
Querying Fault and Attack Trees: Property Specification on a

Water Network

Stefano M. Nicoletti, University of Twente

Milan Lopuhaä-Zwakenberg, University of Twente

E. Moritz Hahn, University of Twente

Mariëlle Stoelinga, University of Twente and Radboud University

Key Words: fault trees, fault tree analysis, attack trees, case study analysis, property specification, logic

SUMMARY & CONCLUSIONS

We provide an overview of three different query languages

whose objective is to specify properties on the highly popular

formalisms of fault trees (FTs) and attack trees (ATs). These

are BFL, a Boolean Logic for FTs, PFL, a probabilistic

extension of BFL and ATM, a logic for security metrics on ATs.

We validate the framework composed by these three logics by

applying them to the case study of a water distribution network.

We extend the FT for this network – found in the literature –

and we propose to model the system under analysis with the

Fault Trees/Attack Trees (FT/ATs) formalism, combining both

FTs and ATs in a unique model. Furthermore, we propose a

novel combination of the showcased logics to account for

queries that jointly consider both the FT and the AT of the

model, integrating influences of attacks on failure probabilities

of different components. Finally, we extend the domain specific

language for PFL with novel constructs to capture the interplay

between metrics of attacks – e.g., “cost”, success probabilities

– and failure probabilities in the system.

1 INTRODUCTION

Critical infrastructure systems must operate safely and

securely. Fault tree analysis (FTA) [1,2] is a widespread method

used for risk assessment of these systems. Developed in the

early '60s [3], fault trees (FT) are directed acyclic graphs

(DAGs) that model how component failures arise and propagate

through the modelled system, eventually leading to system level

failures. Leaves in a FT represent basic events (BEs), i.e.

elements of the tree that need not be further refined. Once these

fail, the failure is propagated through the intermediate events

(IEs) via gates, to eventually reach the top level event (TLE),

which symbolizes system failure. In FTA, typically one

identifies the minimal cut sets (MCSs) of a FT, i.e. minimal sets

of BEs that, when failed, cause the system to fail. One can also

identify minimal path sets (MPSs), i.e. minimal sets of BEs that

– when operational – guarantee that the system will remain

operational. FTs are a required analysis methodology by, e.g.,

the Federal Aviation Administration, the Nuclear Regulatory

Commission, the ISO 26262 standard [4] for autonomous

driving and for software development in aerospace systems.

Attack trees (ATs) [5] are the security counterpart of FTs:

hierarchical diagrams that offer a flexible modelling language

to assess how systems can be attacked. As for FTs, ATs are

widely employed both in industry and academia: they are part

of many system engineering frameworks, e.g. UMLsec [6] and

SysMLsec [7, 8], and are supported by industrial tools such as

Isograph's AttackTree [9].

1.1 Combining Fault and Attack Trees

Due to their popularity, numerous combinations and

extensions of FTs and ATs have been proposed. Recent surveys

[10, 11] attest that at least seven such combinations/extensions

are popular in the literature: Extended Fault Trees or Fault

Trees/Attack Trees (FT/ATs) [12], Component Fault Trees

(CFTs) [13], Attack-Fault Trees (AFTs) [14], State/Event Fault

Trees (SEFTs) [15], Failure-Attack-CounTermeasure (FACT)

Graphs [16], Boolean Driven Markov Processes (BDMPs) [17]

and Attack Tree Bow-ties (ATBTs) [18].

In this paper, we focus our attention on FT/ATs. These

model the intuition that malicious actors often try to induce a

failure of some components in a system, in order to render it

non-operational: in doing so, they offer a sensible way of

combining FTs and ATs. FT/ATs model these situations by

replacing one or multiple BEs in the FT with the root of an AT,

symbolizing paths that an attacker can take to cause failure in

one or more basic components in an FT.

1.2 Querying Fault and Attack Trees

Despite their popularity, however, little work has been

done on developing tailored languages that enable practitioners

to specify flexible properties on FTs and ATs. Only very recent

work addressed this issue, by proposing three different logics

tailored to FTs and ATs, accompanied by model checking

algorithms that can check the truth value of formulae.

