
RDA-INR: RIEMANNIAN DIFFEOMORPHIC AUTOENCODING VIA
IMPLICIT NEURAL REPRESENTATIONS

A PREPRINT

Sven Dummer
Mathematics of Imaging & AI (MIA)
Department of Applied Mathematics

University of Twente
Drienerlolaan 5, Enschede 7522 NB

the Netherlands
s.c.dummer@utwente.nl

Nicola Strisciuglio
Data Management & Biometrics (DMB)

Department of Computer Science
University of Twente

Drienerlolaan 5, Enschede 7522 NB
the Netherlands

n.strisciuglio@utwente.nl

Christoph Brune
Mathematics of Imaging & AI (MIA)
Department of Applied Mathematics

University of Twente
Drienerlolaan 5, Enschede 7522 NB

the Netherlands
c.brune@utwente.nl

ABSTRACT

Diffeomorphic registration frameworks such as Large Deformation Diffeomorphic Metric Mapping
(LDDMM) are used in computer graphics and the medical domain for atlas building, statistical latent
modeling, and pairwise and groupwise registration. In recent years, researchers have developed
neural network-based approaches regarding diffeomorphic registration to improve the accuracy and
computational efficiency of traditional methods. In this work, we focus on a limitation of neural
network-based atlas building and statistical latent modeling methods, namely that they either are
(i) resolution dependent or (ii) disregard any data/problem-specific geometry needed for proper
mean-variance analysis. In particular, we overcome this limitation by designing a novel encoder
based on resolution-independent implicit neural representations. The encoder achieves resolution
invariance for LDDMM-based statistical latent modeling. Additionally, the encoder adds LDDMM
Riemannian geometry to resolution-independent deep learning models for statistical latent modeling.
We showcase that the Riemannian geometry aspect improves latent modeling and is required for a
proper mean-variance analysis. Furthermore, to showcase the benefit of resolution independence for
LDDMM-based data variability modeling, we show that our approach outperforms another neural
network-based LDDMM latent code model. Our work paves a way to more research into how
Riemannian geometry, shape/image analysis, and deep learning can be combined.

Keywords shape space · Riemannian geometry · principal geodesic analysis · LDDMM · diffeomorphic registration ·
latent space · implicit neural representations

1 Introduction

Shape and image registration are important tools for analyzing object similarities and differences. To register two
images I and J , a function f(x) is constructed such that point f(x) in image J corresponds to x in image I . For
instance, when comparing two human brain images, one wants to match points on the same subpart of the brain. When
instead matching two shapes S and T , a function f(x) should assign to each point x on S a point f(x) on T in a
meaningful way. For example, when comparing two human shapes, one wants to match points on the arm of one human
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with points on the same arm of the other human. These image and shape registrations have, for instance, applications
in the medical domain. As the human anatomy varies from person to person, registration algorithms transform these
anatomies into a single coordinate frame. Once the anatomies are registered, it is possible to compare them and establish
correspondences between them.

Various registration frameworks are available, among which diffeomorphic registration frameworks such as Stationary
Velocity fields (SVF) [22, 23, 24, 25] and Large Deformation Diffeomorphic Metric Mapping (LDDMM). One specific
registration task is pairwise registration where a registration between exactly two objects is calculated [26, 27, 28, 29,
30, 31, 1]. To register multiple objects simultaneously, groupwise registration algorithms [32, 33, 34, 30] register all
the objects to the same template. In this process, the template can also be estimated to perform atlas building. The
estimated atlas is used for proper assessment of the differences between objects. Finally, besides plain diffeomorphic
registration, LDDMM is also used for modeling the variability of the data. Specifically, using the LDDMM Riemannian
distance, one can use the manifold variant of principal component analysis (PCA), called principal geodesic analysis
(PGA), to estimate the factors of variation given the data [35, 36].

Recently, these tasks have been solved via neural network models. For instance, neural network models exist for
speeding up the computation of pairwise registrations [2, 3, 4, 5, 11, 12], groupwise registrations [5, 7, 14, 13, 17], and
joint groupwise registration and atlas building [7, 14, 17]. Furthermore, attempts have been made to improve LDDMM
PGA by adding neural networks [16, 15]. Finally, all the approaches described above require a specific discretization of
the objects and the underlying registration domain. Often one does not immediately know the optimal discretization,
one might get memory issues when one refines the discretization, and neural network models might not generalize
well to other resolutions. Recently, resolution-independent methods avoiding this discretization showed improved
performance for diffeomorphic registration [21, 10, 18, 8, 9] and non-diffeomorphic registration [37].

Table 1 compares a comprehensive selection of relevant and representative neural network methods based on their main
features. In particular, we focus on atlas building, statistical latent modeling, physical consistency using LDDMM
Riemannian geometry, and resolution invariance/independence. In this work, we only classify models as physically
consistent if they use LDDMM, as it enables time-dependent non-autonomous behavior. In contrast, SVF, for example,
only allows autonomous stationary velocity vector fields. From the table, we notice that many methods do not have all

Table 1: Table comparing neural network-based diffeomorphic registration methods. The columns showcase the features
that a paper treats or does not treat. Our novel RDA-INR framework is the only work that addresses all the features.

Model Features
Atlas-building Stat. latent modelling Physical consistency Res. indep.

ResNet-LDDMM [1] ✓
R2Net [2]

Krebs. et al. [3] ✓
Shen et al. [4]
Quicksilver [5] ✓

Niethammer et al. [6]
Diff. Voxelmorph [7] ✓

DNVF [8] ✓
NePhi [9] ✓

Zou et al. [10] ✓
Fourier-Net+ [11]
DeepFLASH [12] ✓

LapIRN [13]
Aladdin [14] ✓

LDDMM-AE [15] ✓ ✓ ✓
DAE [16] ✓ ✓ ✓

Geo-Sic [17] ✓ ✓
NeurEPDiff [18] ✓ ✓
FlowSSM [19] ✓ ✓

NMF [20] ✓ ✓
NDF [21] ✓ ✓ ✓

RDA-INR (Ours) ✓ ✓ ✓ ✓

2



RDA-INR: Riemannian Diffeomorphic Autoencoding via Implicit Neural Representations A PREPRINT

the properties. For instance, to the best of our knowledge, no method exists for performing atlas building and statistical
latent modeling that is physically consistent and resolution independent.

There are two types of algorithms for joint atlas building and statistical latent modeling. On the one hand, we have
models that consider resolution-independent methods for shape data [38, 39, 21] but do not consider LDDMM physical
consistency. This physical consistency is required for properly dealing with longitudinal data and to properly calculate
the Fréchet mean and variance of the dataset:

µ = argmin
O

1

N

N∑
i=1

d(O,Oi)
2, σ2 =

1

N

N∑
i=1

d(µ,Oi)
2

where d is the Riemannian distance induced by LDDMM and {Oi}Ni=1 are N images or shapes. On the other hand, we
have the LDDMM literature that considers physically consistent methods [16, 15] that are not resolution-independent.

1.1 Contribution

Our work aims to illustrate the general benefit of the LDDMM physical consistency and the benefit of resolution-
independence properties. To achieve this goal, we introduce a novel model called Riemannian Diffeomorphic Autoen-
coding via Implicit Neural Representations (RDA-INR). Our model is designed to deal with the previously mentioned
issues of joint atlas building and statistical latent modeling. Although our model is also applicable to images, we mainly
focus on the special case of shapes.

Figure 1 shows how we arrive at our model. More precisely, our RDA-INR adds resolution-independent implicit neural
representations (INRs) to LDDMM PGA and adds Riemannian geometry to deep learning models for shape variability
modeling. Our method shares similarities with the deformable template model developed by Sun et al. [21]. However,
our model differs from theirs as we merge it with the LDDMM framework. Specifically, we use the Riemannian
deformation cost of LDDMM as a deformation regularizer. Moreover, instead of the signed distance representation of
shapes used by Sun et al. [21], we consider point cloud and mesh data.

Figure 1: Overview of our RDA-INR framework. We combine LDDMM PGA and resolution-independent implicit
neural representation (INR) methods used for joint encoding and registration. This combination yields a method for
statistical latent modeling and atlas building that is (i) physically consistent via LDDMM Riemannian geometry and (ii)
resolution independent.

First, we investigate the benefit of physical consistency. We treat the situation depicted in Figure 2 and show that the
Riemannian geometry is required for a proper mean-variance analysis. More precisely, we show that the Riemannian
geometry is needed to simultaneously achieve two objectives: obtaining a template as the Fréchet mean of the data and
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obtaining physically plausible deformations that align the template to the data. Finally, we show that the Riemannian
geometry improves the latent modeling as it leads to improved reconstruction generalization and more robustness to
noise.

Figure 2: Three latent model classes defined by mean-variance analysis capabilities. The calculation of the Fréchet
mean and the variance of a dataset depends on the length of the shortest path between objects. However, not all latent
models take this into account, which results in three categories of methods: methods considering the geodesic distance,
methods that do not consider the geodesic distance but still obtain a good Fréchet mean, and methods that do not
consider the geodesic distance and do not obtain a good Fréchet mean.

While the previous results illustrate the importance of physical consistency, we also treat the importance of resolution
independence by comparing our method to DAE [16]. We show that our model obtains higher-quality templates and
higher-quality reconstructions, demonstrating the benefit of resolution independence.

1.2 Outline

We organize the rest of the paper as follows. In Section 2, we discuss the related works. Subsequently, in Section 3, we
treat the background theory needed for our method. Specifically, we treat INRs and the implicit representation of shapes
(Section 3.1), the LDDMM framework (Section 3.2), and LDDMM PGA (Section 3.3). Section 4 introduces our neural
network model. In Section 5 we compare this model to the same model with a non-Riemannian regularization. We
also compare our method to DAE [16]. Finally, we summarize the paper, discuss some limitations, and discuss future
work in Section 6. In the appendices, we provide additional experiments and details, and some basics of Riemannian
geometry.

2 Related work

In this section, we contextualize our contributions by discussing related literature on principal geodesic analysis (PGA),
Riemannian geometry for latent space models, and neural ordinary differential equations (NODE).

2.1 Principal geodesic analysis

Principal component analysis (PCA) is a well-known technique that has applications in, among others, dimensionality
reduction, data visualization, and feature extraction. In addition, the probabilistic extension of PCA, called Probabilistic
PCA, can also be used to generate new samples from the data distribution [40]. A limitation of PCA and probabilistic
PCA is that they can only be applied to Euclidean data and not Riemannian manifold-valued data. To solve this
limitation, principal geodesic analysis (PGA) [41] and probabilistic principal geodesic analysis (PPGA) [42] are
introduced as extensions of PCA and probabilistic PCA, respectively.

