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Abstract

Efficient time series forecasting has become critical for real-world applications, par-
ticularly with deep neural networks (DNNs). Efficiency in DNNs can be achieved
through sparse connectivity and reducing the model size. However, finding the
sparsity level automatically during training remains a challenging task due to the
heterogeneity in the loss-sparsity tradeoffs across the datasets. In this paper, we
propose “Pruning with Adaptive Sparsity Level” (PALS), to automatically seek
an optimal balance between loss and sparsity, all without the need for a predefined
sparsity level. PALS draws inspiration from both sparse training and during-training
methods. It introduces the novel "expand" mechanism in training sparse neural
networks, allowing the model to dynamically shrink, expand, or remain stable
to find a proper sparsity level. In this paper, we focus on achieving efficiency in
transformers known for their excellent time series forecasting performance but high
computational cost. Nevertheless, PALS can be applied directly to any DNN. In
the scope of these arguments, we demonstrate its effectiveness also on the DLinear
model. Experimental results on six benchmark datasets and five state-of-the-art
transformer variants show that PALS substantially reduces model size while main-
taining comparable performance to the dense model. More interestingly, PALS even
outperforms the dense model, in 12 and 14 cases out of 30 cases in terms of MSE
and MAE loss, respectively, while reducing 65% parameter count and 63% FLOPs
on average. Our code will be publicly available upon acceptance of the paper.

1 Introduction

The capabilities of transformers [52] for learning long-range dependencies [56, 9, 49] make them an
ideal model for time series processing [54]. Several transformer variants have been proposed for the
task of time series forecasting, which is crucial for real-world applications, e.g., weather forecasting,
energy management, and financial analysis, and have proven to significantly increase the prediction
capacity in long time series forecasting (LTSF) [35]. In addition, attention-based models are inherently
an approach for increasing the interpretability for time series analysis in critical applications [29].
Moreover, recent transformer time series forecasting models (e.g., [58, 67, 35]) perform generally well
in other time series analysis tasks, including, classification, anomaly detection, and imputation [59].

Despite the outstanding performance of transformers, these models are known to be computationally
expensive due to their large model sizes [48]. The high training and inference costs of transformers
can make their deployment cumbersome in real-world applications with limited memory and
computational resources and impose adverse effects on the environment. Particularly, with the
ever-increasing collection of large time series and the need to forecast millions of time series, the
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Figure 1: Schematic overview of the proposed method, PALS (Algorithm 1), Dynamic Sparse
Training (DST) [39, 10], During-training pruning (Gradual Magnitude Pruning (GMP) [68], and
GraNet [31]). While DST and during-training pruning use a fixed sparsity schedule to achieve a
pre-determined sparsity level at the end of the training, PALS updates the sparse connectivity of
the network at each ∆t iterations during training, by deciding whether to "Shrink" (decrease density)
or "Expand" (increase density) the network or remain "Stable" (same density), to automatically find
a proper sparsity level.

requirement to develop computationally-efficient forecasting models is becoming significantly critical
[50, 19, 44]. For industry-scale time series data, which are often high-dimensional and long-length,
deploying transformers requires automatically discovering memory- and computationally-efficient
architectures that are scalable and practical for real-world applications [54]. While there have been
some efforts to reduce the computational complexity of transformers in time series forecasting
[67, 66], these models have in order of millions of parameters. The over-parameterization of
these networks causes high training and inference costs, and their deployment in low-resource
environments (e.g., lack of GPUs) would be infeasible. To address these issues, we raise the research
question: How can we reduce the computational and memory overheads of training and deploying
transformers for time series forecasting without compromising the model performance?

Seeking sparsity through sparse connectivity is a widely-used technique to address the over-
parameterization of deep learning models [17]. Early approaches for deriving a sparse sub-network
prune a trained dense model [16], known as post-training pruning. While these methods can match
the performance of the dense network as shown by the Lottery Ticket Hypothesis (LTH) [12], they are
computationally expensive during training due to the training of the dense network. During-training
pruning aims to maintain training efficiency by gradually pruning a dense network during training [31].
Sparse training [39] pushed the limits further by starting with a sparse network from scratch and opti-
mizing the topology during training. However, as we study in Section 3, the main challenge when us-
ing any of these techniques for time series forecasting is to find the proper sparsity level automatically.

In this paper, we aim to move beyond optimizing a single objective (e.g. minimizing loss) and
investigate sparsity in DNNs for time series prediction in order to find a good trade-off between
computational efficiency and performance automatically. Our contributions are as follows:

• We analyze the effect of sparsity (using unstructured pruning) in the performance of state-of-the-art
transformers for time series prediction [35, 67, 58, 66], and vanilla transformer [52]. We show they
can be pruned up to 80% of their connections in most cases, without significant loss in performance.

• We propose an algorithm, called “Pruning with Adaptive Sparsity Level” (PALS) that finds a
decent loss-sparsity trade-off by dynamically tuning the sparsity level during training using the loss
heuristics and deciding at each connectivity update step weather to Shrink or Expand the network, or
keep it Stable. PALS creates a bridge between during-training pruning and dynamic sparse training
research areas by inheriting and enhancing some of their most successful mechanisms, while -
up to our best knowledge - introducing for the first time into play also the Expand mechanism.
Consequently, PALS does not require a desired pre-defined sparsity level which is necessary for
most pruning or sparse training algorithms. Figure 1 presents the general concept behind PALS.
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• We evaluate the performance of PALS in terms of the loss, the parameter count, and FLOPs on six
widely-used benchmarks for time series prediction and show that PALS can substantially sparsify
the models and reduce parameter count and FLOPs. Surprisingly, PALS can even outperform the
dense model on average, in 12 and 14 cases out of 30 cases in terms of Mean Squared Error (MSE)
and Mean Absolute Error (MAE) loss, respectively (Table 2).

2 Background

2.1 Sparse Neural Networks

Sparse neural networks (SNNs) use sparse connectivity among layers to reduce the computational
complexity of DNNs while maintaining a close performance to the dense counterpart in terms of
prediction accuracy. SNNs can be achieved using dense-to-sparse or sparse-to-sparse approaches [40].

Dense-to-sparse methods prune a dense network; based on the pruning phase, they are categorized
into three classes: post-training [16, 12], Before-training [25], and during-training [68, 36, 31] prun-
ing. Post-training pruning suffers from high computational costs during training and before-training
approaches usually fall behind the performance of the dense counter-part network. In contrast, during-
training approaches, maintain close or even better performance to the dense network while being effi-
cient through the training process. A standard during-training pruning is Gradual Magnitude Pruning
(GMP) [68] which gradually drops unimportant weights based on the magnitude during the training
process. GraNet [31] is another during-training algorithm that gradually shrinks (decreasing density)
a network to reach a pre-determined sparsity level. It prunes the weights (as performed in GMP)
while allowing for connection regeneration (as seen in Dynamic Sparse Training (DST) which will be
explained in the following). As the number of grown weights is less than the pruned ones, the network
is shrunk and the density is decreased. For more details regarding GraNet, please refer to Appendix B.

Sparse-to-sparse methods start with a random sparse network from scratch and the number of pa-
rameters is usually fixed during training and can be determined based on the available computational
budget. The sparse topology can remain fixed (static) [38] or dynamically optimized during training
(a.k.a Dynamic Sparse Training (DST)) [39, 10, 33, 20, 1, 61, 47]. At each topology update iteration,
a fraction of unimportant weights are dropped (usually based on magnitude), and the same number
of weights are grown. The growth criteria can be random, as in the Sparse Evolutionary Training
(SET) algorithm [39], or based on the gradient, as in the Rigged Lottery (RigL) algorithm [10].

Table 1: Comparison of related work.
Method Shrink Stable Expand Adaptive

Sparsity Schedule
Automatically tuning

sparsity level

RigL [10] ✗ ✓ ✗ ✗ ✗
GMP [68] ✓ ✗ ✗ ✗ ✗

GraNet [31] ✓ ✓ ✗ ✗ ✗
PALS (ours) ✓ ✓ ✓ ✓ ✓

In this work, we take advantage of the successful
mechanism of “Shrink” from during-training pruning
(such as GraNet [31]) and “Stable” from DST (such as
RigL [10]) and propose for the first time the “Expand”
mechanism, to design a method to automatically
optimize the sparsity level during training without
requiring to determine it beforehand. Each of these mechanisms is explained in Section 4. In Table 1,
we present a summarized comparison with the closest related work in the literature. Figure 1 presents
a comprehensive embedding of our proposed method in the literature. Unlike these methods, which
update the network using fixed schedules to reach a pre-determined sparsity level, PALS proposes
an adaptive approach. It automatically determines whether to shrink or expand the network or remain
stable, in order to tune the sparsity level and find a good trade-off between loss and sparsity.

Only a few works investigated SNNs for time series analysis [46]. [60] investigates sparsity in convolu-
tional neural networks (CNNs) for the time series classification and shows their proposed method has
superior prediction accuracy while reducing computational costs. [22] exploit sparse recurrent neural
networks (RNNs) for outlier detection. [32] and [13] explore sparsity in RNNs for sequence learning.

