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ABSTRACT

Brain atrophy and white matter hyperintensity (WMH)
are critical neuroimaging features for ascertaining brain in-
jury in cerebrovascular disease and multiple sclerosis. Auto-
mated segmentation and quantification is desirable but exist-
ing methods require high-resolution MRI with good signal-
to-noise ratio (SNR). This precludes application to clinical
and low-field portable MRI (pMRI) scans, thus hampering
large-scale tracking of atrophy and WMH progression, es-
pecially in underserved areas where pMRI has huge poten-
tial. Here we present a method that segments white mat-
ter hyperintensity and 36 brain regions from scans of any
resolution and contrast (including pMRI) without retraining.
We show results on eight public datasets and on a private
dataset with paired high- and low-field scans (3T and 64mT),
where we attain strong correlation between the WMH (ρ=.85)
and hippocampal volumes (ρ=.89) estimated at both fields.
Our method is publicly available as part of FreeSurfer, at:
http://surfer.nmr.mgh.harvard.edu/fswiki/WMH-SynthSeg.

1. INTRODUCTION

White matter hyperintensity (WMH) on magnetic resonance
imaging of the human brain is associated with stroke, cogni-
tive decline, and cardiovascular disease. WMH is frequently
detected in brain MRI scans in the general population with
chronic disease such as hypertension. A recent observational
study was performed in a safety net emergency setting evalu-
ating adult patients with a vascular risk factor who were be-
ing evaluated for a non-stroke complaint. In this cohort, more
than half of the subjects had WMH identified on portable, low
field MRI [1]. In addition, WMH is a hallmark of multiple

sclerosis (MS), a disease that creates a demyelination process
that may lead to disability [2]. The MS disease process is cor-
related with other neurodegeneration, leading to abnormally
high atrophy rates in different brain regions [3]. Closer moni-
toring of WMH and atrophy is thus desirable at a larger scale.

Inexpensive portable MRI (pMRI) technology is becom-
ing increasingly available for imaging WMH in the commu-
nity at large scale. For example, the low-field (64mT) Swoop
system (Hyperfine Inc) produces images that agree well with
high-field counterparts when WMH are scored by a radiolo-
gist [1]. A crucial component of large-scale deployment is au-
tomated segmentation and quantification of WMH and brain
regions, as manual identification and tracing of regions of in-
terest (ROIs) in 3D is impractical and irreproducible.

Quantification of WMH and brain anatomy (including at-
rophy) is also very desirable in clinical MRI. As opposed to a
research MRI, which is typically isotropic, clinical scans of-
ten comprise fewer slices acquired in 2D. These take less time
for clinical review and are less susceptible to motion artifacts.
Precise quantitative analysis of these scans would allow closer
tracking of atrophy and WMH progression.

A large array of methods exist for segmenting brain
anatomy and WMH. Representative classical methods in-
clude: FreeSurfer [4] and FSL [5] for brain ROIs; LST [6]
and BIANCA [7] for WMH; or SAMSEG [8, 9], which seg-
ments both. Machine learning techniques, often using convo-
lutional neural networks (CNNs), include: QuickNat [10] or
FastSurfer [11], for brain ROIs; or [12, 13] for WMH. These
methods are designed for conventional high-field MRI (1.5-
3T), and often have requirements in terms of resolution (typi-
cally 1mm isotropic), pulse sequence (often T1-weighted for
anatomy, FLAIR for WMH), or both. Therefore, they strug-
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gle with the huge variability in orientation (axial, coronal,
sagittal), resolution, and contrast of clinical MRI in real sce-
narios. This problem is exacerbated in pMRI, where the low
field imposes limitations in signal-to-noise ratio (SNR) that
are compensated with large voxel sizes, and where the geom-
etry of the scanner often leads to severe signal loss away from
its center. While domain adaptation [14] can mitigate these
problems to some extent, a CNN than can handle any MRI
contrast and resolution without retraining is highly desirable.

Here we present WMH-SynthSeg, a CNN that segments
WMH and brain anatomy from scans of any resolution and
contrast, including low-field pMRI. WMH-SynthSeg builds
on our previous work on domain randomization [15, 16]
to achieve such agnosticity. Compared with our previ-
ous method for simultaneous segmentation of WMH and
anatomy [17], WMH-SynthSeg: (i) does not require retrain-
ing; (ii) uses a specific WMH model and a composite loss to
improve sensitivity and specificity; (iii) adapts to low-field
MRI; and (iv) uses multi-task learning for enhanced robust-
ness. We show that, as a result, WMH-SynthSeg can robustly
segment WMH and anatomy from clinical and pMRI.

