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Abstract. Different stochastic extensions of hybrid automata have been
proposed in the past, with unclear expressivity relations between them.
To structure and relate these modeling languages, in this paper we for-
malize two alternative approaches to extend hybrid automata with sto-
chastic choices of discrete events and their time points. The first ap-
proach, which we call decomposed scheduling, adds stochasticity via
stochastic races, choosing random time points for the possible discrete
events and executing a winner with an earliest time. In contrast, com-
posed scheduling first samples the time point of the next event and then
the event to be executed at the sampled time point. We relate the two ap-
proaches regarding their expressivity and categorize available stochastic
extensions of hybrid automata from the literature.

Keywords: Formal Modelling · Stochastic Hybrid Models · Classifica-
tion · Expressivity.

1 Introduction

Hybrid automata (HA) [11] are well-suited to model the interplay of continuous
and discrete behavior. Hybrid automata naturally exhibit non-determinism, e.g.,
discrete non-determinism via multiple simultaneously enabled discrete events
(so-called jumps), or time non-determinism via time evolution with non-deter-
ministic duration. In this paper we focus on these aspects and assume that the
initial state, successor states of jumps, as well as the continuous evolution of the
system state during time elapse are deterministic.

During the execution of a hybrid automaton, every non-deterministic choice
has to be resolved by a scheduler. Hybrid automata have been extended with
stochastic choices in multiple ways, leading to stochastic hybrid models (SHM)
[3, 15] with different features and expressivity. In most existing formalisms on
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SHM, all decisions are made randomly and they completely replace the non-
determinism present in the underlying HA.

For example discrete probability distributions have been added to decidable
subclasses of hybrid automata [21,22], which can be analyzed e.g. with the SISAT
tool using abstraction [23]. Another possible extension are stochastic delays via
stochastic resets or random clocks [6, 16], which are sampled from a continuous
distribution to determine how much time should pass between consecutive dis-
crete jumps. In the PROHVER [7] framework, stochastic resets are abstracted to
non-deterministic probabilistic resets. Another over-approximating approach [9]
discretizes the support of the random variables and then abstracts to Markov de-
cision processes. Some of these formalisms model stochastic choices by stochastic
kernels [3,15], each of them responsible for random decisions of a certain kind; we
refer to this technique as composed scheduling. Others use several stochastically
independent random decisions that are in “race” [6, 16]; we call this approach
decomposed scheduling. Due to these differences and diverging mathematical no-
tation, it is often hard to compare existing formalisms with respect to their
expressivity.

Contribution. (i) In this paper, we formalize two stochastic HA extensions,
that implement composed respectively decomposed scheduling. (ii) We define
the stochastic processes induced by each of the approaches. (iii) We relate the
expressivity of the two approaches and show that composed scheduling is more
expressive than decomposed scheduling. (iv) We discuss how existing formalisms
implement such stochastic choices and relate different lines of work.

Outline. Section 2 introduces HA and the necessary stochastic notation. Sec-
tion 3 formalizes and relates the two HA extensions. Section 4 discusses related
work and classifies existing formalisms. Section 5 concludes the paper.

2 Fundamentals

Let R denote the set of all real numbers, R≥0 the nonnegative reals, N the
natural numbers (including zero) and Z the integers. For a set S, 2S is the set of
all subsets of S. We start with introducing hybrid automata in Section 2.1 and
recall some basic definitions from probability theory in Section 2.2.

2.1 Hybrid Automata

Hybrid automata extend discrete transition systems with the notion of time and
continuous evolution. In the below standard definition [10] we omit modeling
constructs for parallel composition, as they are not central for this work.

Definition 1 (Hybrid automata: Syntax). A hybrid automaton (HA) is a
tuple H = (Loc,Var ,Flow, Inv ,Edge, Init) with the following components:

– Loc is a non-empty finite set of locations or control modes.
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– Var = {x1, . . ., xd} is a finite ordered set of variables. We call d the dimen-
sion, ν ∈R

d a valuation, and σ = (ℓ, ν) ∈ Loc×R
d = Σ a state of H.

– Flow : Loc → (Rd → R
d) specifies for each location its flow or dynamics.

– Inv : Loc → 2R
d

specifies an invariant for each location. We define ΣInv =
{(ℓ, ν) ∈ Σ | ν ∈ Inv(ℓ)}.

– Edge ⊆ Loc×2R
d

× (Rd → R
d)×Loc is a finite set of discrete transitions or

jumps. For a jump (ℓ1, g, r, ℓ2) ∈ Edge , ℓ1 and ℓ2 are its source resp. target
locations, g its guard, and r its reset.

– Init : Loc → 2R
d

defines initial valuations. We call a state (ℓ, ν) ∈ Σ initial
if ν ∈ Inv(ℓ) ∩ Init(ℓ).

Executions of a hybrid automaton evolve an initial state by time steps and
discrete steps. Time steps (flows) model continuous evolution of the variable
values according to the flow condition of the current location, while satisfying
the current location’s invariant. When flows define constant derivatives for all
variables then we talk about linear behavior, for linear predicates (i.e., linear
differential equations) about linear dynamics, and in the case of more expressive
predicates (involving e.g. polynomials or trigonometric functions) about nonlin-
ear dynamics. Discrete steps (jumps) (ℓ, g, r, ℓ′) ∈ Edge can move the control
from location ℓ to ℓ′ and change the valuation from ν ∈ R

d to r(ν) ∈ R
d,

assuming that the jump is enabled in (ℓ, ν), i.e. ν ∈ g and r(ν) ∈ Inv(ℓ′).

