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ABSTRACT
A general theory has been developed for a polydisperse semi-flexible multi-block copolymer melt. Using the Bawendi–Freed approach to
model semi-flexible chains, an expression for the Landau free energy is derived in the weak segregation regime, which includes density and
orientation order-parameters. The orientation order-parameter is described in the smectic phase and in more complicated structures, such
as the hexagonal phase. The Landau free energy contains contributions of two kinds of interactions. The first kind is the Flory–Huggins
interaction, which describes the incompatibility of chemically different blocks and may induce microphase separation. The second kind is
the Maier–Saupe interaction, which may induce nematic ordering. In the framework of the weak segregation limit, the Landau theory allows
us to predict phase structures in the melt as a function of the composition, persistence length, and the strength of the Flory–Huggins and
Maier–Saupe interaction. The general theory is applied to a simple system of monodisperse semi-flexible diblock copolymers. In several
phase diagrams, a number of possible phase structures are predicted, such as the bcc, hexagonal, smectic-A, smectic-C, and nematic phase.
The influence of the Maier–Saupe interaction on the microphase structure is thoroughly discussed.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138244

I. INTRODUCTION

In the last 50 odd years, the phase behavior of diblock copoly-
mers and other sorts of block copolymers has been abundantly
studied from both a theoretical (Refs. 1–40) and experimental per-
spective (Refs. 41–45). This phase behavior largely determines var-
ious properties of these materials, such as mechanical, optical, and
electrical. For instance, the industrially important class of synthetic
elastomers known as thermoplastic elastomers consists of block
copolymers. These materials, due to their phase structure, are, in
fact, processable rubbers. In these materials, typically one type of
block is capable of crystallizing at a high enough temperature above
room temperature, while the blocks that do not crystallize behave
elastically at such a temperature. The block that does crystallize

forms cross-links between chains, resulting in the formation of a net-
work. Upon the disappearance of the cross-links due to melting at
elevated temperatures, chains can again move freely with respect to
one another so that the system behaves as a high viscosity liquid.46

In this paper, we develop a general theory of a polydisperse
semi-flexible multi-block copolymer melt, which is an extension of
the theory in Ref. 1. The theory is made very general so that it
can be applied not only to simple systems but also to more com-
plex systems, which are more realistic. In this paper, it is applied to
the simplest system of monodisperse diblocks, but the application
can be extended to more complex systems, such as monodisperse
triblocks and polydisperse diblocks. The general theory describes a
melt, which is an arbitrary mixture of multi-block copolymers. The
main parameters are the mixture composition determined by the
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number of chains ns for each chain species s, the chain composi-
tion of species s determined by Ising-like variables σαs (l) such that
σαs (l) ≡ 1 when segment l is in a block of kind α and σαs (l) ≡ 0 oth-
erwise, the bending stiffness λα of a block of kind α, the strength
of the Flory–Huggins χ̃αβ and Maier–Saupe ωαβ interaction between
blocks of kinds α and β, the wavenumber q∗ of a phase struc-
ture, the symmetry properties of a phase structure defined by the
set of wave vectors H = {±q

1
,±q

2
, . . .} with a fixed wavenumber

q1 = q2 = . . . = q∗ , and the strength of the density Ψα and orienta-
tion Υα order-parameter of block α. The general theory is applied to
a simple system of monodisperse semi-flexible diblocks to calculate
the complete phase diagram. From the results of these calculations,
it follows how the stiffness may influence the formation of different
phase structures in a melt of block copolymers.

This paper is structured as follows: In Sec. II, we review the lit-
erature and identify shortcomings/limitations of existing theories. In
the second half of Sec. II, we describe in general terms what changes
we are going to make to the models that were discussed. A summary
is given at the end of Sec. II. In Sec. III, we describe our model and
apply it in Sec. IV to a limited set of characteristic examples. We end
with a few remarks and conclusions.

II. REVIEW OF EXISTING MODELS
The effect of stiffness on monodisperse semi-flexible diblocks

has also been investigated in Refs. 6–9 and 19. In Refs. 6 and 9, a
rod–coil system is investigated, and in Refs. 7, 8, and 19, the diblock
is semi-flexible. In all these papers, it appeared that both the spin-
odals χsL andωsL are lowered when one or both blocks in the diblock
copolymer are made stiffer. The semi-flexibility is described in dif-
ferent ways in the above-mentioned papers. In the general theory in
Sec. III of this paper, the Bawendi–Freed model is applied to describe
semi-flexibility; see also Refs. 51–53. In Ref. 7, the Kratky–Porod
model is applied (see Ref. 54), and Ref. 19 applies the Saitô model
introduced in Ref. 55. In Singh’s semi-flexible chain model,8 a cer-
tain number of rods with a fixed length are connected to each other
in which each rod can be set in any direction with respect to a neigh-
boring rod. The bending stiffness is modeled by the rod length. The
rod-part or semi-flexible blocks in the diblock chain in Refs. 6–9 and
19 may have a certain orientation in a microphase or nematic phase.
In Refs. 7 and 19, the orientation is ignored, but in Refs. 6 and 8 and
this paper, the orientation tensor has the form

Qα
ij(q) = (nαi nαj −

1
3
δij)Qα(q) with α = A, B, (1)

in which the assumption, nA = nB = n, is made that the director vec-
tors nA and nB of the A- and B-block cannot become different. In
Holyst’s rod–coil model,9 this orientation tensor has not been used
for rod-blocks. The six tensor components Qxx, Qyy, Qzz , Qxy, Qxz ,
and Qyz are considered as independent variables in the expression
of the Landau free energy. In Refs. 6 and 9, the orientation of the
coil-part in the rod–coil diblock copolymer is neglected.

In Refs. 7–13, the weak segregation theory is restricted to the
calculation of the spinodal line, but in Refs. 5 and 6, and this paper,
the complete phase diagram is calculated. Reenders and ten Brinke6

calculated the phase diagrams of monodisperse rod–coil diblocks,
which displayed various phases, which are also observed in Sec. IV
in this paper. As mentioned earlier, the description according to

Eq. (1) is applied to the alignment of rod-blocks in Ref. 6. Here,
the ansatz is made that only global nematic ordering occurs so
that contributions of orientation tensors Qα

ij(q) to the Landau free
energy are ignored for nonzero wave vectors q ≠ 0. In microphase
structures in which χ > χs and ω = 0, only a global orientation may
occur, but appear to be very small such that it is justified to also
ignore these contributions. Therefore, in the calculation of the phase
diagram, the tensor Qij(q) = Qij(0) is not included when ω < ωs.
Hence, a smectic phase only contains a global orientation and is
only possible when both χ > χs and ω > ωs. However, in the the-
ory, according to Refs. 8 and 9 and this paper, local orientations
Qα

ij(q) in which q ≠ 0 are not neglected in a microphase structure.
Because of symmetry, the set of wave vectors applied to the den-
sity order-parameterΨ(q)must be identical to the set applied to the
orientation order-parameter Qα

ij(q) when a spatial dependent phase
structure is formed. Hence, according to this theory, local orienta-
tions Qα

ij(q) in several directions are possible when χ > χs and ω = 0.
Global orientations Qα

ij(0) may also be induced, which must be
aligned along the wave vectors of the local orientations to maintain
symmetry.

In Refs. 1–18, the phase behavior is described by the weak
segregation theory, which is only valid just below to the critical
temperature. When the temperature is further lowered, the segre-
gation becomes stronger such that the weak segregation approach
fails to be reliable. The phase structure is in the intermediate or
strong segregation domain for which other approaches are available,
for example, the self-consistent field theory in Refs. 19–36 or com-
puter simulations in Refs. 37–40. In weak segregation, some results
of the phase behavior found in Refs. 1–18 are observed in experi-
ments; see also Refs. 41–45. In this paper, we restrict to the weak
segregation approximation. In the past, this approximation has been
applied in several kinds of block copolymers systems in which per-
sistence length and/or polydispersity are included. In Refs. 14–18,
the effect of polydispersity is investigated for different kinds of block
copolymers, but the work of Refs. 5–13 and this paper are restricted
to monodisperse systems in the framework of the weak segregation
limit. The monodisperse systems in Refs. 5–10 and this paper are
diblock copolymers. Monodisperse triblock copolymers are consid-
ered in Refs. 11 and 12. In Ref. 13 a melt of monodisperse side-chain
liquid-crystalline polymers is investigated.

In this paper, we show and discuss the results of the calculated
phase diagrams of monodisperse semi-flexible diblocks. Before dis-
cussing the results, we explain how we developed a general theory
of a polydisperse semi-flexible multi-block copolymer melt, which
is, as mentioned earlier, an extension of the theory in Ref. 1. In that
paper, the polydisperse multi-block copolymers are fully flexible. In
our paper, each chain is made semi-flexible by adding a persistence
length or bending stiffness λa to each block α. If λa → 0 block a,
it can be regarded as fully flexible, and if λa →∞, it behaves as a
rigid rod (see Refs. 56 and 57). Due to the persistence length of each
block, it is necessary to take into account a possible global orienta-
tion of blocks induced by the Maier–Saupe interaction (see Ref. 50).
The Flory–Huggins interaction might cause a space dependent
alignment in a microphase state in addition to a space dependent
density order-parameter. The theory in Ref. 1 is further extended
by including this additional orientation expressed by the tensor Qα

ij
with i, j = x, y, z and α = a, b, . . . in the derivation of the Landau
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free energy. The final result is a power series expansion in which
two kinds of order-parameters are combined, which are density
order-parameters Ψα and orientation tensors Qα

ij.
To make chains semi-flexible, we use the continuous

Bawendi–Freed model in Refs. 51–53 in which the chain can be
stretched and compressed such that the chain length varies around
a fixed average value L. In this way, the average distance l between
a monomer and a chain end is also fixed if we measure the dis-
tance along the chain. Hence, by the length l, each monomer can
be identified. If l is the real length instead of the average length,
then the tangent vector u(l) = dr(l)

dl has a fixed magnitude equal to 1.
This restriction obstructs the derivation of single-chain correlation
functions. By using the average length, the tangent vector u(l) has
no fixed unit magnitude. Only the average magnitude is fixed to 1.
This condition is less strict such that the obstruction is taken away
to derive explicit expressions of the single-chain correlation func-
tions using the Bawendi–Freed model. This derivation and a detailed
explanation of the Bawendi–Freed model can be found in Sec. I of
the supplementary material. The resulting single-chain correlation
functions are applied in the derivation of the Landau free energy;
see also Sec. III and Appendix A. In Appendix B, the Landau free
energy is derived for a simple system of diblock copolymers using
the general theory in Sec. III and Appendix A. In this system, bend-
ing stiffness is included, but polydispersity is not taken into account.
Here, the second order terms in the Landau free energy are writ-
ten in matrix form and can be rewritten in terms of eigenvalues and
eigenvectors. The three-dimensional symmetric matrix has three
positive eigenvalues in the disordered state, but in the ordered state
close to the phase transition, one eigenvalue has become negative.
The corresponding eigenvector is called the primary eigenvector.
The other eigenvectors are secondary eigenvectors. By minimizing
the Landau free energy with respect to the secondary eigenvectors,
the Landau free energy can be written as a power series expansion
in only the primary eigenvector. This expression is used to min-
imize the free energy in different ordered structures, such as the
bcc phase. The state with the lowest minimum is the most proba-
ble state. In this way, the phase diagram is calculated. As mentioned
earlier in the expression of the free energy, a space dependent orien-
tation tensor is included because it is necessary to take into account
the possibility of local alignment in a certain microphase structure.
In Appendix C, it is explained how the orientation tensor can be
composed if the alignment is space dependent. Such an alignment,
as explained earlier, is taken into account in microphase struc-
tures. It appeared that the orientation tensor of the hexagonal phase
can be described as a superposition of three orientation tensors of
smectic-A states. These three layered structures must be positioned
such that the total combination contains the symmetrical proper-
ties conforming the hexagonal structure. In the same way, the bcc
structure is a superposition of six orientation tensors of smectic-A
states.