Boolean Fault tree Logic. Our previous work [19]

proposed a Boolean Fault tree Logic (BFL) with which

practitioners can: 1. set evidence to analyze what-if scenarios,

e.g., what are the MCSs, given that BE A or subsystem B has

failed? What are the MPSs given that A or B have not failed? 2.

check whether two FT elements are independent or if they share

a child that can influence their status. 3. check whether the

failure of one (or more) element E always leads to the failure of

the TLE. 4. set upper/lower boundaries for failed elements, e.g.,

would element E always fail if at most/at least two out of A, B

and C were to fail? Moreover, if a property does not hold, the

BFL framework generates counterexamples, to show why the

property fails.

Probabilistic Fault tree Logic. Extending the previous

framework, [20] presents a Probabilistic Fault tree Logic to

further enhance quantitative analysis capabilities, as

probabilities are the prime quantitative metric on FTs. With

PFL, one: 1. can check whether the probability of a given

element (potentially conditioned by another one) respects a

certain threshold, 2. can set the value of one BE in complex

formulae to an arbitrary probability value, 3. can check if two

BEs/IEs are stochastically independent, 4. can also return

probability values for given formulae, possibly mapping single

elements to an arbitrary probability value. Furthermore, [20]

presents LangPFL, a domain specific language for PFL that

propels the usability of this framework, allowing easier

property specification on FTs.

A Logic for Attack Tree Metrics. Concerning ATs, [21]

develops a Logic for Attack Tree Metrics (ATM) to specify a

variety of quantitative security properties on these models: the

authors present a general framework that considers security

metrics, such as ”cost” of an attack, ”probability” of getting

attacked and ”skill” of a malicious actor. With ATM, one: 1.

can reason about successful/unsuccessful attacks; 2. can check

whether metrics, such as the cost, are bounded by a given value

on single attacks; 3. can compute metrics for a class of attacks

and 4. perform quantification over all possible attacks. Note that

because ATM uses a general algebraic framework, it allows for

the analysis of many different metrics [22].

1.3 Our Contribution

In this paper we propose an extended version of the FT in

[23] that models a water distribution network. We enrich this

model by providing a FT/AT showcasing a malicious attack that

intends to contaminate water in the network. This scenario is

not unlikely, as testified by recent news that see a Florida water

treatment facility hacked using a dormant remote access

software [24]. Furthermore, to validate the framework

composed by BFL, PFL and ATM we showcase property

specification for the FT and the AT composing the model.

Moreover, we propose a novel combination of these logics and

present joint property specification for the FT/AT model.

Finally, we extend LangPFL – the domain specific language for

PFL presented in [20] – to support different metrics and the

specification of queries on ATs and FT/ATs.

2 CASE STUDY: WATER DISTRIBUTION NETWORK

The case study we are analyzing considers a water

distribution network that might be subject to a contamination

attack. The FT/AT in Figure 1 represents a water distribution

network: the TLE for the FT/AT models the risk of Water

Quality Failure (WQF), that is refined via an OR-gate. Children

of this gate are further refined in different subtrees. From left to

right, we find an indigo AND-gate representing Water Quality

at Point of Entry (PoE), an orange AND-gate for the Intrusion

of Contaminants (IoC), a green OR-gate refining Material

Deterioration (MD), a violet AND-gate for (Un)intended

Contamination (UC), a light blue OR-gate representing

Disinfectant-related (DR) risks, a yellow AND-gate for

Permeation (Pe) risks and a grey AND-gate, refining events

related to Biofilm growth (BiG).

Subtrees from the original FT are extended with an AT

represented by an AND-gate for a malicious Contamination

attack (CAT), in red. This AT refines one of the BEs present in

the original FT model from [23] that generically represented a

Threat. In our model, for the contamination attack to be

successful, a malicious actor must perform Information

Gathering & Phishing (IGP) to Collect Information (CIn) on

the target infrastructure and to Steal User Credentials (SUC).

Furthermore, the attacker must hit the target with an Exploit,

and Execute (EE) the attack by Changing Chemicals (CCh)

percentages in the water. To successfully execute this plan, the

malicious actor can Gain Access (GA) by letting a Privileged

Figure 1 – Fault tree with attacks (attack tree in red) for a water distribution network. Intermediate events are inside gates.