Definition 2 (Hybrid automata: Semantics). For a hybrid automaton H =
(Loc,Var ,Flow, Inv ,Edge , Init) of dimension d, its operational semantics is given
by the following rules:

ℓ ∈ Loc ν, ν′ ∈ R
d t ∈ R≥0 f : [0, t] → R

d df/dt = ḟ : (0, t) → R
d

f(0) = ν f(t) = ν′ ∀t′ ∈ (0, t). ḟ(t′) = Flow(ℓ)(f(t′))
∀t′ ∈ [0, t]. f(t′) ∈ Inv(ℓ)

(ℓ, ν)
t
→ (ℓ, ν′)

Flow

e = (ℓ, g, r, ℓ′) ∈ Edge ν, ν′ ∈ R
d ν ∈ g ν′ = r(ν) ν′ ∈ Inv(ℓ′)

(ℓ, ν)
e
→ (ℓ′, ν′)

Jump

Let H = (Loc,Var ,Flow, Inv ,Edge, Init) be a HA of dimension d. A path of H is

a finite or infinite sequence π = σ0
t0−→ σ′

0
e0−→ σ1

t1−→ . . . of alternating time steps
and jumps with σ0 ∈ ΣInv ; π is said to be initial if σ0 is initial, we define its
length len(π) as the number of jumps in it, and its duration dur(π) as the sum
of the durations of all of its time steps. Let Π(σ) and Πfin(σ) be the set of all
infinite resp. finite paths starting in σ ∈ ΣInv . A state σ ∈ Σ of H is reachable
iff there is an initial path leading to it.

An infinite path is time-convergent if its duration is finite, and time-divergent
otherwise. A state of H has a timelock iff all infinite paths starting in it are time-
convergent; H has a timelock if any of its reachable states has a timelock, and
is timelock-free otherwise. An infinite path is Zeno iff it is time-convergent and
contains infinitely many jumps. H is Zeno-free if it has no initial Zeno path.
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q0
ẋ = 1
x ≤ 9

q1
ẋ = 1

x := 0

e2

x ≤ 8

e3

e1
x ≥ 3
x := 0

T (σ, e1) = [3, 9] T (σ, e2) = [0, 8] T (σ, e3) = ∅
T (σ) = [0, 9] tmax(σ) = 9
EΣ(σ) = {e2} ELoc(σ) = ELoc(q0) = {e1, e2} .

Fig. 1: A hybrid automaton and characteristics of its state σ = (q0, ν), ν(x) = 0.

We discuss how choices over jumps and the length of time steps are made
stochastically in Section 3, where we use the following notions, partly generalized
to hybrid automata from [3] and illustrated in Figure 1. For e ∈ Edge and
σ ∈ ΣInv , we define

T (σ, e) = {t ∈ R≥0 | ∃σ′, σ′′ ∈ ΣInv . σ
t
−→σ′ ∧ σ′ e

−→σ′′}, T (σ) =
⋃

e∈Edge T (σ, e),

tmax(σ) = sup{t ∈ R | ∃σ′ ∈ ΣInv . σ
t
−→ σ′},

EΣ(σ) = {e ∈ Edge | ∃σ′ ∈ ΣInv . σ
e
−→ σ′},

ELoc(ℓ) = ∪ν∈V EΣ((ℓ, ν)), ELoc((ℓ, ν)) = ELoc(ℓ).

We call σ jump-enabled4 iff T (σ)6=∅, and immediate-jump-enabled iff EΣ(σ) 6= ∅.

2.2 Basic Stochastic Notions

A random experiment has an uncertain outcome from a sample space Ω, whose
subsets are called events. A σ-algebra F is a set of events containing the maximal
event Ω and being closed under complement and countable union. The standard
Borel σ-algebra B(Ω) is the smallest σ-algebra containing all open events. An
event is F-measurable if it is in F . The pair (Ω,F) is called a measurable space.

Given (Ω,F), a probability measure is a function Pr : F → [0, 1] ⊆ R with
(i) Pr(Ω) = 1, (ii) Pr(E) = 1 − Pr(Ē) for all E ∈ F and (iii) Pr(

⋃∞
i=0 Ei) =

Σ∞
i=0Pr(Ei) for any Ei ∈ F with Ei ∩ Ej = ∅ for all i, j ∈ N, i 6= j.

A probability space is a triple (Ω,F ,Pr) with (Ω,F) a measurable space and
Pr a probability measure for (Ω,F).

Let (Ω,F) and (S,Σ) be measurable spaces, X : Ω→S, s∈S and σ∈Σ. We
define X ∼ s to be {ω ∈ Ω |X(ω) ∼ s} and X−1(σ) =

⋃

s∈σ(X ∼ s) with
∼∈ {≤, <,=, >,≥}. X is measurable (wrt. (Ω,F) and (S,Σ)) if X−1(σ) ∈ F
for all σ ∈ Σ. A random variable is a measurable function X : Ω → S; we call
X(ω) the realization of X for ω ∈ Ω.

For the following we instantiate Ω = S = R≥0, F = 2R≥0 and X the identity.
For f : R≥0 → R≥0 we define its support as supp(f) = {ω ∈ R | f(ω) > 0}, with:

– If supp(f) is countable and
∑

ω∈supp(f) f(ω) = 1, f is called a discrete proba-

bility distribution, which induces the unique probability measure Pr : 2R≥0 →
[0, 1] with Pr(E) =

∑

ω∈E∩supp(f) f(ω) for all E ⊆ R≥0.

4 In the original definition, this is called non-blocking.
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– If f is absolute continuous with
∫∞

0
f(ω)dω = 1 then f is called a contin-

uous probability distribution or a probability density function (PDF), which
induces for all a ∈ R≥0 the unique probability measure Pr : 2R≥0 → [0, 1]
with Pr(X ≤ a) =

∫ a

0
f(ω)dω, and the cumulative distribution function

(CDF) F : R≥0 → [0, 1] with F (a) = Pr(X ≤ a).

We denote the set of all discrete resp. continuous probability distributions
by Distd resp. Distc and call elements from Dist = Distd ∪ Distc probability
distributions. A random variable is discrete if its underlying probability measure
Pr is induced by a discrete probability distribution, and continuous otherwise.
By Xd and Xc we denote the set of all discrete resp. continuous random variables.

Given two measurable spaces (Ω1,F1) and (Ω2,F2), a stochastic kernel from
(Ω1,F1) to (Ω2,F2) [14] is a function κ : F2 × Ω1 → [0, 1] with:

– For each E2 ∈ F2, the function fκ
E2

: Ω1 → [0, 1] with fκ
E2

(ω1) = κ(E2, ω1)
is measurable w.r.t. (Ω1,F1) and ([0, 1],B([0, 1]).