2. METHODS

2.1. Synthetic training data

WMH-SynthSeg relies on a synthetic MRI generator simi-
lar to [16], which requires a training dataset with N 1mm
isotropic T1-weighted (T1w) scans {In} and corresponding
3D segmentations {Sn}; these are defined on the same 1mm
isotropic grid and include labels for brain ROIs and WMH.

At every iteration during training: (i) a random pair
(In, Sn) is selected; (ii) (In, Sn) are augmented non-linear
deformation; (iii) a Gaussian mixture model conditioned
on the labels is sampled independently at every voxel, with
means and variances that are randomly sampled from uniform
distributions – except for the WMH class (details below);
(iv) the Gaussian image is corrupted by a random smooth
bias field; (v) random orientation and resolution are simu-
lated (via smoothing) to synthesize a lower resolution scan;
and (vi) the low-resolution scan is upsampled to the original
1mm isotropic grid. This process generates: the upsampled
synthetic scan Isyn, deformed segmentation S, deformed real
image I , and bias field B. All these are defined on the original
1mm grid (see [16] for examples of synthetic images).

The generator has 4 key improvements compared with [16]:
(i) The mean intensity of the WMH class is not distributed
across the whole range 0-255. Instead, we simulate WMH in
T2-like sequences (including FLAIR) and WM hypointensity
in T1w-like sequences. This is done as follows: when the
white matter (WM) mean is high (over 128), we constrain
the WMH mean to be lower than the WM mean (T1w-like).
Conversely, when the WM mean is below 128, we constrain
the WMH mean to be greater than the WM mean (T2-like).
(ii) The standard deviation of the noise (Gaussian variances)

and bias field strength is twice as large as in [16], to accom-
modate the lower SNR and stronger signal losses of pMRI.
(iii) The generator produces not only Isyn but also a deformed
image I and a bias field B that will be used as regression tar-
gets by the CNN in a multi-task learning setting. This boosts
the robustness of the CNN as shown in the experiments.
(iv) The sampling scheme for the random resolution covers a
wider spectrum of acquisitions. 25% of the time, we gener-
ate 1mm isotropic images, to support high-resolution scans.
Another 25% we generate clinical scans of random orienta-
tion with 1mm in-plane resolution and random slice spacing
between 2.5mm and 8.5mm. 25% of the scans mimic the res-
olution of the stock sequences that the Hyperfine Swoop ships
with (axial with ∼1.5mm in plane and 5mm spacing). The fi-
nal 25% simulates more isotropic scans acquired at low field,
with random voxel sizes between 2-5 mm in every direction.

2.2. Model architecture and training
WMH-SynthSeg uses a 3D U-net [18] with five levels, 64 fea-
ture maps per level, and group normalization [19]. Each level
has two convolutions (kernel size: 3x3x3) followed by ReLU
activations. The final layer has L+2 channels: the first L cor-
respond to the labels and are fed to a softmax layer to produce
soft segmentations; the last two correspond to the predicted
bias field and high-resolution T1w intensities.

Training uses the Adam optimizer to minimize a loss
function consisting of four terms with equal weight: the
cross-entropy and Dice scores between the predicted and
ground truth segmentations; the average ℓ1 error of the pre-
dicted T1w intensities (normalized such that the median
intensity of the WM is 1); and the ℓ1 error of the predicted
bias field (in logarithmic scale):

L = CE(S, Ŝ)−AvDice(S, Ŝ))+ |I− Î|+ | logB− log B̂|,

where Ŝ, Î , and B̂ are the predictions for the segmentation,
T1w intensities, and bias field, respectively.

We note that, while training with Dice may be more com-
mon in segmentation, combining it with cross-entropy has
two advantages. First, it provides a more informative gra-
dient in the first iterations of training, when the gradient of
the Dice loss is rather flat. And second, it explicitly penalizes
false positives in scans without WMH – in which the Dice
score for the WMH is zero independently of the prediction.
In addition, including I and B in the loss increases the ro-
bustness of the method, as shown by the experiments below.

At test time, the input scan is resampled to 1mm isotropic
resolution and fed to the CNN. Test-time augmentation is per-
formed by left-right flipping the image, flipping the output
back, and averaging with the non-flipped version. The first L
channels of the output yield the final segmentation; the out-
puts corresponding to the bias field and the T1w intensities
are a potentially useful by-product, but are disregarded here.