PGA is applied in various domains. For instance, optimal transport (OT) uses PGA to define Fréchet means and
interpolations of data distributions called barycenters [43, 44]. Shape analysis uses PGA as well [41]. Different versions
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of shape PGA are obtained by choosing different Riemannian distances on the shape space. For instance, while in
Zhang and Fletcher [35] and Zhang et al. [36] an LDDMM-based distance is used for PGA, Heeren et al. [45] use a
thin shell energy as the Riemannian distance. Furthermore, besides shape analysis based on PGA, shape analysis tools
exist that use tangent PCA [46, 30] or that use a combination of tangent PCA and geodesic PCA [47].

Similar to how an autoencoder [48, 49] is a nonlinear version of PCA, our encoding framework can be viewed as
a nonlinear version of PGA and PPGA. Another neural network model that can be regarded as a nonlinear version
of PPGA is the Riemannian variational autoencoder (Riemannian VAE) [50]. The Riemannian VAE only considers
learning a latent space for data on finite-dimensional Riemannian manifolds for which the exponential map and the
Riemannian distance have an explicit formula. Hence, it can not be used for the infinite-dimensional Riemannian
manifold of shapes and images for which the LDDMM Riemannian distance does not have an explicit formula. Our
deformable template model extends the Riemannian VAE to this setting.

Bone et al. [16] and Hinkle et al. [15] construct an autoencoder that resembles LDDMM PGA [35]. While Hinkle et
al. [15] is only applicable to images, Bone et al. [16] is also applicable to meshes. Similar to our work, both use an
ordinary differential equation (ODE) to deform a learned template into a reconstruction. Moreover, they introduce a
regularizer on the velocity vector fields to let the ODE flow be a diffeomorphism. In contrast, while they use a specific
resolution for the images, shapes, and diffeomorphisms, we construct a resolution-independent method. For instance,
while Bone et al. [16] consider the mesh representation of shapes, we consider the state-of-the-art implicit shape
representation. Implicit shape representations allow us to acquire infinite-resolution shape reconstructions because the
shapes are represented by the zero level set of a function.

2.2 Riemannian geometry for latent space models

Latent space models based on neural networks are used for, among others, dimensionality reduction, clustering, and data
augmentation. Most of these models have the drawback that distances between latent codes do not always correspond
to a ’semantic’ distance between the objects they represent. One mathematical tool to solve this issue is Riemannian
geometry. Arvanitidis et al. [51] design a Riemannian distance between latent codes by defining the corresponding
Riemannian metric. This metric is defined as the standard Euclidean metric pulled back under the action of the decoder.
The shortest paths under this Riemannian metric are found by solving the geodesic equation via a numerical solver.
However, one can also find the shortest path by solving the geodesic equation via Gaussian processes and fixed point
iterations [52]. Another approach is to solve the geodesic minimization problem [53, 54]. In Arvanitidis et al. [55]
a surrogate Riemannian metric is proposed that approximates the Euclidean pullback metric and yields more robust
calculations of shortest paths. In Chadebec et al. [54], the Riemannian metric is incorporated into a Hamiltonian
Markov Chain to sample from the posterior distribution of a VAE. Geng et al. [56] enforce a Riemannian distance
structure by encouraging Euclidean distances in latent space to equal the Riemannian distance in the original space.
Consequently, linear interpolations correspond to points on the learned manifold.

Besides using the Riemannian metrics and the shortest paths for defining good distances, creating good interpolations,
and defining probability distributions on the latent space, they are also used for improved shape generation [54], for
improved clustering [57, 54], and for data augmentation [58].

Our novel latent model that uses implicit neural representations (INRs) is related to the Riemannian geometry for latent
space models literature. The reason is that we embed a Riemannian distance between a learned template and the other
reconstructed data points by using LDDMM as the Riemannian distance. The most relevant work that also attempts to
incorporate shape Riemannian geometry into an INR latent space model is Atzmon et al. [59]. However, their model
can not perform shape encoding and shape registration jointly. Moreover, it does not enforce a diffeomorphic structure.

2.3 Neural ODEs

The neural ODE (NODE) [60] is a first-order differential equation where the time derivative is parameterized by a
neural network. It has applications in learning dynamics [61, 62, 63, 64], control [65, 66], generative modeling [60, 67],
and joint shape encoding, reconstruction, and registration [68, 20, 21]. Furthermore, there is a bidirectional connection
between the NODE and optimal transport (OT). First, due to the fluid dynamics formulation of OT [69], NODEs can
be used to solve high-dimensional OT problems [70]. In addition, the learned dynamics can be complex and require
many time steps to be solved accurately. As a consequence, training NODEs can be challenging and time-consuming.
OT-inspired regularization functionals solve this issue as they simplify the dynamics and reduce the time needed to
solve the NODE [71, 72].

Our framework fits the bidirectional connection of NODEs and OT. First, we use a neural ODE to solve the LDDMM
problem, which is a problem that in formulation bears similarities to the fluid dynamics formulation of OT. Hence, our
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approach shares similarities with the works using NODEs to solve OT problems. In addition, we use cost functionals
inspired by LDDMM to regularize the NODE used for reconstruction and registration. This regularization fits the works
that use OT for regularizing the dynamics of NODEs.

3 Preliminaries

3.1 Implicit neural representations and implicit shape representations

In many variational problems, we need to optimize for an unknown image, a solution to a partial differential equation, a
velocity vector field for registration, or a shape. The idea behind INRs is to represent such objects by a neural network
fθ : Ω → Rn, where Ω can be a spatial or a spatiotemporal domain. This representation avoids discretization of the
objects and by optimizing over the neural network weights, we obtain a solution in an infinite dimensional space.
For example, methods that use fθ as parameterization of a velocity vector field or a deformation field achieve good
performance in diffeomorphic [10, 18, 8, 9] and non-diffeomorphic registration [37].

When representing shapes with INRs, the implicit shape representation is of interest. A shape S := {x | f(x) = c}
is described by the c level set of a function f : Ω → R on the image domain Ω ⊂ Rd. Given a shape S = ∂Sint with
interior Sint ⊂ Ω, two examples of common implicit representations are the signed distance function (SDF) with c = 0
and the occupancy function (OCC) with c = 0.5, respectively:

SDFS(x) =

{
infy∈S∥x− y∥2 if x ∈ Sint,

− infy∈S∥x− y∥2 if x /∈ Sint,
(1)

OCCS(x) =


0 if x /∈ Sint,

0.5 if x ∈ S,
1 if x ∈ Sint.

(2)

Unlike the traditional discrete representations such as point clouds, meshes, or voxel grids, the implicit shape represen-
tation is continuous as it represents the shape using a function. Consequently, we can obtain a mesh or point cloud at
an arbitrary resolution by using marching cubes [73]. INR methods that use this continuous representation, such as
DeepSDF [74], SIREN [75], and Occupancy Network [76], yield state-of-the-art shape encodings and reconstructions.
However, unlike the discrete representations, the implicit representation has the disadvantage of not providing point
correspondences between shape deformations. To remedy this issue, recent works [38, 39, 21] create template-based
INR models that allow for joint registration and encoding. These models parameterize a template shape with an INR
and transform it into other shapes to allow for shape matching.

3.2 Diffeomorphic registration and the LDDMM Riemannian distance

In this work, we focus on the LDDMM diffeomorphic registration framework. The objective of LDDMM is to find a
diffeomorphism ϕ : Ω → Ω that matches two objects O1 and O2 (e.g., images or shapes defined on the spatial domain
Ω ⊂ Rd) by deforming O1 into O2. More precisely, LDDMM wants ϕ ·O1 = O2 with ϕ ·O a left group action of the
diffeomorphism group on the set of objects. For instance, an image I : Ω → Rn can be deformed by a left group action
ϕ · I := I ◦ ϕ−1 and a shape S := {x | x on the shape} can be deformed by a left group action ϕ · S := ϕ(S).
To construct a diffeomorphism that achieves ϕ ·O1 = O2, LDDMM considers a subgroup of the diffeomorphism group.
This subgroup consists of diffeomorphisms emerging as flows of ordinary differential equations (ODEs). Define a
time-dependent vector field v : Ω× [0, 1] → Rd and assume v(·, t) ∈ V for some Banach space V . The corresponding
ODE is dx

dt = v(x, t) and it gives us a flow of diffeomorphisms:

∂ϕt
∂t

(x) = v(ϕt(x), t),

ϕ0(x) = x.
(3)

To make these ODE flows diffeomorphisms, one has to enforce smoothness on the velocity vector fields v(·, t) ∈ V .
Generally, this is accomplished by choosing an appropriate Banach space V and assuming v ∈ L1([0, 1], V ). One class
of such spaces are admissible Banach spaces:
Definition 1 (Admissible Banach spaces [30]). Let C1

0 (Ω,Rd) be the Banach space of continuously differentiable
vector fields ν on the open and bounded domain Ω ⊂ Rd such that both ν and its Jacobian Jν vanish on ∂Ω and at
infinity. Furthermore, define a Banach space V ⊂ C1

0 (Ω,Rd) and let ∥ν∥1,∞ := ∥ν∥∞ + ∥Jν∥∞ for ν ∈ V . The
Banach space V is admissible if it is (canonically) embedded in (C1

0 (Ω,Rd), ∥·∥1,∞). In other words, there exist a
constant C such that ∀ν ∈ V , ∥ν∥V ≥ C∥ν∥1,∞.

6
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Using these considerations, the subgroup that LDDMM considers is defined as
G := {ϕ1 | ϕt satisfies Equation (3) for some v ∈ L1([0, 1], V )}.

There might exist multiple ϕ ∈ G such that ϕ ·O1 = O2 for objects O1 and O2. The LDDMM approach selects the
’smallest’ ϕ ∈ G such that ϕ ·O1 = O2. To define ’smallest’, LDDMM uses the following Riemannian distance dG on
G:

dG(ϕ, ψ) := inf
v∈L1([0,1],V )

(∫ 1

0

∥v(·, t)∥V dt
)

s.t.
∂ϕt
∂t

(x) = v(ϕt(x), t), ϕ0(x) = x,

ψ = ϕ1 ◦ ϕ.
where ∥·∥V is a norm on V . The LDDMM approach selects the ϕ ∈ G such that ϕ ·O1 = O2 and dG(id, ϕ) is small.
Alternatively, in case the objects O1 andO2 belong to a set O of diffeomorphic objects, we can reformulate this problem
as finding a distance between the two objects O1 and O2:
Theorem 1 ([30]). Assume that V is an admissible Banach space. Then (G, dG) is a complete metric space. Fur-
thermore, assume we consider a set O := {ϕ ·Otemp | ϕ ∈ G} for some template object Otemp. Then we can define a
pseudo-distance dO(O1, O2) on O as

dO(O1, O2) := inf
ϕ

(dG(id, ϕ) | O2 = ϕ ·O1, ϕ ∈ G) (4)

or alternatively:

dO(O1, O2) = inf
v(·,t)

(∫ 1

0

∥v(·, t)∥V dt
)

s.t.
∂ϕt
∂t

(x) = v(ϕt(x), t), ϕ0(x) = x,

ϕ1 ·O1 = O2.