Sparsity in Transformers. Several works have sought sparsity in transformers [15, 42]. These
approaches can be categorized into structured (blocked) [37] or unstructured (fine-grained) pruning
[5]. As discussed in [17], structured sparsity for transformers is able to only discover models
with very low sparsity levels; therefore, we focus on unstructured pruning. [28] analyses pruning
transformers for language modeling tasks and shows that large transformers are robust to compression.
[6] dynamically extract and train sparse sub-networks from Vision Transformers (ViT) [9] while
maintaining a fixed small parameter budget, and they could even improve the accuracy of the ViT in
some cases. [8] investigates DST for BERT language modeling tasks and shows Pareto improvement
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over the dense model in terms of FLOPs. However, these works mostly focus on vision and NLP tasks.
To the best of our knowledge, there is no work that has investigated sparse connectivity in transformers
for time series analysis that faces domain-specific challenges as we will elaborate in Section 3. Please
note that there is a line of research focusing on sparse attention [51] aiming to develop an efficient
self-attention mechanism that is orthogonal to our focus in this work (sparsity and pruning) [17].

2.2 Time Series Forecasting

Initial studies for time series forecasting [18] exploit classical tools such as ARIMA [3]. While
traditional methods mostly rely on domain expertise or assume temporal dependencies follow specific
patterns, machine learning techniques learn the temporal dependencies in a data-driven manner
[29, 53, 27]. In recent years, various deep learning models, including RNNs [55, 43, 45], multi-layer
perceptrons (MLP) [62, 63], CNNs [24], and Temporal convolution networks (TCN) [11] are utilized
to perform time series forecasting [14, 41, 4, 21].

Transformers have been extensively used to perform time series forecasting due to their strong ability
for sequence modeling. A class of models aims at improving the self-attention mechanism and
addresses the computational complexity of vanilla transformers such as LogTrans [26], Informer
[66], Reformer [23]. Another category of methods seeks to modify the model to capture the
inherent properties of the time series: Autoformer [58] introduces a seasonal trend decomposition
with an auto-correlation block as the attention module. NSTransformer [35] proposes to add two
modules including series stationarization and de-stationary attention in the transformer architecture.
FEDformer [67] proposes to combine transformers with a seasonal-trend decomposition method
to capture global and detailed behaviour of the time series. The research into designing transformers
for time series forecasting is ongoing, and many other transformer variants have been proposed, such
as TDformer [64], Crossformer [65], ETSformer [57], Pyraformer [34].

2.3 Problem Formulation and Notations

Let xt ∈ Rm denote the observation of a multivariate time series X with m variables at time step
t. Given a look-back window Xt−L:t = [xt−L, ...,xt−1] of size L, time series forecasting task aims
to predict time series over a horizon H as X̃t:t+H = [x̃t, ..., x̃t+H−1] where x̃t is the prediction at
time step t. To achieve this, we need to train a forecasting function f(Xt−L:t, θ) (e.g. a transformer
network) that can predict future values over horizon H .

In this paper, we aim to reduce the model size by pruning the unimportant parameters from θ such
that we find the sparse model f(Xt−L:t, θs) where ∥θs∥0 ≪ ∥θ∥0. D =

∥θs∥0

∥θ∥0
is called the density

level of the model f and S = 1 − D is called as the sparsity level. The aim is to minimize the
reconstruction loss between the prediction L(f(Xt−L:t, θs),Xt:t+H) while finding a proper sparsity
level S automatically. We use Mean Squared Error (MSE) as the loss function such that:

L(X̃t:t+H ,Xt:t+H) =
1

H
ΣH−1

i=0 (x̃t+i − xt+i)
2. (1)

3 Analyzing Sparsity Effect in Transformers for Time Series Forecasting

In this section, we explore sparsity in several time series forecasting transformers. In short, we apply
GraNet [31] to prune each model and measure their performance over various sparsity levels.

Experimental Settings. We perform this experiment on six benchmark datasets, presented in Table
4. We have adapted GraNet [31], a well-performing during-training pruning algorithm developed for
CNNs, to sparsify transformer models for time series forecasting. GraNet gradually shrinks a network
(here, we start from a dense network) during the training to reach a pre-determined sparsity level, while
allowing for connection regeneration inspired by DST. GraNet algorithm is described in Appendix B.
For more details regarding the experimental settings, please refer to Section 5.1. For each sparsity level
(%) in {25, 50, 65, 80, 90, 95}, we measure the prediction performance of each transformer model
in terms of MSE loss. The results for prediction length = 96 (except 24 for the Illness dataset) are
presented in Figure 2. The results for other prediction lengths are presented in Figure 3 in Appendix B.

Sparsity Effect. We present the results for pruning various transformers in Figure 2. It can be
observed that most models can be pruned up to 80% or higher sparsity levels without significantly
affecting performance. Moreover, a counter-intuitive observation is that in some cases, sparsity does
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Figure 2: Sparsity effect on the performance of various trans-
former models for time series forecasting on benchmark
datasets in terms of MSE loss (prediction length = 96, ex-
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and PALS. Sparsity = 0 indicates the original dense model.

Algorithm 1 PALS
1: Input: Time series X ∈ RT×m, number of training

iterations tmax, Sequence length L, Prediction length H ,
model dimension dmodel, pruning rate ζ, mask update
frequency ∆t, Initial density Dinit, pruning rate factor
γ > 1 and loss freedom factor λ > 1, sparsity bound
Smin and Smax.

2: Initialization: Initialize the transformer model with den-
sity level Dinit, S = 1−Dinit, Lbest = inf .

3: Training:
4: for t ∈ {1, . . . ,#tmax} do
5: I. Standard feed-forward and back-propagation.

The network is trained on batcht of samples.
6: II. Update sparsity mask
7: if (t mod ∆t) = 0 then
8: Compute Validation Loss Lt

valid

9: if (S < Smin) or (Lt
valid <= λ ∗ Lbest and

S < Smax) then
10: update_mask (ζprune = γ ∗ ζ, ζgrow = ζ)
11: else if Lt

valid > λ ∗ Lbest and S > Sbest then
12: update_mask (ζprune = ζ, ζgrow = γ ∗ ζ)
13: else
14: update_mask (ζprune = ζ, ζgrow = ζ)
15: end if
16: if Lt

valid < Lbest then
17: Lbest = Lt

valid, Sbest = S
18: end if
19: Set S to the sparsity level of the network.
20: end if
21: end for

not necessarily lead to worse performance than the dense counterpart, and it can even improve the
performance. For example, while on the Electricity, Illness, and Traffic datasets, the behavior is as
usually expected (higher sparsity leads to lower performance), on the three other datasets, higher spar-
sity might even lead to better performance (lower loss) than the dense model. In addition, the sparsity
effect is different among various models, particularly on the latter group of datasets, including the
ETTm2, Exchange, and Weather datasets. We will discuss the potential reasons for the different be-
havior among datasets in Appendix H. Last but not least, by looking to Figure 3 in Appendix B, it can
be observed that the prediction length can also be a contributing factor to the sparsity-loss trade-off.

Challenge. Based on the above observations, we can conclude that the sparsity effect is not
homogeneous across various time series datasets, forecasting models, and prediction lengths for time
series forecasting. Our findings in these experiments are not aligned with the statements in [17] for
CNNs (vision) and Transformers (NLP), where for a given task and technique, increasing the sparsity
level results in decreasing the prediction performance and they have a direct relationship with each
other. However, we observe in Figures 2 and 3 that increasing the sparsity level does not necessarily
lead to decreased performance and it might even significantly improve the performance (e.g. for
the vanilla transformer on the Weather dataset). Therefore, it is challenging to decide how much
we can push the sparsity level and what is the optimal sparsity level without having prior knowledge
of the time series data, model, and experimental settings. While GraNet is the closest in spirit to
our proposed method, it cannot automatically tune the sparsity level since it needs the initial and
the final sparsity level as its hyperparameters. In this paper, we aim to address this challenge by
proposing an algorithm that can automatically tune the sparsity level during training.

4 Proposed Methodology: PALS

This section presents our proposed method for automatically finding a proper sparsity level of a
DNN for time series prediction, called “Pruning with Adaptive Sparsity Level” (PALS) (Algorithm
1). While our main focus in this paper is to sparsify transformer models, PALS is not specifically
designed for transformers and can be applied directly to other artificial neural network architectures
(See Appendix F for experiments on training with PALS the DLinear [62]) model.