– For each ω1 ∈ Ω1, the function Prκω1
: F2 → [0, 1] with Prκω1

(E2) = κ(E2, ω1)
is a probability measure on (Ω2,F2).

Stochastic kernels are used to express the state-dependent probability κ(E2, ω1)
of event E2 ∈ F2 in system state ω1 ∈ Ω1. κ is discrete if each Prκω1

can be
induced by a discrete probability distribution, and continuous otherwise.

A stochastic process over an index set T is a family of random variables
{X(t) | t ∈ T }, defined over a common probability space and taking values
in the same measurable space. In this work we use continuous-time stochastic
processes with T ⊆ R≥0. A stochastic process has the Markov property if its
future is independent of its past evolution [14].

3 Extending Hybrid Automata with Stochasticity

In this section we formalize two stochastic HA extensions: Composed schedul-
ing, introduced in Section 3.1, randomly chooses first a delay and then a jump
to be taken after the delay. Conversely, decomposed scheduling, introduced in
Section 3.2, chooses a delay for each jump separately, where the jump with the
minimal delay is taken. Our approach chooses delays from R≥0, which might
be unrealizable due to invariants, or after which no jump might be enabled,
so we need to introduce mechanisms to manage these cases. We mention that
other formalisms like [3] assume an “oracle” and can therefore sample only over
realizable time delays after which there is an enabled jump.

To put a clear focus on the differences between composed and decomposed
scheduling, our HA definition assumes deterministic flows and jump resets. In
addition, for simplicity we assume in the following a unique initial state. However,
our languages and results can easily be extended to relax these restrictions.

In Sections 3.1 and 3.2 we assume that all invariants evaluate to true; we use
⊤ to denote the trivial invariant, i.e. ⊤(ℓ) = R

d for all ℓ ∈ Loc. In Section 3.5 we
discuss which adaptions in the definitions are required to apply (de-)composed
scheduling to HA with invariants.
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3.1 Composed Scheduling

In composed scheduling, the durations of time steps and the jumps to be taken
are sampled according to two stochastic kernels Ψc resp. Ψd. For a state σ, the
probability distributions induced by Ψc and Ψd are denoted DistΨc

σ resp. DistΨd

σ .
To schedule time delays, approaches like e.g. [3] sample only durations after

which there exists an enabled jump. This alternative is meaningful for decidable
subclasses only (as one needs to determine valid time durations) and for them
it would result in the same expressivity as our approach, which is as follows.

Assume a d-dimensional hybrid automaton Hin = (Loc,Var ,Edge in,Act ,
⊤, Init). Without an oracle, it might happen that Ψc samples a time duration
after which there are no enabled jumps. To handle such cases, we introduce
for each location ℓ ∈ Loc a unique (composed) resampling jump ǫrℓ = (ℓ, g, r, ℓ)
with guard g = R\(∪(ℓ,g′,r′,ℓ′)∈Edge

in
g′) and reset r(ν) = ν for all ν ∈ R

d.
Let Edgecomp

r = {ǫrℓ | ℓ ∈ Loc}. We call H = (Loc,Var ,Edge in ∪ Edgecomp
r ,Act ,

⊤, Init) the composed resampling extension of Hin.

Definition 3 (Composed Syntax). A hybrid automaton with composed
scheduling is a tuple C = (H, Ψc, Ψd), where:

– H = (Loc,Var ,Edge,Act ,⊤, Init) with states Σ is the composed resampling
extension of a HA Hin with trivial invariants and deterministic initial state.

– Ψc : B(R≥0) × Σ → [0, 1] is a continuous stochastic kernel from (Σ,B(Σ))
to (R≥0,B(R≥0)).

– Ψd : B(Edge) × Σ → [0, 1] is a discrete stochastic kernel from (Σ,B(Σ)) to
(Edge ,B(Edge)) such that supp(DistΨd

σ ) ⊆ EΣ(σ) for all σ ∈ Σ.

After each time step, if any non-resampling jump of Hin is enabled then resam-
pling is scheduled with probability 0, and otherwise with probability 1. In each
jump successor state σ, a fresh delay is sampled according to DistΨc

σ .

Definition 4 (Composed Semantics). Assume a HA with composed schedul-

ing C = (H, Ψc, Ψd). A path of C is a path π = σ0
t0−→ σ′

0
e0−→ σ1

t1−→ . . . of H with
tj ∈ supp(DistΨc

σj
) and ej ∈ supp(DistΨd

σ′
j
) for all j ≥ 0.

3.2 Decomposed Scheduling

Let Hin = (Loc,Var ,Edge in,Act ,⊤, Init) be a d-dimensional HA. Instead of
centralized decisions via stochastic kernels, decomposed scheduling chooses jumps
and the length of time steps by associating each jump with a continuous random
variable from a non-empty set X = {X1, . . . , Xk} via a function ain : Edge in →
{1, . . . , k}, such that two jumps with the same random variable are never enabled
simultaneously. We call such a pair (Hin, ain) an X-labeled HA.

The realisations of the random variables indicate the delay after which a jump
with the given random variable should be taken; if no such jump is enabled then
we again need a mechanism for resampling.
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For each location ℓ ∈ Loc and random variable Xi ∈ X we introduce a
(decomposed) resampling jump ǫrℓ,i = (ℓ, gℓ,i, r, ℓ) with reset r(ν) = ν for all
ν ∈ R

d and guard gℓ,i = R
d \ (∪e∈{e′=(ℓ,g,r,ℓ′)∈Edge

in
| ain(e′)=i} g). We extend the

edge set to Edge = Edge in∪Edge
decomp
r with the resampling edges Edgedecomp

r =
{ǫrℓ,i | ℓ ∈ Loc ∧ 1 ≤ i ≤ k}. Let H = (Loc,Var ,Edge,Act ,⊤, Init).