(5)

In addition, dO is a distance if the action ϕ→ ϕ ·Otemp is continuous from G to O given (i) the topology induced by
dG on G and (ii) some topology on O.

One particular example when ϕ→ ϕ ·Otemp is continuous as a mapping from G to O is when considering the shape
Otemp = {x | f(x) = 0)} = ∂A for some continuous function f and A ⊂ Rd some non-empty compact set. In this case
ϕ ·Otemp := ϕ(Otemp) and we use the topology induced by the Hausdorff distance on O. For more in-depth information
on the case of shapes seen as submanifolds of Rd, we refer to Bauer et al. [77]. Additionally, when considering images
as functions I : Ω → Rn and using the group action ϕ · I := I ◦ ϕ−1, dO is a distance for a specific class of ∥·∥V
[26, 78].

As mentioned above, the goal of LDDMM is to approximately solve Equations (4) and (5). However, it is known that
the solution ϕt to Equation (5) is reparameterization invariant. Hence, there exists an infinite number of t→ ϕt that
trace out the same curve in the diffeomorphism group and that all have the same integral cost. To resolve this issue,
LDDMM minimizes an energy that is not reparameterization invariant:
Theorem 2 ([30]). Assume that V is an admissible Banach space and let O := {ϕ ·Otemp | ϕ ∈ G} for some template
object Otemp. Then we can define the energy EG between two diffeomorphisms ϕ, ψ ∈ G as

EG(ϕ, ψ) := inf
v∈L1([0,1],V )

(∫ 1

0

∥v(·, t)∥2V dt
)

s.t.
∂ϕt
∂t

(x) = v(ϕt(x), t), ϕ0(x) = x,

ψ = ϕ1 ◦ ϕ.

(6)

Then EG(ϕ, ψ) = dG(ϕ, ψ)
2. Moreover, we define the induced energy EO on O as

EO(O1, O2) := inf
ϕ

(EG(id, ϕ) | O2 = ϕ ·O1, ϕ ∈ G)

or alternatively:

EO(O1, O2) = inf
v(·,t)

(∫ 1

0

∥v(·, t)∥2V dt
)

s.t.
∂ϕt
∂t

(x) = v(ϕt(x), t), ϕ0(x) = x,

ϕ1 ·O1 = O2.

(7)
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As EG(ϕ, ψ) = dG(ϕ, ψ)
2, EO(O1, O2) = dO(O1, O2)

2. More precisely, it can be shown that any ϕt solving the
energy minimization problem (7) solves the distance problem in Equation (5). Conversely, any constant speed curve
t → ϕt (i.e., ∥v(·, t)∥V stays constant over time) that solves the distance problem in Equation (5) solves the energy
minimization problem in Equation (7).

Using Theorem 2, LDDMM solves optimization problem (7) instead of optimization problem (5). To solve the energy
minimization problem (7), LDDMM solves the relaxed problem:

inf
v(·,t)

D(ϕ1 ·O1, O2) + σ2

∫ 1

0

∥v(·, t)∥2V dt

s.t.
∂ϕt
∂t

(x) = v(ϕt(x), t), ϕ0(x) = x,

where D is some data fidelity term and σ ∈ R. For instance, when dealing with images, one can use D(I1, I2) =
∥I1 − I2∥2L2(Ω) and ϕ · I = I ◦ ϕ−1.

3.3 Diffeomorphic latent modeling via LDDMM PGA

Besides registering two objects O1 and O2, the Riemannian distance in Theorem 1 can be used for statistical latent
modeling. Specifically, LDDMM is combined with principal geodesic analysis (PGA) for diffeomorphic latent modeling.
In the original papers, a Bayesian approach introduces LDDMM PGA. However, we introduce LDDMM PGA from a
slightly different perspective, namely closer to the original PGA formulation in [41].

The basic idea behind PGA is to first estimate a Fréchet mean and subsequently estimate a geodesic submanifold
that best explains the data. For finding the Fréchet mean within the LDDMM PGA framework, we consider the set
O := {ϕ ·Otemp | ϕ ∈ G} for some reference template Otemp. This reference template is arbitrary as for every O ∈ O,
we have O = {ϕ ·O | ϕ ∈ G}, which means that any O can be seen as the template. In LDDMM PGA, the Fréchet
mean is a template T ∈ O that minimizes the variance of the data. More precisely, the Fréchet mean should solve:

min
T

E
O∼ρ

[
dO(T , O)2

]
,

with ρ the distribution of objects O and dO given as the distance in Equations (4) and (5). Using Theorem 2, we can
also minimize:

min
T

E
O∼ρ

[EO(T , O)] .

Writing out EO using Equation (7) and approximating the expectation using N available samples {Oi}Ni=1, we get:

min
{vi(·,t)}N

i=1,T

1

N

N∑
i=1

[∫ 1

0

∥vi(·, t)∥2V dt
]

s.t.
∂ϕit
∂t

(x) = vi(ϕ
i
t(x), t), ϕi0(x) = x,

ϕi1 · T = Oi.

(8)

An optimization over a time-dependent velocity field is difficult. To circumvent this issue, the diffeomorphism can be
parameterized via an initial velocity vector field v0. More precisely, if V is a Hilbert space, the extrema of Equations
(6) and (7) satisfy the so-called EPDiff equation. This equation maps an initial velocity vector field v0 ∈ V to a
time-dependent velocity vector field v(·, t) that satisfies

∫ 1

0
∥v(·, t)∥2V dt = ∥v0(·)∥2V . Hence, defining ϕt as the flow

of diffeomorphisms corresponding to v(·, t), we can construct a map exp : V → G as exp(v0) := ϕ1. The exp map
allows optimization over initial velocity vector fields and it has been used for, among others, images [79, 35, 36, 31, 80]
and landmarks [28, 34]. While providing an in-depth treatment of the EPDiff equation is outside the scope of this
work, for our discussion here, it is sufficient to know that the initial velocities constitute the tangent space at the
identity diffeomorphism and that there exists an exponential map exp(v0) that maps an initial velocity vector field to
a diffeomorphism. This situation is similar to PGA where an initial tangent vector is mapped to an element on the
manifold via the exponential map. For more information on the EPDiff equation, we refer to Younes [30, 81].

Using the exp map, we replace the ODE in Equation (8) with ϕi := exp(vi,0) for some initial velocity vector field
vi,0 ∈ V . In addition, using the properties of the exp map, we replace

∫ 1

0
∥vi(·, t)∥2V dt by ∥vi,0∥2V . Finally, we replace

8
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the hard constraint ϕi1 · T = Oi by a soft penalty D(ϕi · T , Oi). Combining these adjustments yields:

min
{vi,0}N

i=1,T

1

N

N∑
i=1

[
D(ϕi · T , Oi) + σ2∥vi,0∥2V

]
s.t. ϕi = exp(vi,0),

(9)

where σ ∈ R. To optimize the initial velocity vector fields and the template, one creates discrete initial velocities vi,0
and a discrete version of the template. For instance, the template can be represented by a finite-resolution image or as a
mesh.

Now that we know how to solve for the Fréchet mean in LDDMM PGA, we only need to find a geodesic submanifold
that best explains the data. LDDMM PGA restricts the discretized initial velocities to a linear subspace via a, possibly
orthonormal, matrix W and a diagonal matrix Λ. Putting this into Equation (9) yields the LDDMM PGA problem:

min
W,Λ,{zi}N

i=1,T

1

N

N∑
i=1

[
D(ϕi · T , Oi) + σ2∥vi,0∥2V

]
s.t. ϕi = exp(vi,0), vi,0 =WΛzi.

(10)

Additional loss components related to priors on W , Λ, and the latent vectors can be added to the above optimization
problem. These priors relate to the standard Bayesian derivation to obtain the LDDMM PGA model [35, 36]. However,
these considerations are outside the scope of this work.

4 Riemannian Diffeomorphic Autoencoding via Implicit Neural Representations

Figure 3: Overview of our RDA-INR framework for resolution independent and physically-consistent statistical latent
modeling and atlas building. Our method maps a latent vector zi to an INR representing a time-dependent velocity vector
field vφ(·, t, zi). This velocity vector field defines a flow of diffeomorphisms ϕzit via an ODE. The diffeomorphisms
ϕzi1 create (reconstructed) objects Oi on a subset of the Riemannian LDDMM manifold M by deforming a learned
template Tθ. We obtain this deformation by parameterizing Tθ with an INR fθ and deforming fθ via a group action:
Ii(·, t) := (ϕzit )−1 · fθ. As the template and the velocity vector fields are parameterized by INRs, Ii is a 4D INR
deforming the template at t = 0 to a reconstruction at t = 1. The goal is to learn the template Tθ as Fréchet mean of the
data and to learn the Ii(·, t) paths as geodesics on M between the template Tθ and the data.

9



RDA-INR: Riemannian Diffeomorphic Autoencoding via Implicit Neural Representations A PREPRINT

Our model depicted in Figure 3 can be obtained similarly to how we derived LDDMM PGA in Section 3.3. Specifically,
we derive our model by starting at the LDDMM Fréchet mean problem [32, 82, 33, 34].

As shown in Section 3.3, if we want to find the Fréchet mean based on LDDMM, we should solve the problem in
Equation (8). In LDDMM PGA, one first parameterizes the time-dependent diffeomorphisms via an initial velocity field,
replaces the hard constraint with a soft penalty, and subsequently discretizes the template and the initial velocity vector
fields. For our model, we skip the initial velocity field parameterization and immediately replace the hard constraint
with a soft constraint using a general data-fitting term D and a σ ∈ R:

min
{vi(·,t)}N

i=1,T

1

N

N∑
i=1

[
D
(
ϕi1 · T , Oi

)
+ σ2

∫ 1

0

∥vi(·, t)∥2V dt
]

s.t.
∂ϕit
∂t

(x) = vi(ϕ
i
t(x), t), ϕi0(x) = x.

(11)

Here different data fidelity terms D can be chosen depending on the data.

