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SUMMARY & CONCLUSIONS 

We provide an overview of three different query languages 

whose objective is to specify properties on the highly popular 

formalisms of fault trees (FTs) and attack trees (ATs). These 

are BFL, a Boolean Logic for FTs, PFL, a probabilistic 

extension of BFL and ATM, a logic for security metrics on ATs. 

We validate the framework composed by these three logics by 

applying them to the case study of a water distribution network. 

We extend the FT for this network – found in the literature – 

and we propose to model the system under analysis with the 

Fault Trees/Attack Trees (FT/ATs) formalism, combining both 

FTs and ATs in a unique model. Furthermore, we propose a 

novel combination of the showcased logics to account for 

queries that jointly consider both the FT and the AT of the 

model, integrating influences of attacks on failure probabilities 

of different components. Finally, we extend the domain specific 

language for PFL with novel constructs to capture the interplay 

between metrics of attacks – e.g., “cost”, success probabilities 

– and failure probabilities in the system.   

1 INTRODUCTION 

Critical infrastructure systems must operate safely and 

securely. Fault tree analysis (FTA) [1,2] is a widespread method 

used for risk assessment of these systems. Developed in the 

early '60s [3], fault trees (FT) are directed acyclic graphs 

(DAGs) that model how component failures arise and propagate 

through the modelled system, eventually leading to system level 

failures. Leaves in a FT represent basic events (BEs), i.e. 

elements of the tree that need not be further refined. Once these 

fail, the failure is propagated through the intermediate events 

(IEs) via gates, to eventually reach the top level event (TLE), 

which symbolizes system failure. In FTA, typically one 

identifies the minimal cut sets (MCSs) of a FT, i.e. minimal sets 

of BEs that, when failed, cause the system to fail. One can also 

identify minimal path sets (MPSs), i.e. minimal sets of BEs that 

– when operational – guarantee that the system will remain 

operational. FTs are a required analysis methodology by, e.g., 

the Federal Aviation Administration, the Nuclear Regulatory 

Commission, the ISO 26262 standard [4] for autonomous 

driving and for software development in aerospace systems. 

Attack trees (ATs) [5] are the security counterpart of FTs: 

hierarchical diagrams that offer a flexible modelling language 

to assess how systems can be attacked. As for FTs, ATs are 

widely employed both in industry and academia: they are part 

of many system engineering frameworks, e.g. UMLsec [6] and 

SysMLsec [7, 8], and are supported by industrial tools such as 

Isograph's AttackTree [9]. 

1.1 Combining Fault and Attack Trees 

Due to their popularity, numerous combinations and 

extensions of FTs and ATs have been proposed. Recent surveys 

[10, 11] attest that at least seven such combinations/extensions 

are popular in the literature: Extended Fault Trees or Fault 

Trees/Attack Trees (FT/ATs) [12], Component Fault Trees 

(CFTs) [13],  Attack-Fault Trees (AFTs) [14], State/Event Fault 

Trees (SEFTs) [15], Failure-Attack-CounTermeasure (FACT) 

Graphs [16],  Boolean Driven Markov Processes (BDMPs) [17] 

and Attack Tree Bow-ties (ATBTs) [18]. 

In this paper, we focus our attention on FT/ATs. These 

model the intuition that malicious actors often try to induce a 

failure of some components in a system, in order to render it 

non-operational: in doing so, they offer a sensible way of 

combining FTs and ATs. FT/ATs model these situations by 

replacing one or multiple BEs in the FT with the root of an AT, 

symbolizing paths that an attacker can take to cause failure in 

one or more basic components in an FT.  

1.2 Querying Fault and Attack Trees 

Despite their popularity, however, little work has been 

done on developing tailored languages that enable practitioners 

to specify flexible properties on FTs and ATs. Only very recent 

work addressed this issue, by proposing three different logics 

tailored to FTs and ATs, accompanied by model checking 

algorithms that can check the truth value of formulae.  