We train the CNN with PyTorch using 1603 voxel patches.
The validation loss typically converges in ∼105 iterations.



3. EXPERIMENTS AND RESULTS

3.1. Datasets

We used nine different datasets in our experiments, some just
for training (“Tr”), some for testing (“Te”), and some for both
using cross validation (“Tr/Te”).
HCP [20] (Tr): 897 1mm isotropic scans of young subjects
from the Human Connectome Project. We used FreeSurfer to
automatically segment the anatomy into 36 ROIs.
ADNI [21] (Tr): 1148 1mm isotropic scans from the ADNI.
We used FreeSurfer to segment the anatomy and WMH.
GE3T (Tr/Te): 20 cases with 1mm isotropic T1w and
1x1x3mm axial FLAIRs. This a subset of the WMH segmen-
tation challenge [22]. We combined the automated FreeSurfer
segmentation of the T1w with the manual delineations avail-
able for the FLAIRs into a single ground truth segmentation.
Singapore (Tr/Te): another subset of the challenge with 20
cases from a separate site (same MRI acquisitions and labels).
Utrecht (Tr/Te):another subset with 20 cases from a third site.
ISBI [23] (Tr/Te): 15 1mm isotropic T1w scans (segmented
with FreeSurfer) and 1x1x2mm axial FLAIRs with manually
traced WMH (merged with the anatomy into one label map).
FLI-IAM [24] (Tr/Te): T1w and FLAIR scans from 15 cases
with varying resolution but all close to 1mm isotropic. Con-
sensus WMH tracings are available from 7 raters, which we
merged with the FreeSurfer segmentations of the T1w scans.
ADHD [25] (Te): 20 1mm isotropic T1w scans from typically
developing control children and adolescents and no WMH.
MGH (Te): 12 MS patients from our hospital (MGH) with
1mm T1w and FLAIR, as well as pMRI axial T1w and FLAIR
(in-plane resolution: 1.6-1.8mm; slice spacing: 5-6mm).

3.2. Competing methods

We compare our method with: (i) SAMSEG [8, 9], which is
a Bayesian method that is adaptive to MRI contrast, and is (to
our best knowledge) the only existing method that can readily
segment anatomy and WMH from scans acquired with any
pulse sequence; and (ii) LST-LPA [26], which yields great
performance on FLAIR acquisitions but does not work on
other MRI contrasts. We also consider two ablations of our
method to assess the importance of its components: a version
with just Dice in the loss (similar to [17] but with domain
randomization), and a version without the prior on the mean
of the WMH class. We note that LST and SAMSEG operate
at the native resolution of the scan, whereas WMH-SynthSeg
always produces a 1mm isotropic segmentation.

3.3. Experimental setup

We analyze the performance of our proposed method WMH-
SynthSeg with three different experiments. The first exper-
iment assesses the performance of the method directly with
Dice scores. We first trained WMH-SynthSeg using GE3T

and Singapore (using 15 scans for validation), and tested on
ISBI, FLI-IAM, and Utrecht. We then reversed the roles to
obtain Dice scores for GE3T and Singapore. We note that
HCP and ADNI were also part of the training dataset in both
folds. We note that training inputs are all synthetic and that
the real images are only used as regression targets.

The second experiment assesses false positive rates (FPR)
using young healthy controls from the ADHD dataset. Since
WMH is not expected in these scans, we can use the estimated
WMH loads as a proxy for FPR. The model in this experiment
is trained with all the datasets from the first experiment.

The third experiment assesses the ability of the methods
to segment pMRI data, using the same model as in the sec-
ond experiment. We used the FreeSurfer segmentations of the
high-field 1mm T1w scans as ground truth for the anatomy,
and the LST segmentations of the high-field 1mm FLAIRs
as ground truth for the WMH. Since accurate co-registration
of low- and high-field scans is difficult due to nonlinear geo-
metric distortions, we use the correlation between the ground
truth and estimated ROI volumes to assess performance.

3.4. Results

Table 1 shows the average Dice across the high-field datasets
in the first experiment, for the WMH and for 23 representative
brain ROIs: brainstem, and left/right cortex, WM, hippocam-
pus, amygdala, thalamus, caudate, pallidum, putamen, ac-
cumbens, and cerebellum cortex and WM (we exclude less re-
liable ROIs, e.g., accumbens). WMH-SynthSeg outperforms
the competing methods across the board. The ablations show
that cross-entropy and multi-task learning have a moderate
positive impact on the segmentation of anatomy, whereas the
prior on mean of WMH component greatly boosts the perfor-
mance of the WMH segmentation. In absolute terms, our new
method yields competitive Dice scores for anatomy (Dice=.85
for isotropic T1w) and WMH (Dice=.62 in FLAIR, higher
than SAMSEG and LST). We also highlight its capability to
produce useful WMH segmentations from the T1w, with Dice
scores as high as those of the competing methods in FLAIR.