For LDDMM PGA, we required discretization of the template and initial velocity vector fields to solve the optimization
problem in Equation (11). Furthermore, the discretization allows the restriction of the initial velocity vector fields
to a linear subspace. Our approach circumvents the need for discretization by parameterizing the template and time-
dependent velocity vector fields via INRs. Specifically, we parameterize ϕi1 by specifying the corresponding flow in
reverse time. Defining zi ∈ Rdz as the latent code belonging to the object Oi and vφ : Ω × [0, 1] × Rdz → Rd as
an implicit neural representation, the reverse time flow is given by ∂

∂tϕ
zi
t (x) = vφ(ϕ

zi
t (x), t, zi). Jointly learning the

weights φ and the latent codes zi gives:

min
φ,{zi}N

i=1,T

1

N

N∑
i=1

[
D((ϕzi1 )−1 · T , Oi) + σ2

∫ 1

0

∥vφ(·, t, zi)∥2V dt
]

s.t.
∂ϕzit
∂t

(x) = vφ(ϕ
zi
t (x), t, zi), ϕzi0 (x) = x.

(12)

Finally, we represent the template T by an implicit neural representation to obtain infinite-resolution reconstructions.
Specifically, when dealing with images we represent T as a neural network fθ : Ω → Rn and for shapes we represent it
with the zero-level set of a neural network fθ : Ω → R. In both cases, the group action on the implicit representation
becomes:

I(x, z, t) := ((ϕzt )
−1 · fθ)(x) := fθ(ϕ

z
t (x)), (13)

where I(x, z, 0) equals the implicit representation of the template and I(x, z, 1) is the reconstructed implicit representa-
tion of an object O. When dealing with shapes, we can obtain a mesh and point cloud for the reconstructed shape by
applying marching cubes on I(x, z, 1). Another strategy is to apply marching cubes to the template INR fθ to obtain a
template mesh MT and then retrieve the reconstructed mesh Mz by (ϕz1)

−1(MT ).

Note that the group action in Equation (13) is a group action on the implicit representation. When dealing with shapes,
the group action in Equation (13) can be associated to a group action on the template shape Tθ := {x | fθ(x) = 0},
namely ϕ · Tθ := ϕ(Tθ). In the case of images, Tθ = fθ and we can use the group action in Equation (13). Incorporating
the template Tθ and the associated group action into Equation (12) yields the final optimization problem:

min
θ,φ,{zi}N

i=1

1

N

N∑
i=1

[
D((ϕzi1 )−1 · Tθ, Oi) + σ2

∫ 1

0

∥vφ(·, t, zi)∥2V dt
]

s.t.
∂ϕzit
∂t

(x) = vφ(ϕ
zi
t (x), t, zi), ϕzi0 (x) = x.

(14)

Comparing Equation (14) with the LDDMM PGA optimization problem in Equation (10), we see several similarities
and differences. In both problems, we optimize over latent vectors zi and weights to define diffeomorphisms. However,
in LDDMM PGA, the weights construct a linear relationship between the latent vectors and discrete initial velocity
vector fields, while the weights in our model parameterize neural networks. This parameterization yields a nonlinear
relationship between latent vectors and the time-dependent velocity vector fields. Moreover, the velocity vector fields
and the template are not discretized in our model. Hence, our model still views the velocity vector fields and the
template as elements of infinite-dimensional spaces, making the model resolution-independent. Finally, due to the
nonlinear relationship between latent vectors and velocity vector fields, and the infinite-dimensional nature of the vector

10
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fields, it is not possible to enforce the orthogonality properties of LDDMM PGA using an orthogonal weight matrix W
as shown in Equation (10).

Up until now, we kept the data fidelity term D general such that the optimization problem in Equation (14) applies to
both images and shapes. In the case of images I1 and I2, D(I1, I2) = ∥I1 − I2∥22 is an appropriate data fidelity. When
considering point cloud or mesh data without point correspondences, it is not immediately obvious what data fidelity D
to use in combination with our INR representation of the template. As LDDMM PGA is focused on image data, our
numerical experiments focus on the novel point cloud and mesh data. We introduce the used data fidelity term for this
data in Section 4.1. After introducing the data fidelity term, we introduce the chosen ∥·∥V in Section 4.2. Subsequently,
in Section 4.3, we introduce the neural network parameterization of vφ and we treat how we numerically deform the
template to obtain a reconstruction. Finally, we treat how we can obtain latent codes for unseen instances in Section 4.4.

4.1 Data fidelity term for shape data

When dealing with shapes in the form of point cloud or mesh data, recent resolution-independent methods employ a
deformable template for joint shape encoding and registration [39, 21] and use D(I1, I2) = ∥I1 − I2∥L1(Ω) with Ii a
ground truth signed distance representation of the point cloud or mesh. However, there are two issues with such a D: (i)
signed distance functions of diffeomorphic shapes are not always diffeomorphic, and (ii) if they are diffeomorphic, they
influence the diffeomorphism that we find.

To illustrate the first issue, we take two circles of radii 0.75 and 0.1, respectively. Moreover, assume they are represented
by their SDF, as presented in Equation (1). These SDFs are shown in Figure 4. We note that minx∈Ω SDFS0(x) <
minx∈Ω SDFS1(x) as dark blue is present in the figure of the circle with radius 0.75 but not in the other figure.
Consequently, there does not exist a diffeomorphism that matches the two implicit representations (i.e., SDF images).
However, in Equation (14) we want to diffeomorphically match both to the same template implicit function. This
matching is not possible as the two SDFs can not be diffeomorphically registered.
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Figure 4: SDF values in [−1, 1]2 of a circle with radius 0.75 (left) and of a circle with radius 0.1 (right).

For the second issue, assume shapes S0 and S1 are represented by implicit functions that can be exactly matched. If a
point x0 in shape S0 has implicit function value s, it must be matched with a point x1 in shape S1 that also has implicit
function value s. By also matching points outside and inside the shape based on information like the SDF value, we
influence how the points on the shape are matched.

To overcome these issues, we use the approach used by Sitzmann et al. [75], Deng et al. [38], and Gropp et al. [83] for
learning an SDF from point cloud and mesh data. This approach uses the point cloud representation for training shapes
{Si}Ni=1 and uses the following data fidelity term D:

D((ϕz1)
−1 · Tθ,Si) := E

x∈Si

[|I(x, z, 1)|+ τ (1− Fcos(∇xI(x, z, 1), ni(x)))] ,

with I(x, z, t) given in Equation (13), τ ∈ R, ni(x) the unit normal of the shape Si at x ∈ Si, and Fcos the cosine
similarity:

Fcos(a, b) :=
⟨a, b⟩2

max(∥a∥2, ∥b∥2, 10−8)
, a, b ∈ Rd.

This data-fitting term solves the previously mentioned issues since it only focuses on matching points on the training
shapes with points on the template shape. In other words, all points on the training shapes are matched to the zero level
set of the INR fθ. However, using only this loss function encourages fθ = 0 as this ensures that all points are matched
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to the zero level set of fθ. To avoid this trivial template shape, we constrain the learned template in optimization
problem (14) via additional loss terms:

min
θ,φ,{zi}N

i=1

1

N

N∑
i=1

[
E

x∈Si

[|I(x, zi, 1)|+ τ (1− Fcos(∇xI(x, zi, 1), ni(x)))]

+β E
x∈Ω\Si

[exp (−α|I(x, zi, 1)|)] + σ2

∫ 1

0

∥vφ(·, t, zi)∥2V dt
]

+ λ E
x∈Ω

[|∥∇xfθ(x)∥2 − 1|]

s.t.
∂ϕzit
∂t

(x) = vφ(ϕ
zi
t (x), t, zi), ϕzi0 (x) = x,

I(x, z, t) := ((ϕzt )
−1 · fθ)(x) := fθ(ϕ

z
t (x)).

(15)

Here the penalty corresponding to λ ∈ R is an eikonal penalty, regularizing the template shape to be a signed distance
function as in Equation (1) and ensuring that fθ ̸= 0. Furthermore, the loss function involving the β parameter ensures
that only points on Si are matched to the zero level set of fθ. Both terms are used by Sitzmann et al. [75], Deng et al.
[38], and Gropp et al. [83] for learning an SDF from point cloud and mesh data.
Remark 1. Another approach to solve the issues is using the occupancy function in Equation (2) as the implicit
representation for the data and the template shape. Earlier works using occupancy functions as implicit representations
are Mescheder et al. [76] and Niemeyer et al. [68]. The reason occupancy functions solve the issues is that we only
match points inside (outside) shape S0 to points inside (outside) shape S1 and do not take into account information
like the SDF value. As the occupancy function and the occupancy values resemble probabilities, we can use the binary
cross entropy loss as data fidelity term D in optimization problem (14) [76, 68]. However, as shown in Appendix B,
our strategy that uses point clouds as data representation allows for higher-quality reconstructions. Consequently, we
use the point cloud data representation instead of the occupancy value data representation. Another reason for using
point cloud data is related to the shape representation used by diffeomorphic registration methods. Specifically, these
methods use either (i) meshes and point clouds or (ii) occupancy functions/segmentation masks. Our approach can deal
with both data types as (i) our method deals with point cloud data via an image-based technique, and (ii) we can deal
with segmentation masks via occupancy functions. We are showcasing the point cloud approach as, to the best of our
knowledge, it is the first approach for dealing with point clouds using image-based representations.

4.2 Choice of velocity field regularization term

For the norm ∥·∥V in optimization problems (14) and (15) we choose an isometric (rigid) deformation prior on the
velocity vector fields by combining the Killing energy [84, 85] with an L2(Ω) penalty:

∥ν∥2V :=

∫
Ω

∥(Jν) + (Jν)T ∥2F + η∥ν∥22dx, (16)

where ν is a velocity vector field, Jν the Jacobian of ν with respect to x, and η ∈ R. If η and the functional in Equation
(16) are small, then we expect the template to deform almost isometrically to the reconstructed objects via I(x, z, t) in
Equation (13). This property is interesting as it allows us to jointly perform affine registration and LDDMM registration.
Moreover, as shown in Appendix C, under certain conditions the Killing energy can be viewed as an extension of a
standard norm used in LDDMM.