Boolean Fault tree Logic. Our previous work [19] 

proposed a Boolean Fault tree Logic (BFL) with which 

practitioners can:  1. set evidence to analyze what-if scenarios, 

e.g., what are the MCSs, given that BE A or subsystem B has 

failed? What are the MPSs given that A or B have not failed? 2. 



check whether two FT elements are independent or if they share 

a child that can influence their status. 3. check whether the 

failure of one (or more) element E always leads to the failure of 

the TLE. 4. set upper/lower boundaries for failed elements, e.g., 

would element E always fail if at most/at least two out of A, B 

and C were to fail? Moreover, if a property does not hold, the 

BFL framework generates counterexamples, to show why the 

property fails.  

Probabilistic Fault tree Logic. Extending the previous 

framework, [20] presents a Probabilistic Fault tree Logic to 

further enhance quantitative analysis capabilities, as 

probabilities are the prime quantitative metric on FTs. With 

PFL, one: 1. can check whether the probability of a given 

element (potentially conditioned by another one) respects a 

certain threshold,  2. can set the value of one BE in complex 

formulae to an arbitrary probability value, 3. can check if two 

BEs/IEs are stochastically independent, 4. can also return 

probability values for given formulae, possibly mapping single 

elements to an arbitrary probability value. Furthermore, [20] 

presents LangPFL, a domain specific language for PFL that 

propels the usability of this framework, allowing easier 

property specification on FTs.  

A Logic for Attack Tree Metrics. Concerning ATs, [21] 

develops a Logic for Attack Tree Metrics (ATM) to specify a 

variety of quantitative security properties on these models: the 

authors present a general framework that considers security 

metrics, such as ”cost” of an attack, ”probability” of getting 

attacked and ”skill” of a malicious actor. With ATM, one: 1. 

can reason about successful/unsuccessful attacks; 2. can check 

whether metrics, such as the cost, are bounded by a given value 

on single attacks; 3. can compute metrics for a class of attacks 

and 4. perform quantification over all possible attacks. Note that 

because ATM uses a general algebraic framework, it allows for 

the analysis of many different metrics [22].    

1.3 Our Contribution 

In this paper we propose an extended version of the FT in 

[23] that models a water distribution network. We enrich this 

model by providing a FT/AT showcasing a malicious attack that 

intends to contaminate water in the network. This scenario is 

not unlikely, as testified by recent news that see a Florida water 

treatment facility hacked using a dormant remote access 

software [24]. Furthermore, to validate the framework 

composed by BFL, PFL and ATM we showcase property 

specification for the FT and the AT composing the model. 

Moreover, we propose a novel combination of these logics and 

present joint property specification for the FT/AT model. 

Finally, we extend LangPFL – the domain specific language for 

PFL presented in [20] – to support different metrics and the 

specification of queries on ATs and FT/ATs. 

2 CASE STUDY: WATER DISTRIBUTION NETWORK 

The case study we are analyzing considers a water 

distribution network that might be subject to a contamination 

attack. The FT/AT in Figure 1 represents a water distribution 

network: the TLE for the FT/AT models the risk of Water 

Quality Failure (WQF), that is refined via an OR-gate. Children 

of this gate are further refined in different subtrees. From left to 

right, we find an indigo AND-gate representing Water Quality 

at Point of Entry (PoE), an orange AND-gate for the Intrusion 

of Contaminants (IoC), a green OR-gate refining Material 

Deterioration (MD), a violet AND-gate for (Un)intended 

Contamination (UC), a light blue OR-gate representing 

Disinfectant-related (DR) risks, a yellow AND-gate for 

Permeation (Pe) risks and a grey AND-gate, refining events 

related to Biofilm growth (BiG). 

Subtrees from the original FT are extended with an AT 

represented by an AND-gate for a malicious Contamination 

attack (CAT), in red. This AT refines one of the BEs present in 

the original FT model from [23] that generically represented a 

Threat. In our model, for the contamination attack to be 

successful, a malicious actor must perform Information 

Gathering & Phishing (IGP) to Collect Information (CIn) on 

the target infrastructure and to Steal User Credentials (SUC). 