Finally, we would like to summarize the benefits of the
approach taken in this paper. First, the model from our previous
paper1 is extended such that semi-flexibility of blocks is included
via an adaptation of the Bawendi–Freed version of the freely rotat-
ing chain model. This model makes the further derivation of the
Landau free energy possible. In previous papers, approximations
are introduced that prevent such a derivation or model stiffness by
introducing rod-like blocks. Second, the general theory is applied to

a simple system of monodisperse diblock copolymers in which the
complete phase diagram has been calculated and investigated more
extensively than in earlier papers in which the weak segregation the-
ory is also applied. A spatial dependent orientation has been taken
into account and is described in the smectic phase and more com-
plicated structures, such as the hexagonal phase. This description is
applied in the calculation of the complete phase diagram, which has
not been done before. In this way, we are able to investigate the effect
of stiffness on the complete phase diagram by means of a complete
description of orientation.

III. THE MODEL
In this section, we develop a general theory of a polydis-

perse semi-flexible multi-block copolymer melt. Certain steps in the
derivation of the resulting form of the Landau free energy given by
Eq. (20) are not described thoroughly. For more details, we refer to
Appendix A and the supplementary material, Secs. I–IV. The gen-
eral theory in this paper is to a large extent based on earlier work,
which can be found in Ref. 58.

We will describe a general melt of semi-flexible multi-block
copolymers by employing the kind of coarse graining that one often
finds in polymer physics.59 Consider a melt in a volume V consist-
ing of nc copolymer chains that are built from up-to M chemically
different kinds of monomers arranged in an arbitrary sequential
way. Hence, these chains typically will have a multi-block-type struc-
ture, and the number of conceivable chains will be extremely large
clearly. The subscript s will be used to label the different species
of chains that are present in the system. Every chain of species s
contains Ns + 1 monomers that are connected via Ns deformable
bonds having an average length a and with a bond angle between
subsequent bonds that is held fixed. In addition, we will allow this
fixed angle between subsequent bonds to be different for each of
the M chemically different blocks of monomers. Monomers will
often also be called segments, and both names will be used inter-
changeably. These M chemically different segments will be labeled
by Greek lowercase symbols α, β, etc. that run from 1 to M. In the
remainder of this paper, a continuous notation will be used, i.e.,
we will represent chains by continuous curves that are obtained via
the continuum limit (Ns →∞, a→ 0 such that Ls ≡ Nsa stays con-
stant, etc.). The structure of a given chain of species s is described by
variables σαs (l), where α = 1, . . . , M and l ∈ [0, Ls]. These variables
are similar to Ising spins in that σαs (l) ≡ 1 if segment l is of the α
type and σαs (l) ≡ 0 if it is not. The continuous parameter l can be
regarded not only as a parameter to label segments but also as a
measure of the separation distance between one of the chain ends
and the given segment measured along the chain. According to the
supplementary material, Sec. I, l is not the actual contour length,
but the average distance, as in the Bawendi–Freed model segments,
has a variable length due to springs that couple these segments. The
conformations of all the chains of species s are specified by listing
both the set of spatial positions of the corresponding segments of
each of the chains and the set of tangent vectors along the con-
tours of the chains, i.e., the set {Rs

m(l) ∣ 0 ⩽ l ⩽ Ls, m = 1, . . . , ns}s
defined with respect to some origin O in V and the set
{us

m(l) ≡ Ṙs
m(l) ≡

∂R s
m(l)
∂l ∣ 0 ⩽ l ⩽ Ls, m = 1, . . . , ns}s. As bonds do

not have a fixed length, tangent vectors are not unit vectors at
every position along the contours of the chains. However, these
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tangent vectors happen to be unit vectors in an averaged sense, as
is shown in the supplementary material, Sec. I. A configuration or
micro-state of the total system, denoted by γ, is defined by the full
set {Rs

m(l), us
m(l) ∣ 0 ⩽ l ⩽ Ls}sm. Every state-variable G, i.e., every

function of these micro-states, we will denote by Ĝ ≡ G(γ). Two
examples of a state-variable that are relevant in the sequel are the
so-called microscopic α-segment density ρ̂α(x), defined at each point
x ∈ V by

ρ̂α(x) ≡∑
sm
∫

Ls

0
dl σαs (l) δ(x − Rs

m(l)), (2)

and the total microscopic segment density ρ̂(x) is defined by

ρ̂(x) ≡∑
α
ρ̂α(x) =∑

sm
∫

Ls

0
dl δ(x − Rs

m(l)). (3)

By integrating these densities over V , we obtain, respectively, the
total number of α-segments Nα and the overall number of segments
N in the system. This last number can be either written as ∑α Nα

or as ∑s nsNs. Thus, the fraction of α-segments is given by f α ≡ Nα

N .
Without loss of generality, we will choose our length-scale in such a
way that each segment has a unit volume and, therefore, that N ≡ V .
In that case, it follows that

1
V ∫V

d3x ρ̂(x) ≡ 1 (4)

and that f α can be written as

f α ≡ 1
V ∫V

d3x ρ̂α(x). (5)

In order to describe the semi-flexibility of the copolymer chains, it
is necessary to introduce, in addition, the so-called microscopic α-
segment orientation-tensor density Ŝα(x), which is given by

Ŝα(x) ≡∑
sm
∫

Ls

0
dl σαs (l) us

m(l) us
m(l) δ(x − Rs

m(l)), (6)

in case the tangent vectors are strictly unit vectors. As mentioned
earlier, the magnitude of these vectors are only 1 on average. Hence,
the definition according to Eq. (6) actually leads to an approximate
segment orientation tensor. The repulsive nature of the interaction
potentials at short distances between segments either in the same
chain or in different chains, also referred to as excluded volume, is
modeled approximately by assuming the system to be incompress-
ible, i.e., to assume the total microscopic segment density ρ̂(x) to be
equal to 1 at every x ∈ V . The derivation of a Landau free energy for
the general copolymer melt that is considered here, i.e., comprising
of copolymer chains built from M quasi-components,63 requires the
introduction of, in total, 2M order-parameters or more precise 2M
order-parameter fields to describe the various inhomogeneous and
anisotropic phases the system can be found in and calculate the free
energy of these states. These 2M order-parameter fields are course-
grained versions of two sets of microscopic order-parameter fields,
namely, a set of scalar fields,

ψ̂ α(x) ≡ ρ̂α(x) − f α (α = 1, . . . , M), (7)

and a set of tensor fields,

Q̂α(x) ≡ Ŝα(x) − 1
3
ρ̂α(x) I (α = 1, . . . , M). (8)

Clearly, incompressibility, i.e., ρ̂(x) = ∑α ρ̂
α(x) = 1, forces only

M − 1 of the scalar fields to be independent because this condition
implies that

∑
α
ψ̂ α(x) ≡ 0. (9)

Interactions between the segments within the same chain or between
segments in different chains in this copolymer melt can be for-
mulated using these microscopic order-parameter fields. For this,
assume that these interactions only occur between pairs of segments
and, hence, are pairwise additive. In that case, one can write the total
interaction energy Ŵ of the system as

Ŵ ≡ 1
2∑αβ
∑
sm
∑
s′m′
∫

Ls

0
dl∫

Ls′

0
dl′ σαs (l) σβs′(l

′)

× wαβ(Rs
m(l) − Rs′

m′(l
′) ; us

m(l) ⋅ us′

m′(l
′)), (10)

in which wαβ(x ; u ⋅ u′) is the interaction potential between a seg-
ment of type α and a segment of type β. This potential is assumed to
be short-ranged in space, i.e., wαβ(x ; u ⋅ u′) ≃ w̃αβ(u ⋅ u′) δ(x). In
addition, w̃αβ(u ⋅ u′) can be expanded in the following way:

w̃αβ(u ⋅ u′) = εαβ − ωαβ (u ⋅ u′)2 + ⋅ ⋅ ⋅ . (11)

In this expansion, terms of the form (u ⋅ u′)k with k odd are absent
due to the assumed symmetry of the segments (fore-aft symmetry).
In the expression for Ŵ (10), also terms with α = β, s = s′, m = m′,
and l = l′ are formally included. These so-called “self-energy” terms
should not be present, but we will not alter the notation to explic-
itly remove them from the expression. After the substitution of (11)
into (10), the resulting expression for Ŵ can be rewritten using
the microscopic segment densities ρ̂α(x) (2) and Ŝα(x) (6) in the
form of

Ŵ ≃ 1
2∑αβ

εαβ∫
V

d3x ρ̂α(x) ρ̂ β(x)

− 1
2∑αβ

ωαβ∫
V

d3x Ŝα(x) : Ŝ β(x). (12)

Upon the elimination of one of ρ̂’s, say, ρ̂M , from (12) using
∑α ρ̂

α(x) ≡ 1, and substitution of ρ̂α(x) = ψ̂ α(x) + f α and Ŝ α(x)
= Q̂α(x) + 1

3 ρ̂
α(x) I , one ends up with

Ŵ ≃ 1
2 ∑αβ

′Eαβ∫
V

d3x ψ̂ α(x)ψ̂ β(x)

− 1
2∑αβ

ωαβ∫
V

d3x Q̂ α(x) : Q̂ β(x)

− 1
3∑αβ

ωαβ∫
V

d3x (ψ̂ α(x) + f α)Tr Q̂ β(x) (13)
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with Eαβ ≡ ε′αβ − ε′αM − ε′βM + ε′MM and ε′αβ = εαβ − 1
3ωαβ. The

prime in the first term of Ŵ implies that both sums run from 1
to M − 1. In terms of the set of Flory χ-parameters47 between the
different segments, i.e.,

χαβ ≡ εαβ −
εαα + εββ

2
with χαα = 0,∀α, (14)

this Eαβ can be written as

Eαβ = χαβ − χαM − χβM ≡ −2 χ̃αβ, (15)

and, thus, we can write Ŵ as

Ŵ ≃ −∑
αβ

′ χ̃αβ∫
V

d3x ψ̂ α(x)ψ̂ β(x)

− 1
2∑αβ

ωαβ∫
V

d3x Q̂ α(x) : Q̂ β(x)

− 1
3∑αβ

ωαβ∫
V

d3x (ψ̂ α(x) + f α)Tr Q̂ β(x). (16)

In the binary case (M = 2), there is only one χ̃-parameter, χ̃11, which
is equal to χ12. The next step is the formulation of the partition func-
tion Z of the copolymer melt on the basis of the interaction energy
(16). This requires, in addition, a specification of the unnormalized
statistical weight e−Ĥ 0 (using units for which kBT = 1) of the copoly-
mer melt when the interactions are switched off. To describe chains
that locally may have any degree of flexibility varying between that
of a fully flexible chain all the way to that of a rigid-rod, we model
the unperturbed semi-flexible copolymer melt by a statistical ensem-
ble of Gaussian chains that are persistent locally, i.e., similar as in
the Bawendi–Freed model.52,53 The unperturbed Hamiltonian Ĥ0 is
therefore defined by

Ĥ0 ≡
3
4 ∑sm

{[us
m(0)]

2 + [us
m(Ls)]

2} + 3
4 ∑sm

∫
Ls

0
dl

× { 1
λs(l)

[us
m(l)]

2 + λs(l) [u̇ s
m(l)]

2}, (17)

in which the local persistence length of the chains of type s is
denoted by λs(l). The form of this λs(l) for a copolymer chain of
the multiblock type is given by

λs(l) ≡
Nb

s

∑
i=1
λ(i)s

⎡⎢⎢⎢⎢⎣
θ
⎛
⎝

l −
i−1

∑
j=1

L( j)
s
⎞
⎠
− θ
⎛
⎝

l −
i

∑
j=1

L( j)
s
⎞
⎠

⎤⎥⎥⎥⎥⎦
, (18)

where L(i)s and λ(i)s denote the block length and persistence length,
respectively, of the ith block in a chain of type s consisting of Nb

s
blocks. The function θ(⋅ ⋅ ⋅) in (18) between the square brackets is
the Heaviside step function. The presence of the first term in (17),
involving the orientation vectors of the endpoints of the chains,
and the specific choice of the coefficients in the second term are
to ensure both homogeneity of the chains and averaged kind of
Porod–Kratky behavior, i.e., ⟨[us

m(l)]
2⟩0 = 1, ∀l ∈ [0, Ls]. ⟨⋅ ⋅ ⋅⟩0

here denotes averaging over all allowable configurations of a single
free chain. For its definition, see Eq. (A14) in Appendix A.