4.3 Solving the ordinary differential equation

To solve optimization problems (14) and (15), we need to parameterize the velocity vector field vφ and solve the
resulting ordinary differential equation. Similarly to Gupta et al. [20] and Sun et al. [21], our model parameterizes vφ
as a quasi-time-varying velocity vector field. Concretely, using χA as the indicator function of A, we define K neural
networks vφk

: Ω× Rdz → Rd representing stationary velocity fields and define vφ as

vφ(x, t, z) =

K∑
k=1

χ[ k−1
K , k

K )(t) · vφk
(x, z). (17)

The main reason for this parameterization is that training time-varying velocity vector fields can be difficult as the
model does not have training data for 0 < t < 1. During training, we solve the ODE using an Euler discretization with
K time steps. Consequently, similar to ResNet-LDDMM [1], we approximate the ODE with a ResNet architecture.
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4.4 Encoding objects

We use the strategy from DeepSDF [74] to encode (new) objects. More precisely, we solve the following optimization
problem for encoding the object S:

min
z

Drec((ϕ
z
1)

−1 · Tθ,S) + γ∥z∥22, (18)

where γ ∈ R, ϕzt is defined via the ODE in optimization problems (14) and (15), Tθ is the learned template, and Drec

is some reconstruction data-fitting term. For instance, in case S is represented by a mesh or a point cloud, we use
Ex∈S [|I(x, z, 1)|] as Drec with I(x, z, t) given by Equation (13).
Remark 2. Our encoding procedure presented in Equation (18) is similar to the encoding strategy in PGA [41]. In PGA,
the first step is to find the Fréchet mean µ ∈M of the data lying on some manifold M . Subsequently, PGA identifies a
subspace W of the tangent space TµM such that most variability in the data is described by H = expµ(W ), where
expµ is the exponential map at µ. Finally, to project a data point p ∈M onto H , one calculates:

πH(p) = argmin
q∈H

d(p, q)2,

where d is the Riemannian distance on the Riemannian manifold M . Alternatively, this can be reformulated into a
minimization over the subspace W :

argmin
w∈W

d(p, expµ(w))
2.

Equation (18) resembles this optimization problem. First, we have p = S . Furthermore, (ϕz1)
−1 · Tθ should approximate

expµ in case we consider the LDDMM manifold with µ = Tθ. Although Drec is not a Riemannian distance, it replaces
the Riemannian distance d, as also done in, e.g., Charlier et al. [47]. Finally, instead of searching over the vector space
W , we search over a latent space that defines a point (ϕz1)

−1 · Tθ on the manifold. Hence, instead of finding an initial
velocity w ∈W to define a point q = expµ(w) on the manifold, we find a latent code z that determines a point on the
manifold.

5 Numerical results

In this section, we demonstrate the benefit of the physical consistency and resolution independence of our model. To
evaluate the benefit of physical consistency, we compare the Riemannian LDDMM regularizer to a non-Riemannian
regularizer. We utilize two shape datasets for this comparison: a synthetic rectangles dataset and a liver dataset
[21, 86]. Subsequently, we compare our method to DAE [16] on the liver dataset to illustrate the benefit of resolution
independence for LDDMM statistical latent modeling.

5.1 Physical consistency and statistical shape modeling via latent spaces

To assess whether physical consistency is desirable for statistical shape modeling via latent spaces, we compare
our model that regularizes the flow via the Riemannian LDDMM regularization (see Equation (15)) to our model
utilizing the non-Riemannian pointwise regularization, which is presented in Appendix D.2. The latter model is the
state-of-the-art baseline model by Sun et al. [21] with a different data-fitting term and a different approach to solving
the ordinary differential equation.

We assess the mean-variance analysis capabilities of the models by visualizing the learned templates and deformations
from the template to the training shapes. We relate our findings to Figure 2. Subsequently, we discuss reconstruction
generalization and robustness of the reconstruction procedure to noisy data. This discussion shows the effect of
Riemannian regularization on the quality and stability of the reconstruction procedure. We also relate this discussion to
Figure 2. For details about the data source, the data preprocessing, and the training, we refer to Appendix D.

5.1.1 Learning shape Fréchet means

For training the models with Riemannian LDDMM regularization, we need to pick a value for η. We choose η = 0.05
for the rectangles dataset as we expect rigid body motions from the template to the training shapes. For the liver
data, the only prior that we have is that the liver should not change too quickly. Hence, we pick η = 50 such that
∥·∥V ≈ η∥·∥L2(Ω).

After training, we obtain the template shapes in Figure 5. The templates obtained via the Riemannian regularization
and the non-Riemannian regularization look almost identical for the liver dataset. The reason is that there is no clear
deformation prior for the liver dataset besides that the liver should not change too quickly. The non-Riemannian
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(a) Liver Riemannian regular-
ization (η = 50).

(b) Liver non-Riemannian reg-
ularization.

(c) Rectangles Riemannian
regularization (η = 0.05).

(d) Rectangles non-
Riemannian regularization.

Figure 5: The learned templates of two different models trained on the rectangles dataset and the liver dataset. We
use the model learned using the Riemannian LDDMM regularization ((a) and (c)) and the model learned using the
non-Riemannian pointwise loss ((b) and (d)). We use η = 0.05 and η = 50 in Equation (16) for the rectangles and liver
dataset, respectively.

regularization induces this prior by construction while the Riemannian regularization enforces this by our choice of
η = 50. More precisely, as ∥·∥V ≈ η∥·∥L2(Ω) and as the pointwise loss can be interpreted as a non-Riemannian version
of the LDDMM regularization with ∥·∥V = ∥·∥L2(Ω) (see Appendix D.2), both regularizations induce the same prior
on the deformation. Hence, we expect similar templates in Figures 5a and 5b.

While the templates of the liver dataset look the same, the templates for the rectangles dataset differ. This difference
between the rectangles and the liver dataset stems from the difference in the prior. While the liver shapes should
only change gradually, the rectangles should also move rigidly. Consequently, we let the Killing energy play a more
prominent role in ∥·∥V in the Riemannian LDDMM regularization. This choice yields almost rigid deformations from
the template to the training shapes, which results in the square template in Figure 5c. As the pointwise loss does not
induce an isometry prior and is a non-Riemannian version of the LDDMM regularization with ∥·∥V = ∥·∥L2(Ω), we
obtain the spherical template in Figure 5d. This template is not desired as it lies outside the data distribution, as depicted
in the third category in Figure 2.

In summary, while on the liver dataset, the templates look similar, the Riemannian regularization is required for the
rectangles dataset to learn a template that fits the data distribution. Hence, the Riemannian LDDMM regularization
allows for more flexibility in learning a template shape that resembles the data.

5.1.2 Learning geodesic shape deformations

Figure 6: The deformation of the template into a reconstructed rectangle using the model learned using the Riemannian
LDDMM regularization (top) and using the model learned using the non-Riemannian pointwise loss (bottom). The
colors represent the matching of the points to their template.

In the previous section, we showed the effect of a regularizer on the learned Fréchet mean. To finalize the discussion on
Figure 2, we assess the variance calculation by qualitatively assessing whether the template deformations are geodesics.

In Figure 6 the template is transformed into a reconstructed training shape for each model trained on the rectangles
dataset. We notice that the non-Riemannian model quickly transitions from the spherical template to the target shape
and then has a tendency to stay in a nearly identical configuration. In contrast, the model with the Riemannian LDDMM
regularization smoothly rotates and scales the rectangular template shape to the final reconstructed shape. Hence, it fits
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Figure 7: The deformation of the template into a reconstructed liver using the model learned using the Riemannian
LDDMM regularization (top) and using the model learned using the non-Riemannian pointwise loss (bottom). The
colors represent the matching of the points to their template.

Figure 8: The velocity vector fields at t = 0 and t = 0.2 of the deformations in Figure 7. The colors represent the
magnitude of the velocity vector field. At t = 0.2, only the vector field at the tip of the shape is shown.

the rigid body motion prior induced by the Killing energy. As the non-Riemannian pointwise loss does not penalize big
abrupt deformations and does not use a rigid body motion prior, we obtain non-smooth and non-rigid deformations in
this case.

Regarding the liver dataset, Figure 7 shows that the deformation with the Riemannian LDDMM regularization is
smoother in time than the deformation with the non-Riemannian pointwise loss. Figure 8 reinforces this as it shows
that the vector field of the non-Riemannian model at time t = 0.0 is everywhere much larger than the vector field of
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the Riemannian model. Moreover, at t = 0.2, the vector field of the Riemannian model points in approximately the
same direction as at t = 0.0, while this does not apply to the non-Riemannian model. Hence, the vector field of the
Riemannian model is smoother in time.

To explain these observations, we note that the non-Riemannian pointwise loss encourages a rapid transition to the
target shape followed by a tendency to stay in a nearly identical configuration. Consequently, the velocity vector fields
at later times t fine-tune the obtained reconstructions. Hence, the velocity vector field at t = 0.2 does not necessarily
point in approximately the same direction as the velocity vector field at t = 0.0, as shown in Figure 8. In contrast,
with the Riemannian LDDMM regularization, rapid transitions are penalized, and it is preferred to gradually get closer
to the target shape. Consequently, the Riemannian regularization allows for a smooth, physically plausible template
deformation into the reconstructed shapes.

In Table 2, we summarize the discussion regarding Fréchet means and variance. The table shows that the Riemannian
LDDMM regularization is more flexible in influencing the template than the non-Riemannian pointwise loss. Moreover,
to obtain good variance estimates, the LDDMM regularization is needed to obtain geodesic deformations of the template
to the reconstructions. Hence, the model with the Riemannian LDDMM regularization is the only model in category
1 of Figure 2 and, therefore, is the model with the best mean-variance analysis. The Riemannian model allows us to
calculate Fréchet means of the data, to calculate physically-plausible geodesic deformations between the template shape
and another shape, and to approximate the Riemannian distance between the template and a target shape. Hence, we
have added Riemannian geometry to the latent space model.

Table 2: PGA performance. A summary of the results of Sections 5.1.1 and 5.1.2 regarding the models with Riemannian
LDDMM regularization and non-Riemannian pointwise regularization. The results relate to Figure 2.

Model Dataset Properties
Good Fréchet mean Good variance

Non-Riemannian Rectangles
Non-Riemannian Liver ✓

Riemannian Rectangles ✓ ✓
Riemannian Liver ✓ ✓

5.1.3 Generalizability of shape encoding

This section evaluates the reconstruction quality of the two different models by reconstructing the test sets of the
rectangles and liver dataset. We use the Chamfer Distance (CD) and the Earth Mover Distance (EM) as evaluation
metrics. Table 3 shows the reconstruction metrics of the training data. We see that both models perform approximately
equally on the training data.

Table 3: Training set evaluation. The model with the Riemannian LDDMM regularization and the model with the
non-Riemannian pointwise regularization are evaluated by reconstructing the training sets of the rectangles (Rect.) and
liver dataset. We calculate the average value and median (between brackets) of the Chamfer Distance (CD) and Earth
Mover distance (EM). The Chamfer Distance values are of the order 10−4. The best (smallest) values are in bold.