Motivation and Broad Outline. As we discussed in Section 3, the main challenge when seeking
sparsity for time series forecasting is to find the optimal sparsity level automatically. Therefore,
PALS aims to tune the sparsity level during training without requiring prior information about models
or datasets. PALS is in essence inspired by the DST framework [39] and gradual magnitude pruning
(GMP) [68, 31]. While DST and GMP use fixed sparsification policies (fixed sparsity level (Stable
in Figure 1) and constantly prune the network until the desired sparsity level is reached (Shrink in
Figure 1), respectively) and require the final sparsity level before training, PALS exploits heuristic
information from the network at each iteration to automatically determine whether to increase,
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decrease, or keep the sparsity level at each connectivity update step. To the best of our knowledge,
this is the first work that allows the network to expand by increasing the density during training.
If the training starts from a dense neural network (Dinit = 1) PALS can be seen as a dense-to-sparse
method, while if Dinit < 1 then PALS is a sparse-to-sparse method.

Training. The training of PALS (Algorithm 1) starts with initializing a network with density level
Dinit = 1− Sinit. Then, the training procedure of PALS consists of two steps:

1. Standard feed-forward and back-propagation. Network’s parameters are updated each training
iteration t using a batch of samples.

2. Update Sparse Connectivity. The novelty of the method lies in updating the sparse connectivity.
At every ∆t iteration, the connectivity is updated in two steps. (2-1) The validation loss at step t
is calculated as Lt

valid. (2-2) The sparsity mask is updated (update_mask in Algorithm 1) by first
pruning ζprune of weights with the lowest magnitude:

W̃l = Update(Wl, top(|Wl|, 1− ζprune)), (2)
where Wl is the lth weight matrix of the network, Update(A, idx) keeps only the indices idx of
the matrix A, top(A, ζ) returns the indices of a fraction ζ of the largest elements of A. Then, we
grow ζgrow of the weights with the highest gradients:

Wl = W̃l + top(|G
l,i/∈W̃l

|, ζgrow) (3)
where G

l,i/∈W̃l
is the gradient of zero weights in layer l. These new connections are initialized with

zero values. This process is repeated for each layer in the model. Based on the values of ζprune and
ζgrow, PALS determines whether to decrease (shrink), increase (expand), or keep (stable) the network:

St > St−1 (Shrink). If the loss does not go beyond λ ∗ Lbest, we decrease the overall number
of parameters such that ζprune = γ ∗ ζ, ζgrow = ζ. The loss freedom coefficient, λ > 1, is a
hyperparameter of the network that determines how much the loss value can deviate from the best
validation loss achieved so far Lbest during training. The lower λ is, the more strict PALS becomes
at allowing the network to go to the shrink phase, finally resulting in a lower sparsity network. γ > 1
is the pruning factor coefficient, which determines how much to prune or grow more in the shrink
and expand phases, respectively. We analyze the sensitivity of PALS to λ and γ in Section 6.2. In
addition, we define a boundary for sparsity determined by Smin and Smax which can be determined
by the user based on the available resources. If the sparsity level does not meet the minimum sparsity
level Smin, we prune the network more than we grow. If the network sparsity goes beyond Smax, we
do not increase sparsity.

St < St−1 (Expand). If S > Sbest (Sbest is the sparsity level corresponding to Lbest) and the loss
goes higher than λ ∗ Lbest, it means that the earlier pruning step(s) were not beneficial to decreasing
the loss (improving forecasting quality in the time series forecasting) and the network requires a
higher capacity to recover a good performance. Therefore, we expand the network and grow more
connections than the pruned ones at this step: ζprune = ζ, ζgrow = γ ∗ ζ.

St = St−1 (Stable). If none of the above cases happened, we only update a fraction ζ of the
network’s parameters without changing the sparsity level: ζprune = ζ, ζgrow = ζ.

For a better understanding of how the sparsity level evolves during the training process of PALS,
please refer to Appendix G.3.

5 Experiments and Results

In this section, we evaluate PALS on several transformers for time series forecasting.

5.1 Experimental Settings

Datasets. The experiments are performed on six widely-used benchmark datasets for time series
forecasting. The datasets are summarized in Table 4 and described in Appendix A. These datasets have
different characteristics including stationary and non-stationary with/without obvious periodicity.

Models. We have considered five state-of-the-art transformer models for time series forecasting,
including Non-Stationary Transformer (NSTransformer) [35], FEDformer [67], Autoformer [58],
Informer, and Transformer [52]. Please refer to Section 2.2 for more details.
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Table 2: Summary of the results on the benchmark Datasets in Table 5. For each experiment on
a transformer model and dataset, the average MSE, MAE, number of parameters (×106) and the
inference FLOPs count (×1012) for various prediction lengths are reported before and after applying
PALS. The difference between these results is shown in % where the blue color means improvement
of PALS compared to the corresponding dense model.

Model Electricity ETTm2 Exchange Illness Traffic Weather
MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs MSE MAE #Params #FLOPs

NSTransformer 0.19 0.30 12.0 9.25 0.49 0.43 10.6 19.82 0.54 0.49 10.6 1.89 2.14 0.92 10.5 0.05 0.63 0.34 14.2 6.61 0.29 0.31 10.7 18.10
+PALS 0.21 0.32 2.2 1.81 0.38 0.39 2.5 3.70 0.49 0.47 5.4 1.07 2.33 0.97 7.4 0.04 0.67 0.37 4.3 2.05 0.26 0.29 1.0 1.77

Difference 10.8% ↑ 7.3% ↑ 81.5% ↓ 80.5% ↓ 24.0% ↓ 11.2% ↓ 76.7% ↓ 81.3% ↓ 9.3% ↓ 3.6% ↓ 48.5% ↓ 43.3% ↓ 9.1% ↑ 5.1% ↑ 30.0% ↓ 30.2% ↓ 5.2% ↑ 9.1% ↑ 70.1% ↓ 69.0% ↓ 10.2% ↓ 6.9% ↓ 90.3% ↓ 90.2% ↓
FEDformer 0.21 0.32 19.5 9.30 0.30 0.35 17.9 19.82 0.50 0.49 17.9 1.89 2.84 1.14 13.7 0.05 0.61 0.38 22.3 6.71 0.32 0.37 17.9 18.11

+PALS 0.23 0.34 3.0 1.35 0.30 0.35 1.8 1.96 0.51 0.50 10.5 1.15 3.05 1.19 8.3 0.03 0.62 0.38 5.6 1.83 0.31 0.36 1.8 1.81
Difference 9.0% ↑ 4.9% ↑ 84.7% ↓ 85.5% ↓ 1.5% ↑ 0.5% ↓ 90.2% ↓ 90.1% ↓ 2.1% ↑ 1.1% ↑ 41.2% ↓ 38.9% ↓ 7.2% ↑ 5.0% ↑ 39.5% ↓ 39.6% ↓ 1.0% ↑ 1.1% ↑ 74.6% ↓ 72.7% ↓ 2.8% ↓ 3.2% ↓ 90.0% ↓ 90.0% ↓
Autoformer 0.24 0.34 12.1 9.30 0.33 0.37 10.5 19.82 0.58 0.53 10.5 1.89 3.08 1.18 10.5 0.05 0.64 0.40 14.9 6.71 0.34 0.38 10.6 18.11

+PALS 0.26 0.36 2.7 1.71 0.31 0.35 1.0 1.93 0.62 0.55 7.1 1.30 3.19 1.22 6.7 0.03 0.65 0.41 4.5 1.94 0.34 0.38 1.3 2.52
Difference 9.3% ↑ 4.6% ↑ 77.7% ↓ 81.6% ↓ 8.1% ↓ 5.6% ↓ 90.3% ↓ 90.3% ↓ 5.5% ↑ 4.4% ↑ 32.7% ↓ 31.0% ↓ 3.5% ↑ 3.2% ↑ 36.6% ↓ 36.5% ↓ 1.9% ↑ 2.1% ↑ 69.5% ↓ 71.0% ↓ 0.1% ↑ 1.3% ↓ 87.7% ↓ 86.1% ↓
Informer 0.36 0.43 12.5 8.51 1.53 0.88 11.3 18.15 1.59 1.00 11.3 1.71 5.27 1.58 11.3 0.05 0.81 0.46 14.4 6.14 0.62 0.55 11.4 16.58
+PALS 0.42 0.48 1.4 0.94 1.39 0.83 5.3 8.45 1.53 0.98 8.6 1.33 5.23 1.57 7.4 0.03 0.94 0.53 2.3 1.19 0.69 0.56 4.3 8.35

Difference 18.9% ↑ 11.3% ↑ 88.6% ↓ 88.9% ↓ 9.0% ↓ 5.8% ↓ 53.4% ↓ 53.4% ↓ 3.9% ↓ 1.6% ↓ 24.2% ↓ 22.4% ↓ 0.8% ↓ 1.0% ↓ 34.9% ↓ 34.8% ↓ 15.5% ↑ 15.3% ↑ 83.9% ↓ 80.6% ↓ 12.1% ↑ 2.0% ↑ 61.9% ↓ 49.7% ↓
Transformer 0.28 0.38 11.7 9.24 1.48 0.86 10.5 19.81 1.61 0.97 10.5 1.89 4.94 1.49 10.5 0.05 0.67 0.36 13.6 6.61 0.64 0.56 10.6 18.10