In the supplementary material, Sec. I, it is explained that in the
Bawendi–Freed approach, the semi-flexible chain can be regarded
as a chain of harmonic oscillators in which the segments are con-
nected by springs. Due to the springs, the length of the tangent
vector is only on average a unit vector, so as mentioned earlier,
⟨[us

m(l)]
2 ⟩0 = 1,∀l ∈ [0, Ls]. This less strict condition makes it pos-

sible to derive the single-chain correlation functions. This derivation
is described in detail in the supplementary material, Sec. I. The
single-chain correlation functions are determined in Appendix A in
which also the final expression for the Landau free energy Eq. (20) is
derived.

The full Hamiltonian Ĥ for a particular configuration of the
copolymer melt is the sum of the unperturbed Hamiltonian Ĥ0 and
the total interaction energy Ŵ,

Ĥ = Ĥ0 + Ŵ. (19)

Each configuration γ contributes the term exp(−Ĥ), the so-called
Boltzmann weight, to the partition function Z. In Appendix A, Z,
written as a functional integral over all possible configurations, is
evaluated. The Landau free energy FL is derived from this parti-
tion function by determining the most dominant contribution to Z.
The configuration that gives this dominant contribution is the most
probable configuration, i.e., the equilibrium state of the melt. The
corresponding free energy (in units of kBT) is the Landau free energy
written in terms of the Fourier transform of the order-parameter
fields,

FL

V
= min

Ψ ,Υ
{(Γ(2)ab − χ̃ab)ΨaΨb + 2Γ(2)

ab
ΨaΥb + (Γ(2)

ab
− 1

2
ωab)Υ

aΥb

− 1
3
ωabΥ

a,ijδij(Ψb + f b) + Γ(3)abcΨ
aΨbΨc + 3Γ(3)abcΨ

aΨbΥc

+ 3Γ(3)
abc
ΨaΥbΥc + Γ(3)

abc
ΥaΥbΥc + Γ(4)abcdΨ

aΨbΨcΨd

+ 4Γ(4)
abcd

ΨaΨbΨcΥd + 6Γ(4)
abcd

ΨaΨbΥcΥd + 4Γ(4)
abcd

ΨaΥbΥcΥd

+ Γ(4)
abcd

ΥaΥbΥcΥd } (20)

with χ̃ab ≡ χ̃αβ δ(q1
+ q

2
), ωab ≡ ωαβ ∣2δii′δjj ′ − δijδi′j ′ ∣ δ(q1

+ q
2
),

Ψa ≡ ψα(−q
1
)

V , Υa ≡ Qα
ij(−q

1
)

V , and f b = f βδ(q
2
). In the expression

for this free energy, we use the composite labels a ≡ (q
1
≠ 0,α),

b ≡ (q
2
≠ 0,β), etc. and a ≡ (q

1
, ij,α), b ≡ (q

2
, i′j ′,β), etc. in which

the pairs ij and i′j′ are one of the six unique pairs xx, yy, zz, xy, xz,
and yz. The coefficient functions (Γ’s) are known as vertices and are
defined in Eqs. (II.14)–(II.16) of the supplementary material, Sec. II.
In each term in Eq. (20), we see that each composite label in a sub-
script matches with a composite label in a superscript in one of the
order-parameters. In such a match, the Einstein summation conven-
tion is used. The summation over the wave vectors q is limited over
a set H = {±q

1
,±q

2
, . . .} in which all wave vectors have the same

fixed magnitude q∗ . This set H defines the symmetry properties and
wavelength of a phase structure.60–62

In Appendix B, Eq. (20) is applied to a melt of monodis-
perse semi-flexible diblock copolymers in which there is only
one Flory–Huggins interaction parameter χAB = χ between A- and
B-blocks. A microphase structure is formed when χ is strong enough
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and above the spinodal χs. According to Appendix B, the earlier
mentioned magnitude q∗ follows from minimizing the spinodal
expression given by Eq. (B9) with respect to the magnitude q∗ of
the wave vectors in set H. When we know q∗ , we can calculate the
complete expression of the Landau free energy for a certain phase
structure with a set of wave vectors H, for example, the lamellar state
in which H = {±q}. This complete expression is minimized with
respect to the order-parameters. In the same way, the minimum free
energy is calculated for other phase structures H. The phase struc-
ture with the lowest minimum is the most probable state of the melt.
In this way, the phase diagram is calculated. When the persistence
length of λA and λB is getting close to zero, then the diblocks become
totally flexible. In that case, the expression of the Landau free energy
given by Eq. (20) can be reduced to the expression derived in Ref. 5.

IV. RESULTS AND DISCUSSION
In this section, we present results of calculations of several

phase diagrams of a system of diblock copolymers. The persistence
length is varied in both the A- and B-blocks. Polydispersity is not
taken into account. The phase diagrams are calculated using the
expression of the Landau free energy in terms of eigenvectors and
eigenvalues in Appendix B and the spatial orientation tensor accord-
ing to Appendix C. The following systems have been investigated:
(a) rod–coil system (λA/LA = 102 ≫ λB/LB = 10−4); (b) semi–coil
system (λA/LA = 10−1 ≫ λB/LB = 10−4); and (c) semi–semi system
(λA/LA = 10−1 = λB/LB).

Before we present and discuss the results, some remarks have
to be made. The Maier–Saupe interaction strength and persistence
length cannot be considered as independent according to Refs. 48
and 49. In a melt of rods, there is always alignment caused by the
excluded volume effect and a disordered phase cannot be formed.
A nonzero Maier–Saupe interaction is always present if the chains
are semi-flexible, and it becomes stronger when the chains become
stiffer. A disordered phase is still possible according to Refs. 48
and 49 if the persistence length is small enough and satisfies the con-
dition λ

d < 50 in which d is the diameter of the chain. In Sec. III,
we read that each monomer or segment has a unit volume so that
d is ∼1 and λ

d ≈ λ < 50. This condition can be met in, for example,

the (c) semi–semi system (λA/LA = 10−1 = λB/LB) because the calcu-
lated phase diagrams are applicable to any arbitrary chain length L.
We assume that the disordered state may also be formed in systems
(a) and (b).

In Fig. 1, three phase diagrams are calculated for system (a). The
contributions of the orientation ΥB and Maier–Saupe parameters
ωBB andωAB are ignored because the B-block can be regarded as fully
flexible. The remaining Maier–Saupe parameters ωAA are used in the
ratio r = ωAA

χ =
ω
χ , which has a fixed value in each phase diagram.

These fixed ratios are 0.0, 0.4, and 0.7 in Figs. 1(a)–1(c), respec-
tively. The fraction of A-blocks f A defined by Eq. (5) is denoted as
f in Fig. 1 and the rest of this section because we restrict to diblock
copolymers. In all three phase diagrams in Fig. 1, χL and f are varied
within the same interval. Increasing the ratio r has a strong effect on
the formation of phase structures. In Fig. 1(a), the bcc structure can
be found close to the spinodal in a very small part. The size increases
at a larger r. The same effect can be observed for the hexagonal and
smectic-A structure. The smectic-C structure is moved to a larger χ
when r is increased.

To understand the effect of r observed in Fig. 1, the compo-
nents Ψ1 and ΥA

1 of the primary eigenvector x1 = (Ψ1,ΥA
1 ,ΥB

1) are
investigated in each microphase structure at a certain point in the
phase diagram where microphase separation is predicted. If we com-
pare the density components Ψ1,smecC, Ψ1,smecA, Ψ1,hex, and Ψ1,bcc, we
always see the following ordering:

∣Ψ1,smecC∣ ≥ ∣Ψ1,smecA∣ ≥ ∣Ψ1,hex∣ ≥ ∣Ψ1,bcc∣. (21)

The order of the orientation components ∣ΥA
1 ∣ is

∣ΥA
1,smecC∣ ≥ ∣ΥA

1,smecA∣ ≥ ∣ΥA
1,hex∣ ≥ ∣ΥA

1,bcc∣. (22)

When r increases, it appears that both ∣Ψ1,bcc∣ and ∣ΥA
1,bcc∣ become

smaller. These components are also lowered by an increasing r
in the hexagonal, smectic-A, and smectic-C phase. It can be con-
cluded that the Maier–Saupe interactionωweakens the separation of
A- and B-blocks. We also see this weakening in the phase diagrams
in which structures with lower components ∣Ψ1∣ and ∣ΥA

1 ∣ become
more dominant. Because the interaction ω stimulates alignment, we
would expect that component ∣ΥA

1 ∣ is enhanced by this interaction.