User Click the Link (UCL) of his/her malicious email, or by

successfully executing a BadUSB Attack (BUA). Note that BEs

shared between multiple IEs have a dashed border in Figure 1.

3 QUERYING FAULT TREES: BFL & PFL

Having introduced our model, we can now focus our

attention on property specification. In this section we will

showcase some queries that one can formalize for the FT

component of the FT/AT in Figure 1. We will do so by

presenting statements in BFL, PFL and the corresponding

domain specific language, LangPFL. For simplicity, we assume

the original FT from [21] with the BE Threat replacing the AT

rooted in CAT.

BFL & PFL Properties. Let us showcase different

properties in natural language and their respective translation in

BFL and PFL, starting with some BFL queries:

1) What are the MCSs for the TLE that include the presence of

Organic Matter and deterioration of Metallic Surface?

[[𝑀𝐶𝑆(𝑊𝑄𝐹) ∧ 𝑂𝑀 ∧ 𝑀𝑆]] (1)

2) Are there MPSs for the Disinfectant-related subtree, given

that the DBP and CRD BEs are guaranteed to fail?

∃𝑀𝑃𝑆(𝐷𝑟)[𝐷𝐵𝑃 ↦ 1, 𝐶𝑅𝐷 ↦ 1] (2)

3) For all the possible configurations of BEs, are Broken Pipes

& Gaskets plus Loss of Pressure sufficient for the TLE to fail?

∀((𝐵𝑃𝐺 ∧ 𝐿𝑃) ⇒ 𝑊𝑄𝐹) (3)

Note that we use the double square brackets in query (1) to

signify that we want all the MCSs that respect the given

constraints, while we use the single square brackets in query (2)

to set the value of specific elements in a FT to failed, with 1,

and to operational, with 0. Finally, we can ask whether a

property holds for at least one/for all the possible configurations

of BEs via quantifiers (∃ and ∀respectively) as shown in queries

(2) and (3). Extending BFL with PFL, we can specify some

properties that include probabilities (we assume that BEs have

already been assigned probability values):

1) Is the probability of TLE occurring smaller than 0.01, if the

subtree rooted in Pathway failed?

𝑃𝑟<0.01(𝑊𝑄𝐹)[𝑃𝑎𝑡 ↦ 1] (4)

2) Assume that the probability of Organic Matter being present

equals 0.15. What would then be the probability of

Disinfectant-related risks?

𝑃𝑟(𝐷𝑟)[𝑂𝑀 ↦ 0.15] (5)

3) Assume that both Disinfectant Loss and Permeation happen

with certainty. Does this imply that the probability of TLE is

greater than 0.015?

𝑃𝑟=1(𝐷𝐿) ∧ 𝑃𝑟=1(𝑃𝑒) ⇒ 𝑃𝑟>0.015(𝑊𝑄𝐹) (6)

Note that one can set arbitrary probability values for FT

elements – as shown in (4) and (5) – and can specify desired

thresholds for failure probabilities as per queries (4) and (6).

Furthermore, probability values for a given element can be

computed anew considering what-if scenarios that account for

different probabilities in the children of such an element (5).

Finally, one can set assumptions on the failure probabilities of

certain elements, to then check whether these values are

sufficient to cause an increase exceeding given thresholds (6).

 LangPFL. To ease usability, we showcase how these

queries would be specified using the domain specific language

presented in [20]. LangPFL is based on structured templates.

One can specify assumptions on the status of FT elements by

utilizing the assume keyword. These assumptions will be

appropriately integrated in the translated BFL/PFL query: e.g.,

set or setp – to set values of FT elements – are translated with

the according operators to set evidence, while other

assumptions will be the antecedent of an implication. A second

keyword separates specified queries from the assumptions and

dictates the desired result: compute and computeall compute

and return desired values, i.e., probability values and lists of

MCSs/MPSs respectively, while check establishes if a specified

property holds. Let us showcase these translations. The query

in (1) would be expressed by:

assume: (7)

 computeall:

 MCS[WQF] and OM and MS

Note that the section dedicated to assumptions is empty, as we

are not capturing a what-if scenario. Then computeall is the

keyword chosen to return all MCSs with desired filters. Queries

in (2) and (3) would translate to:

assume: (8)

set DBP = 1

set CRD = 1

 check:

 exists MPS[Dr]

assume: (9)

set BPG = 1

set LP = 1

 check:

 forall WQF

In (8) and (9), we see that assumptions are now populated and

that we use the check keyword to check if the desired properties

hold. Different kinds of assumptions would then be translated

into different properties, as per the underlying formulations in

(2) and (3). LangPFL can also handle property specification

with probabilities. Queries (4), (5) and (6) would translate to:

assume: (10)

set_prob Pat = 1

 check:

 P[WQF] < 0.01

assume: (11)

set_prob OM = 0.15

 compute:

 P[Dr]

assume: (12)

set_prob DL = 1

set_prob Pe = 1

 check:

 P[WQF] > 0.015

Operators to set evidence are now probabilistic, with setp, and

the compute keyword is used to compute the probability value

of the Dr element, given set assumptions (11). The check

keyword remains to verify if a given property holds, as in the

non-probabilistic case.

4 QUERYING ATTACK TREES: ATM

We now focus on the AT rooted in CAT, from Figure 1, by

specifying some queries using ATM. Currently, this logic

supports reasoning about (un)successful attacks and the

formulation of properties about “cost” of attacks, “time” of an

attack, both with parallel and sequential steps, “skill” needed by

the attacker and “probability” of a successful attack [21]. Let us

showcase some of these queries:

1) Are the costs of performing Info Gathering and Phishing and

a BadUSB Attack respectively lower than 30 and at most 15?

𝐶𝑜𝑠𝑡(𝐼𝐺𝑃) < 30 ∧ 𝐶𝑜𝑠𝑡(𝐵𝑈𝐴) ≤ 15 (13)

2) Is there an attack that guarantees success in executing the

exploit without Dropping USBs in the Parking Lot?

∃(𝐸𝐸[𝑈𝑃𝐿 ↦ 0]) (14)

3) Is it necessary that a Privileged User Clicks on the Link from

a malicious email to mount a successful Contamination Attack?

∀(𝐶𝐴𝑇 ⇒ 𝑈𝐶𝐿) (15)

4) Are the probability of a successful Contamination Attack and

the parallel time of attack lower than 0.010 and 30 respectively?

𝑃𝑟𝑜𝑏(𝐶𝐴𝑇) < 0.010 ∧ 𝑃𝑎𝑟𝑇𝑖𝑚𝑒(𝐶𝐴𝑇) < 30 (16)

5) Is there an attack that ensures an attacker gains access to the

system while keeping the cost under 35?

∃(𝐶𝑜𝑠𝑡(𝐺𝐴) < 35) (17)

6) What is the minimal cost of the Contamination Attack

assuming that the cost of the BadUSB Attack equals 40?

𝐶𝑜𝑠𝑡(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 40] (18)

As shown with these queries, ATM has a greater expressive

power than BFL and PFL, as ATM can express properties that

are not only concerned about probabilities but also, e.g., cost.

However, constructs seen in PFL remain available. E.g., one

can set arbitrary values for given metrics, as shown in (18) for

“cost”, can check bounds on metrics values – shown in (13),

(16) and (17) – and perform quantification reasoning about

some/all possible attacks. Furthermore, one can compute metric

values, as in (18), or formulate queries that reason about

different metrics: (16) reasons about a bounded “probability” of

successful attacks, while also checking if a bound on parallel

execution “time” of that attack is respected.

5 QUERYING FAULT TREES WITH ATTACKS

Integrating the logics. Having showed the capabilities of

BFL, PFL and ATM we now propose a novel way to integrate

these logics. The objective is to specify properties on FT/ATs

that consider both the failure probabilities from the FT and how

these are impacted by different metrics on the AT – e.g., success

probabilities or “cost” of attacks. Writing such complex

properties can be cumbersome, hence we propose to extend

LangPFL to handle metrics also on ATs and FT/ATs, extending

the application of setp operators on AT elements and

introducing appropriate operators for other metrics, e.g., setcost

for “cost”. Moreover, we introduce a new construct – that we

name decorator – employed to specify different sets of

assumptions. We showcase its usage in (22). Let us introduce

and comment some meaningful examples, where the part of the

property related to ATM is in red. For all these properties, we

assume the complete model in Figure 1, rooted in WQF.