Model Dataset (metric)
Rect. (CD) Rect. (EM) Liver (CD) Liver (EM)

Non-Riemannian 0.27 (0.26) 0.0187 (0.0186) 1.108 (0.92) 0.0274 (0.0269)
Riemannian 0.33 (0.32) 0.0188 (0.0185) 1.12 (0.95) 0.0273 (0.0265)

Table 4 shows the reconstruction metrics on the test sets. We can immediately see that on the rectangle dataset, the
model with Riemannian LDDMM regularization performs the best. On the liver dataset, the method with Riemannian
regularization and the method with non-Riemannian pointwise regularization perform approximately equally.

The previous observations are related to the learned Fréchet mean. In the case of the rectangles dataset, we saw that the
model with the Non-Riemannian pointwise loss did not learn a Fréchet mean resembling the data. As a consequence,
the deformations of the spherical template do not end in proper rectangles. Hence, the fact that the model falls into
category 3 in Figure 2 might cause generalization problems for the pointwise loss model on the rectangles dataset. This
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Table 4: Test set evaluation. The model with the Riemannian LDDMM regularization and the model with the non-
Riemannian pointwise regularization are evaluated by reconstructing the test sets of the rectangles (Rect.) and liver
dataset. We calculate the average value and median (between brackets) of the Chamfer Distance (CD) and Earth Mover
distance (EM). The Chamfer Distance values are of the order 10−4. The best (smallest) values are in bold.

Model Dataset (metric)
Rect. (CD) Rect. (EM) Liver (CD) Liver (EM)

Non-Riemannian 8.20 (3.74) 0.0326 (0.0306) 5.23 (4.25) 0.0369 (0.0329)
Riemannian 1.83 (1.43) 0.0245 (0.0245) 5.31 (3.68) 0.0385 (0.0340)

view is strengthened by the results on the liver dataset where the pointwise loss model performs the best. In that case, a
physically plausible Fréchet mean is learned and the deformations end at a liver shape again. To summarize, a good
Fréchet mean improves generalization performance. Since we have already shown that physical consistency improves
the Fréchet mean, physical consistency can also enhance generalization performance.

5.1.4 Robustness to noise

In this section, we investigate how noise affects the reconstruction performance of the two models. We add random
Gaussian noise with mean zero and a standard deviation of 0.01 or 0.02 to the vertices of the meshes in the test set.
Subsequently, we reconstruct these noisy meshes and compare the reconstructions to the noiseless ground truth meshes.
Figure 9 provides some of these reconstructions. In general, both models are effective in denoising the illustrated input
meshes. On the rectangles, the Riemannian regularization produces good, noise-resistant reconstructions. The model
with the non-Riemannian regularization generates worse reconstructions and is affected by the noise, as illustrated by
the reconstructions, which gradually lose their rectangular shape when the noise increases. On the liver dataset, both
models produce satisfactory denoised reconstructions. However, while the model with Riemannian regularization yields
reconstructions that are approximately independent of the noise level, the model with non-Riemannian regularization
results in visibly different reconstructions when the noise level varies.

Figure 9: The reconstruction of two test shapes with added zero-mean Gaussian noise for different standard deviations
δ. The red and blue colors represent the matching of the points to the learned template.

To assess whether the observations concerning Figure 9 extend to other liver and rectangle shapes, Table 5 presents
the average and median reconstruction errors between the reconstructed shapes and the ground truth noiseless shapes.
Comparing the values to Table 4, we notice that on the rectangles dataset, the model with Riemannian LDDMM
regularization is much less sensitive to the noise than the model with the non-Riemannian regularization. On the liver
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Table 5: Noisy test set evaluation. The model with the Riemannian LDDMM regularization and the model with the
non-Riemannian pointwise regularization are evaluated by reconstructing noisy test sets (δ = 0.01 and δ = 0.02) of the
rectangles (Rect.) and liver dataset. We calculate the average value and median (between brackets) of the Chamfer
Distance (CD) and Earth Mover distance (EM). The values are obtained by comparing the noiseless shapes to the
reconstructions of their noisy versions. The Chamfer Distance values are of the order 10−4. The two best (smallest)
values are in bold.

Model δ Dataset (metric)
Rect. (CD) Rect. (EM) Liver (CD) Liver (EM)

Non-Riemannian 0.01 39.37 (4.48) 0.0409 (0.0310) 6.57 (3.97) 0.0405 (0.0369)
Non-Riemannian 0.02 54.82 (8.17) 0.0502 (0.0367) 10.49 (5.48) 0.0451 (0.0387)

Riemannian 0.01 2.01 (1.72) 0.0242 (0.0252) 5.95 (3.82) 0.0390 (0.0322)
Riemannian 0.02 4.06 (3.43) 0.0275 (0.0276) 6.53 (4.89) 0.0405 (0.0365)

dataset, the median values are relatively stable for both models. Moreover, the average reconstruction errors of both
models are not influenced much by a noise level of 0.01. However, when increasing the standard deviation to 0.02, the
non-Riemannian model attains a much bigger average reconstruction error. In contrast, the Riemannian model attains a
similar average error to the scenario with a 0.01 noise level.

The latter observation can be related to Figure 9 where the liver reconstructions obtained via the non-Riemannian model
are dependent on the noise level. As discussed in Section 5.1.2, the non-Riemannian regularization encourages a rapid
transition to the target shape followed by smaller deformations for fine-tuning. Such large displacements can cause
sensitivity to small changes and might yield worse or different reconstructions. Disallowing such large displacements
by applying the Riemannian regularization to the velocity vector fields stabilizes the problem.

Finally, we again notice a difference between the rectangle and liver dataset, which again stems from the learned Fréchet
mean. In the case of the rectangles dataset, the pointwise loss model does not learn a physically plausible Fréchet mean
of the data and the end of the template deformations do not correspond to test rectangles. In contrast, on the liver dataset
a physically plausible template is learned and the end of the template deformations do correspond to livers. These
observations strengthen our finding, as discussed in Section 5.1.3, that a physically plausible Fréchet mean, and hence
LDDMM physical consistency, enhances generalization performance.

5.2 INRs for LDDMM statistical latent modeling

To illustrate the benefit of INRs for topology-preserving latent modeling, we use the liver dataset and compare our
method to DAE [16]. We only compare to this method as this is the only neural network-based LDDMM latent model
that is designed to work for meshes.

First, we train on our original mesh data containing many vertices but without a smooth surface. Subsequently, we do
the same experiment for downsampled meshes with a much smaller amount of vertices: one dataset with non-smooth
meshes and one dataset with smoother meshes. The three mentioned datasets are depicted in Figure 10. To obtain
the downsampled non-smooth meshes, we take the original mesh data, calculate a 64 x 64 x 64 occupancy grid for
the meshes, and subsequently perform marching cubes [73] on the occupancy grid. To obtain a smooth version of the
meshes, we also calculate a signed distance grid and apply marching cubes to it.

(a) Original data (b) Downsampled non-smooth data (c) Downsampled smooth data

Figure 10: From left to right: the original mesh data, the downsampled version, and the downsampled smooth version.
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We train the DAE model only on the downsampled data as the model failed to converge to a proper solution on the
original data. On the other hand, we only train our model on the original data and the downsampled non-smooth data.
The reason is that this is noisier data and we shall see that our algorithm is agnostic to such noise.

First, we evaluate the learned templates trained on the downsampled data. These learned templates can be found in
Figure 11. The template learned by our model resembles the template that is learned using the original data, which is
depicted in Figure 5a. Hence, even with less detailed meshes we can learn a high-resolution template. Furthermore,
while the DAE template found using the non-smooth data looks non-smooth, the template found with the smooth
data looks quite smooth. The latter looks similar to the liver template found with the RDA-INR model. However, the
template found by DAE is less smooth than the template found by our model. The main reason for this is the smooth
structure of the INR parameterizing the Fréchet mean. In DAE the Fréchet mean is calculated by Deformetrica [87].
For Deformetrica we take a single sample from the dataset as initialization of the Fréchet mean. Hence, we inherit the
structure of this initialization, possibly causing a problem with the template.

(a) RDA-INR non-smooth data (b) DAE non-smooth data (c) DAE smooth data

Figure 11: The learned templates of RDA-INR and DAE on the downsampled datasets in Figure 10.

The effect of the templates on the reconstructions of test samples is shown in Figure 12. We see that the reconstructions
are heavily affected by the quality of the templates. On the other hand, our model does not seem affected by the
resolution of the dataset as the reconstructions of the model trained on the original data and the downsampled non-
smooth data are very similar. To strengthen these observations, we quantitatively assess reconstruction performance.
We compare the reconstructed meshes to the ground-truth mesh with many vertices via the Chamfer Distance and the
Earth Mover Distance. These metrics are calculated between the reconstructed mesh and many points sampled from the
original mesh. The results are presented in Table 6. We can see that our model outperforms the DAE method and that
our model does not deteriorate much when using the downsampled data.

(a) RDA-INR fully detailed
original data

(b) RDA-INR downsampled
non-smooth data

(c) DAE downsampled non-
smooth data

(d) DAE downsampled
smooth data

Figure 12: Reconstructions of a specific test sample using models trained on different variants of the original liver data.

Table 6: Train and test evaluation of RDA-INR and DAE. The table presents the average values and medians (between
brackets)of the Chamfer Distance (CD) and Earth Mover distance (EM). The values are obtained by comparing the
original data to the reconstructions obtained using the dataset the model is trained on. These values are calculated for
the shapes in the train and test splits of the liver dataset. The Chamfer Distance values are of the order 10−4. The best
(smallest) values for the downsampled data are in bold.

Model (Dataset) Data split (metric)
Train (CD) Train (EM) Test (CD) Test (EM)

RDA-INR (Original data) 1.12 (0.95) 0.0273 (0.0265) 5.31 (3.68) 0.0385 (0.0340)

DAE (Non-smooth) 4.47 (4.01) 0.0350 (0.0339) 13.52 (10.22) 0.0479 (0.0443)
DAE (Smooth) 4.12 (3.54) 0.0344 (0.0330) 14.46 (11.10) 0.0492 (0.0464)
RDA-INR (Non-smooth) 1.61 (1.45) 0.0288 (0.0282) 6.34 (4.17) 0.0402 (0.0351)
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6 Conclusion and future work

Several works recently developed neural network models regarding diffeomorphic registration, such as models for
pairwise and groupwise registration, atlas building, and data variability modeling. We presented an overview of the
current literature on neural networks for diffeomorphic registration and categorized the works depending on several
features. This categorization highlights several research gaps. For instance, the LDDMM-based statistical latent
modeling approaches are not resolution independent. Moreover, resolution-independent neural network algorithms for
joint shape encoding and groupwise registration do not use the Riemannian geometry of shape space, which is a crucial
component of LDDMM PGA. Consequently, these latent space models do not provide insights about shape Fréchet
means, geodesics, Riemannian distances between shapes, and data variance.