FIG. 1. Phase diagrams of a rod–coil diblock in which λA/L = 102; λB/L = 10−4; and r = 0.0, 0.4, and 0.7. In (a), r = 0.0 is chosen; in (b), r = 0.4; and in (c), r = 0.7.
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However, it is weakened. This component is a measure of space
dependent alignment, but a strong enough ω causes nematic order-
ing, which is a global alignment. In a microphase structure, global
alignment may still be possible without interaction ω, but is almost
negligible because it is a contribution of a secondary eigenvector
x10 = (Υ

A
10,ΥB

10) ≈ (ΥA
10, 0), which contains a global orientation ΥA

10

component. The secondary parameter x10 = ±∣x10∣ ≈ ±∣Υ
A
10∣ is given

by Eq. (B12) in which n = 10,

x10 =
−C(3)11,10x2

1

2λ10
+O(x3

1). (23)

If interaction ω is increased, the positive eigenvalue λ10 becomes
smaller, which enhances the global orientation ∣ΥA

10∣. This alignment
becomes stronger when ω is getting close to the spinodal ωs(q∗ = 0)
because then λ10 ↓ 0. In the bcc structure, a global alignment is not
possible, so ∣ΥA

10,bcc∣ = 0.
In the red line in Figs. 1(b) and 1(c), at least one of the

interaction parameters χ or ω is equal to its spinodal value, so
χ = χs(q∗ ≠ 0) or ω = ωs(q∗ = 0). In Fig. 1(c), at the point in the
red line where f = 0.71, both χ = χs(q∗ ≠ 0) and ω = ωs(q∗ = 0). In
that case, both eigenvalues λ1 and λ10 in Eq. (B10) are zero so that
both a microphase structure can be formed and global alignment
is possible if the temperature is further lowered. In this situation,
Eq. (B14) cannot be used anymore because it is valid only if the
second order contribution in Eq. (B10) contains one negative eigen-
value λ1 such that the Landau free energy can be written in terms
of only one primary parameter x1. If the second order contribution
has two negative eigenvalues λ1 and λ10, then besides x1, there is a
second primary parameter x10 so that the free energy is expressed as

FL

V
= min
{x1 ,x10}

{λ1x2
1 + λ10x2

10 + C(3)111 x3
1 + C(3)11,10x2

1x10

+ C(3)10,10,10x3
10 + C̃(4)1111x4

1 + C̃(4)111,10x3
1x10 + C̃(4)11,10,10x2

1x2
10

+ C̃(4)10,10,10,10x4
10}, (24)

in which the fourth order coefficients depend on secondary eigen-
values λ2, λ3, and λ20,

C̃(4)1111 = C(4)1111 − ∑
n≠1,10

(C(3)11n)
2

4λn
, (25a)

C̃(4)111,10 = C(4)111,10 −
C(3)11,2C(3)1,10,2

2λ2
−

C(3)11,3C(3)1,10,3

2λ3
, (25b)

C̃(4)11,10,10 = C(4)11,10,10 −
(C(3)1,10,2)

2

4λ2
−
(C(3)1,10,3)

2

4λ3
−

C(3)11,20C(3)10,10,20

2λ20
, (25c)

and

C̃(4)10,10,10,10 = C(4)10,10,10,10 −
(C(3)10,10,20)

2

4λ20
. (25d)

By means of numerical calculations, it has been verified that C(4)1111 in
Eqs. (B14) and (25a) is still positive if χ is just above χs, but becomes

negative if χ becomes too large so that we need higher order terms
to find the minimum. This makes the primary parameter x1 even
larger and the mean field approximation even less reliable. The same
problem occurs because of C(4)10,10,10,10 in Eq. (25d), which appears to
be negative so that C̃(4)10,10,10,10x4

10 is also negative in Eq. (24). Hence,
to minimize the free energy, Eq. (24) can only be applied below
the red line in Figs. 1(b) and 1(c). Here, a smectic-C state is pre-
dicted. It is not plausible that a different structure is formed above
the red line. A layered microphase state is expected in which the
orientation Q

α
(x) has not only a space dependent contribution but

also a stronger global alignment Q 0

α
because eigenvalue λ10 has also

become negative. As a result, the components of the space average
⟨Q

α
(x)⟩,

⟨Q
α
(x)⟩ = 1

V ∫V
d3x Q

α
(x) = Q 0

α
, (26)

are not zero, in general. A global alignment x10 in combination
with spatial alignment may also occur if ω is below the spinodal
ωs(q∗ = 0). This global contribution x10 is given by Eq. (23) and
belongs to the secondary eigenvector λ10 > 0, which is negligible if
λ10 ≫ 0. However, when λ10 reaches zero closer and closer, it cannot
be neglected. At the same time, the fourth order term in Eq. (B14)
is getting close to zero or may even become negative such that the
weak segregation approximation according to Eq. (B14) cannot be
applied anymore.

In Fig. 1(c) at f = 0.65, we see a discontinuity in the line that
marks the transition from the smectic-A to the smectic-C phase or
vice versa. Here, the angle θ is 13○ if f is just below 0.65. Just above
0.65, it has jumped to 89.9○. At the discontinuity, we are near the
red line at which χ = χs and/or ω = ωs. As explained earlier, when
we are getting closer to this red line, the positive eigenvalue λ10
is getting closer to zero so that the global alignment according to
Eq. (23) is increasing. This alignment lowers the coefficient C̃(4)1111 in
Eq. (B14) such that the minimum is reached at θ = 89.9○ instead of
θ = 13○. Between the discontinuity at f = 0.65 and 0.67, the transi-
tion line is black, but at f > 067, it is extrapolated by a red line to
indicate that the mean field approximation according to Eq. (B14) is
again not valid because λ10 reaches zero such that C̃(4)1111 < 0. How-
ever, if f is just below 0.67, the coefficient C̃(4)1111 is positive, but very
small such that a large primary parameter x1 is found at the mini-
mum in Eq. (B14). The larger the x1, the less reliable the mean field
approximation is.

In Ref. 8 the dependence of the spinodal χs and the corre-
sponding wave mode q∗ on the Maier–Saupe interaction has been
investigated for semi-flexible monodisperse diblocks. It appeared
that χs is lowered and q∗ is increased by the Maier–Saupe interaction.
The same effect is observed by calculating χsL and q∗L as a func-
tion of r = ω

χ using Eq. (B9) in this paper for monodisperse rod–coil
diblocks. The relation between χsL and r and also between q∗L and
r appeared to be approximately linear. These two dependencies are
hardly observed if the persistence length of the A- and B-block is
identical, but these become stronger when the A-block gets stiffer
and the B-block gets more flexible. Larger A- and B-rich domains are
formed at a lower r because q∗ is lowered. This reduces the boundary
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FIG. 2. The orientation angle θ in the smectic-C phase as a function of χL of a
rod–coil diblock at f = 0.68.

area between A- and B-rich domains with respect to the melt vol-
ume such that a stronger separation is possible, which is a plausible
explanation why ∣Ψ1∣ and ∣ΥA

1 ∣ increase when lowering r. A stronger
separation increases the enthalpic term χ̃abΨaΨb in Eq. (20). How-
ever, the mixing entropy decreases. When r = 0, the domain size ≈ 1

q∗
reaches a maximum value to form a stable microphase structure.
This structure would be instable if we reduce this size because the
increased mixing entropy is not enough to compensate the loss of the
enthalpic part χ̃abΨaΨb. However, when r > 0, the enthalpic part gets
an additional alignment contribution 1

2ωabΥ
aΥb , which reduces the

loss of enthalpy such that it is now in equilibrium with the increased
mixing entropy. Hence, a stable microphase structure with smaller
domains can be formed by means of the additional alignment con-
tribution. This explains why q∗L decreases at a smaller r. At the same
time, χsL increases for which the same explanation is applicable.

From the analysis and discussion of the phase behavior in Fig. 1,
we earlier conclude that Maier–Saupe interaction reduces separation

of A- and B-blocks. The same conclusion follows from the spin-
odal calculations using Eq. (B9) because q∗L is increasing when r
increases. However, the opposite effect also takes place because the
spinodal χs is lowered when the parameter r is increasing. Hence, in
that case, microphase separation is stimulated by the Maier–Saupe
interaction. The stimulation takes place when the melt is close to
the phase transition, but it is still in the disordered phase. When
the spinodal χs is lowered, the disordered phase is converted into
a microphase structure. However, the counteracting effect occurs
when a microphase structure is already present before increasing the
parameter r.

In Fig. 1, a smectic-A phase is found just above the critical point
at f = 0.68 in which the orientation θ = 0○. At a certain χ > χs, this
phase is converted into a smectic-C state with a nonzero orientation
θ. To investigate this orientation, we plot θ against χL in a graph
at the critical point f = 0.68 for both r = 0.0 and 0.4 in Fig. 2. At
r = 0.7, we do not investigate θ because in Fig. 1(c) at f > 0.67, the
transition line between the smectic-A and smectic-C phase has been
extrapolated by a red line to indicate that the mean field approxi-
mation according to Eq. (B14) in which C̃(4)1111 < 0 cannot be applied
as explained earlier. In both graphs at a certain χL, the orientation
θ makes a sudden jump in which intermediate values of θ are not
possible. After the jump, θ increases continuously and is converg-
ing to a maximum θ at which the line is ended. After the end point,
the coefficient C̃(4)1111 < 0 is below zero so that Eq. (B14) is not valid
any more. We earlier conclude that the Maier–Saupe interaction
reduces the separation of A- and B-blocks. This reduction also fol-
lows from Fig. 2 because when r is increased, the jump is shifted
to a larger χL. Additionally, a smectic-C phase is formed with a
smaller θ.

In Fig. 3, three phase diagrams are calculated for system (b)
as mentioned in the beginning of this section. In the calculations
of previous system (a), we explained that ΥB, ωBB, and ωAB can be
ignored. For the same reason, these parameters are excluded in sys-
tem (b). In Figs. 3(a)–3(c), the ratio r = ωAA

χ =
ω
χ is taken equal to

0, 3, and 5, respectively. In all three phase diagrams, χL and f are
varied within the same interval. In Fig. 3(c), the points at which
ω = ωs(q∗ = 0) or χ = χs(q∗ ≠ 0) are also indicated by a red line.

FIG. 3. Phase diagrams of a semi–coil diblock in which λA/L = 10−1; λB/L = 10−4; and r = 0, 3, and 5. In (a), r = 0 is chosen; in (b), r = 3; and in (c), r = 5.
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In Fig. 3, the effect of r on the bcc, hexagonal, and smectic-A phase
is the same as in Fig. 1, but the smectic-C phase behaves in an oppo-
site way. It moves to a greater χ when decreasing r, and at r = 0,
it disappears if f > 0.706. The orientation θ varies between 8○ and
18○ in previous system (a), but in system (b), it has a fixed value of
54.7○. When θ = 54.7○, it appears that the alignment of A-blocks in
the x-direction perpendicular to the layers is completely arbitrary.
This follows from the director η, which is applied in the orientation
tensor Qα(x) given by Eq. (C1). The director part ηα(x)ηα(x) − 1

3 I

of this tensor is η2
x − 1

3 = cos2 θ − 1
3 in component Qα

xx. If θ = 54.7○,
then η2

x − 1
3 = cos2 θ − 1

3 = 0 and, consequently, Qα
xx = 0. The compo-

nents Qα
xx, Qα

yy, and Qα
zz add up to zero, Qα

xx +Qα
yy +Qα

zz = 0, because
ηα is a unit vector. Hence, if Qα

xx = 0, then Qα
yy = −Qα

zz , which means
that the A-blocks tend to align parallel to the layers. In the middle
of an A-rich layer, the A-blocks are aligned at maximum strength
in a certain direction for which we choose the y-direction. While we
travel in the x-direction to a B-rich layer, the alignment is rotating. In
the middle of a B-rich layer, it has rotated to the z-direction at maxi-
mum strength again. Therefore, in the smectic-C phase, a spiral-like
structure would be formed. However, when we numerically calculate
the primary eigenvector x1 = (Ψ1,ΥA

1 ,ΥB
1), it appears that this vec-

tor is always equal to x1 = (Ψ1, 0, 0). This result is logical because a
preferred direction of rotation does not exist, so each spiral is a pos-
sible state. This averages out the alignment in the y- and z-direction
such that only one state is left, which is a state without alignment.
Only the contributions of the secondary eigenvectors may result in
a nonzero but negligible alignment. Hence, the smectic-C phase is
actually a lamellar phase without alignment when θ = 54.7○. Later
on, in this paper, it appears that in system (c), this lamellar phase
is also formed and can be explained in the same logical way. In
systems (a)–(c), irrespective of the presence of Maier–Saupe interac-
tion, alignment will always occur to form a stable layered structure
if θ ≠ 54.7○. This is necessary to separate A- and B-blocks suffi-
ciently to increase separation enthalpy. However, alignment reduces
entropy. Apparently, this reduction is compensated by the additional
enthalpy.