Furthermore, the attacker must hit the target with an Exploit, 

and Execute (EE) the attack by Changing Chemicals (CCh) 

percentages in the water. To successfully execute this plan, the 

malicious actor can Gain Access (GA) by letting a Privileged 

Figure 1 – Fault tree with attacks (attack tree in red) for a water distribution network. Intermediate events are inside gates. 



User Click the Link (UCL) of his/her malicious email, or by 

successfully executing a BadUSB Attack (BUA). Note that BEs 

shared between multiple IEs have a dashed border in Figure 1. 

3 QUERYING FAULT TREES: BFL & PFL 

Having introduced our model, we can now focus our 

attention on property specification. In this section we will 

showcase some queries that one can formalize for the FT 

component of the FT/AT in Figure 1. We will do so by 

presenting statements in BFL, PFL and the corresponding 

domain specific language, LangPFL. For simplicity, we assume 

the original FT from [21] with the BE Threat replacing the AT 

rooted in CAT.  

BFL & PFL Properties. Let us showcase different 

properties in natural language and their respective translation in 

BFL and PFL, starting with some BFL queries: 

 

1) What are the MCSs for the TLE that include the presence of 

Organic Matter and deterioration of Metallic Surface? 

[[𝑀𝐶𝑆(𝑊𝑄𝐹) ∧ 𝑂𝑀 ∧ 𝑀𝑆]]  (1) 

 

2) Are there MPSs for the Disinfectant-related subtree, given 

that the DBP and CRD BEs are guaranteed to fail? 

∃𝑀𝑃𝑆(𝐷𝑟)[𝐷𝐵𝑃 ↦ 1, 𝐶𝑅𝐷 ↦ 1]       (2) 

 

3) For all the possible configurations of BEs, are Broken Pipes 

& Gaskets plus Loss of Pressure sufficient for the TLE to fail? 

∀((𝐵𝑃𝐺 ∧ 𝐿𝑃) ⇒ 𝑊𝑄𝐹)  (3) 

 

Note that we use the double square brackets in query (1) to 

signify that we want all the MCSs that respect the given 

constraints, while we use the single square brackets in query (2) 

to set the value of specific elements in a FT to failed, with 1, 

and to operational, with 0. Finally, we can ask whether a 

property holds for at least one/for all the possible configurations 

of BEs via quantifiers (∃ and ∀respectively) as shown in queries 

(2) and (3). Extending BFL with PFL, we can specify some 

properties that include probabilities (we assume that BEs have 

already been assigned probability values):  

 

1) Is the probability of TLE occurring smaller than 0.01, if the 

subtree rooted in Pathway failed? 

𝑃𝑟<0.01(𝑊𝑄𝐹)[𝑃𝑎𝑡 ↦ 1]  (4) 

 

2) Assume that the probability of Organic Matter being present 

equals 0.15. What would then be the probability of 

Disinfectant-related risks? 

𝑃𝑟(𝐷𝑟)[𝑂𝑀 ↦ 0.15]    (5) 

 

3) Assume that both Disinfectant Loss and Permeation happen 

with certainty. Does this imply that the probability of TLE is 

greater than 0.015? 

𝑃𝑟=1(𝐷𝐿) ∧ 𝑃𝑟=1(𝑃𝑒) ⇒ 𝑃𝑟>0.015(𝑊𝑄𝐹)             (6) 

 

Note that one can set arbitrary probability values for FT 

elements – as shown in (4) and (5) – and can specify desired 

thresholds for failure probabilities as per queries (4) and (6). 

Furthermore, probability values for a given element can be 

computed anew considering what-if scenarios that account for 

different probabilities in the children of such an element (5). 

Finally, one can set assumptions on the failure probabilities of 

certain elements, to then check whether these values are 

sufficient to cause an increase exceeding given thresholds (6). 