1) Are the probabilities of TLE occurring and of an

(Un)intended Contamination respectively lower than 0.010 and

0.005, given that the probability of a successful BadUSB Attack

is equal to 0.12 and the probability of a privileged user clicking

a malicious link is equal to 0.04?

𝑃𝑟<0.010(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ (19)
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.12, 𝑈𝐶𝐿 ↦ 0.04]]
∧ 𝑃𝑟<0.005(𝑈𝐶)[𝐶𝐴𝑇 ↦
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.12, 𝑈𝐶𝐿 ↦ 0.04]]

In this property, we consider the influence that the probability

of success of two attack steps have on the failure probability of

two FT elements. Given the what-if scenario where a BadUSB

Attack and a privileged used clicking on a malicious email

happen with probabilities 0.12 and 0.04 respectively, we can

check whether the probabilities of both TLE and (Un)intended

Contamination respect the given tresholds of 0.010 and

0.005.With our extended version of LangPFL, one would

specify this query in the following way:

assume: (20)

set_prob BUA = 0.12

set_prob UCL = 0.04

 check:

 P[WQF] < 0.010 and

 P[UC] < 0.005

The difference between (19) and (20) is noticeable: extending

LangPFL allows practitioners to focus on property specification

rather than worrying about cumbersome nesting of different

logics, while still retaining needed expressivity.

In this framework, one may also consider the influence that

multiple security-related what-if scenarios pose on the same FT

component, e.g.:

2) Is the probability of TLE occurring lower than 0.08 in both

the following scenarios: 1) when the probability of a successful

BadUSB Attack is equal to 0.12 and the probability of a

privileged user clicking a malicious link is equal to 0.04, 2)

when these probabilities equal 0.34 and 0.10 respectively?

𝑃𝑟<0.08(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ (21)
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.12, 𝑈𝐶𝐿 ↦ 0.04]]
∧ 𝑃𝑟<0.08(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.34, 𝑈𝐶𝐿 ↦ 0.10]]

This query keeps the threshold for the failure probability of

TLE fixed, while varying assignments of probabilities on

elements of the AT. This allows practitioners to guarantee that

two different offensive scenarios will not influence the failure

of TLE in undesired ways. To translate this intention in our

extended version of LangPFL, we propose decorators: these

constructs enclose a set of assumptions and allow the user to

specify which properties must abide to a specific set of

statements under the assume keyword. E.g., query (21) would

be translated in the following way:

assume: (22)

@A1:

 set_prob BUA = 0.12

 set_prob UCL = 0.04

@A2:

 set_prob BUA = 0.34

 set_prob UCL = 0.10

 check:

 @A1(P[WQF] < 0.08) and

 @A2(P[WQF] < 0.08)

Where @A1 and @A2 are two different decorators, containing

two different sets of assumptions: these are declared under the

assume keyword, as shown before. Under the check keyword,

each part of the formula that we want to check is decorated with

either @A1 or @A2: assumptions in @A1 are applied to the

former occurrence of P[WQF] < 0.08, while those in @A2 are

applied to the latter.

Furthermore, we can present queries that capture the

interplay between AT metrics – other than probabilities – and

failure probabilities of FT elements. E.g.:

3) Is there an attack that guarantees that the failure probability

of TLE would be at least 0.12 when the attacker is allowed to

spend at most “cost” 30 to perform the Contamination Attack?

∃(𝐶𝑜𝑠𝑡(𝐶𝐴𝑇) ≤ 30 ∧ (23)

𝑃𝑟≥0.12(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)])

In this query, we consider both the “cost” metric and the

probability of failure of TLE. The existential quantifier would

range over all possible states of the leaves (both the FT and AT

ones), to guarantee that there is an attack such that the cost for

CAT is at most 30 and that the TLE fails with probability at

least 0.12. This translates to LangPFL in the following way:

assume: (24)

set_cost CAT ≤ 30

 check:

 exists P[WQF] ≥ 0.12

In this translation, differently from (11), we see that our

assumption is on cost of an AT element instead of on

probability of a FT element. Finally, we can elaborate on

queries (22) and (24) to construct the following:

4) Is there an attack that guarantees that: 1) the probability of

TLE would be at least 0.12 and Info Gathering & Phishing costs

at most 12 and 2) the probability of (Un)intended

Contamination would be at least 0.08 and Exploit and Execute

costs at most 5?