To understand the effect of r observed in Fig. 3, the components
∣Ψ1∣ and ∣ΥA

1 ∣ in the primary eigenvector x1 = (Ψ1,ΥA
1 ,ΥB

1) are again
investigated in different microphase structures. It appears that the
density parameter ∣Ψ1∣ is also ordered according to Eq. (21),

∣Ψ1,smecC∣ ≥ ∣Ψ1,smecA∣ ≥ ∣Ψ1,hex∣ ≥ ∣Ψ1,bcc∣. (27)

The orientation strength ∣ΥA
1 ∣ is ordered by

∣ΥA
1,smecA∣ ≥ ∣ΥA

1,hex∣ ≥ ∣ΥA
1,bcc∣ ≥ ∣ΥA

1,smecC∣ = 0, (28)

which is different if we look at Eq. (22). In Eq. (22), the smectic-
C phase has the strongest orientation, but in Eq. (28), ∣ΥA

1,smecC∣ = 0
because θ = 54.7○.

Therefore, it has appeared that the influence of r on the den-
sity parameter ∣Ψ1,smecC∣ is negligible. ∣Ψ1,smecA∣, ∣Ψ1,hex∣, and ∣Ψ1,bcc∣
are lowered when increasing r. The parameter r hardly changes the
alignment ∣ΥA

1 ∣ in each observed microphase. When we look at Fig. 3
and Eq. (27), we conclude that in the neighborhood of the criti-
cal point, the Maier–Saupe interaction ω weakens the separation of
A- and B-blocks because structures with lower components ∣Ψ1∣ and
∣ΥA

1 ∣ become more dominant. Above the critical point at a larger

χ, a smectic-C structure is predicted, which has the strongest sep-
aration ∣Ψ1∣; see also Eq. (27). The parameter r hardly changes this
separation because ∣ΥA

1,smecC∣ = 0 in Eq. (28). It can only be modified
indirectly by the secondary parameter ∣x10∣ = ∣ΥA

10∣, see also Eq. (23),
which is a very weak global alignment and therefore cannot influ-
ence ∣Ψ1∣ very much. At a larger r, this secondary parameter becomes
stronger. In structures other than the smectic-C phase, ∣Ψ1∣ is weak-
ened when increasing r. Apparently, above the critical point, this
reduces the separation enthalpy in these other structures such that
melt prefers the smectic-C phase, which becomes possible at a lower
χ. Hence, in the neighborhood of the critical point, the Maier–Saupe
interaction reduces the separation of A- and B-blocks, but at a larger
χ, the contrary effect is observed because of the enhanced preference
of a smectic-C phase with a stronger ∣Ψ1∣.

In Fig. 4, six phase diagrams are calculated for system (c). In
systems (a) and (b), the alignment ΥB of the fully flexible B-block
is neglected, but in system (c), both alignments ΥA and ΥB may not
be ignored because both blocks can be considered as semi-flexible.
Consequently, the Maier–Saupe parameters ωAB and ωBB have to
be included in addition to ωAA. Hence, there are three ratios rAA,
rAB, and rBB given by rαβ = ωαβ

χ . In Fig. 4, each ratio is restricted to
values 0 or 5. Additionally, rAA ≤ rBB so that six combinations of
ratios are possible. Combinations for which rAA > rBB can be dis-
regarded because the A- and B-blocks are indistinguishable in a
mathematical sense. For each combination, a phase diagram is calcu-
lated. In Figs. 4(a)–4(c), rAB = 0 is constant and the other parameters
rAA and rBB are varied. In Figs. 4(a) and 4(c), these parameters are
equal and given by rAA = rBB = 0 and rAA = rBB = 5, respectively. The
unequal combination rAA = 0 and rBB = 5 is applied in Fig. 4(b). In
Figs. 4(d)–4(f), rAB = 5 and rAA and rBB are varied in the same way
as in Figs. 4(a)–4(c).

Comparing Figs. 4(a) and 4(b), we see that the effect of rBB
on the formation of microphase structures close to critical point is
similar to the effect of r observed in Fig. 3. The influence of rBB on
the smectic-C phase is also similar. When rAA becomes 5, the same
similarities can be observed in Fig. 4(c). The phase diagram is asym-
metric in Fig. 4(b) because on the right side, the B-block is shorter so
that rBB has less influence. The effect of rAA and rBB on the phase for-
mation that occurs in Figs. 4(a)–4(c) also occurs in Figs. 4(d)–4(f).
However, parameter rAB changes the phases in exactly the opposite
way. Further away from f = 0.5, this opposite influence is weaker
due to the reduced contact between the A- and B-monomer in the
melt. In Fig. 4(d), parameter rAB is dominating the most because
it is not counteracted by rAA and rBB. Due to this dominance,
only a smectic-A state is possible. In Fig. 4(e), at the left side, the
smectic-C, hexagonal, and bcc structures come back because here
rBB overcomes the force of rAB. These structures reappear at both
sides in Fig. 4(f) because rAA is added, which suppresses rAB at the
right side.

The counteracting of rAB on rAA and rBB also appears from
Figs. 4(a) and 4(f). In both phase diagrams at f = 0.5, the smectic-
C phase is predicted at χL = 10.69, which is not coincidental. In
Fig. 4(f), the three parameters are equal to 5, and exactly at f = 0.5,
the influence of rAB is as strong as the influence of both parameters
rAA and rBB. They cancel each other out exactly such that they can-
not affect the phase structure any more. Hence, at f = 0.5, it does not
matter if the three parameters are equal to 5 or any other value, such
as 0 in Fig. 4(a).
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FIG. 4. Phase diagrams of a semi–semi-diblock in which λA/L = λB/L = 10−1 and rAA, rAB, and rBB = 0 or 5. In (a), rAA = rAB = rBB = 0 is chosen; in (b), rAA = rAB = 0
and rBB = 5; in (c), rAA = rBB = 5 and rAB = 0; in (d), rAA = rBB = 0 and rAB = 5; in (e), rAA = 0 and rAB = rBB = 5; and in (f), rAA = rAB = rBB = 5.

In Fig. 4, the nematic phase has not appeared. However, by
means of numerical calculations, it has been verified that a nematic
phase is possible for system (c). When the Maier–Saupe parameters
ωAA, ωAB, and ωBB are taken equal, a spinodal ωs can be derived from
the first matrix in Eq. (B5). It appears that ωs has a minimum at
wave number q∗ = 0 if χ < χs. This spinodal value ωs is about ten
times larger than χs in the neighborhood of f = 0.5, so here a strong
ω = ωAA = ωAB = ωBB is necessary to induce nematic ordering. This
explains why there is no nematic phase in Fig. 4. For combinations
other than ωAA = ωAB = ωBB, it is very plausible that a nematic phase
can also be formed. Additionally, when we look at Figs. 1 and 3, we
see that a nematic phase is not missing for systems (a) and (b). It
appears in the area in which χ < χs and ω = ωAA > ωs.

Earlier in this paper, it is explained why in Fig. 3 in the neigh-
borhood of the critical point the smectic-A, hexagonal, and bcc
phases become more dominant when increasing r, but at the same
time, the smectic-C phase behaves in an opposite way. In Fig. 4,
the same behavior is observed when increasing rAA or rBB. Here,
the same explanation can be applied. When increasing the other
parameter rAB, the opposite behavior occurs, which is quite logi-
cal. Furthermore, in the smectic-C phase in Fig. 4, it appears that
θ is again 54.7○. Hence, as mentioned earlier, in that case, the pri-
mary eigenvector is always x1 = (Ψ1,ΥA

1 ,ΥB
1) = (Ψ1, 0, 0) so that this

phase is actually a lamellar phase.
In systems (a) and (b), the B-block is fully flexible such that

the alignment of the B-blocks can be ignored. When the A-block
is also made fully flexible, the system described in Leibler’s paper5

can be reproduced. It appears that the contributions in Eq. (20)

containing alignment tensors reach zero when the stiffness of both
blocks is made very small so that it is allowed to exclude these con-
tributions. In this way, the phase diagram is calculated, which is in
agreement with Leibler’s result in Ref. 5.

At f = 0.5 in the phase diagram according to Ref. 5 and in Fig. 4,
the A- and B-blocks are indistinguishable in a mathematical sense.
Due to this indistinguishability, it is not possible to form a bcc or
hexagonal phase. Only a layered structure can be formed whose den-
sity and alignment amplitude x1 of the primary eigenvector, see also
Eq. (B10), reach zero as close as possible when χ is lowered to the
spinodal χs as close as possible. Here, we reach the critical point at
which f = fc = 0.5. Such a critical point is also possible in systems
(a) and (b) in which the blocks are distinguishable. It is found at
f = 0.68 in Figs. 1 and 3. At the left of f = fc just above χs, the rod-
like or semi-flexible A-block prefers to form spheres in a bcc phase
or cylinders in a hexagonal phase. Outside these separated domains
with higher density of A-monomers, there is an environment with
a higher density of B-monomers. When f increases, the spheres or
cylinders are growing in size and getting too large at f = fc such
that at the right of fc, a reverse phase is formed by B-rich spheres
or cylinders in an A-rich environment. At the limit f = fc, both the
phase with an A-rich environment and its reverse state with a B-rich
environment are possible, which makes the separation of A- and B-
blocks impossible for the bcc and hexagonal phase. Again, only a
layered structure can be formed because for this structure, a reverse
state does not exist. In Figs. 1 and 3, at the critical point, the fully
flexible B-block is shorter than the A-block. Due to the flexibility of
the B-block, it is apparently easier to form B-rich environment so
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that the melt still prefers this state between f = 0.5 and f = fc = 0.68.
In the reverse state, less chain configurations could be possible in the
whole melt.

In Figs. 1, 3, and 4 at or in the neighborhood of f = fc, the
smectic-C phase is always found at a larger χ after the smectic-A
phase. Apparently, a stronger separation of the A- and B-blocks is
possible in the smectic-C phase. This is made clear in Fig. 5 in which
A-rich layers are drawn in the smectic-A and smectic-C phase in
the left and right part, respectively. In the left part, the A-block is
positioned such that the concentration of A-blocks has a maximum
value in the middle, but at the same time, this maximum must be as
low as possible. This positioning follows from extensive analysis and
visualizations of the orientation order-parameter of the A-block in
the smectic-A phase. It appears that the A-blocks align stronger in
the same directions as the wave vector q when the concentration of
A-blocks is minimal. At the maximum concentration, they tend to
align more in a direction parallel to the layers as we see in the left part
of Fig. 5. In the right part, the orientation θ has become nonzero so
that the B-block is moved to the B-rich layer. This could increase the
separation, which could explain why a smectic-C phase is not favor-
able in the neighborhood of the critical point. Second, a smectic-A
phase is entropically more favorable due to the rotational symme-
try with respect to the wave vector q. This symmetrical property is
missing in the smectic-C phase.

When the A- and B-blocks are separated, a not very sharp
boundary surface is formed between A-rich and B-rich regions. The
total size of this surface depends on the kind of microphase struc-
ture. For the total area of the layered structure Alayered, hexagonal
phase Ahex, and bcc phase Abcc, the following relation can easily be
derived:

Alayered : Ahex : Abcc = 1 : 2 : 3. (29)

The larger the size of the boundary surface, the weaker the
separation, which could explain the order of phases in the neighbor-
hood of the critical point in Figs. 1, 3, and 4 when χ is increased.
Near χs, a state with a large boundary is formed because of mix-
ing entropy. Further away from χs, the enthalpic contributions of
the Flory–Huggins and/or Maier–Saupe interaction increase, which
make states with a larger separation more preferable.