 LangPFL. To ease usability, we showcase how these 

queries would be specified using the domain specific language 

presented in [20]. LangPFL is based on structured templates. 

One can specify assumptions on the status of FT elements by 

utilizing the assume keyword. These assumptions will be 

appropriately integrated in the translated BFL/PFL query: e.g., 

set or setp – to set values of FT elements – are translated with 

the according operators to set evidence, while other 

assumptions will be the antecedent of an implication. A second 

keyword separates specified queries from the assumptions and 

dictates the desired result: compute and computeall compute 

and return desired values, i.e., probability values and lists of 

MCSs/MPSs respectively, while check establishes if a specified 

property holds. Let us showcase these translations. The query 

in (1) would be expressed by:  

assume:    (7) 

         computeall:     

   MCS[WQF] and OM and MS  

 

Note that the section dedicated to assumptions is empty, as we 

are not capturing a what-if scenario. Then computeall is the 

keyword chosen to return all MCSs with desired filters. Queries 

in (2) and (3) would translate to: 

assume:    (8) 

set DBP = 1    

set CRD = 1    

         check:     

   exists MPS[Dr]    

 

assume:    (9) 

set BPG = 1    

set LP = 1    

         check:     

   forall WQF    

 

In (8) and (9), we see that assumptions are now populated and 

that we use the check keyword to check if the desired properties 

hold. Different kinds of assumptions would then be translated 

into different properties, as per the underlying formulations in 

(2) and (3). LangPFL can also handle property specification 

with probabilities. Queries (4), (5) and (6) would translate to: 

assume:    (10) 

set_prob Pat = 1    

             check:   

   P[WQF] < 0.01    

 

assume:    (11) 

set_prob OM = 0.15   

        compute:     

   P[Dr]     

 



assume:    (12) 

set_prob DL = 1    

set_prob Pe = 1    

        check:     

   P[WQF] > 0.015    

 

Operators to set evidence are now probabilistic, with setp, and 

the compute keyword is used to compute the probability value 

of the Dr element, given set assumptions (11). The check 

keyword remains to verify if a given property holds, as in the 

non-probabilistic case.  

4 QUERYING ATTACK TREES: ATM 

We now focus on the AT rooted in CAT, from Figure 1, by 

specifying some queries using ATM. Currently, this logic 

supports reasoning about (un)successful attacks and the 

formulation of properties about “cost” of attacks, “time” of an 

attack, both with parallel and sequential steps, “skill” needed by 

the attacker and “probability” of a successful attack [21]. Let us 

showcase some of these queries:  

 

1) Are the costs of performing Info Gathering and Phishing and 

a BadUSB Attack respectively lower than 30 and at most 15?  

𝐶𝑜𝑠𝑡(𝐼𝐺𝑃) < 30 ∧ 𝐶𝑜𝑠𝑡(𝐵𝑈𝐴) ≤ 15      (13) 

 

2) Is there an attack that guarantees success in executing the 

exploit without Dropping USBs in the Parking Lot? 

∃(𝐸𝐸[𝑈𝑃𝐿 ↦ 0])            (14) 

 

3) Is it necessary that a Privileged User Clicks on the Link from 

a malicious email to mount a successful Contamination Attack? 

∀(𝐶𝐴𝑇 ⇒ 𝑈𝐶𝐿)                     (15) 

 

4) Are the probability of a successful Contamination Attack and 

the parallel time of attack lower than 0.010 and 30 respectively? 

𝑃𝑟𝑜𝑏(𝐶𝐴𝑇) < 0.010 ∧ 𝑃𝑎𝑟𝑇𝑖𝑚𝑒(𝐶𝐴𝑇) < 30     (16) 

 

5) Is there an attack that ensures an attacker gains access to the 

system while keeping the cost under 35? 

∃(𝐶𝑜𝑠𝑡(𝐺𝐴) < 35)           (17) 

 

6) What is the minimal cost of the Contamination Attack 

assuming that the cost of the BadUSB Attack equals 40? 