∃((𝐶𝑜𝑠𝑡(𝐼𝐺𝑃) ≤ 12 ∧ (25)

𝑃𝑟≥0.12(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)]) ∧

(𝐶𝑜𝑠𝑡(𝐸𝐸) ≤ 5 ∧

𝑃𝑟≥0.08(𝑈𝐶)[𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)]))

This translates to LangPFL in the following way:

assume: (26)

@A1:

 set_cost IGP ≤ 12

@A2:

 set_cost EE ≤ 5

 check:

 exists @A1(P[WQF] ≥ 0.12) and

 @A2(P[UC] ≥ 0.08)

Here, we combine the use of decorators to specify different sets

of assumptions for each conjunt in the property to check (22),

with the construction of queries that reason about different

metrics on the AT component of FT/ATs (23).

6 FUTURE WORK

Our contribution opens different interesting directions for

further research. Firstly, validating the framework composed by

BFL, PFL and ATM on different combinations of FTs and ATs

could highlight further necessities when querying models for

joint safety-security analysis. Secondly, developing an

implementation of the proposed approach could propel

adoption of these methods in the field of reliability engineering

and w.r.t. safety-critical systems. Finally, conducting hands-on

tests of such an implementation with practitioners would help

us in refining the framework and in tailoring it to the needs of

domain experts.

REFERENCES

1. E. Ruijters, and M. Stoelinga. “Fault tree analysis: A

survey of the state-of-the-art in modeling, analysis and

tools”. Computer science review 15 (2015): 29-62.

2. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J.

Minarick, & J. Railsback, (2002). Fault tree handbook with

aerospace applications.

3. C. A. Ericson. (1999, August). “Fault tree analysis”. In

System Safety Conference, Orlando, Florida (Vol. 1, pp. 1-

9).

4. International Standardization Organization: ISO/DIS

26262: Road vehicles, functional safety.

https://www.iso.org/standard/68383.html, (2018).

https://www.iso.org/standard/68383.html

5. B. Schneier. “Attack trees”. Dr. Dobb’s journal 24(12),

21–29 (1999).

6. J. Jürjens. “UMLsec: Extending UML for secure systems

development”. In: UML 2002 — The Unified Modeling

Language. LNCS, vol. 2460, pp. 412–425. Springer Berlin

Heidelberg (2002).

7. Y. Roudier, L. Apvrille: “SysML-Sec: A model driven

approach for designing safe and secure systems”. In:

MODELSWARD. pp. 655–664. IEEE (2015).

8. L. Apvrille, Y. Roudier. “SysML-sec: A sysML

environment for the design and development of secure

embedded systems”. In: APCOSEC (2013).

9. Isograph: AttackTree. (Accessed July 2023). URL:

https://www.isograph.com/software/attacktree/.

10. C. Kolb, S. M. Nicoletti, M. Peppelman, & M. Stoelinga

(2021). “Model-based safety and security co-analysis:

Survey and identification of gaps”. arXiv preprint

arXiv:2106.06272.

11. S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, & Y.

Halgand (2015). “A survey of approaches combining

safety and security for industrial control systems”.

Reliability engineering & system safety, 139, 156-178.

12. I.N. Fovino, M. Masera, A. De Cian: “Integrating cyber

attacks within fault trees”. Reliability Engineering &

System Safety 94(9), 1394–1402 (2009).

13. M. Steiner, P. Liggesmeyer: “Combination of safety and

security analysis - finding security problems that threaten

the safety of a system”. In: SAFECOMP (2016).

14. Kumar, R., M. Stoelinga: “Quantitative security and safety

analysis with Attack-Fault Trees”. In: 18th International

Symposium on HASE. pp. 25–32 (2017).