FIG. 5. Orientation of an A-block in the middle of an A-rich layer in the smectic-A
and smectic-C phase.

V. CONCLUDING REMARKS

In Sec. III and Appendix A, we develop a general theory of
a polydisperse semi-flexible multi-block copolymer melt in which
the final form of the Landau free energy has become a power series
expansion of density and orientation order-parameters. This general
theory is an extension of the theory in Ref. 1 in which the chains are
totally flexible. In that case, a possible orientation of chains can be
neglected so that the Maier–Saupe interaction does not contribute.
Only the Flory–Huggins interaction and density order-parameters
are included when we derive the final form of the Landau free energy.
However, in our model, an important extension has been realized
by making each block semi-flexible by assigning a persistent length
using the Bawendi–Freed approach. Due to the stiffness, the ori-
entation of chains may become possible so that the Maier–Saupe
interaction and orientation order-parameters have to be included in
the derivation of the Landau free energy besides the Flory–Huggins
interaction and density order-parameters.

In Appendix B, we show that the final form of the general Lan-
dau free energy can be reduced to a much simpler form if the melt
only contains diblock copolymers, which are semi-flexible. First,
the second order terms are written in the matrix form. After that,
the eigenvectors of that matrix are determined, which are used to
express the free energy as a function of eigenvectors instead of den-
sity and orientation order-parameters. In the ordered state close to
the critical point, one eigenvector is dominating, which we call the
primary eigenvector. It appears that the Landau free energy can be
simplified to power series expansion of only one variable, which is
the magnitude of that primary eigenvector. Numerical methods are
not necessary to find the minimum. The simplified expression can be
applied to both monodisperse and polydisperse diblock copolymers,
but for now, we do not consider polydispersity.

Due to the bending stiffness, the orientation order-parameter
must also be included in addition to the density order-parameter.
This alignment has a space dependent and independent part. In the
space dependent part, the director vector has a fixed direction for
a layered structure, but for the hexagonal or bcc phase, it is more
complicated. In Appendix C, an orientation tensor has been made
for these more complex structures, which is a composition of mul-
tiple orientation tensors of smectic-A phases with different director
vectors. These compositions allow us to also calculate the Landau
free energy for the hexagonal or bcc phase using the simplified form
in Appendix B.

The theory in Appendixes B and C is used to calculate the phase
diagrams for the following monodisperse systems: (a) rod–coil sys-
tem (λA/LA = 102 ≫ λB/LB = 10−4); (b) semi–coil system (λA/LA
= 10−1 ≫ λB/LB = 10−4); and (c) semi–semi system (λA/LA
= 10−1 = λB/LB). In each system, phase diagrams are calculated
in which the chain composition and Flory–Huggins interac-
tion strength are varied. The strengths of the Maier–Saupe and
Flory–Huggins interaction can be chosen to be proportional to
each other using a constant ratio between them. In each phase
diagram, a different fixed ratio is applied. The nematic, smectic-A,
smectic-C, hexagonal, and bcc structures appear to be possible in
systems (a)–(c). In system (a), the Maier–Saupe interaction reduces
the separation between the A- and B-blocks everywhere above the
spinodal χs, but in systems (b) and (c), this is only observed in the
neighborhood of the critical point. Further away from the critical
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point, the smectic-A phase is converted into a smectic-C phase
in systems (a)–(c). In this phase, in system (a), the orientation
angle θ varies between 8○ and 18○, but in systems (b) and (c),
it is fixed at 54.7○. When θ = 54.7,○ it turns out that there is an
enlarged microphase separation compared to the bcc, hexagonal,
and smectic-A phase. On the other hand, there is hardly alignment
such that this smectic-C phase is actually a lamellar structure. In
systems (b) and (c), at a stronger Maier–Saupe interaction, this
lamellar structure moves closer to χs so that here the separation
between the A- and B-blocks is not reduced, but stimulated.
In system (a), we see exactly the opposite effect. In systems (a)
and (b), the alignment of fully flexible B-blocks is neglected, but
in system (c), this alignment cannot be ignored. Consequently,
instead of only one Maier–Saupe parameter ωAA, three parameters
ωAA, ωAB, and ωBB are taken into account. Earlier, we explained
the effect of the Maier–Saupe interaction on the formation of
microphase structures in system (b). It appears that in system
(c), ωAA and ωBB have the same effect, but ωAB does exactly the
opposite.

This paper contains three new aspects, which have not yet
been applied or investigated in other papers before. First, the
Bawendi–Freed approach is applied to model semi-flexibility. This
approach enables us to derive explicit expressions of the single-chain
correlation functions such that the explicit expression of the Lan-
dau free energy can also be obtained. Second, the complete phase
diagram has been calculated for a system of diblocks in which the
block lengths are fixed, but the stiffness of each block can be cho-
sen arbitrary. Other papers are restricted to spinodal calculations,
or the complete phase diagram has been calculated for more simpli-
fied systems. Third, a space dependent orientation order-parameter
is described in microphase structures, such as the hexagonal phase.
In other papers, this was not necessary because these were restricted
to spinodal calculations or the space dependent orientation order-
parameter was not included in the calculation of the complete phase
diagram.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the deriva-
tion of the Landau free energy (Secs. II and III) and single-chain
correlation functions (Secs. I and IV).
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APPENDIX A: DERIVATION OF THE LANDAU
FREE ENERGY

In this appendix, the Landau free energy given by Eq. (20) is
derived. The starting point of the derivation is the partition function
Z, i.e., the sum of the Boltzmann weights over all allowed states of
the system. The set of all allowed states furnishes the so-called state-
space or configuration-space Γ of the system, which in this case is
given by

Γ ≡ {{Rs
m, us

m}sm ∣ us
m ≡ Ṙs

m, ∀ m, s & ρ̂(x) = 1, ∀x ∈ V}.
(A1)

As we are ultimately only interested in differences in free energy
between possible inhomogeneous and/or anisotropic phases of the
system, all combinatorial terms will be left out of this partition func-
tion since they only lead to constant terms in the free energy. With
this in mind, Z can be written as

Z ≡∏
sm
∫ d3Ũs

m ∫ d3Us
mG({U s

m, Ls} ∣ {Ũ s
m, 0}), (A2)

where the orientational Green’s function G({U s
m, Ls} ∣ {Ũ s

m, 0}) is
defined by

G ≡∏
sm
∫ DRs

m ∫
(Ls ,U s

m)

(0,Ũ s
m)

Dus
m δ[Rs

m − ∫ dl us
m(l)]

× δ[1 − ρ̂] e−(Ĥ 0+Ŵ ), (A3)

which gives the probability that each chain has a certain initial and
final orientation. In this coarse-grained description, incompressibil-
ity, which is due to interactions at the molecular level, has to be
explicitly accounted for via the delta function δ[1 − ρ̂ ]. This par-
tition function will be transformed in four steps into a form that is
more amendable for further analysis. The first step involves a formal
shift of the state-variable dependence of e−Ŵ in (A3). This is done
by introducing the following two functional decompositions of the
identity into G:

∏
μ

′

∫ Dψμ δ[ψμ − ψ̂ μ] = 1 (A4)

and

∏
ν
∫ DQ ν δ[Q ν − Q̂ ν] = I , (A5)

which yield
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G =∏
μ

′

∫ Dψμ∏
ν
∫ DQ ν e−W∏

sm
∫ DRs

m ∫
(Ls ,U s

m)

(0,Ũ s
m)

× Dus
m e−Ĥ 0 δ[Rs

m − ∫ dl us
m(l)]δ[1 − ρ̂ ]∏

λ

′

×∏
η
δ[ψλ − ψ̂ λ] δ[Q η − Q̂ η]. (A6)

The elements Qν
ij and Qν

ji of the tensor Q ν in which i ≠ j are identi-
cal, but in Eq. (A6), they are treated as independent parameters. At a
certain point, this would obstruct the further derivation of the Lan-
dau free energy. This happens when we solve Eqs. (II.2) and (II.3)
in Sec. II of the supplementary material iteratively because then the
matrix Aa b would not be invertible. In this matrix, the rows and
columns in which ij = xy, yz, and xz would be identical to the rows
and columns with reversed indices ij = yx, zy, and zx. Such a matrix
is not invertible. Therefore, in the functional integral in Eq. (A6),
only the elements Qν

ij with unique pairs xx, yy, zz, xy, yz, and xz may
occur if we want to derive the desired expression of the Landau free

energy. In the rest of the derivation, we will ignore the other pairs yx,
zy, and zx. In the interaction energy W given by Eq. (13), the terms
containing elements Qν

ij with i ≠ j are counted twice.64

The second step involves the substitution of the following func-
tional spectral representations for the last 2M “delta-functions” in the
above expression, i.e.,

δ[1 − ρ̂ ] ≡ ∫ Dh0 exp(i∫
V

d3x h0(x) {1 − ρ̂(x)}), (A7)

δ[ψλ − ψ̂ λ] ≡ ∫ Dhλ exp(i∫
V

d3x hλ(x) {ψλ(x) − ψ̂ λ(x)})

(λ = 1, . . . , M − 1), (A8)

δ[Q η − Q̂ η] ≡ ∫ DK η exp(i∫
V

d3x K η(x) : {Q η(x) − Q̂ η(x)})

(η = 1, . . . , M),
(A9)

resulting in

G =∏
μ

′

∫ Dψμ∏
ν
∫ DQ ν e−W ∫ Dh0∏

λ

′

∫ Dhλ∏
η
∫ DK η

× exp
⎛
⎝

i∫
V

d3x
⎧⎪⎪⎨⎪⎪⎩

h0(x) +∑
α

′ hα(x) ψα(x) +∑
β

K β(x) : Q β(x)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

×∏
sm
∫ DRs

m ∫
(Ls ,U s

m)

(0,Ũ s
m)

Dus
m e−Ĥ 0 δ[Rs

m − ∫ dl us
m(l)]

× exp
⎛
⎝
− i∫

V
d3x
⎧⎪⎪⎨⎪⎪⎩

h0(x) ρ̂(x) +∑
α

′ hα(x) ψ̂ α(x) +∑
β

K β(x) : Q̂ β(x)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

. (A10)

In the third step, the auxiliary integration fields h0(x),
h1(x), . . . , hM−1(x) are transformed to new fields J1(x), . . . , JM(x),
defined in the following way:

Jα(x) ≡ hα(x) + h0(x) (α = 1, . . . , M − 1), JM(x) ≡ h0(x).
(A11)

Using this isometric transformation and (3) and (7)–(9), it is easily
verified that the following identities hold:

h0(x)ρ̂(x) +∑
α

′ hα(x) ψ̂ α(x)

= JM(x) +∑
α

′ Jα(x) ρ̂α(x) −∑
α

f α Jα(x),
(A12a)

h0(x) +∑
α

′ hα(x) ψα(x) = JM(x) +∑
α

Jα(x) ψα(x), (A12b)

and so by combining (A10) with (A2), Z can be written as

Z =∏
μ

′

∫ Dψμ∏
ν
∫ DQ ν e−W∏

λ
∫ DJλ∏

η
∫ DK η

× exp
⎛
⎝

i∫
V

d3x
⎧⎪⎪⎨⎪⎪⎩
∑
α

Jα(x) [ψα(x) + f α] +∑
β

K β(x) :

× [ Q β(x) + 1
3
ρβ(x) I ]})⟨ exp(− i∫

V
d3x {∑

α
Jα(x) ρ̂α(x)

+∑
β

K β(x) : Q̂ β(x)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
⟩

0
. (A13)