𝐶𝑜𝑠𝑡(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 40]  (18) 

 

As shown with these queries, ATM has a greater expressive 

power than BFL and PFL, as ATM can express properties that 

are not only concerned about probabilities but also, e.g., cost. 

However, constructs seen in PFL remain available. E.g., one 

can set arbitrary values for given metrics, as shown in (18) for 

“cost”, can check bounds on metrics values – shown in (13), 

(16) and (17) – and perform quantification reasoning about 

some/all possible attacks. Furthermore, one can compute metric 

values, as in (18), or formulate queries that reason about 

different metrics: (16) reasons about a bounded “probability” of 

successful attacks, while also checking if a bound on parallel 

execution “time” of that attack is respected.  

5 QUERYING FAULT TREES WITH ATTACKS 

Integrating the logics. Having showed the capabilities of 

BFL, PFL and ATM we now propose a novel way to integrate 

these logics. The objective is to specify properties on FT/ATs 

that consider both the failure probabilities from the FT and how 

these are impacted by different metrics on the AT – e.g., success 

probabilities or “cost” of attacks. Writing such complex 

properties can be cumbersome, hence we propose to extend 

LangPFL to handle metrics also on ATs and FT/ATs, extending 

the application of setp operators on AT elements and 

introducing appropriate operators for other metrics, e.g., setcost 

for “cost”. Moreover, we introduce a new construct – that we 

name decorator – employed to specify different sets of 

assumptions. We showcase its usage in (22). Let us introduce 

and comment some meaningful examples, where the part of the 

property related to ATM is in red. For all these properties, we 

assume the complete model in Figure 1, rooted in WQF. 

 

1) Are the probabilities of TLE occurring and of an 

(Un)intended Contamination respectively lower than 0.010 and 

0.005, given that the probability of a successful BadUSB Attack 

is equal to 0.12 and the probability of a privileged user clicking 

a malicious link is equal to 0.04?  

𝑃𝑟<0.010(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦         (19) 
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.12, 𝑈𝐶𝐿 ↦ 0.04]] 
∧ 𝑃𝑟<0.005(𝑈𝐶)[𝐶𝐴𝑇 ↦ 
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.12, 𝑈𝐶𝐿 ↦ 0.04]]  

 

In this property, we consider the influence that the probability 

of success of two attack steps have on the failure probability of 

two FT elements. Given the what-if scenario where a BadUSB 

Attack and a privileged used clicking on a malicious email 

happen with probabilities 0.12 and 0.04 respectively, we can 

check whether the probabilities of both TLE and (Un)intended 

Contamination respect the given tresholds of 0.010 and 

0.005.With our extended version of LangPFL, one would 

specify this query in the following way: 

assume:    (20) 

set_prob BUA = 0.12   

set_prob UCL = 0.04   

        check:     

   P[WQF] < 0.010 and 

   P[UC] < 0.005 

  

The difference between (19) and (20) is noticeable: extending 

LangPFL allows practitioners to focus on property specification 

rather than worrying about cumbersome nesting of different 

logics, while still retaining needed expressivity.  

In this framework, one may also consider the influence that 

multiple security-related what-if scenarios pose on the same FT 

component, e.g.: 

 

2) Is the probability of TLE occurring lower than 0.08 in both 

the following scenarios: 1) when the probability of a successful 

BadUSB Attack is equal to 0.12 and the probability of a 

privileged user clicking a malicious link is equal to 0.04, 2) 



when these probabilities equal 0.34 and 0.10 respectively?  