We have addressed the aforementioned two limitations to highlight the importance of resolution independence and
LDDMM physical consistency. Specifically, we presented an INR-based latent model inspired by LDDMM PGA.
This resolution-independent model is a deformable template model that solves the Fréchet mean finding problem in
LDDMM-based PGA. The main ingredient in this model is the Riemannian regularization on the neural network that
deforms the template. Although our model also applies to images, we mainly focus on the case of point cloud and mesh
data.

First, we discussed the importance of LDDMM physical consistency by comparing our model to the model with a
non-Riemannian pointwise regularization on the deformation. We show that the Riemannian regularization is necessary
for the model to perform a proper mean-variance analysis. In other words, our model allows calculating a Fréchet mean
of the data, obtaining geodesics and approximating the distance between the template and another object, and estimating
the data variance. Furthermore, we demonstrate that the Riemannian regularization can improve the reconstruction of an
object and the stability of the reconstruction procedure. In other words, the Riemannian regularization induces a prior
that enables us to find more stable factors of variation. Finally, we assess the importance of resolution-independence
by comparing our model to another neural network model inspired by LDDMM PGA. We demonstrated improved
template learning and improved reconstructions.

In summary, we show how shape and image analysis, Riemannian geometry, and deep learning can be connected. This
connection paves the way to more research into how these different disciplines can reinforce each other.

6.1 Future work

An example of such research for our deformable template model is related to our model’s template deformations.
Our learned template deformations constitute geodesics between the template and the reconstructed objects. This
makes it possible to obtain template deformations that fit a prior and to reconstruct objects using the end point of
such a deformation. However, for some objects in the geodesic, there might not exist a latent code and corresponding
reconstruction. As these objects fit a modeling prior, we would like them to correspond to a latent code. To achieve
this objective, we might employ the velocity vector field parameterization from Lüdke et al. [19]. In addition, even
though our model can estimate the distance between the Fréchet mean and the training data via the aforementioned
geodesics, we do not use this for generative modeling. In other words, we do not use the distance calculation for
defining a Riemannian distribution on the latent space.

Moreover, we focus on the latent modeling capabilities of our model and not the registration capabilities. Hence, it
might be interesting to compare our model to neural network models for pairwise and groupwise registration. As these
methods often use the more expressive resolution-dependent U-NET architectures, we hypothesize that these methods
would still outperform our latent model. We believe it would be interesting to research resolution-independent neural
operator variants of our model that more resemble the U-NET architectures. Finally, our model is not only applicable to
shapes but also to images. In future work, we would like to assess our model on image data as well.
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Appendices
Appendix A Riemannian geometry

In this section, we briefly present a high-level overview of some key concepts of differential geometry and Riemannian
geometry. For more in-depth information, we refer to [88].

Manifolds are the main object in Riemannian geometry and differential geometry. Intuitively, a d-dimensional manifold
M is a set that locally looks like Rd. An example of a manifold is the sphere. Moreover, a submanifold N of M is a
subset of M that is also a manifold.

To define differentiability on manifolds and submanifolds, we need a differentiable manifold. An important notion for
differentiable manifolds is the tangent space TpM at a point p ∈M , which can be thought of as the tangent plane to the
manifold at p. More formally, the tangent space can be defined as:
Definition 2 (Tangent space). Assume we have a smooth curve γ : R → M with γ(0) = p. Define the directional
derivative operator at p along γ as

Xγ,p : C∞(M) → R
f → (f ◦ γ)′(0),

where C∞(M) denotes the set of smooth scalar functions on M . Then the tangent space TpM is defined as TpM :=
{Xγ,p | γ(0) = p, γ smooth}.

These tangent spaces can be used to define shortest paths on manifolds. For defining shortest paths, we need a
Riemannian manifold:
Definition 3 (Riemannian manifold). Let M be a differentiable manifold. Define a Riemannian metric g as a smoothly
varying metric tensor field. In other words, for each p ∈M , we have an inner product gp : TpM × TpM → R on the
tangent space TpM . The pair (M, g) is called a Riemannian manifold.

We note that submanifolds N inherit the differential structure and the Riemannian metric structure of M . Using the
metric structure, we define shortest paths between p and q as minimizers of:

dM (p, q) = min
γ

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

s.t. γ(0) = p, γ(1) = q,

(A.1)

where γ̇(t) is the tangent vector at γ(t) generated by γ. In this case, Equation (A.1) defines a Riemannian distance on
M and the minimizer γ∗ is called a (Riemannian) geodesic.
Remark 3. In case M = Rd and gp(a, b) = ⟨a, b⟩2, we have dM (p, q) = ∥p− q∥2 and γ∗(t) = p+ t(q − p).

Given a geodesically complete manifold, for any point p ∈ M and tangent vector ṗ ∈ TpM , there exists a unique
geodesic γ with γ(0) = p and γ̇(0) = ṗ. The unique solution at t = 1 is given by the exponential map expp(ṗ) := γ(1).
The exponential map allows mapping tangent vectors in TpM to points on the manifold. Consequently, we can execute
several manifold operations on a tangent space instead of on the manifold. For instance, the exponential map is used in
PGA to obtain a manifold version of PCA.

Finally, the Riemannian distance allows us to define manifold extensions of means in vector spaces and allows us to
define a specific type of submanifold:
Definition 4 (Fréchet mean). Let ρ be a probability distribution on M . The Fréchet mean µ is defined as

µ = argmin
q∈M

∫
M

d2M (p, q)dρ(p).

If we only have a finite sample {pi}Ni=1 with pi ∈M , the Fréchet mean µ is defined as

µ = argmin
q∈M

1

N

N∑
i=1

d2M (pi, q).

Definition 5 (Geodesic submanifold). A geodesic submanifold of a Riemannian manifold M is a submanifold N such
that ∀p ∈ N , all geodesics of N passing through p are also geodesics of M .
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Appendix B Occupancy data versus point cloud data

In the main text, we discuss two data fidelity terms that can be used in our implicit encoding model. One approach uses
occupancy functions with a binary cross entropy data fidelity term, while the other approach uses point cloud data. To
showcase the difference between the two approaches, we perform an experiment on the rectangle data as used in the
numerical results section. The exact same training parameters are used.

In Figures B.1 and B.2, we see the learned templates and an example of a reconstructed training shape, respectively.

(a) Occupancy data. (b) Point cloud data.

Figure B.1: The learned template of the model learned using occupancy functions (left) and the model learned using the
point cloud data (right).

(a) Occupancy data. (b) Point cloud data.

Figure B.2: The reconstructions of a particular training shape when using the model learned using occupancy functions
(left) and the model learned using the point cloud data (right).

Figure B.1 shows that both templates resemble a square. Figure B.2 demonstrates that the reconstructions with the
occupancy data are worse than the reconstructions with the point cloud data. One possible explanation is that the point
cloud loss function encourages the shape’s points to lie on the zero level set of the implicit representation. When using
occupancy values, we focus more on the domain around the shape and train on uniformly sampled occupancy values to
regress the occupancy function. Hence, when working with point clouds, the emphasis is on the shape itself, rather than
the surrounding domain, which is the case with occupancy functions. The focus on the shape itself makes it possible
to better reconstruct its details. As the point cloud method yields better reconstructions, we use this method for the
numerical experiments.
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Appendix C Killing energy as standard LDDMM norm

In the LDDMM literature, a commonly used ∥·∥V is the norm induced by ⟨ν, ω⟩V := ⟨Lν, ω⟩ with L : V → V ∗,
⟨·, ·⟩ the canonical duality pairing, and ν, ω ∈ V . In many papers, L = (id − α∆)c for some α ∈ R and c ∈ N, and
⟨Lν, ω⟩ := ⟨Lν, ω⟩L2(Ω). In this section, we show that under certain conditions the Killing energy can be interpreted as
an extension of ∥ν∥2V = ⟨Lν, ν⟩L2(Ω) with L = (id − α∆):
Theorem 3. Assume we use the following norm:

∥ν∥2V =

∫
Ω

1

2
∥Jν + (Jν)T ∥2F + η∥ν∥22dx, (C.1)

where Ω ⊂ Rd is a bounded domain. Moreover, we assume that ν ∈ V is sufficiently many times differentiable and that:∫
∂Ω

⟨ν, (Jν + (Jν)T )n⟩l2dx = 0, (C.2)

where n is the normal to the boundary. Both assumptions are, for instance, satisfied when V ⊂ C2
0 (Ω,Rd) where

C2
0 (Ω,Rd) is the space of twice continuously differentiable vector fields ν on the open and bounded domain Ω ⊂ Rd

such that both ν and its Jacobian Jν vanish on ∂Ω and at infinity.

Given the assumptions, we have:

∥ν∥2V =

∫
Ω

⟨(η id −∆−∇ · ∇T )ν, ν⟩l2dx =

∫
Ω

⟨L̃ν, ν⟩l2dx,

where L̃ := η id −∆−∇ · ∇T and (∇ · ∇T )ν = ∇ · (Jν)T with the divergence taken row-wise.

Proof. First, define νi as the i-th component of the vector field ν. As the Frobenius norm comes from an inner product
and ∥A∥2F = ∥AT ∥2F , we obtain

1

2
∥Jν + (Jν)T ∥2F = ∥Jν∥2F + ⟨Jν, (Jν)T ⟩F

=

d∑
i=1

⟨∇νi,∇νi⟩l2 +
〈
∇νi,

∂

∂xi
ν

〉
l2

=

d∑
i=1

〈
∇νi,∇νi +

∂

∂xi
ν

〉
l2

.

Using this identity, we obtain:∫
Ω

1

2
∥Jν + (Jν)T ∥2Fdx =

∫
Ω

d∑
i=1

〈
∇νi,∇νi +

∂

∂xi
ν

〉
l2

dx =

d∑
i=1

∫
Ω

〈
∇νi,∇νi +

∂

∂xi
ν

〉
l2

dx.

Subsequently, using ∇ · (νi∇νi) = ⟨∇νi,∇νi⟩l2 + νi∆νi and ∇ · (νi ∂
∂xi

ν) =
〈
∇νi, ∂

∂xi
ν
〉
l2
+ νi∇ · ( ∂

∂xi
ν), we get:∫

Ω

1

2
∥Jν + (Jν)T ∥2Fdx =

d∑
i=1

∫
Ω

∇ ·
(
νi

(
∇νi +

∂

∂xi
ν

))
− νi

(
∆νi +∇ ·

(
∂

∂xi
ν

))
dx.