+PALS 0.31 0.40 2.5 2.24 1.08 0.75 3.2 8.17 1.41 0.91 6.6 1.16 4.91 1.48 7.7 0.04 0.69 0.38 3.8 1.86 0.32 0.38 1.0 1.76
Difference 10.5% ↑ 5.7% ↑ 78.3% ↓ 75.8% ↓ 26.7% ↓ 13.3% ↓ 69.9% ↓ 58.8% ↓ 12.5% ↓ 6.1% ↓ 37.5% ↓ 38.4% ↓ 0.7% ↓ 0.9% ↓ 27.2% ↓ 27.3% ↓ 3.3% ↑ 5.4% ↑ 71.7% ↓ 71.8% ↓ 49.6% ↓ 32.5% ↓ 90.2% ↓ 90.3% ↓

Differenceavg 11.7% ↑ 6.8% ↑ 82.1% ↓ 82.5% ↓ 13.3% ↓ 7.3% ↓ 76.1% ↓ 74.8% ↓ 3.6% ↓ 1.2% ↓ 36.8% ↓ 34.8% ↓ 3.7% ↑ 2.3% ↑ 33.6% ↓ 33.7% ↓ 5.4% ↑ 6.6% ↑ 74.0% ↓ 73.0% ↓ 10.1% ↓ 9.0% ↓ 84.0% ↓ 81.3% ↓

Evaluation metrics. We evaluate the methods in two aspects: 1) Quality of the prediction in terms
of MSE and MAE, and 2) Computational complexity in terms of parameter count and FLOPs. We
report the theoretical FLOPs to be independent of the used hardware, as it is done in the unstructured
pruning literature [31, 10]. A lower value for these metrics indicates higher prediction quality and
lower computational complexity, respectively. We measure the performance of each model for various
prediction lengths H ∈ {96, 192, 336, 720} (except H ∈ {24, 36, 48, 60} for the Illness dataset).

Implementation. Experiments are implemented in PyTorch. The start of implementation is the
NSTransformer 1 and GraNet2. We repeat each experiment for three random seeds and report
the average of the runs. In the experiments, Dinit was set to 1, thus PALS can be seen as a
during-training pruning method. We have run the experiments on Intel Xeon Platinum 8360Y CPU
and one NVIDIA A100 GPU. We will discuss the hyperparameters’ settings in Appendix A.

5.2 Results

Multivariate Time Series Prediction. The results in terms of MSE and parameter count for the
considered datasets and models are presented in Table 5 in Appendix C. As can be seen in this table,
in most cases considered, PALS is able to decrease the model size by more than 50% without a
significant increase in loss. More interestingly, in most cases on the ETTm2, Exchange, and Weather
datasets PALS even achieves lower MSE than the dense counterpart model.

To summarize the results of Table 5 (Appendix C) and have a general overview of the performance
of PALS on each model and dataset, we present the average MSE and MAE, and parameters count in
addition to the difference between the dense and the sparse model using PALS (in percentage) in Table
2. Additionally, we include the inference FLOPs count (total FLOPs for all test samples). It can be
observed that PALS even outperforms the dense model in 12 and 14 cases out of 30 cases in terms of
MSE and MAE loss, respectively, while reducing 65% parameter count and 63% FLOPs on average.

Based on the experiments conducted in Section 3 and the description of datasets provided in
Appendix A.1, we observed significant variations in the sparsity-loss trade-off across different
datasets and models. The beauty of our proposed method consists in the fact that it does not have
to consider any of these differences. We did not make any finetuning for PALS to account for these
differences, and it does everything automatically. Of course, finetuning PALS per dataset and model
specificity would improve its final performance, but it would reduce the generality of our proposed
work and we prefer not to do it.

Univariate Time Series Prediction. The results of univariate prediction (using a single variable) on
the ETTm2 and Exchange datasets are presented in Table 6 and summarized in Table 7 in Appendix
D. In short, PALS outperforms the dense counterpart model on average, in 7 and 8 cases out of 12
cases in terms of MSE and MAE loss, respectively.

1
https://github.com/thuml/Nonstationary_Transformers

2
https://github.com/VITA-Group/GraNet

7

https://github.com/thuml/Nonstationary_Transformers
https://github.com/VITA-Group/GraNet


Table 3: Comparison with other during-training pruning methods (GMP, GraNet) and a sparse training
method (RigL) when sparsifying NSTransformer. The results are average over four prediction lengths.

PALS GraNet*[31] RigL*[10] GMP*[68]

Dataset loss sparsity epochs loss sparsity epochs loss sparsity epochs loss sparsity epochs

Electricity 0.21 80.5% 8.83 0.20 31.2% 9.75 0.20 31.2% 9.12 0.20 47.5% 9.62
ETTm2 0.38 76.7% 4.58 0.60 95.0% 9.00 0.49 77.5% 4.33 0.60 56.2% 9.12

Exchange 0.49 48.5% 5.83 0.47 95.0% 9.42 0.44 90.0% 4.25 0.45 95.0% 9.50
Illness 2.33 30.0% 7.97 2.32 25.0% 9.58 2.37 25.0% 9.58 2.22 31.2% 9.92
Traffic 0.67 70.1% 8.83 0.64 41.2% 9.50 0.64 25.0% 8.17 0.64 50.0% 9.79

Weather 0.26 90.3% 7.00 0.28 95.0% 9.08 0.27 41.2% 4.08 0.29 95.0% 9.08

Average 0.72 66.0% 7.17 0.75 63.73% 9.38 0.79 48.3% 6.60 0.73 62.4% 9.47

* Optimized sparsity level (%) in {25, 65, 50, 80, 90, 95}. Therefore, GraNet, RigL, and GMP, each requires 6
runs to optimize the sparsity level while PALS needs only one run.

6 Discussion

In this section, we study the performance of PALS in comparison with other pruning and sparse
training algorithms (6.1) and the hyperparameter sensitivity of PALS (6.2). Additionally in the
Appendix, we analyze the performance of PALS in terms of model size effect (H), prediction quality
by visualizing the predictions (I), pruning DLinear [62] (F), and finally we discuss the efficiency
of PALS from various aspects (G).

6.1 Performance Comparison with Pruning and Sparse Training Algorithms

We compare PALS with a standard during-training pruning approach (GMP [68]), GraNet [31], and a
well-known sparse training method (RigL [10]). These are the closest methods in the literature in
terms of including gradual pruning and gradient-based weight regrowth.

While PALS derives a proper sparsity level automatically, other pruning approaches require the
sparsity level as an input of the algorithm. Therefore, to compare PALS with existing pruning
algorithms, the sparsity level should be optimized for them. We apply GraNet, RigL, and GMP to
NSTransformer for prediction lengths of H ∈ {96, 192, 336, 720} (except for the Illness dataset for
which H ∈ {24, 36, 48, 60}). For each of these methods (GraNet, RigL, and GMP), the sparsity level
is optimized among values of {25, 50, 65, 80, 90, 95}. This means that for one run of PALS, we run
the other methods 6 times. The model with the lowest validation loss is used to report the test loss.
Table 3 summarizes the average loss, sparsity level, and training epochs (due to early stopping the
algorithms might not require the full training) over different prediction lengths.

The closest competitor of PALS is GraNet. As shown in Table 3, for the Electricity dataset, PALS
achieves a sparsity level of 80.5% with a loss of 0.21, while GraNet achieves a sparsity level of only
31.2% with a slightly lower loss of 0.20. Similarly, for the ETTm2 dataset, PALS achieves a sparsity
level of 76.7% with a loss of 0.38, while GraNet achieves a higher sparsity level of 95.0% but with a
much higher loss of 0.60. On the other datasets, they perform relatively close to each other.

By looking at the results of all methods in Table 3, PALS has the highest average sparsity value
(66.0%) compared to GraNet (63.73%), RigL (48.3%), and GMP (62.4%). While RigL requires
fewer training epochs (∼ 6.6 epochs) compared to PALS (∼ 7.2 epochs), it finds lower sparsity
networks and has a higher average loss (RigL: 0.79 compared to PALS: 0.72). GraNet and GMP
use fixed pruning schedules, and as a result, they need almost full training time (∼ 9.5 epochs). We
additionally compared the convergence speed of PALS with the dense model in Appendix G.2.

In short, PALS has the lowest average loss and highest sparsity values compared to the other
algorithms, which suggests that PALS can be a good option for building efficient and accurate sparse
neural networks for time series forecasting.

6.2 Hyperparameter Sensitivity

In this section, we discuss the sensitivity of PALS to its hyperparameters. These hyperparameters
include pruning rate factor γ and loss freedom factor λ. We have changed their values in
{1.05, 1.1, 1.2} and measured the performance of PALS (with NSTransformer) in terms of MSE
and parameter count on six benchmark datasets. The results are presented in Table 8 in Appendix E.

