality) and both nbc and
disp features being sensible to the multimodality of problems [16,22] which
should also be affected by the dimensionality. Based on the reasonable good

7 For HPO problems, it is a priori often unclear whether a change in a parameter value
also results in relevant objective function changes, i.e., the intrinsic dimensionality
of a HPO problem may be lower than the number of hyperparameter suggests.

https://github.com/slds-lmu/hpo_ela
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Fig. 5: Factor loadings of ELA features on the first two principle components.
Blue indicates a positive loading, whereas red indicates a negative loading.

hold-out performance of the classifier on the HPO problems, we conclude that
“dimensionality” is a similar concept for BBOB and HPO problems.

To gain insight on a meta-level, we performed a PCA on the scaled and
centered ELA features of both the HPO and BBOB problems. To ease further
interpretation, we select a two component solution that explains roughly 60% of
the variance. Figure 5 summarizes factor loadings of ELA features on the first
two principle components. Most disp features show a medium positive loading
on PC1, whereas some nbc show medium negative loadings. ela meta features,
including R2 measures of linear and quadratic models, also exhibit medium neg-
ative loadings on PC1. We therefore summarize PC1 as a latent dimension that
mostly reflects multimodality of problems. Regarding PC2, three features stand
out with strong loadings: nbc.dist ratio.coeff var, nbc.nn nb.mean ratio

and ic.eps.s. Moreover, disp.ratio * features generally have a medium neg-
ative loading. We observe that all features used by the decision tree in Figure 4b
also have comparably large loadings on PC2. Therefore, we summarize PC2 as
an indicator of the dimensionality of problems.

We then performed k-means clustering on the two scaled and centered prin-
cipal component scores. A silhouette analysis suggested the selection of three
clusters. In Figure 6, we visualize the assignment of HPO and BBOB problems
to these three clusters. Labels represent IDs of BBOB and HPO problems. We
observe that the dimensionality of problems is almost perfectly reflected in the
PC2 alignment. Cluster 2 and 3 can be mostly distinguished along PC2 (cluster
3 contains low dimensional problems and cluster 2 contains higher dimensional
problems) whereas cluster 1 contains problems with large PC1 values. HPO
problems are exclusively assigned to cluster 2 or 3, exhibiting low variance with
respect to their PC1 score, with the PC1 values indicating low multimodality.
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Fig. 6: Cluster analysis of BBOB and HPO problems on the first two principle
component scores in ELA feature space.

As a final analysis we determined the nearest BBOB neighbors of the HPO
problems (in ELA feature space based on the cluster analysis, i.e., minimiz-
ing the Euclidean distance over the first two principal component scores). For
a complete list, see our online appendix. We again computed optimizer rank-
ings based on the average final performance of the optimizers (over the replica-
tions), but this time for all HPO problems (regardless their dimensionality) and
the subset of BBOB problems that are closest to the HPO problems in ELA
feature space (see Figure 7). Friedman tests indicated overall significant differ-
ences in rankings for both HPO (χ2(4) = 104.99, p < 0.001) and nearest BBOB
(χ2(4) = 61.01, p < 0.001) problems. We observe similar optimizer rankings,
with MBO and CMAES outperforming Random or Grid, indicating that closeness in
ELA feature space somewhat translates to optimizer performance. Nevertheless,
we do have to note that GENSA exhibits poor performance on the HPO prob-
lems compared to the nearest BBOB problems. We hypothesize that this may
be caused by the performance of GENSA being strongly influenced by its hyper-
parameter configuration itself and provide an initial investigation in our online
appendix.

6 Conclusion

In this paper, we characterized the landscapes of continuous hyperparameter
optimization problems using ELA. We have shown that ELA features can be
used to (1) accurately distinguish HPO from BBOB problems and (2) classify

https://github.com/slds-lmu/hpo_ela
https://github.com/slds-lmu/hpo_ela
https://github.com/slds-lmu/hpo_ela
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Fig. 7: Critical differences plots for mean ranks of optimizers on all HPO prob-
lems (left) and the subset of nearest BBOB problems.

the dimensionality of problems. By performing a cluster analysis in ELA fea-
ture space, we have shown that our HPO problems mostly position themselves
with BBOB problems of little multimodality, mirroring the results of [30,32]. De-
termining the nearest BBOB neighbor of HPO problems in ELA feature space
allowed us to investigate performance differences of optimizers with respect to
HPO problems and their nearest BBOB problems and we observed comparably
similar performance. We believe that this work is an important first step in iden-
tifying BBOB problems that can be used in lieu of real HPO problems when,
for example, configuring or developing novel HPO methods.

Our work still has several limitations. A major one is that traditional ELA is
only applicable to continuous HPO problems, which constitute a minority of real-
world problems. In many practical applications, search spaces include categorical
and conditionally active hyperparameters – so-called hierarchical, mixed search
spaces [34]. In such scenarios, measures such as the number of local optima,
fitness-distance correlation or auto-correlation of fitness along a path of a random
walk [10,13] can be used to gain insight into the fitness landscape. Another
limitation is that our studied HPO problems all stem from tuning XGBoost,
with little variety of comparably low dimensional search spaces, which limits the
generalizability of our results.

In future work, we would like to extend our experiments to cover a broader
range of HPO settings, in particular different learners and search spaces, but also
data sets. We also want to reiterate that HPO is generally noisy and expensive.
In our benchmark experiments, costly 10-fold cross-validation with a fixed in-
stantiating per data set was employed to reduce noise to a minimal level. Future
work should explore the effect of the variance of the estimated generalization er-
ror on the calculation and usage of ELA features which poses a serious challenge
for ELA applied to HPO in practice. Besides, we used logloss as a performance
metric which by definition is rather “smooth” compared to other metrics such
as the classification accuracy (but the concrete choice of performance metric
typically depends on the concrete application at hand). Moreover, ELA requires
the evaluation of an initial design, which is very costly in the context of HPO.
In general, HPO often can be performed with evaluations on multiple fidelity
levels, i.e., by reducing the size of training data, and plenty of HPO methods
make use of this resulting in significant speed-up [21]. Future work could explore
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the possibility of using low fidelity evaluations for the initial design required by
ELA and how multiple fidelity levels of HPO affect ELA features.

We consider our work as pioneer work and hope to ignite the research inter-
est in studying the landscape properties of HPO problems going beyond fitness
measures. We envision that, by improved understanding of HPO landscapes and
identifying relevant landscape properties, better optimizers may be designed,
and eventually instance-specific algorithm selection and configuration for HPO
may be enabled.
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