We extend also ain to cover the resampling edges, defining a : Edge →
{1, . . . , k} with a(e) = ain(e) for e ∈ Edge in and a(ǫrℓ,i) = i for ǫrℓ,i ∈ Edgedecomp

r .
Let a−1 : {1, . . . , k} → 2Edge with a−1(i) = {e ∈ Edge | a(e) = i} for i = 1, . . . , k.

We call (H, a) the decomposed resampling extension of the X-labeled HA
(Hin, ain). Note that (H, a) itself is an X-labeled HA.

Definition 5 (Decomposed Syntax). A hybrid automaton with decomposed
scheduling is a tuple D = (H,X, a) where:

– X = {X1, . . . , Xk} is a finite non-empty ordered set of continuous random
variables.

– (H, a) with H = (Loc,Var ,Edge,Act ,⊤, Init) is the decomposed resampling
extension of some X-labeled HA (Hin, ain), where Hin has trivial invariants
and a deterministic initial state.

We store the current realizations of the random variables in a sequence R =
(x1, . . . , xk) ∈ R

k
≥0, and use R[j] to refer to xj . The stochastic race between

the random variables is “won” by the random variable which expires first as it
has a smallest current realisation. The presence of resampling jumps ensures,
that a jump can be scheduled, even if there is no enabled edge associated with
the winning random variable. Note that, since all random variables follow a
continuous probability distribution, the probability that two random variables
expire at the same time is 0 and in this case it is irrelevant which jump is taken.

Definition 6 (Decomposed Semantics). Assume a HA with decomposed
scheduling D = (H,X, a) with X = {X1, . . . , Xk}. A path of D has the form

π = (σ0,R0)
t0−→ (σ′

0,R
′
0)

e0−→ (σ1,R1)
t1−→ . . . with σi = (ℓi, νi), σ′

i = (ℓi, ν
′
i)

such that σ0
t0−→ σ′

0
e0−→ σ1

t1−→ . . . is a path of H and such that for all i ∈ N:

– Ri,R
′
i ∈ R

k
≥0 and for all j ∈ {1, . . . , k}, R0[j] is sampled according to Xj’s

probability distribution in σ0.
– ti = minj∈{1,...,k} Ri[j] and R′

i[j] = Ri[j]− ti for all j ∈ {1, . . . , k}.
– R′

i[mi] = 0 for mi = a(ei).
– The value Ri+1[mi] is sampled according to Xmi

’s probability distribution in
σi+1, and Ri+1[j] = R′

i[j] for all j ∈ {1, . . . , k} \ {mi}.

Example 1 ((De-)composed scheduling). We illustrate the application of com-
posed and decomposed scheduling on the example HA depicted in Figure 2(a).
Note that the resulting HA with (de-)composed scheduling in this example have
different underlying stochastic processes (c.f. Section 3.3).

In the composed scheduling in Figure 2(b), choices over the time steps’ dura-
tions are governed by a kernel Ψc, which characterises for each state with location
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ℓ0

ẋ = 1

ℓ1

ẋ = 2

ℓ2

ẋ = 3

x ∈ [4,∞)

x ∈ [3, 7]

x:=0

(a) Hybrid automaton

ℓ0

ẋ = 1

U(0, 10)

ℓ1

ẋ = 2

exp(5)

ℓ2

ẋ = 3

exp(5)

α

x ∈ [4,∞)

β

x ∈ [3, 7]

ǫrℓ1

ǫrℓ2

x < 3

ǫrℓ0

x:=0

(b) Composed

ℓ0

ẋ = 1

ℓ1

ẋ = 2

ℓ2

ẋ = 3

X1

x ∈ [4,∞)

X2

x ∈ [3, 7]

ǫrℓ0,1

ǫrℓ0,2

ǫrℓ1,1

ǫrℓ1,2

ǫrℓ2,1

ǫrℓ2,2

x:=0

(c) Decomposed

Fig. 2: Illustration to Example 1. Hybrid automaton shown in (a) is extended
with either composed scheduling in (b) or decomposed scheduling in (c).

ℓ0 a uniform distribution DistΨc

(ℓ0,ν)
= U(0, 10), and an exponential distribution

DistΨc

(ℓi,ν)
= exp(5) otherwise. The kernel Ψd characterises a discrete probability

distribution over enabled jumps. Hence, Ψd(e1, (ℓ0, ν)) = α, Ψd(e2, (ℓ0, ν)) = β
and Ψd(ǫ

r
ℓ0
, (ℓ0, ν)) = 1−α−β, where e1 denotes the jump to location ℓ1 and e2

the jump to location ℓ2. The values of α and β depend on the enabling status
of e1 and e2. Hence, α = 1 and β = 0, if e1 is the only jump enabled. Similarly,
α = 0, β = 1 in case e2 is enabled but e1 is not. If both jumps are enabled then
we set α = 0.7 and β = 0.3. If neither e1 nor e2 is enabled, then α = β = 0 and
the resampling edge is scheduled with probability 1.

In the decomposed scheduling in Figure 2(c), there is a race between two
competing random variables X1 and X2, and the "winner" decides on the delay
as well as on the scheduled jump. For our example, in the initial state σ0 =
(ℓ0, ν) with ν(x) = 0 we sample the values x1 and x2 for X1 resp. X2 from the
exponential distribution with parameter 0.2. After a delay of t = min{x1, x2} a
jump takes place. If t = x1 then it is the unique enabled jump associated with
X1 (i.e. either the jump to ℓ1 or the resampling jump ǫℓ0,1), otherwise if t = x2

then it is the unique enabled jump associated with X2 (i.e. either the jump to
ℓ2 or the resampling jump ǫℓ0,2).

3.3 Induced Stochastic Process

The semantics of a hybrid automaton with unique initial state and composed
or decomposed scheduling is fully stochastic. The execution corresponds to a
continuous-time stochastic process {X(t) | t ∈ R≥0}, where the random variable
X(t) takes values from the measurable space (Σ,B(Σ)).