As shown in Table 8, PALS is not very sensitive to its hyperparameters and the results in each row
are close in terms of loss in most cases considered. However, by increasing γ and λ PALS tends
to find a sparser model. A small λ results in paying more attention to the loss value, while a large
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value gives more freedom to PALS to explore a sparse sub-network that might sometimes result
in a higher loss value. A small γ limits the amount of additional grow/prune in the expand/shrink
phase, while a large γ gives more flexibility to the algorithm for exploring various sparsity levels.
In short, a small value for each of these hyperparameters makes PALS more strict and allows for
small changes in sparse connectivity, while a large value of them increases the exploration rate which
potentially results in higher sparsity and/or reduced loss.

7 Conclusions

In this paper, we aim to decrease the computational and memory costs of training and deploying DNNs
for time series forecasting by automatically finding a good trade-off between model size and prediction
performance. Particularly, we focus on transformers while showing the generality of the model on an
MLP-based model (Appendix F). We first showed that pruning networks for time series forecasting can
be quite challenging in terms of determining the proper sparsity level for various datasets, prediction
lengths, and models. Therefore, we proposed PALS, a novel method to obtain sparse neural networks,
that exploits loss heuristics to automatically find the best trade-off between loss and sparsity in one
round of training. PALS leverages the effective strategies of "Shrink" from during-training pruning
(e.g., GraNet) and "Stable" from DST (e.g., SET, RigL). Additionally, we introduce a novel strategy
called the "Expand" mechanism. The latter allows PALS to automatically optimize the sparsity
level during training, eliminating the need for prior determination. Remarkably, PALS was able to
outperform dense training in 12/14 cases out of 30 cases (5 transformer models, 6 datasets) in terms of
MSE/MAE loss, while reducing 65% parameters count and 63% FLOPs on average. Limitations and
future work. Due to the lack of proper hardware to support sparse matrices for on-GPU processing,
PALS cannot currently take advantage of its theoretical training and inference speed-up and memory
reduction in a real-world implementation. With the ever-increasing body of work on sparse neural
networks, we hope that in the near future, the community paves the way to optimally train sparse
neural networks on GPU (Please refer to Appendix G.4 for more details). An open direction to this
research can be to start with a highly sparse neural network (as opposed to starting from a dense
network used in PALS) and gradually expand the network to be even more efficient during training.
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A Experimental Settings

A.1 Datasets

The datasets are summarized in Table 4. 1) Electricity 3 dataset includes the hourly electricity
consumption for 321 consumers between 2012 and 2014. 2) ETT [66] (Electricity Transformer
Temperature) dataset contains load and oil temperature measurements from electricity transformers.
3) Exchange [24] dataset consists of daily exchange rates from 8 countries between 1990 and 2016.
4) Illness 4 dataset includes weekly collected data from influenza-like illness patients between 2002
and 2021 reported by Centers for Disease Control and Prevention of the United States. 5) Traffic 5

dataset contains road occupancy rates in San Francisco Bay area freeways. 6) Weather 6 consists of
measurements of 21 weather indicators collected every 10 minutes in 2020. All datasets are divided
in chronological order into the train, validation, and test sets with a split ratio of 7:2:2 (except for the
ETT dataset where we use 6:2:2 split ratio).

Table 4: Datasets.
Dataset # Variables Sampling Frequency # Observations

Electricity 321 1 Hour 26304
ETTm2 7 15 Miutes 69680

Exchange 8 1 Day 7588
Illness 7 1 Week 966
Traffic 862 1 Hour 17544

Weather 21 10 Minutes 52695

Datasets in Table 4 have different characteristics. Such characteristics include: 1) Sampling frequency:
while the sampling frequency for some time series datasets is very high (e.g., Electricity (1 hour)
and Weather datasets (10 minutes)), it might be very low for some others (Exchange (1 day) and
Illness (1 week)) 2) Periodicity of the variables: time series datasets can be periodic (ETTm2) or
without obvious periodicity (Exchange) 3) Number of variables: the number of variables can vary
significantly. Some datasets have below 10 variables (ETT, Illness) while others have in order of
hundreds (Traffic, Electricity). This characteristic results in different levels of complexity. Therefore,
automatically tuning the sparsity can help to tune the complexity of the task at hand that eventually
help prevent overfitting in simple tasks (e.g., Weather) and maintaining overparameterization for
complex tasks (e.g., Traffic, Electricity). The beauty of our proposed method consists in the fact that
it does not have to consider any of these intrinsic differences. We did not make any finetuning for
PALS to account for these differences, and it does everything automatically. Of course, finetuning
PALS per dataset specificity would improve its final performance, but it would reduce the generality
of our proposed work and we prefer not to do it.

A.2 Prediction Quality Evaluation Metrics

We use MSE and MAE as the evaluation metrics, which can be computed as below:

MSE(X̃t:t+H ,Xt:t+H) =
1

H
ΣH−1

i=0 (x̃t+i − xt+i)
2. (4)

MAE(X̃t:t+H ,Xt:t+H) =
1

H
ΣH−1

i=0 |x̃t+i − xt+i|. (5)

A.3 Hyperparameters

The settings of the transformer models and the hyperparameter values are adopted from the NSTrans-
former implementation7. Sequence length L was set to 36 for the Illness dataset and 96 for the other
datasets. Several values for prediction length were tested in the experiments: H ∈ {96, 192, 336, 720}
(except for the Illness dataset for which H ∈ {24, 36, 48, 60}). The models considered in the experi-
ments are all trained with the ADAM optimizer with a learning rate of 10−4. The batch size used in

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
5https://pems.dot.ca.gov/
6https://www.bgc-jena.mpg.de/wetter/
7https://github.com/thuml/Nonstationary_Transformers
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the experiments was equal to 32. A maximum number of 10 epochs was used for each experiment.
Each transformer model consisted of two encoder layers and one decoder layer. Model dimension
dmodel was set to 512 in the experiments unless stated otherwise. PALS starts from a dense model
(Initial density Dinit = 1). The pruning rate ζ is initialized to 0.5 and decreased during training with
a cosine decay schedule. The values of pruning rate factor γ and loss freedom factor λ are optimized
in {1.05, 1.1, 1.2} on the validation set using a single random seed for each experiment. Minimum
sparsity Smin and maximum sparsitySmax are set to 20 and 90, respectively. These values give the
flexibility to the user to tune the range of the model sparsity based on the resource availability in their
application. The mask update frequency ∆t was equal to 5 for the Illness dataset and 20 for the other
datasets. Each experiment was run on three different random seeds and the average measurements
are reported for each metric.

B Analyzing Sparsity Effect in Transformers for Time Series Forecasting

This section presents the results for the sparsity effect in various time series forecasting transformers.
Specifically, we employ GraNet [31] to prune each transformer model, and then evaluate their
effectiveness at different sparsity levels.

GraNet gradually prunes a network (in this paper, we start from a dense network) during the training
to reach a pre-determined sparsity level while allowing for connection regeneration. Therefore, it
takes advantage of dense-to-sparse and sparse-to-sparse training by exploring faster the search space
and dynamically optimizing the sparse connectivity during training, respectively, to find optimal
connectivity patterns efficiently. During training, GraNet executes gradual pruning and zero-cost
Neuroregeneration every δt iterations. Gradual pruning gradually reduces network density towards
a specific sparsity level across multiple pruning iterations. The initial sparsity level can be zero
(creating a dense network, resulting in a dense-to-sparse approach) or higher (starting from a random
sparse topology, resulting in a sparse-to-sparse approach). At each pruning step, a portion of weights
with the lowest magnitudes is pruned, based on a fixed schedule. This stage is similar to gradual
magnitude pruning (GMP) [68]. Following each pruning step, a zero-cost Neuroregeneration is
executed. This involves dropping a portion of the existing connections with low magnitudes, which
are considered damaged, and adding an equal number of new connections back to the network. The
new connections are chosen from non-existing connections with the highest gradient value.

The results for the sparsity effect on the performance of various transformer models are presented in
Figure 2 in the paper and Figure 3. The findings are discussed in Section 3.

C Comparison Results

The detailed results of the experiments performed in Section 5.2 are presented in Table 5.

D Univariate results

The results are presented in Figures 6 and 7 and discussed in Section 5.2 in the paper.

E Hyperparameter Sensitivity Analysis

In this Appendix, we present the results for the hyperparameter sensitivity of PALS. We vary the
values of γ and λ in {1.05, 1.1, 1.2}. The results are presented in Table 8. The results are discussed
in Section 6.2.