𝑃𝑟<0.08(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦         (21) 
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.12, 𝑈𝐶𝐿 ↦ 0.04]] 
∧ 𝑃𝑟<0.08(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ 
𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)[𝐵𝑈𝐴 ↦ 0.34, 𝑈𝐶𝐿 ↦ 0.10]]  

 

This query keeps the threshold for the failure probability of 

TLE fixed, while varying assignments of probabilities on 

elements of the AT. This allows practitioners to guarantee that 

two different offensive scenarios will not influence the failure 

of TLE in undesired ways. To translate this intention in our 

extended version of LangPFL, we propose decorators: these 

constructs enclose a set of assumptions and allow the user to 

specify which properties must abide to a specific set of 

statements under the assume keyword. E.g., query (21) would 

be translated in the following way: 

assume:    (22) 

@A1:     

     set_prob BUA = 0.12   

     set_prob UCL = 0.04 

@A2:     

     set_prob BUA = 0.34   

     set_prob UCL = 0.10   

        check:     

   @A1(P[WQF] < 0.08) and 

   @A2(P[WQF] < 0.08) 

  

Where @A1 and @A2 are two different decorators, containing 

two different sets of assumptions: these are declared under the 

assume keyword, as shown before. Under the check keyword, 

each part of the formula that we want to check is decorated with 

either @A1 or @A2: assumptions in @A1 are applied to the 

former occurrence of P[WQF] < 0.08, while those in @A2 are 

applied to the latter.  

Furthermore, we can present queries that capture the 

interplay between AT metrics – other than probabilities – and 

failure probabilities of FT elements. E.g.: 

 

3) Is there an attack that guarantees that the failure probability 

of TLE would be at least 0.12 when the attacker is allowed to 

spend at most “cost” 30 to perform the Contamination Attack?  

∃(𝐶𝑜𝑠𝑡(𝐶𝐴𝑇) ≤ 30 ∧           (23) 

𝑃𝑟≥0.12(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)])         

 

In this query, we consider both the “cost” metric and the 

probability of failure of TLE. The existential quantifier would 

range over all possible states of the leaves (both the FT and AT 

ones), to guarantee that there is an attack such that the cost for 

CAT is at most 30 and that the TLE fails with probability at 

least 0.12. This translates to LangPFL in the following way: 

assume:    (24) 

set_cost CAT ≤ 30  

        check:     

   exists P[WQF] ≥ 0.12 

 

In this translation, differently from (11), we see that our 

assumption is on cost of an AT element instead of on 

probability of a FT element. Finally, we can elaborate on 

queries (22) and (24) to construct the following: 

 

4) Is there an attack that guarantees that: 1) the probability of 

TLE would be at least 0.12 and Info Gathering & Phishing costs 

at most 12 and 2) the probability of (Un)intended 

Contamination would be at least 0.08 and Exploit and Execute 

costs at most 5?  

∃((𝐶𝑜𝑠𝑡(𝐼𝐺𝑃) ≤ 12 ∧           (25) 

𝑃𝑟≥0.12(𝑊𝑄𝐹)[𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)]) ∧    

(𝐶𝑜𝑠𝑡(𝐸𝐸) ≤ 5 ∧             

𝑃𝑟≥0.08(𝑈𝐶)[𝐶𝐴𝑇 ↦ 𝑃𝑟𝑜𝑏(𝐶𝐴𝑇)]))         

 

This translates to LangPFL in the following way: 

assume:    (26) 

@A1:     

     set_cost IGP ≤ 12 

@A2:     

     set_cost EE ≤ 5   

        check:     

   exists @A1(P[WQF] ≥ 0.12) and 

   @A2(P[UC] ≥ 0.08) 

 

Here, we combine the use of decorators to specify different sets 

of assumptions for each conjunt in the property to check (22), 

with the construction of queries that reason about different 

metrics on the AT component of FT/ATs (23).  

6 FUTURE WORK 

Our contribution opens different interesting directions for 

further research. Firstly, validating the framework composed by 

BFL, PFL and ATM on different combinations of FTs and ATs 

could highlight further necessities when querying models for 

joint safety-security analysis. Secondly, developing an 

implementation of the proposed approach could propel 

adoption of these methods in the field of reliability engineering 

and w.r.t. safety-critical systems. Finally, conducting hands-on 

tests of such an implementation with practitioners would help 

us in refining the framework and in tailoring it to the needs of 

domain experts.   
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