In this expression, ⟨⋅ ⋅ ⋅⟩0 denotes an average with respect to the
unperturbed ensemble of chain conformations defined by Ĥ0, i.e.,

⟨ Â ⟩0 ≡∏
sm
∫ d3Ũs

m ∫ d3Us
m ∫ DRs

m ∫
(Ls ,U s

m)

(0,Ũ s
m)

Dus
m e−Ĥ 0

× δ[Rs
m − ∫ dl us

m(l)] Â, (A14)
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where Ĥ0 is the unperturbed Hamiltonian according to the
Bawendi–Freed approach, which has earlier been defined in Sec. III
in Eq. (17). In Eq. (A14), the functional integrations over {Rs

m} and
{us

m} are defined in such a way that ⟨1⟩0 ≡ 1. The last step in the
transformation of Z boils down to rewriting the integrand of (A13)
using the fields J̃ 1(x), . . . , J̃ M(x) in the spirit of Ref. 65,

J̃ α(x) ≡ Jα(x) − 1
V ∫V

d3y Jα(y) (α = 1, . . . , M). (A15)

It is easy to see that the use of these new fields in conjunction with
(5) will eliminate the terms in (A13) involving f α. Thus, we finally
end up with

Z =∏
μ

′

∫ Dψμ∏
ν
∫ DQ ν e−W∏

λ
∫ DJλ∏

η
∫ DK η

× exp
⎛
⎝

i∫
V

d3x
⎧⎪⎪⎨⎪⎪⎩
∑
α

J̃ α(x) ψα(x) +∑
β

K β(x) : Q β(x)
⎫⎪⎪⎬⎪⎪⎭
+Λ
⎞
⎠

,

(A16)

with Λ defined by

Λ ≡ ln ⟨exp
⎛
⎝
−i∫

V
d3x
⎧⎪⎪⎨⎪⎪⎩
∑
α

J̃ α(x) ρ̂α(x) +∑
β

K β(x) : Q̂ β(x)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
⟩0.

(A17)

By Fourier-transforming all the integrals involving the ψ, Q , J, and
K fields and making use of the fact that according to the definition
of χ̃αβ [see Eq. (15)] χ̃MM ≡ 0, the partition function Z (A16) can be
written as

Z ≡∏
c

′∏
d
∫ DΨc ∫ DΥd

× exp(V {χ̃abΨ
aΨb + 1

2
ωabΥ

aΥb}) Z̃[Ψ,Υ] (A18)

with χ̃ab ≡ χ̃αβ δ(q1
+ q

2
), ωab ≡ ωαβ ∣2δii′δjj ′ − δijδi′j ′ ∣ δ(q1

+ q
2
),

Ψa ≡ ψα(−q)
V , Υa ≡ Qα

ij(−q)
V , and

Z̃[Ψ,Υ] ≡∏
g
∏

h
∫ Dvg ∫ Dwh

× exp(V {i [vaΨa + waΥ
a ] + Λ[v, w]

V
}), (A19)

where va ≡
Jα(q)

V , wa ≡
Kα

ij(q)
V , Ψ ≡ {Ψa}a, and Ῡ ≡ {Υā }ā.

In (A18) and (A19), we use the composite labels a ≡ (q
1
≠ 0,α),

b ≡ (q
2
≠ 0,β), etc. and a ≡ (q

1
, ij,α), b ≡ (q

2
, i′j ′,β), etc. in which

the pairs ij and i′j′ are one of the six unique pairs xx, yy, zz, xy, xz,
and yz. Furthermore, we see that each composite label a, b, a, or b in
a subscript matches with a composite label in a superscript. In such a
match, the Einstein summation convention is applied. More details

about the derivation of Eqs. (A18) and (A19) from Eq. (A16) can be
found in Sec. III of the supplementary material.

For large values of the system’s volume V , Z̃[Ψ,Υ] can be eval-
uated with the well-known saddle-point method, i.e., approximating
Z̃[Ψ,Υ] by

Z̃[Ψ,Υ] ≃ eV Φ[Ψ ,Υ ], (A20)

where Φ[Ψ,Υ] is the stationary value of i [vaΨa + waΥa ] + Λ[v ,w]
V

with respect to the set of v’s and w’s for which its absolute value is
the smallest. This stationary point is a solution of the following set
of equations:

iΨa =Aab vb + Aab wb −
i
2

Babc vbvc − i Bab c wbvc −
i
2

Bab c wbwc

− 1
6

Cabcd vbvcvd −
1
2

Cab cd wbvcvd −
1
2

Cab c d wbwcvd

− 1
6

Cab c d wbwcwd, ∀a, (A21)

and

i Υa = Aa b wb + Aa b vb −
i
2

Ba bc vbvc − i Ba b cwbvc −
i
2

Ba b c wbwc

− 1
6

Ca bcd vbvcvd −
1
2

Ca b cd wbvcvd −
1
2

Ca b c d wbwcvd

− 1
6

Ca b c d wbwcwd, ∀a. (A22)

In Eqs. (A21) and (A22), A’s, B’s, and C’s are second, third, and
fourth order single-chain correlation functions, respectively. These
correlation functions are introduced in Sec. III of the supplementary
material and calculated in Appendix B. As we ultimately want to
arrive at a Landau free energy as an expansion up-to fourth order
in the Ψa—and the Υa fields—we only need to solve these last
two vector-equations iteratively for va and wa up-to third order
in Ψ’s and Υ’s. This iterative solution can be found in Sec. II of
the supplementary material and is substituted into i [vaΨa + waΥa ]
+ Λ[v ,w]

V such that we obtain Φ[Ψ,Υ] and, hence, the partition
function,

Z ≃∏
c

′∏
d
∫ DΨc ∫ DΥd

× exp(V {χ̃abΨ
aΨb + 1

2
ωabΥ

aΥb +Φ[Ψ,Υ]}). (A23)

The Landau free energy, that is the free energy of the system within
the mean field approximation, can be obtained by again applying the
saddle-point method, but now to approximately evaluate this last set
of functional integrals. If we write the result as

Z ≃ e−FL , (A24)

then this Landau free energy FL (in units of kBT) is given by
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FL

V
= min

Ψ ,Υ
{(Γ(2)ab − χ̃ab)ΨaΨb + 2Γ(2)

ab
ΨaΥb + (Γ(2)

ab
− 1

2
ωab)Υ

aΥb

− 1
3
ωabΥ

a,ijδij(Ψb + f b) + Γ(3)abcΨ
aΨbΨc + 3Γ(3)abcΨ

aΨbΥc

+ 3Γ(3)
abc
ΨaΥbΥc + Γ(3)

abc
ΥaΥbΥc + Γ(4)abcdΨ

aΨbΨcΨd

+ 4Γ(4)
abcd

ΨaΨbΨcΥd + 6Γ(4)
abcd

ΨaΨbΥcΥd + 4Γ(4)
abcd

ΨaΥbΥcΥd

+ Γ(4)
abcd

ΥaΥbΥcΥd }. (A25)

The coefficient functions (Γ’s) in this expression are called vertices,
which follow from applying the iterative solution of Eqs. (A21)
and (A22) to the partition function (A23); see also Sec. II of the
supplementary material for more details. In this way, the vertices
only depend on the single-chain correlation functions as mentioned
earlier.66–81

APPENDIX B: APPLICATION OF THE GENERAL
THEORY TO A MELT OF MONODISPERSE
SEMI-FLEXIBLE DIBLOCK COPOLYMERS

In Sec. III and Appendix A, we develop a general theory of
a polydisperse semi-flexible multi-block copolymer melt in which
the final form of the Landau free energy has become a power
series expansion of density and orientation order-parameters. In
this appendix, we show that the final form of the general Landau
free energy can be reduced to a much simpler form if the melt
only contains diblock copolymers, which are semi-flexible. Numeri-
cal methods are not necessary to find the minimum. The simplified
expression can be applied to both monodisperse and polydisperse
diblock copolymers, but for now, we do not consider polydispersity.
In Appendix C, an orientation tensor has been created for a layered
structure and more complex structures in which the director vector
does not have a fixed direction.

Near the critical point at which the disordered state is just con-
verted into an ordered structure, the first harmonics approximation
according to Ref. 8 can be applied to the Fourier transform of the
density and orientation order-parameter denoted by Ψa and Υa ,
respectively,

Ψa = ΨA(q) = −ΨB(q) = Ψ(q) = Ψ∑
q′∈H

exp(iφq′)δ(q − q′) (B1)

and

Υa = Υμνα (q) = Υα(ημαηνα −
1
3
δμν)∑

q′∈H
exp(iφq′)δ(q − q′)

+ Υ0
α(ημαηνα −

1
3
δμν)δ(q). (B2)

The summation over the wave vectors q′ is limited over a set
H = {±q

1
,±q

2
, . . .} in which all wave vectors have the same fixed

magnitude q∗ . This set H defines the symmetry properties and wave-
length of a phase structure. The magnitude q∗ follows from the
spinodal expression given by Eq. (B9), which is minimized with
respect to the magnitude q∗ . In addition to a space dependent align-
ment, Eq. (B2) contains a second term in which q is the null vector.
In Υa , the vector ημα is the director vector with length 1 along which
blocks of kind α may align in a certain degree. We exclude the pos-
sibility that the A- and B-blocks may align in different directions
if the persistent length is nonzero everywhere in the chain. If the
alignment would differ, each diblock must be curved on average,
which takes too much energy according to free Hamiltonian given
by Eq. (I.2) in Sec. I of the supplementary material in which it is
allowed to replace the constant λ by λ(l). Consequently, in Eq. (B2),
there is only one director ημ instead of two different directors
ημA and ημB.

In Eq. (B2), this director ημ has a fixed direction so that the
alignment tensor can only be used for the nematic phase and lay-
ered structures. For the bcc and hexagonal phase, we need a director
with a variable direction. This problem is solved in Appendix C in
which the alignment tensor of these phases become compositions of
multiple smectic-A phases,

Qα

hex
(q) = 1

3

3

∑
m=1

Qα

smecA
(q,η

m
) (B3)

and

Qα

bcc
(q) = 1

6

6

∑
m=1

Qα

smecA
(q,η

m
). (B4)

Inserting Eqs. (B1) and (B2) in the second order terms of the
final form of the Landau free energy given by Eq. (20) yields the
matrix form

F(2)L
V
= [ Ψ ΥA ΥB ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̃ (2) − χ Γ̃(2)A Γ̃(2)B

Γ̃(2)A Γ̃(2)AA −
1
3
ωAA Γ̃(2)AB −

1
3
ωAB

Γ̃(2)B Γ̃(2)AB −
1
3
ωAB Γ̃(2)BB −

1
3
ωBB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ψ
ΥA

ΥB

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ [ Υ0
A Υ0

B ]
⎡⎢⎢⎢⎢⎢⎣

Γ̃(2)AA,00 −
1
3
ωAA Γ̃(2)AB,00 −

1
3
ωAB

Γ̃(2)AB,00 −
1
3
ωAB Γ̃(2)BB,00 −

1
3
ωBB

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Υ0
A

Υ0
B

⎤⎥⎥⎥⎥⎦
, (B5)

in which the notations

Γ̃ (2) = Γ(2)ab SaSb, Γ̃(2)α = Γ(2)
ab

Sadb
α,

Γ̃(2)αβ = Γ
(2)
ab

da
αdb

β and Γ̃(2)αβ,00 = Γ
(2)
ab

da
α,0db

β,0 ,
(B6)
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Sa ≡ (1 − 2δαB) exp(iφq) = ± exp(iφq) and a = q,α, (B7)

and

db
α = db

α,0 ≡ (ημ2
β η

ν2
β −

1
3
δμ2ν2) exp(iφq)δαβ,

and

b = q,β,μ2ν2 (B8)

are applied. Because of the symmetry, the same matrix form accord-
ing to Eq. (B5) can be obtained when we apply Eqs. (B3) or (B4)
instead of Eq. (B2) in the second order terms of Eq. (20).