Method T1w FLAIR
Anat WMH Anat WMH

LST (LPA) N/A N/A N/A 0.57
SAMSEG 0.81 0.46 0.72 0.56

WMH-SynthSeg
(NoWMH-noCE-noMTL)

0.83 0.47 0.76 0.53

WMH-SynthSeg (NoWMH) 0.85 0.47 0.78 0.54
WMH-SynthSeg (full) 0.85 0.55 0.79 0.62

Table 1: Average Dice scores for anatomy (averaged over
23 ROIs) and WMH, on high-field T1w and FLAIR scans.
NoWMH-noCE-noMTL is the ablation without prior on the
WMH mean, cross-entropy term in the loss, or multi-task
learning (i.e., similar to [17]). NoWMH is the ablation with-
out the prior on the mean of the WMH intensities.



Input                    Ground truth             LST                        SAMSEG         WMH-SynthSeg

Fig. 1: Input, ground truth, and automated segmentations of a sample high-field scan from the Singapore dataset. The top row
shows the high-resolution axial view; the bottom row shows a lower resolution orthogonal view (in sagittal orientation).

Method T1w FLAIR
Hippo WMH Hippo WMH

LST (LPA) N/A N/A N/A -0.33
SAMSEG 0.71 0.63 0.69 0.64

WMH-SynthSeg (full) 0.89 0.75 0.86 0.85

Table 2: Correlation between ground truth volumetric mea-
surements obtained from high-field (FreeSurfer from T1w for
anatomy, LST from FLAIR for WMH) and from automated
segmentations of the pMRI (MGH dataset). The hippocam-
pal volumes (“Hippo”) are left-right averaged.

Figure 1 shows a qualitative comparison on a FLAIR scan
from the Singapore dataset, both in the high-resolution ax-
ial plane, and in a lower resolution orthogonal view (sagit-
tal). LST produces crisp segmentations of the WMH at native
resolution, but with many false positives around the septum
pellucidum (between the ventricles). SAMSEG, which also
operates at native resolution, struggles with partial volum-
ing (e.g., for the cortex) and often undersegments WMH. Our
method, on the other hand, produces isotropic segmentations
that are accurate for both anatomy and WMH.

In the FPR experiment with young controls, our method
produces on average 950 mm3. This is a low value compa-
rable to that produced by SAMSEG (877 mm3); we note that
LST is not compatible with the ADHD dataset as it has T1w
contrast. The ablated versions show increases to 1,150 mm3

(without the WM mean prior) and 1,850 mm3 (without the
prior or multi-task learning), highlighting the contribution of
these components to the accuracy of the algorithm.

Finally, Table 2 shows the correlations between the vol-
umetric measurements derived from the high-field scans
(ground truth) and the pMRI, for the WMH and for a rep-
resentative brain ROI (the hippocampus, which is tightly con-
nected with aging and many brain diseases, e.g., dementias).
LST completely fails at low field, as it was not designed for

(a) (c) (e)

(b) (d) (f)

Fig. 2: (a) High-field 1mm isotropic FLAIR from MGH
dataset. (b) LST segmentation, used as ground truth for
WMH. (c) High-field 1mm T1w. (d) FreeSurfer segmenta-
tion of (c), used for ground truth for anatomy. (e) pMRI of
the same subject at 2x2x5.8mm axial resolution. (f) WMH-
SynthSeg segmentation. We note that, despite affine align-
ment of the high-field images to the pMRI, the anatomy on
the slices is slightly different due to nonlinear distortion.

it. Being contrast agnostic, SAMSEG yields fairly strong cor-
relations (between .63 and .71). WMH-SynthSeg produces
very strong correlations (12-21 points higher than SAMSEG).
This is attributed to its excellent ability to adapt to low-field
images, which is qualitatively exemplified in Figure 2.

4. CONCLUSION

We have presented the first method that can simultaneously
segment brain ROIs and WMH in scans of any resolution and
contrast, including pMRI. Future work will include realistic
modeling of WMH and evaluation on pMRI from larger co-
horts. WMH-SynthSeg is publicly available and has potential
in analyzing pMRI acquired in medically underserved areas.
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