The corresponding probability space for finite paths of length len(π) = n is
given by (Ω,F ,Pr), where Ω = (Σ)n and F = B(Ω). The probability measure
Pr also depends on the chosen scheduling method. Since the probability of a
single path is in most cases zero, we define measurable probabilities for traces.
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Definition 7 (Trace). A trace of a HA H is a finite sequence τ = (σ0, e0, e1,
. . . , en) composed of a state σ0 ∈ ΣInv and a (possibly empty) sequence of jumps
e0, . . . , en of H. The trace τ is initial if σ0 is an initial state of H. A sub-trace
of τ is a trace τ ′ = (σi, ei, . . . , en) for some 1 ≤ i ≤ n, where σi is reachable in

H through a path σ0
t0−→ σ′

0
e0−→ σ1

t1−→ . . .
ei−1
−−−→ σi.

A trace of a HA with (de-)composed scheduling is a trace of its underlying HA.

The probability measure of a trace is obtained recursively by integrating over
the enabling time of the first jump and taking into account the corresponding
jump probabilities. Note that traces of C might include resampling jumps.

Definition 8 (Composed Probability Measure). For a HA with composed
scheduling C = (H, Ψc, Ψd) and a trace τ = (σ0, e0, e1 . . . , en) of C we define
PrC(τ) to be 1 if τ = (σ0), and otherwise

PrC(τ) =

∫

t∈T (σ0,e0)

Ψc(σ0)(t) · Ψd(σ
′
0)(e0) · PrC(σ1, e1, . . . , en)dt (1)

where σ′
0 and σ1 are the unique states of H with σ0

t
−→ σ′

0 and σ′
0

e0−→ σ1.

Definition 9 (Decomposed Probability Measure). Assume a HA with de-
composed scheduling D = (H,X, a), X = {X1, X2, . . . , Xk}. For any state σ of

H and any t ∈ R≥0, let σt and be the unique state of H with σ
t
−→ σt, and for

any e ∈ EΣ(σ) let σe and be the unique state of H with σ
e
−→ σe.

For a trace τ = (σ0, e0, e1, . . . , en) of D we define

PrD(τ) = (2)
∫ ∞

0

DistX1(σ0, t1) . . .

∫ ∞

0

DistXk
(σ0, tk) P (σδ0

0 ,R, e0, e1 . . . , en) dtk . . . dt1

where δ0 = min{tm | 1 ≤ m ≤ k}, R ∈ R
k
≥0 with R[m] = tm − δ0 for all

1 ≤ m ≤ k, and where P is defined as follows.
For any a trace τ = (σ0, e0, e1, . . . , en) of D and any R ∈ R

k
≥0 with σ0 = (ℓ0, ν0)

and m0 = a(e0) we set P (σ0,R) = 1 and for a non-empty sequence e0, . . . , en:

P (σ0,R, e0, . . . , en) = (3)
{

0 if e0 /∈ EΣ(σ0) or R[m0] 6= 0
∫∞

0
DistXm0

(σe0
0 , tm0) · P ((σe0

0 )δ1 ,R′, e1, . . . , en)dtm0 otherwise,

where δ1 = min({tm0} ∪ {R[m] | 1 ≤ m ≤ k ∧m 6= m0}), R′[m0] = tm0 − δ1 and
R′[m] = R[m]− δ1 for all m ∈ {1, . . . , k} \ {m0}.

When decomposed scheduling is applied, the above-defined probability mea-
sure over traces (which might also include resampling jumps) is obtained by
sampling all random variables from their corresponding probability distributions.
Afterwards, it recursively computes the probability measure P of the trace for
the sampled durations, after letting time elapse by the minimum realisation δ0
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under all random variables. In the definition of P in Equation 3, the first case
applies if the jump e0 is either disabled in the trace’s starting state or the re-
alisation of its random variable is not yet expired (i.e. not 0); in this case, the
probability of the trace is 0. Otherwise, we take the jump e0 with successor
state σe0

0 , resample the random variable Xm0 of e0, let again time elapse with
the minimum realisation δ1 over all random variables, and apply the definition
recursively. Note that e0 might be a resampling jump and that though several
realisations can expire simultaneouly, it might happen only with probability 0.

Remark 1. Hybrid automata with composed scheduling C and HA with de-
composed scheduling D both extend the jump set of their underlying hybrid
automaton H. Therefore, C and D have more paths than H. This means that
Zeno paths are inherited from H to C and D, however, Zeno-freedom of H does
not imply Zeno-freedom of D and C.

Consider for example the hybrid automaton H from Figure 2(a) and its
composed scheduling extension C from Figure 2(b). The automaton H is Zeno-
free but C does have Zeno paths, e.g. all paths that take the resampling jump
ǫℓ0 of ℓ0 infinitely often. Even though the stochastic kernel of C almost surely
excludes such paths (i.e. if τk is the trace with k repeated ǫℓ0-jumps from the
initial state σ0 then limk→inf P (τk) = 0), changing the distribution in ℓ0 from
U(0, 10) to U(0, 1−x

2 ) would increase their probability to 1. Hence, modelers
should carefully choose stochastic distributions in order to ensure that additional
Zeno behavior is almost surely excluded.

3.4 Relation of Composed and Decomposed Scheduling

Previously, we discussed two different approaches on how hybrid automata can
be extended with stochasticity. In this section we show that composed scheduling
is more expressive than decomposed scheduling w.r.t. Pr-equivalence.

Definition 10 (Trace Probability Equivalence). Let D be a HA with de-
composed scheduling, C a HA with composed scheduling, and τ a common trace
of D and C. The trace τ is Pr-equivalent in D and C iff PrD(τ) = PrC(τ) and
for each σ being either the first state of τ or the first state of a sub-trace of τ
if holds for all t ∈ R≥0 that PrσD(X ≤ t) = PrσC(X ≤ t), where X models the
duration of a time step starting in σ.

D and C are Pr-equivalent if the sets of their initial traces are equal and each
of their initial traces is Pr-equivalent.

Theorem 1 (Expressivity Composed vs Decomposed Scheduling).

1. Let D be a HA with decomposed scheduling. Then there is a HA with com-
posed scheduling C such that D and C are Pr-equivalent.