The three-dimensional symmetric matrix in the first term in
Eq. (B5) has three eigenvalues λ1, λ2, and λ3 ordered by λ1 ≤ λ2
≤ λ3, which cannot be complex numbers due to the symmetry of
the matrix. In the disordered state, all eigenvalues must be positive,
but near the critical point, when it is just converted into an ordered
state, at least one eigenvalue λ1 is just below zero. Here, χ > χs(q∗)
or ωαβ > ωαβ,s(q∗) and q∗ > 0 for both spinodals χs and ωαβ,s. In
the same way, the two real eigenvalues λ10, λ20 ordered by λ10 ≤ λ20
belong to the two-dimensional symmetric matrix in the second term
in Eq. (B5) in which q∗ = 0. In the disordered state, λ20 ≥ λ10 > 0, but
if ωαβ > ωαβ,s, then at least λ10 < 0. If χ = χs, then λ1 = 0 and, conse-
quently, the determinant of the matrix in the first term of Eq. (B5) is
also zero from which it follows that

χs = min
q∗

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ̃ (2) −

(Γ̃ (2)B )
2(Γ̃(2)AA − 1

3ωAA) + (Γ̃ (2)A )
2(Γ̃(2)BB − 1

3ωBB) − 2Γ̃(2)A Γ̃(2)B (Γ̃
(2)
AB − 1

3ωAB)

(Γ̃(2)AA − 1
3ωAA)(Γ̃(2)BB − 1

3ωBB) − (Γ̃ (2)AB − 1
3ωAB)

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (B9)

This expression of χs can also be used to calculate the spin-
odals ωαβ,s(q∗) in which the wavenumber q∗ is the same as in
χs = χs(q∗). The spinodal ωαβ,s(q∗ = 0) follows from the determi-
nant of the second matrix in Eq. (B5), which must be zero.

In this appendix, we consider the free energy of a microphase
in which λ1 is negative and the other eigenvalues λ2, λ3, λ10, and
λ20 are still positive. When the Landau free energy is minimized, the
so-called primary eigenvector x1 of λ1 contributes most and dom-
inates over the much smaller contributions of the other so-called
secondary eigenvectors x2, x3, x10, and x20 of λ2, λ3, λ10, and λ20,
respectively. These secondary contributions are generated by the pri-
mary contribution according to Eq. (B12), which is derived later on.
From the first and second matrix of Eq. (B5), we easily derive a set
of normalized eigenvectors x̂n = (Ψ̂n, Υ̂A

n , Υ̂B
n) with n = 1, 2, 3, 10,

or 20. By choosing a fixed set of {x̂n ∣n ∈ {1, 2, 3, 10, 20}}, the Lan-
dau free energy can be expressed in terms of parameters x1 = ±∣x1∣,
x2 = ±∣x2∣, x3 = ±∣x3∣, x10 = ±∣x10∣, and x20 = ±∣x20∣ so that it is only
minimized with respect to the magnitude of the eigenvectors with an
additional plus–minus sign,

FL

V
= min
{x1 ,x2 ,x3 ,x10 ,x20}

{λ1x2
1 + λ2x2

2 + λ3x2
3 + λ10x2

10 + λ20x2
20

+ C(3)111 x3
1 + C(3)112 x2

1x2 + ⋅ ⋅ ⋅C(4)1111x4
1 + ⋅ ⋅ ⋅ }. (B10)

In Eq. (B10), only C(3)111 , C(3)112 , etc. and C(4)1111, C(4)1112, etc. depend on
{x̂n ∣n ∈ {1, 2, 3, 10, 20}}. Some examples of these C’s are

C(3)112 = Γ̃
(3)
αβγΥ̂

α
1Υ̂

β
1Υ̂

γ
2 + Γ̃

(3)
αβ Υ̂

α
1Υ̂

β
1Ψ̂2 + 2Γ̃(3)αβ Υ̂

α
1Υ̂

β
2Ψ̂1

+ Γ̃(3)α Υ̂α2Ψ̂
2
1 + 2Γ̃(3)α Υ̂α1Ψ̂1Ψ̂2 + Γ̃ (3)Ψ̂2

1Ψ̂2 (B11a)

and

C(3)11,20 = Γ̃
(3)
αβγΥ̂

α
1Υ̂

β
1Υ̂

γ
20 + 2Γ̃(3)αβ Υ̂

α
1Υ̂

β
20Ψ̂1 + Γ̃(3)α Υ̂α20Ψ̂

2
1 , (B11b)

in which Γ̃’s are analogous to Γ̃’s according to Eqs. (B6)–(B8). Before
minimizing the free energy with respect to the primary parameter
x1, it is first minimized with respect to the secondary parameters
x2, x3, x10, and x20 at a fixed x1. Each secondary parameter can be
approximated by one term, which is quadratic in x1,

xn =
−C(3)11nx2

1

2λn
+O(x3

1) with n = 2 , 3 , 10, or 20 . (B12)

Equation (B12) follows from the following partial derivatives, which
are zero at the minimum:

1
V

∂FL

∂xn
= 2λnxn + C(3)11nx2

1 + ⋅ ⋅ ⋅ = 0 with n = 2 , 3 , 10, or 20 . (B13)

Inserting Eq. (B12) into Eq. (B10) yields

FL

V
= min

x1

⎧⎪⎪⎨⎪⎪⎩
λ1x2

1 + C(3)111 x3
1 +
⎛
⎝

C(4)1111 −∑
n≠1

(C(3)11n)
2

4λn

⎞
⎠

x4
1

⎫⎪⎪⎬⎪⎪⎭
= min

x1
{λ1x2

1 + C(3)111 x3
1 + C̃(4)1111x4

1}. (B14)

In this expression, we see that the quadratic term in Eq. (B12) gives a
fourth order contribution to the free energy. Hence, other terms with
x3

1 and higher powers in Eq. (B12) can be ignored. When λ1 < 0, the
value of x1 at which the minimum is reached can easily be calculated
from Eq. (B14), which is

x1 =
−3C(3)111 ±

√
9(C(3)111)

2 − 32λ1C̃(4)1111

8C̃(4)1111

. (B15)

Earlier in the Introduction in Sec. I, we presented the main para-
meters, such as the bending stiffness λα of a block of kind α. The
eigenvalues and coefficients in Eq. (B10) depend on these main
parameters, but it is not possible to derive expressions in which
the eigenvalues and coefficients are explicitly written in terms of
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these main parameters especially due to the complexity of the single-
chain correlation functions, see Secs. I and IV of the supplementary
material, and vertices, see Sec. II of the supplementary material.

To calculate the phase diagram first, the second, third, and
fourth order single-chain correlation functions are calculated. In
the second order single-chain correlation functions according to
Eqs. (I.30a)–(I.30c) of the supplementary material, integrals over the
contour lengths l1 and l2 are carried out using a Gauss–Jacobi inte-
gration.82 The same method is applied to the third and fourth order
single-chain correlation functions. The next step is to calculate the
second, third, and fourth order vertices in Eqs. (II.14)–(II.16) of
the supplementary material using the resulting single-chain corre-
lation functions in the previous step. Next, second order vertices are
inserted in the matrix equation, Eq. (B5), which result in the eigen-
values, eigenvectors, and q∗ as explained earlier in this appendix.
By means of the eigenvalues, eigenvectors, q∗ , and third order and
fourth order vertices, the remaining third and fourth order coef-
ficients, see, for example, Eqs. (B11a) and (B11b), are calculated.
These remaining third and fourth order coefficients yield the free
energy according to Eq. (B14). Each phase structure results in a dif-
ferent free energy with a different minimum. In each point in the
phase diagram, the minima of the structures are compared. The
phase with the lowest minimum determines the state of the melt.

APPENDIX C: SPACE DEPENDENT ORIENTATION

In this appendix, it is explained how the orientation tensor can
be composed if the alignment is space dependent. As mentioned ear-
lier in Appendix B in the first harmonics approximation in Eq. (B2),
the orientation tensor has a fixed director vector η

α
= η so that it can

only be used for the nematic phase and layered structures. However,
in the bcc and hexagonal phase, we need a director with a variable
direction for which an alternative tensor is constructed.

First, we consider the macroscopic alignment Qα(x) in real
space,

Qα(x) = ⟨Q̂ α(x)⟩ = Qα(x)(ηα(x)ηα(x) − 1
3

I), (C1)

in which Q̂ α(x) is the microscopic alignment according to Eq. (8)

and ⟨Q̂ α(x)⟩ is the alignment on the coarse-grained level. The space
dependent director of blocks of kind α with a fixed unit magnitude
is denoted by ηα(x). The factor Qα(x) determines how strong the
α-blocks orient on average with respect to the director. When Qα(x)
> 0, they tend to align along ηα(x). Otherwise, when Qα(x) < 0, the
alignment is perpendicular to ηα(x). Exactly at Qα(x) = 0, there is
no preferred direction of orientation.

In the nematic phase and layered structures, only one fixed
director ηα(x) = ηα is necessary to describe alignment by Eq. (C1).
In that case, the Fourier transform of Eq. (C1) leads to Eq. (B2). In
the hexagonal and bcc phase, the symmetrical properties would be
lost when using one fixed director. In these structures, the chains
tend to align in multiple directions for which a tensor other than
Eq. (B2) has to be found. To solve this problem, we assign to ηα(x)
a fixed unit vector only on a local level.

For example, in Fig. 6, for the hexagonal state, several areas
have been drawn with fixed directors restricted to three possible

FIG. 6. Director field η(x) in the plane perpendicular to the cylinders in the
hexagonal phase.

directions η
1
, η

2
, and η

3
. At the dots, we are in the center of a cylin-

der with a slightly higher concentration of blocks of kind α. The
lines enclose areas with a fixed director, which are indicated by V1n,
V2n, and V3n containing director η

1
, η

2
, and η

3
, respectively, and

n = 1, 2, . . . , so

η
1

if x ∈ V1n,

ηα(x) = η
2

if x ∈ V2n,

η
3

if x ∈ V3n.

(C2)

In Eq. (C2), the directions of η
1
, η

2
, and η

3
are identical to the direc-

tions of the wave vectors in set Hhex = {±q
1
,±q

2
,±q

3
}, which are

applied in Eqs. (B1) and (B2). Applying Eq. (C2) in Eq. (C1) and
carrying out a Fourier transformation lead to

Qα

hex
(q) = 1

3

3

∑
m=1

Qα

smecA
(q,η

m
) . (C3)

In this form, we are averaging three smectic-A phases with direc-
tors η

1
, η

2
, and η

3
, which yield an alignment description Qα

hex
of the

hexagonal phase. Analogously, we derive the description Qα
bcc

of the
bcc structure,

Qα

bcc
(q) = 1

6

6

∑
m=1

Qα

smecA
(q,η

m
) , (C4)

in which the six directors η
m

must be parallel to the wave vectors in
set Hbcc. According to Eq. (B2), the alignments Qα

smecA
(q,η

m
) con-

tain phase factors exp(iφq), which are, therefore, also in Qα
hex
(q)

and Qα
bcc
(q). These phase factors must conform the symmetry of the

structure.
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