F Pruning DLinear with PALS

In this Appendix, we train PALS with the DLinear [62] model which is a MLP-based model for time
series forecasting and has proven to be effective across various datasets. While our focus in this paper
is to reduce the complexity of transformers for time series forecasting, we want to show the generality
of our proposed approach to other models. We demonstrate that PALS can be also applied to these
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(a) H = 192 (H = 36 for the Illness dataset)
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(b) H = 336 (H = 48 for the Illness dataset)
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Figure 3: Sparsity effect on the performance of various transformer models for time series forecasting
on benchmark datasets in terms of MSE loss for various prediction lengths as indicated in each
figure. Each model is sparsified using GraNet [31] to sparsity levels (%) ∈ {25, 50, 65, 80, 90, 95}.
Sparsity=0 indicates the original dense model.

models (which are computationally cheaper than transformers) to decrease the model size even more.
As an example, we apply PALS to DLinear.
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Table 5: Comparison on the benchmark Datasets for prediction length H ∈ {96, 192, 336, 720}
(except for the Illness dataset for which H ∈ {24, 36, 48, 60}). For each model, the performance of
the original (Dense) and the pruned model using PALS is presented in terms of MSE and parameter
count (×106). The difference between the results compared to the dense counterpart is shown in
parenthesis as % (blue indicates improvement in the results compared to the dense model). Bold
entries are the best performer in each experiment among various models.

D
at

as
et

s

H
NSTransformer FEDformer Autoformer Informer Transformer

Dense +PALS Dense +PALS Dense +PALS Dense +PALS Dense +PALS
MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param

E
le

ct
ri

ci
ty 96 0.1700.1700.170 12.2 0.195 (14.3% ↑) 2.6 (78.2% ↓) 0.187 19.5 0.203 (8.6% ↑) 4.4 (77.3% ↓) 0.207 12.1 0.206 (0.4% ↓) 5.3 (56.2% ↓) 0.333 12.5 0.347 (4.3% ↑) 1.2 (90.1% ↓) 0.257 11.7 0.282 (9.6% ↑) 3.0 (73.9% ↓)

192 0.1860.1860.186 12.2 0.204 (10.0% ↑) 1.9 (84.3% ↓) 0.196 19.5 0.212 (8.3% ↑) 2.8 (85.9% ↓) 0.219 12.1 0.241 (9.9% ↑) 2.8 (76.7% ↓) 0.347 12.5 0.373 (7.4% ↑) 2.0 (84.2% ↓) 0.270 11.7 0.300 (11.3% ↑) 1.4 (87.8% ↓)
336 0.1980.1980.198 11.9 0.220 (11.1% ↑) 1.2 (90.0% ↓) 0.209 19.5 0.225 (7.7% ↑) 1.9 (90.1% ↓) 0.239 12.1 0.270 (13.2% ↑) 1.2 (90.2% ↓) 0.352 12.5 0.405 (15.2% ↑) 1.2 (90.1% ↓) 0.291 11.7 0.315 (8.2% ↑) 1.3 (88.5% ↓)
720 0.2220.2220.222 11.9 0.241 (8.6% ↑) 3.2 (73.5% ↓) 0.238 19.5 0.265 (11.0% ↑) 2.8 (85.4% ↓) 0.279 12.1 0.315 (12.7% ↑) 1.5 (87.7% ↓) 0.393 12.5 0.569 (44.8% ↑) 1.2 (90.0% ↓) 0.307 11.7 0.346 (12.7% ↑) 4.3 (62.9% ↓)

E
T

T
m

2 96 0.241 10.6 0.244 (1.0% ↑) 4.1 (61.0% ↓) 0.1900.1900.190 17.9 0.201 (5.7% ↑) 1.8 (90.2% ↓) 0.233 10.5 0.214 (7.9% ↓) 1.0 (90.1% ↓) 0.485 11.3 0.371 (23.3% ↓) 8.7 (22.9% ↓) 0.418 10.5 0.268 (35.8% ↓) 1.0 (90.8% ↓)
192 0.387 10.7 0.480 (24.1% ↑) 3.7 (65.6% ↓) 0.2590.2590.259 17.9 0.263 (1.7% ↑) 1.8 (90.2% ↓) 0.302 10.5 0.269 (10.8% ↓) 1.0 (90.4% ↓) 0.742 11.3 0.777 (4.7% ↑) 4.1 (63.6% ↓) 1.093 10.5 0.527 (51.8% ↓) 1.0 (90.3% ↓)
336 0.615 10.6 0.339 (44.9% ↓) 1.0 (90.2% ↓) 0.3200.3200.320 17.9 0.325 (1.4% ↑) 1.8 (90.2% ↓) 0.338 10.5 0.326 (3.4% ↓) 1.0 (90.2% ↓) 1.400 11.3 1.084 (22.5% ↓) 1.2 (89.8% ↓) 1.387 10.5 0.982 (29.2% ↓) 2.6 (75.2% ↓)
720 0.734 10.6 0.439 (40.1% ↓) 1.0 (90.2% ↓) 0.425 17.9 0.423 (0.4% ↓) 1.8 (90.1% ↓) 0.463 10.5 0.4170.4170.417 (9.9% ↓) 1.0 (90.4% ↓) 3.479 11.3 3.320 (4.5% ↓) 7.1 (37.4% ↓) 3.018 10.5 2.561 (15.1% ↓) 8.1 (23.4% ↓)

E
xc

ha
ng

e 96 0.124 10.5 0.1160.1160.116 (6.8% ↓) 1.0 (90.4% ↓) 0.146 17.9 0.155 (5.7% ↑) 6.7 (62.7% ↓) 0.147 10.5 0.148 (0.4% ↑) 5.9 (44.2% ↓) 0.941 11.3 0.945 (0.5% ↑) 7.7 (32.1% ↓) 0.679 10.5 0.651 (4.2% ↓) 7.2 (31.6% ↓)
192 0.243 10.5 0.2330.2330.233 (4.4% ↓) 4.2 (60.2% ↓) 0.271 17.9 0.276 (1.6% ↑) 10.6 (40.5% ↓) 0.285 10.5 0.412 (44.3% ↑) 6.2 (41.6% ↓) 1.077 11.3 1.087 (1.0% ↑) 7.7 (32.5% ↓) 1.255 10.5 1.229 (2.0% ↓) 7.0 (33.5% ↓)
336 0.462 10.6 0.459 (0.5% ↓) 8.2 (22.0% ↓) 0.4430.4430.443 17.9 0.447 (0.9% ↑) 11.9 (33.2% ↓) 0.772 10.5 0.695 (9.9% ↓) 8.2 (22.1% ↓) 1.609 11.3 1.596 (0.8% ↓) 9.2 (19.1% ↓) 1.565 10.5 1.588 (1.5% ↑) 6.3 (40.5% ↓)
720 1.336 10.6 1.156 (13.5% ↓) 8.3 (21.3% ↓) 1.143 17.9 1.169 (2.3% ↑) 12.8 (28.6% ↓) 1.1281.1281.128 10.5 1.206 (6.9% ↑) 8.1 (23.0% ↓) 2.747 11.3 2.497 (9.1% ↓) 9.8 (13.1% ↓) 2.938 10.5 2.164 (26.3% ↓) 5.9 (44.4% ↓)

Il
ln

es
s 24 2.5552.5552.555 10.5 2.641 (3.3% ↑) 6.9 (35.0% ↓) 3.285 13.1 3.590 (9.3% ↑) 7.6 (42.1% ↓) 3.686 10.5 3.648 (1.0% ↓) 7.5 (29.2% ↓) 5.361 11.3 5.412 (1.0% ↑) 7.9 (29.9% ↓) 4.740 10.5 4.739 (0.0% ↓) 6.9 (34.3% ↓)

36 1.9131.9131.913 10.5 2.111 (10.4% ↑) 7.9 (25.4% ↓) 2.682 13.5 2.835 (5.7% ↑) 8.5 (36.7% ↓) 2.799 10.5 3.118 (11.4% ↑) 6.9 (34.8% ↓) 5.304 11.3 5.239 (1.2% ↓) 6.6 (41.7% ↓) 4.776 10.5 4.911 (2.8% ↑) 8.1 (23.2% ↓)
48 1.8731.8731.873 10.5 2.186 (16.7% ↑) 7.8 (25.6% ↓) 2.585 13.9 2.762 (6.9% ↑) 8.8 (36.4% ↓) 2.990 10.5 3.017 (0.9% ↑) 5.3 (49.3% ↓) 5.187 11.3 5.064 (2.4% ↓) 7.5 (34.0% ↓) 5.090 10.5 4.914 (3.5% ↓) 7.7 (26.5% ↓)
60 2.2092.2092.209 10.5 2.391 (8.2% ↑) 7.0 (34.0% ↓) 2.807 14.3 2.994 (6.7% ↑) 8.2 (42.7% ↓) 2.860 10.5 2.984 (4.3% ↑) 7.0 (33.2% ↓) 5.234 11.3 5.197 (0.7% ↓) 7.5 (34.1% ↓) 5.162 10.5 5.070 (1.8% ↓) 7.9 (25.0% ↓)