2. There exists a HA with composed scheduling C′ such that there is no HA with
decomposed scheduling D′ such that D′ and C′ are Pr-equivalent.
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Proof (Theorem 1) Statement 1. Assume a HA with decomposed scheduling
D=(H,X, a) with H = (Loc,Var ,Flow,⊤,Edge, Init), Loc = {ℓ1, . . . , ℓn}, Var =
{v1, . . . , vd} and X = {X1, . . . , Xk}. We construct a HA with composed schedul-
ing C = (H′, Ψc, Ψd) with H′ = (Loc,Var ′,Flow′,⊤,Edge ′, Init ′) as follows.

We encode into the state of H′ for each random variable (i) the state in which
it was sampled the last time and (ii) the time which has evolved since then. We
also encode (iii) the time spent in the current location since last entering.

To account for (i), we introduce fresh variables D = {di | 1 ≤ i ≤ k} to
store the location components and C = {ci,j | 1 ≤ i ≤ k, 1 ≤ j ≤ d} to store
the variable values before the last sampling of Xi. Hence, for the i-th random
variable Xi ∈ X, we encode the state of its last (re)sampling by the values of
(di, (ci,1, . . . , ci,d)).

To encode (ii), we introduce k variables R = {ri | 1 ≤ i ≤ k} which capture
the time since the last (re)sampling of each random variable Xi ∈ X in ri.

Finally, for (iii) we use tjump to store the time duration since the last jump.
Thus our encoding uses d′ = d + k · (d + 2) + 1 variables ordered as Var ′ =

{v1, . . . , vd, d1, . . . , dk, c1,1, . . . , ck,d, r1, . . . , rk, tjump}. For ν ∈ R
d′

, we use ν↓d to
denote the first d components (ν1, . . . , νd) of ν = (ν1, . . . , νd′) ∈ R

d′

. Further-
more, for any ν ∈ R

d′

, a ∈ Var ′ and b ∈ R, by ν[a 7→ b] we denote ν after
changing the entry at the position of variable a (as defined in Var ′) to b.

The above encoding is implemented by extending Flow to Flow′ in each
location ℓ ∈ Loc with derivative 0 for each variable in C ∪ D and derivative 1
for each variable in R ∪ {tjump}. I.e., for each ℓ ∈ Loc and ν ∈ R

d′

, Flow′(ν) =
(Flow(ν↓d),0,1) with 0 is a sequence of k(d+ 1) zeros and 1 of k + 1 ones.

Further, Edge ′={e′ | e ∈ Edge} contains for each e = (ℓj1 , g, r, ℓj2) ∈ Edge

with a(e) = i the jump e′ = (ℓj1 , g
′, r′, ℓj2) which extends e to handle the

new variables; formally, g′ = {ν ∈ R
d′

| ν ↓d∈ g} and for all ν ∈ R
d′

, r′(ν) =
ν[v1 7→ r(ν)[1]] . . . [vd 7→ r(ν)[d]][di 7→ j2][ci,1 7→ r(ν)[1]] . . . [ci,d 7→ r(ν)[d]][ri 7→
0][tjump 7→ 0].

For each ℓ ∈ Loc, Init ′(ℓ) consist of all ν ∈ R
d′

for which ν↓d∈ Init(ℓ), and
such that ν(di) = ℓ, ν(ci,j) = ν(vj) and ν(ri) = ν(tjump) = 0 for all i = 1, . . . , k
and j = 1, . . . , d.

Now we define the kernel Ψc. With decomposed scheduling, the duration
between two samplings of a random variable (defined by its realisation) might
cover consecutive stays in different locations. However, in the composed setting,
we are forced to sample a new duration upon entering a new location.

For each state σ = (ℓ, ν) ∈ ΣC let σXi
= (ℓXi

, νXi
) ∈ ΣD denote the state in

which Xi was (re)sampled the last time, as encoded in the values of the auxiliary
variables: ℓXi

= ℓν(di) and νXi
(vj) = ν(ci,j) for j = 1, . . . , d. For each random

variable Xi ∈ X with CDF F
σXi

Xi
and density function f

σXi

Xi
in state σXi

, we
first define another random variable X ′

i whose probability distribution is first
conditioned in that samples are at least as large as the time ν(ri) passed since
the last (re)sampling of Xi, and then shifted by ν(ri) to the left: F σ

X′
i
(x) =

Pr(Xi ≤ ν(ri) + x | Xi > ν(ri)) =

∫ ν(ri)+x

ν(ri)
f
σXi
Xi

(t)dt

1−F
σXi
Xi

(ν(ri))
. Let X

′ = {X ′
i | Xi ∈ X}.
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For each first state in a (sub)-trace of D and C, the probability distribution
over the delay must be the same in both automata. We let Ψc specify for each
state σ ∈ ΣC a probability distribution over the time delay until the next random
variable Xi ∈X expires, i.e. DistΨc

σ = fM , where the random variable M=min(X′)
is the minimum over all shifted random variables, as defined in [24].

For the kernel Ψd, we observe that for each random variable Xi, in each state
σD exactly one Xi-labeled jump is enabled in D. Our construction of Edge ′

maintains this characteristics in C. To formalize the probability that an enabled
jump is taken, we define for each random variable Xi another random variable
X ′′

i , X′′ = {X ′′
1 , . . . , X

′′
k }, which is defined as X ′

i but its CDF F σ
X′′

i
(x) is shifted

with ν(ri) − ν(tjump), instead of ν(ri), to model the probabilities of samples
beyond the time point of the last jump (i.e. in the definition of F σ

X′
i
(x) we replace

ν(ri) by ν(ri)− ν(tjump)). We let the discrete kernel define for each state σC and
each edge e′ ∈ Edge ′ with a(e) = i the probability

Ψd(σC)(e
′) =

{

PrσC

C (X ′′
i ≤ min(X′′\{X ′′

i })) if e is enabled in σC ,

0 otherwise.
(4)

Hence, given an arbitrary HA D with decomposed scheduling, we can construct
a HA C with composed scheduling such that D and C have the same trace set and
the same initial trace set, and such that each common trace τ is Pr-equivalent
in D and C. As furthermore Ψc is specified such that it mimics the distribution
over the duration until the next random variable expires, it is assured that
PrσD(X ≤ t) = PrσC(X ≤ t).