Applying the divergence theorem yields:∫
Ω

1

2
∥Jν + (Jν)T ∥2Fdx =

d∑
i=1

(∫
∂Ω

〈
νi

(
∇νi +

∂

∂xi
ν

)
, n

〉
l2

dx−
∫
Ω

νi

(
∆νi +∇ ·

(
∂

∂xi
ν

))
dx

)
.

Doing some rewriting yields:∫
Ω

1

2
∥Jν + (Jν)T ∥2Fdx =

∫
∂Ω

〈
ν,
(
Jν + (Jν)T

)
n
〉
l2
dx−

∫
Ω

〈
ν,
(
∆+∇ · ∇T

)
ν
〉
l2
dx.

Finally, using our assumption in Equation (C.2) gives:∫
Ω

1

2
∥Jν + (Jν)T ∥2Fdx = −

∫
Ω

〈(
∆+∇ · ∇T

)
ν, ν
〉
l2
dx.
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Using the above in combination with Equation (C.1), we get:

∥ν∥2V =

∫
Ω

1

2
∥Jν + (Jν)T ∥2F + η∥ν∥22dx

=

∫
Ω

〈(
η id −∆−∇ · ∇T

)
ν, ν
〉
l2
dx

=

∫
Ω

〈
L̃ν, ν

〉
l2
dx.
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Appendix D Implementation details

D.1 Neural network architectures

Figure D.1: The architectures for the template neural network fθ and the stationary velocity vector fields vφk
in

Equation (17). The small red boxes correspond to the latent code input z and the spatial input x. Furthermore, the small
blue box corresponds to an output, while the rectangles are linear layers with dvel or dµ output dimensions. Finally, the
⊕ and ⊗ stand for elementwise addition and scalar/elementwise multiplication, respectively.

Figure D.1 shows the used neural network architectures. For the template neural network, we use nearly the same
architecture as the template neural network in [38]. The only difference is that we use ReLU activation functions
instead of sine activation functions. In our experiments, we clamp the output of the template neural network to the
interval [−0.5, 0.5]. The stationary velocity vector field neural networks vφk

in Equation (17) use the architecture
in [21]. However, there are some differences. First, we add an extra linear layer at the output. We also add a scalar
multiplication with the function hϵ. This component ensures the velocity vector field is zero outside Ω, which is needed
to let the ODE be a diffeomorphism on Ω.

D.2 Pointwise loss

The models by [39] and [21] are similar to our model. However, in contrast to our work, they do not use a Riemannian
distance to regularize the time-dependent deformation of the template. Hence, we can not expect a physically plausible
deformation that constitutes a geodesic. They use the pointwise regularization given by:

Lpw =
∑
t∈T

N∑
i=1

M∑
j=1

L0.25 (∥ϕi(pij , t)− pj∥2) ,

where L0.25 is the Huber loss with parameter equal to 0.25, T is a set of predefined time instances at which to evaluate
the pointwise loss, {pij}Mj=1 are M points from the domain, and ϕi(·, t) := ϕzit (·) with ∂

∂tϕ
z
t (x) = vφ(ϕ

z
t (x), t, z) and

ϕz0(x) = x. For our purposes, we follow [39] and [21] and choose T = {⌊K/4⌋ · i | 1 ≤ i ≤ K/⌊0.25K⌋, i ∈ N} with
K the number of stationary velocity vector fields in vφ(x, t, z) =

∑K
k=1 χ[(k−1)/K,k/K)(t) · vφk

(x, z).
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In [21], the model uses the above loss to learn a template shape with similar features to the training shapes. Hence,
similar to our Riemannian regularization

∫ 1

0
∥v(·, t)∥2V dt, the pointwise loss is aimed at learning a proper template.

Furthermore, note that when choosing ∥·∥V = ∥·∥L2(Ω) and defining d
dtx(t) = vφ(x(t), t, z), our Riemannian

regularization penalizes large differences between x(1) and x(0). As the pointwise loss penalizes a large ∥x(1)−x(0)∥2
as well, the pointwise loss can be seen as a non-Riemannian version of our Riemannian LDDMM regularization.

D.3 Datasets

In our work, we use two datasets: a synthetic rectangles dataset and a shape liver dataset [21, 86].

The synthetic rectangles dataset is created by generating random boxes with edge lengths uniformly distributed in
[0.15, 0.85]. Subsequently, these boxes are rotated using a random rotation matrix. For training the point cloud-based
model, we sample 100 000 uniform points and corresponding normals from the meshes. For training using the occupancy
data (see Appendix B), we uniformly sample 100 000 points from Ω = [−1, 1]3 and calculate the signed distance to
the boxes. Subsequently, we calculate the occupancy values from these signed distance values. The training dataset
consists of 100 randomly generated parallelograms, while the test dataset consists of 20 parallelograms.

For training the models on the liver dataset, we use the preprocessed data of [21]. The only additional preprocessing
step is a scaling of their point cloud data and their mesh data. We multiply the points and the mesh vertices with a
scaling factor of 0.75 to make sure that all the livers are present in the unit cube. As training data, we sample 100 000
uniform points and corresponding normals from the meshes. Finally, we use the same train-test split as [21], where the
training dataset uses 145 samples and the test dataset uses 45 samples.

The liver data has downsampled versions, which are used in Section 5.2. These versions are obtained as outlined
in the same section. For training, we use the same train-test split as for the original data. However, we exclude the
samples with names contrast_117, contrast_136, and noncontrast_034. The reason for this is that the original meshes of
these samples were not watertight, which caused issues while generating downsampled meshes. However, since these
problematic meshes were only in the training dataset, testing on the test set is not affected.

D.4 Training details

We jointly learn the latent codes zi, the template implicit neural representation fθ, and the stationary velocity vector
fields vφk

(k ∈ {1, . . . ,K}). As the template neural network architecture fθ comes from [38] and the stationary
velocity vector fields vφk

from [21], we inherit the weight initialization schemes from these works. The latent codes
zi ∈ Rdz are initialized by sampling from N (0, 1/dz), as in [21].

We use a batch size of 10 for each model and dataset pair. We approximate the expectations and spatial integrals in
the point cloud data loss via Monte Carlo. For each expectation and integral, we sample 5000 points to estimate it. In
particular, for the eikonal loss, we calculate the loss on 5000 random samples in Ω = [−1, 1]3 and on 5000 warped
surface samples. Subsequently, we average all the resulting values to obtain the final eikonal loss. Furthermore, for this
eikonal loss, we only backpropagate the gradients concerning the parameters of the template INR fθ. Finally, for the
experiments with the pointwise loss, the pij values of the pointwise loss are taken as the 5000 surface samples as well
as the 5000 random samples used to calculate the regularization corresponding to β in Equation (15).

For the experiment done in Appendix B with the occupancy data, we first sample 5000 points in Ω with their
accompanying occupancy value. Half of the points lie inside, while the other half lie outside the shape. We calculate
the binary cross entropy loss by averaging the binary cross entropies between the ground truth occupancy value and the
estimated occupancy probability.

We update the neural network parameters and the latent codes zi via separate Adam optimizers for the latent codes, the
template NN fθ, and velocity field NN vφ. The initial learning rate for the latent codes is 10−3, for the fθ parameters
5 · 10−4, and for the vφ parameters 5 · 10−4. Moreover, for each Adam optimizer, we use a learning rate scheduler
that multiplies the learning rate with 0.7 every 250 epochs. Finally, we bound the latent codes zi to be within the unit
sphere. For the remainder of the hyperparameters, see Table D.1.

Using the above considerations, we train our models on a high-performance computing cluster and use two NVIDIA
A40 GPUs or two NVIDIA L40 GPUs. All of the GPUs have 48 GB of memory. The training took approximately 17
hours when using the A40’s and approximately 13.5 hours when using the L40’s.
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Table D.1: The hyperparameter values every trained model uses on a specific dataset (rectangles or liver). Here Nh is
the number of linear layers between the first and last linear layer in the template neural network (as presented in Figure
D.1). Furthermore, cPW denotes the regularization constant for the pointwise loss when training the model that uses this
loss as the deformation regularizer.

Hyperparameter Value (Rect.) Value (Liver)

Epochs 4000 3000
Latent dimension 32 32

dvel 512 512
dµ 256 256
ϵ 0.05 0.05
K 10 10
dµ 256 256
Nh 5 5
σ2 0.025 0.002
τ 0.01 0.01
λ 0.005 0.005
β 1.5 1.5
α 100 100
η 0.05 50
cPW 0.1 0.1

D.5 Inference details

For reconstructing shapes, we solve the following problem:

min
z

Drec((ϕ
z
1)

−1 · Tθ,S) + γ∥z∥22,

where

• γ ∈ R,

• ∂
∂tϕ

z
t (x) = vφ(ϕ

z
t (x), t, z) and ϕz0(x) = x,

• Drec((ϕ
z
1)

−1 · Tθ,S) = Ex∈S [|I(x, z, 1)|],
• I(x, z, t) := ((ϕzt )

−1 · fθ)(x) := fθ(ϕ
z
t (x)).

We solve this optimization problem by running an Adam optimizer with an initial learning rate of 5 · 10−2 for 800
iterations. At iteration 400 the learning rate is decreased by a factor of 10. Furthermore, we put γ = 10−4 and we
initialize the latent code from N (0, 0.01 · I).

D.6 DAE training and inference details

To train and evaluate the DAE model [16], we utilized the original code provided by the authors. For training DAE we
tried to tune the hyperparameters to the best of our capabilities.

First, we used Deformetrica’s atlas estimation [87] to compute an initial template. We set the noise standard deviation
of the current similarity metric to 0.01 and the kernel width to 0.1. For the deformation kernel width, we used a
value of 0.15. Furthermore, we used ScipyLBFGS as the optimizer with an initial step size of 3 · 10−5 and a very
low convergence tolerance. Once we obtained the template, we employed Deformetrica’s PGA function to obtain a
32-dimensional latent space. We initialized the initial template with the estimated template and ran PGA with the same
parameters as for the atlas estimation.

We utilized the calculated PGA to initialize the DAE model. We use 15000 epochs for this initialization. After that, we
trained the DAE model for 15000 epochs with a learning rate of 5 · 10−4 and a batch size of 32. We kept the template
fixed as learning it resulted in a lot of instability. We chose a splatting grid size of 16, a deformation grid size of 32, and
a kernel width of 0.15 for the splatting layer and the current metric. We multiplied the data-fitting term by 1e4 and the
velocity field regularization term by 0.1.
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To evaluate the model, we used the encoder to estimate a latent vector. For the test dataset, we also performed an
additional optimization step for 1500 iterations on the latent code using an Adam optimizer with a learning rate of
5 · 10−3. This additional optimization step corresponds to the DAE+ version of the model, which was used to improve
reconstruction performance on the test set.
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