Tr
af

fic

96 0.608 14.1 0.641 (5.4% ↑) 4.3 (69.6% ↓) 0.5810.5810.581 22.3 0.585 (0.8% ↑) 5.4 (75.6% ↓) 0.649 14.9 0.629 (3.1% ↓) 5.2 (65.2% ↓) 0.724 14.4 0.744 (2.7% ↑) 1.5 (89.3% ↓) 0.646 13.6 0.677 (4.8% ↑) 3.7 (72.8% ↓)
192 0.623 14.1 0.660 (5.9% ↑) 4.3 (69.4% ↓) 0.6050.6050.605 22.3 0.608 (0.5% ↑) 3.9 (82.4% ↓) 0.630 14.9 0.653 (3.6% ↑) 5.6 (62.4% ↓) 0.746 14.4 0.771 (3.3% ↑) 1.6 (88.9% ↓) 0.660 13.6 0.685 (3.9% ↑) 4.5 (66.7% ↓)
336 0.640 14.6 0.672 (5.0% ↑) 3.1 (78.7% ↓) 0.618 22.3 0.625 (1.1% ↑) 5.6 (75.0% ↓) 0.6140.6140.614 14.9 0.649 (5.7% ↑) 3.5 (76.8% ↓) 0.830 14.4 0.907 (9.3% ↑) 1.7 (88.1% ↓) 0.668 13.6 0.687 (2.8% ↑) 3.2 (76.5% ↓)
720 0.658 14.1 0.687 (4.5% ↑) 5.3 (62.4% ↓) 0.6340.6340.634 22.3 0.643 (1.5% ↑) 7.7 (65.5% ↓) 0.663 14.9 0.673 (1.5% ↑) 3.9 (73.7% ↓) 0.943 14.4 1.324 (40.3% ↑) 4.4 (69.2% ↓) 0.693 13.6 0.705 (1.7% ↑) 4.0 (70.9% ↓)

W
ea

th
er 96 0.182 10.8 0.1670.1670.167 (8.0% ↓) 1.0 (90.3% ↓) 0.232 17.9 0.215 (7.2% ↓) 1.8 (90.0% ↓) 0.266 10.6 0.258 (2.9% ↓) 1.1 (90.0% ↓) 0.375 11.4 0.349 (7.0% ↓) 1.1 (90.2% ↓) 0.380 10.6 0.198 (47.8% ↓) 1.0 (90.1% ↓)

192 0.247 10.6 0.2200.2200.220 (11.0% ↓) 1.0 (90.5% ↓) 0.281 17.9 0.280 (0.4% ↓) 1.8 (90.0% ↓) 0.304 10.6 0.306 (0.7% ↑) 1.0 (90.4% ↓) 0.512 11.4 0.469 (8.4% ↓) 2.6 (76.8% ↓) 0.584 10.6 0.282 (51.6% ↓) 1.0 (90.1% ↓)
336 0.329 10.6 0.2930.2930.293 (10.9% ↓) 1.0 (90.1% ↓) 0.355 17.9 0.337 (5.1% ↓) 1.8 (90.0% ↓) 0.360 10.6 0.375 (4.1% ↑) 1.0 (90.1% ↓) 0.604 11.4 0.560 (7.3% ↓) 4.2 (63.0% ↓) 0.684 10.6 0.343 (49.9% ↓) 1.0 (90.1% ↓)
720 0.410 10.6 0.3680.3680.368 (10.1% ↓) 1.0 (90.2% ↓) 0.410 17.9 0.410 (0.0% ↑) 1.8 (90.1% ↓) 0.423 10.6 0.416 (1.7% ↓) 2.1 (80.3% ↓) 0.987 11.4 1.400 (41.8% ↑) 9.4 (17.6% ↓) 0.930 10.6 0.476 (48.9% ↓) 1.0 (90.4% ↓)

Table 6: Univariate prediction comparison on the ETTm2 and Exchange datasets for prediction length
H ∈ {96, 192, 336, 720}. For each model, the performance of the original (Dense) and the pruned
model using PALS is presented in terms of MSE and parameter count. The difference between the
results compared to the dense counterpart is shown in parenthesis as % (blue indicates improvement
in the results compared to the dense model). Bold entries are the best performer in each experiment
among various models.

D
at

as
et

s

H
NSTransformer FEDformer Autoformer Informer Transformer

Dense +PALS Dense +PALS Dense +PALS Dense +PALS Dense +PALS
MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param MSE #Param

E
T

T
m

2 96 0.074 10.6 0.068 (7.6% ↓) 1.1 (90.0% ↓) 0.069 17.8 0.0650.0650.065 (5.9% ↓) 1.7 (90.2% ↓) 0.125 10.5 0.127 (1.7% ↑) 2.5 (76.6% ↓) 0.092 11.3 0.092 (0.2% ↑) 2.7 (76.5% ↓) 0.079 10.5 0.070 (12.0% ↓) 1.1 (89.3% ↓)
192 0.128 10.7 0.107 (16.3% ↓) 1.1 (90.2% ↓) 0.1000.1000.100 17.8 0.101 (0.6% ↑) 1.7 (90.2% ↓) 0.141 10.5 0.144 (2.2% ↑) 1.0 (90.4% ↓) 0.137 11.3 0.129 (6.0% ↓) 1.1 (90.1% ↓) 0.119 10.5 0.117 (1.3% ↓) 7.0 (33.8% ↓)
336 0.146 10.5 0.153 (5.4% ↑) 1.0 (90.1% ↓) 0.133 17.8 0.1310.1310.131 (1.6% ↓) 2.6 (85.7% ↓) 0.146 10.5 0.143 (2.4% ↓) 1.0 (90.4% ↓) 0.174 11.3 0.170 (2.5% ↓) 5.2 (54.3% ↓) 0.171 10.5 0.137 (19.5% ↓) 1.0 (90.1% ↓)
720 0.225 10.5 0.230 (2.0% ↑) 3.7 (65.3% ↓) 0.185 17.8 0.186 (0.2% ↑) 2.6 (85.4% ↓) 0.195 10.5 0.1810.1810.181 (7.3% ↓) 1.0 (90.3% ↓) 0.211 11.3 0.213 (1.0% ↑) 6.3 (44.6% ↓) 0.192 10.5 0.189 (1.7% ↓) 6.0 (42.6% ↓)

E
xc

ha
ng

e 96 0.161 10.5 0.150 (6.8% ↓) 8.4 (20.0% ↓) 0.1220.1220.122 17.8 0.131 (7.4% ↑) 12.2 (31.4% ↓) 0.161 10.5 0.159 (1.2% ↓) 8.2 (21.8% ↓) 0.374 11.3 0.316 (15.6% ↓) 6.9 (39.2% ↓) 0.329 10.5 0.268 (18.4% ↓) 8.6 (18.5% ↓)
192 0.2220.2220.222 10.5 0.252 (13.7% ↑) 8.5 (19.1% ↓) 0.257 17.8 0.276 (7.3% ↑) 9.2 (48.4% ↓) 0.304 10.5 0.345 (13.5% ↑) 8.1 (23.2% ↓) 1.180 11.3 1.064 (9.8% ↓) 8.4 (25.3% ↓) 1.549 10.5 1.339 (13.5% ↓) 8.0 (23.8% ↓)
336 0.395 10.5 0.3270.3270.327 (17.3% ↓) 8.6 (18.3% ↓) 0.499 17.8 0.525 (5.2% ↑) 13.8 (22.9% ↓) 0.669 10.5 0.616 (8.0% ↓) 7.4 (29.8% ↓) 1.771 11.3 1.747 (1.4% ↓) 9.2 (18.3% ↓) 2.822 10.5 2.115 (25.1% ↓) 8.2 (21.8% ↓)
720 0.981 10.5 0.9730.9730.973 (0.8% ↓) 8.2 (22.1% ↓) 1.258 17.8 1.295 (2.9% ↑) 13.7 (23.0% ↓) 1.284 10.5 1.311 (2.1% ↑) 7.0 (33.7% ↓) 1.497 11.3 1.764 (17.9% ↑) 9.1 (19.9% ↓) 2.091 10.5 2.226 (6.4% ↑) 8.4 (20.5% ↓)

Table 7: Summary of the results on the ETTm2 and Exchange datasets in Table 6. For each experiment
on a transformer model and dataset, the average MSE, MAE, and number of parameters (×106)
for various prediction lengths are reported before and after applying PALS. The difference between
these results is shown in % where the blue color means improvement of PALS compared to the
corresponding dense model.