Statement 2. To show statement 2 of Theorem 1 we consider Figure 3 as a
counterexample. The depicted HA with composed scheduling is constructed such
that in the initial state a delay distributed according to the uniform distribution
U(0, 10) is sampled, before a jump to location ℓ1 is taken with probability 0.25
and a jump to location ℓ2 with probability 0.75.

ℓ0

ẋ = 1

U(0, 10)

ℓ1

ẋ = 2

exp(5)

ℓ2

ẋ = 3

exp(5)

0.25

0.75

ǫrℓ0

ǫrℓ1

ǫrℓ2

x:=0

Fig. 3: Counterexample.

For decomposed scheduling, we associate
each edge with an independent random vari-
able X1 resp. X2, where min(X1, X2) should
be uniformly distributed over the intersec-
tion of the support of X1 and X2 in loca-
tion ℓ0 to achieve Pr-equivalence. However,
the minimum of two continuous random vari-
ables with overlapping support can never be
uniformly distributed, see [24].

⊓⊔

3.5 Extending (De-)composed Scheduling with Invariants

If we allow non-trivial invariants, unrealizable time durations might have a pos-
itive probability. To manage such cases, we use the concept of forced jumps
for both, composed and decomposed scheduling. Forced jumps ensure that no
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time step larger than tmax(σ) is executed. For both, composed and decomposed
scheduling, the HA is adapted such that each location has a forced jump which is
used to leave a location before its invariant is violated. Furthermore, the seman-
tics for composed and decomposed scheduling (Definitions 4 and 6) are altered
such that for each state σ, the time delay is capped by t′i = min(ti, tmax(σ)).

As the probability mass of sampling a delay larger than tmax(σ) in state σ is
shifted to the forced jumps, this has to be considered in the probability measures
of Section 3.3 by integrating over (tmax(σ),∞) in case of a forced jump.

4 Classification of Existing Approaches

This paper allows for a broad classification covering multiple formalisms. Repre-
sentatives from literature can be found for both variants, as indicated in Table 1.
We discuss one representative formalism for composed and one for decomposed
scheduling in more depth. Furthermore, we discuss which formalisms do not fit
into our classification and relate our comparison to the work in [17] which focuses
on Markovian stochastic hybrid models.

Composed Scheduling. Lygeros and Prandini [15] introduce a general class of
continuous-time stochastic hybrid automata (CTSHA). This approach has been
abstracted to discrete-time e.g., in [2,20]. CTSHA implement composed schedul-
ing, as the stochastic information over the delay is attached to the location and
a stochastic kernel chooses the jump-successor state randomly. Technically, the
actual jump times are the stopping time of the inhomogeneous Poisson process
with state-dependent rate λ(t) = λ(q(t),x(t)). This results in delays which are
sampled according to an inhomogeneous exponential distribution which can ex-
plicitly be expressed by the stochastic kernel Ψc used for composed scheduling

by: Pr (X > t | (ℓ(s),x(s))) = e−(
∫

s+t

s
λ(u) du). The integral can be computed, if

for each location, the continuous state evolves with a deterministic rate. Thus,
(ℓ(s+ t′),x(s+ t′)) is well defined for any t′ ≤ t ∈ R≥0 and given (ℓ(s),x(s)).

The inhomogeneous Poisson process used in CTSHA can define a phase-
type distribution which can approximate any continuous probability distribu-
tion. Hence, just as for composed scheduling, the sampled delay can follow any
probability distribution in CTSHA. Moreover, CTSHA directly extend our pro-
posed HA with composed scheduling by including stochastic differential equa-
tions (SDEs) to describe the continuous state’s evolution. Furthermore, the ini-
tial state is sampled according to a probability measure and the kernel Ψd is
extended to a continuous stochastic kernel, enabling random resets of the con-
tinuous state.

Table 1: Classification of existing formalisms.
[2] [3] [4,5] [6] [8] [9] [15] [16,19] [20]

composed X X X X X X

decomposed X X X X
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Decomposed Scheduling. Pilch et al. [16, 19] introduce singular automata with
random clocks (SARC) which basically apply decomposed scheduling. They im-
plement this approach by adding random clocks which induce random variables
characterizing the delay for each jump. Upon expiration, a new random variable
is induced which follows the predefined probability distribution with a constant
parameter of the corresponding random clock. Additionally, SARC allow for
transitions which are not associated with the expiration of a random variable
which adds non-determinism to the model. The concept of random clocks can be
extended to other sub-classes of hybrid automata, e.g., rectangular automata [6]
with random clocks, which again implicitly assign random variables to jumps via
random clocks and restrict the syntax to ensure a sound probability measure.
In contrast, decomposed scheduling allows to directly attach random variables
to jumps and the semantics ensures that the resulting probability measure is
sound. This simplifies modeling.

Markovian Stochastic Hybrid Models. The formalism of Continuous-Time Mar-
kov Chains (CTMCs) which are discrete-state models without variables, has
been extended in the past to stochastic hybrid models [4, 5, 8, 12], which corre-
spond to (different kinds of) Markov processes. Piecewise Deterministic Markov
Processes (PDMPs) [4,5] implement composed scheduling where the evolution of
a continuous state is piece-wise deterministic and can be restricted by invariants.
In PDMPs the jump times are ruled by an inhomogenous Poisson process and
jumps and their effects are chosen probabilistically by a transition kernel. This
stochastic kernel allows to encode guards implicitly.

In contrast, Switching Diffusion Processes (SDPs) [8] describe the continu-
ous variables’ evolution via stochastic differential equations. They do not allow
for invariants or resets of the continuous state and the discrete state evolves
according to a controlled Markov chain [13], whose transition matrix depends
on the continuous state. This allows the user to encode guards into the model.
Due to the underlying Markov chain, which can be characterised via a generator
matrix describing competing random variables, SDPs can be seen as an approach
with decomposed scheduling. Stochastic hybrid systems (SHSs) [12] simplify CT-
SHA as discussed in [15] by relaxing the inhomogenous Poisson process which
determines the random delays.