15. M. Roth, P. Liggesmeyer: “Modeling and Analysis of

Safety-Critical Cyber Physical Systems using State/Event

Fault Trees”. In: SAFECOMP (2013).

16. G. Sabaliauskaite, A.P. Mathur: “Aligning cyber-physical

system safety and security”. In: Complex Systems Design

& Management Asia, pp. 41–53. Springer (2015).

17. S. Kriaa, M. Bouissou, F. Colin, Y. Halgand, L. Pietre-

Cambacedes: “Safety and security interactions modeling

using the BDMP formalism: case study of a pipeline”. In:

SAFECOMP. pp. 326–341. Springer (2014).

18. H. Abdo, M. Kaouk, J. M. Flaus, F. Masse: “A

safety/security risk analysis approach of industrial control

systems: A cyber bowtie–combining new version of attack

tree with bowtie analysis”. Computers & security 72, 175–

195 (2018).

19. S. M. Nicoletti, E. M. Hahn, M. Stoelinga: “BFL: a Logic

to Reason about Fault Trees”. In: DSN. pp. 441–452.

IEEE/EUCA (2022).

20. S. M. Nicoletti, M. Lopuhaä-Zwakenberg, E. M. Hahn, M.

Stoelinga: PFL: “A Probabilistic Logic for Fault Trees”.

In: 25th International Symposium on Formal Methods, FM

2023. pp. 199–221. Springer Nature (2023).

21. S. M. Nicoletti, M. Lopuhaä-Zwakenberg, E. M. Hahn, M.

Stoelinga: “ATM: a Logic for Quantitative Security

Properties on Attack Trees”. Under review, SEFM 2023.

22. M. Lopuhaä-Zwakenberg, C. E.Budde, & M. Stoelinga.

“Efficient and Generic Algorithms for Quantitative Attack

Tree Analysis”. IEEE TDSC (2023).

23. R. Sadiq, E. Saint-Martin, Y. Kleiner: “Predicting risk of

water quality failures in distribution networks under

uncertainties using fault-tree analysis”. Urban Water

Journal 5(4), 287–304 (2008).

24. A. Marquardt, E. Levenson, A. Tal: Florida water

treatment facility hack used a dormant remote access

software, sheriff says. (Accessed July 2023). URL:

https://edition.cnn.com/2021/02/10/us/florida-water-

poison-cyber/index.html.

BIOGRAPHIES

Stefano M. Nicoletti, MA

University of Twente

Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

e-mail: s.m.nicoletti@utwente.nl

Stefano M. Nicoletti is a PhD Candidate at the University of

Twente, working in the ERC-funded Project CAESAR with the

goal of marrying the historically separated fields of safety and

(cyber)security.

Milan Lopuhaä-Zwakenberg, Dr.

University of Twente

Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

e-mail: m.a.lopuhaa@utwente.nl

Milan Lopuhaä-Zwakenberg is an assistant professor at
University of Twente (NL), studying safety and security metrics
and their interplay. Before, he was a postdoc at Eindhoven
University of Technology (NL) and he received his PhD from
Radboud University (NL) on arithmetic geometry.

E. Moritz Hahn, Dr.

University of Twente

Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

e-mail: e.m.hahn@utwente.nl

E. Moritz Hahn is assistant professor at the Formal Methods and

Tools (FMT) group at the University of Twente within Mariëlle

Stoelinga's project CAESAR. Hahn’s main research interest is

probabilistic model checking.

Mariëlle Stoelinga, Prof. Dr.

University of Twente and Radboud University

Enschede, Drienerlolaan 5, 7522 NB, The Netherlands

Nijmegen, Houtlaan 4, 6525 XZ, The Netherlands

e-mail: m.i.a.stoelinga@utwente.nl

Mariëlle Stoelinga is professor of risk management at the
Radboud University and the University of Twente (NL). She is
the project coordinator on PrimaVera, a large collaborative
project on Predictive Maintenance in the Dutch National
Science Agenda. She also received a prestigious ERC
consolidator grant. She holds an MSc and a PhD degree from
Radboud University and was a postdoc at the UC Santa Cruz.

https://www.isograph.com/software/attacktree/
https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html
https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