The formalisms mentioned above coincide under certain assumptions, as dis-
cussed in [17]. For example, the authors state that the formalism SDP, which is
decomposed in our classification, and the formalism SHS, which we classify as
composed, coincide iff invariants and guards of the SHS evaluate to true.

Clearly, restricting to exponentially distributed delays renders the counterex-
ample of Theorem 1 invalid, as the minimum of two exponentially distributed
random variables is again exponentially distributed. However, additional re-
strictions are necessary to ensure that the probability spaces of (de-)composed
scheduling coincide in the presence of guards and invariants. Specifying such
restrictions (and proving their correctness) is out of scope for this paper.

We refer to [17] for a more detailed comparison on the expressivity of Marko-
vian stochastic hybrid models.
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Other Formalisms. Several existing formalisms for stochastic hybrid models do
not fit into the proposed classification, as they focus e.g., solely on randomly
distributed initial states [18] or on a non-deterministic choice over discrete prob-
ability distributions for choosing a successor state [21].

The formalism presented in [3] defines a fully stochastic semantics for timed
automata by randomly choosing delays and jumps. It applies a composed se-
mantics, however without resampling jumps. Timelock-freedom is ensured by
restricting the support of the probability distributions to executable samples.

The formalism presented in [9] proposes networks of stochastic hybrid au-
tomata which fit in both, the composed as well as the decomposed approach.
Such stochastic hybrid automata allow to reset continuous variables to realiza-
tions of continuous random variables. Thus, at each jump we can either sample
a randomly distributed delay for the location like in composed scheduling, or
associate the samples as delays with the jumps as in decomposed scheduling.

5 Conclusion

In this paper we formalized two approaches to extend hybrid automata with
stochasticity. The first approach applies composed scheduling, where two stochas-
tic kernels are used to sample the lengths of time steps and the successor states of
jumps. In contrast, the second approach yields decomposed scheduling via com-
peting random variables. As the realisations of the random variables specify the
delay after which the corresponding jump is taken, a race-condition is induced.
The minimum realisation of the random variables then fully characterises the
next execution step. We formalized the syntax and semantics for (de-)composed
scheduling and the stochastic processes underlying the different resulting mod-
els. We defined trace probability equivalence and showed that it is possible to
construct for every given HA with decomposed scheduling, an equivalent HA
with composed scheduling. Via a simple counterexample, we showed that a HA
with composed scheduling exists, for which no equivalent HA with decomposed
scheduling can be constructed.

To connect the theoretical constructs developed in this paper to existing
formalisms, we classified several existing formalisms according to their semantics
and pointed to approaches which we cannot capture yet. To include them in our
classification, future work will consider more expressive systems, e.g, including
stochastic resets and stochastic noise. Furthermore, we plan to investigate the
relation of the presented classes to approaches without resampling.

Acknowledgements. We thank the ARCH competition 2023 for fruitful discus-
sions on expressing example models from the ARCH report [1] in the formalism
of Lygeros et al. [15].
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A Minimum of Two Random Variables

Let A and B be two independent continuous random variables with known CDF
FA(m) and FB(m), as well as known PDF fA(m), fB(m). We then consider the
random variable M = min(A,B). The CDF of the random variable M is given
by:

Pr(M ≤ m) = 1− Pr(M > m)

= 1− Pr(A > m,B > m)

= 1− (1− Pr(A ≤ m)) · (1− Pr(B ≤ m))

= 1− (1− FA(m)) · (1 − FB(m))

= FA(m)− FB(m) + FA(m)FB(m).

Hence, the CDF of M is FM (m) = FB(m)− FA(m) + FA(m)FB(m). By taking
the derivative of FM (m) we obtain its PDF fM (m) :

fM (m) =
δFM (m)

δm
= fA(m) + fB(m)− fA(m)FB(m)− fB(m)FA(m)

= fA(m) + fB(m)− fA(m)(1− Pr(B ≥ m))− fB(m)(1 − Pr(A ≥ m))

= fA(m)Pr(B ≥ m) + fB(m)Pr(A ≥ m)

= fA(m)

∫ ∞

m

fB(m)dt+ fB(m)

∫ ∞

m

fA(m)dt.

Hence, the probability density function of M is fM (m) = fA(m)
∫∞

m
fB(m)dt+

fB(m)
∫∞

m
fA(m)dt.

In the following, we require that supp(fA)) ∩ supp(fB) 6= ∅. In the following
we show, that M = min(A,B) cannot be uniformly distributed.

Rearranging terms we obtain:

fM (m) = fA(m)

∫ ∞

m

fB(m)dt+ fB(m)

∫ ∞

m

fA(m)dt

= fA(m)(1 − FB(m)) + fB(m)(1− FA(m))

= fA(m)− fA(m)FB(m) + fB(m)− fB(m)FA(m).

Since A,B are continuous random variables, fi(m) ≥ 0, Fi(m) continuous
and monotone increasing with limm→∞ Fi(m) = 1 and limm→−∞ Fi(m) = 0,
for i ∈ {A,B}. Hence, m1,m2 ∈ supp(fA)) ∩ supp(fB) exist, for which 0 ≤
FA(m1) < FA(m2) ≤ 1 and 0 ≤ FB(m1) < FB(m2) ≤ 1 and hence

FA(m1) < FA(m2) ⇒ fB(m1)FA(m1) < fB(m2)FA(m2)

⇒ fB(m1)− fB(m1)FA(m1) > fB(m2)− fB(m2)FA(m2), and

FB(m1) < FB(m2) ⇒ fA(m1)FB(m1) < fA(m2)FB(m2)

⇒ fA(m1)− fA(m1)FB(m1) > fA(m2)− fA(m2)FB(m2).

Thus, fM (m1) 6= 0 and fM (m2) 6= 0, with fM (m1) 6= fM (m2) and therefore fM
cannot be a uniform distribution.
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