Model ETTm2-uni Exchange-uni
MSE MAE #Params MSE MAE #Params

NSTransformer 0.143 0.285 10.6 0.440 0.485 10.5
+PALS 0.140 0.277 1.7 0.425 0.470 8.4

Difference 2.4% ↓ 2.6% ↓ 83.9% ↓ 3.3% ↓ 3.1% ↓ 19.8% ↓
FEDformer 0.122 0.265 17.8 0.534 0.520 17.8

+PALS 0.121 0.262 2.2 0.557 0.531 12.2
Difference 1.1% ↓ 1.0% ↓ 87.9% ↓ 4.2% ↑ 2.2% ↑ 31.5% ↓
Autoformer 0.152 0.300 10.5 0.605 0.561 10.5

+PALS 0.149 0.297 1.4 0.608 0.561 7.7
Difference 2.1% ↓ 0.9% ↓ 86.9% ↓ 0.5% ↑ 0.1% ↓ 27.1% ↓
Informer 0.153 0.304 11.3 1.206 0.852 11.3
+PALS 0.151 0.303 3.8 1.223 0.866 8.4

Difference 1.7% ↓ 0.4% ↓ 66.4% ↓ 1.4% ↑ 1.6% ↑ 25.7% ↓
Transformer 0.140 0.286 10.5 1.698 0.928 10.5

+PALS 0.128 0.274 3.8 1.487 0.887 8.3
Difference 8.5% ↓ 4.2% ↓ 63.9% ↓ 12.4% ↓ 4.4% ↓ 21.2% ↓

In Table 9, the results of applying PALS to DLinear in terms of MSE and the sparsity level are
presented. In most cases considered, PALS can prune DLinear without compromising loss. On the
Electricity, ETTm2, Traffic, and Weather datasets, PALS can prune ∼ 90% of the connections while
achieving comparable loss. This shows the effectiveness of PALS when applied to a MLP-based
model.
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Table 8: Hyperparameter Sensitivity of PALS. The prediction MSE and model’s parameter count
(×106) when applying PALS on NSTransformers is measured when changing the values of γ and λ
in {1.05, 1.1, 1.2}. Blue indicates improvement in the results compared to the dense model. Bold
entries are the best performer in each row.

γ = 1.05 γ = 1.1 γ = 1.2
H Dense λ = 1.05 λ = 1.1 λ = 1.2 λ = 1.05 λ = 1.1 λ = 1.2 λ = 1.05 λ = 1.1 λ = 1.2

E
le

ct
ri

ci
ty 96 0.1700.1700.170 0.195 (78.2%) 0.193 (74.8%) 0.193 (74.8%) 0.200 (90.3%) 0.198 (90.1%) 0.199 (90.1%) 0.206 (90.6%) 0.206 (90.5%) 0.206 (90.2%)

192 0.1860.1860.186 0.204 (84.3%) 0.211 (78.0%) 0.209 (78.6%) 0.215 (90.1%) 0.214 (90.1%) 0.214 (90.1%) 0.258 (90.3%) 0.260 (90.6%) 0.260 (90.3%)
336 0.1980.1980.198 0.215 (90.0%) 0.218 (90.0%) 0.219 (90.0%) 0.243 (90.1%) 0.246 (90.1%) 0.244 (90.1%) 0.271 (90.6%) 0.271 (90.4%) 0.270 (90.2%)
720 0.2220.2220.222 0.240 (78.1%) 0.242 (73.5%) 0.242 (73.5%) 0.250 (90.1%) 0.251 (90.1%) 0.252 (90.0%) 0.297 (90.4%) 0.295 (90.3%) 0.300 (90.1%)

E
T

T
m

2 96 0.241 0.272 (25.7%) 0.263 (30.3%) 0.268 (64.6%) 0.244 (40.0%) 0.248 (61.0%) 0.202 (90.4%) 0.1930.1930.193 (90.3%) 0.193 (90.3%) 0.195 (90.1%)
192 0.3870.3870.387 0.644 (21.4%) 0.626 (21.5%) 0.650 (25.9%) 0.574 (27.4%) 0.547 (41.1%) 0.498 (54.5%) 0.541 (40.4%) 0.393 (65.4%) 0.484 (65.3%)
336 0.615 0.529 (20.5%) 0.529 (21.2%) 0.480 (27.9%) 0.753 (21.9%) 0.725 (35.7%) 0.563 (67.5%) 0.473 (73.7%) 0.3400.3400.340 (90.2%) 0.340 (90.1%)
720 0.734 0.751 (19.7%) 0.780 (27.7%) 0.793 (42.1%) 0.777 (30.9%) 0.804 (34.9%) 0.641 (78.5%) 0.678 (45.5%) 0.600 (79.2%) 0.4410.4410.441 (90.2%)

E
xc

ha
ng

e 96 0.124 0.139 (21.1%) 0.138 (22.3%) 0.135 (32.5%) 0.139 (22.3%) 0.143 (22.5%) 0.139 (64.2%) 0.137 (28.9%) 0.1130.1130.113 (79.5%) 0.125 (87.0%)
192 0.243 0.269 (16.3%) 0.269 (16.3%) 0.269 (16.3%) 0.266 (22.9%) 0.264 (27.7%) 0.263 (30.1%) 0.249 (34.6%) 0.241 (38.1%) 0.2390.2390.239 (60.9%)
336 0.462 0.486 (17.7%) 0.486 (17.7%) 0.486 (17.7%) 0.459 (22.0%) 0.459 (22.0%) 0.459 (22.0%) 0.4290.4290.429 (13.1%) 0.478 (18.3%) 0.460 (28.7%)
720 1.336 1.263 (17.0%) 1.263 (17.0%) 1.263 (17.0%) 1.1341.1341.134 (22.9%) 1.1341.1341.134 (22.9%) 1.1341.1341.134 (22.9%) 1.236 (15.6%) 1.236 (15.6%) 1.236 (15.6%)

Il
ln

es
s 24 2.5552.5552.555 2.593 (27.5%) 2.638 (34.3%) 2.603 (31.6%) 2.668 (44.5%) 2.620 (47.9%) 2.613 (53.0%) 2.849 (65.6%) 2.784 (70.9%) 2.884 (75.7%)

36 1.9131.9131.913 2.112 (24.8%) 2.118 (27.5%) 2.125 (30.8%) 2.193 (34.3%) 2.220 (41.3%) 2.246 (51.6%) 2.433 (53.0%) 2.496 (59.7%) 2.644 (70.9%)
48 1.8731.8731.873 2.186 (25.6%) 2.207 (31.3%) 2.214 (34.0%) 2.246 (39.6%) 2.277 (48.8%) 2.332 (53.1%) 2.492 (60.4%) 2.650 (65.4%) 2.632 (63.5%)
60 2.2092.2092.209 2.413 (30.7%) 2.425 (34.5%) 2.425 (34.5%) 2.523 (50.9%) 2.549 (56.4%) 2.577 (48.0%) 2.772 (57.8%) 2.895 (64.7%) 3.019 (58.6%)

Tr
af

fic

96 0.6080.6080.608 0.641 (69.6%) 0.647 (68.9%) 0.647 (68.9%) 0.676 (70.6%) 0.666 (90.1%) 0.681 (80.3%) 0.671 (90.4%) 0.669 (90.2%) 0.674 (90.6%)
192 0.6230.6230.623 0.658 (75.7%) 0.661 (69.6%) 0.661 (59.9%) 0.688 (76.4%) 0.694 (80.2%) 0.720 (60.2%) 0.711 (90.1%) 0.697 (90.1%) 0.693 (90.4%)
336 0.6400.6400.640 0.672 (78.7%) 0.671 (76.7%) 0.675 (72.9%) 0.712 (76.9%) 0.688 (90.3%) 0.690 (90.3%) 0.715 (90.4%) 0.720 (90.1%) 0.718 (90.6%)
720 0.6580.6580.658 0.687 (62.4%) 0.687 (62.4%) 0.687 (62.4%) 0.730 (76.4%) 0.735 (68.8%) 0.735 (68.8%) 0.728 (90.3%) 0.721 (90.3%) 0.724 (90.9%)

W
ea

th
er

96 0.182 0.1660.1660.166 (78.2%) 0.167 (80.8%) 0.167 (80.8%) 0.167 (90.3%) 0.167 (90.5%) 0.167 (90.5%) 0.172 (90.2%) 0.172 (90.1%) 0.172 (90.1%)
192 0.247 0.225 (83.7%) 0.224 (85.4%) 0.224 (85.4%) 0.222 (90.5%) 0.222 (90.5%) 0.222 (90.5%) 0.2200.2200.220 (90.1%) 0.2200.2200.220 (90.1%) 0.2200.2200.220 (90.1%)
336 0.329 0.303 (80.0%) 0.301 (80.4%) 0.301 (80.4%) 0.2940.2940.294 (90.3%) 0.295 (90.5%) 0.295 (90.5%) 0.297 (90.2%) 0.298 (90.1%) 0.298 (90.1%)
720 0.410 0.413 (68.9%) 0.392 (85.2%) 0.392 (85.2%) 0.372 (90.3%) 0.382 (90.5%) 0.382 (90.5%) 0.3640.3640.364 (90.3%) 0.375 (90.1%) 0.375 (90.1%)

Finally, we want to highlight that our goal in this paper is not to propose a new forecasting model and
beat the state-of-the-art for time series forecasting. Instead, we aim to decrease the high computational
costs of models for time series forecasting while finding automatically their optimal sparsity level
and potentially improving their generalization. The reason that we focus on transformers is that they
are considered to be computationally expensive while performing well in time series forecasting, and
as shown in [59], transformer-based models perform generally well in other time series analysis tasks,
including, classification, anomaly detection, and imputation compared to the MLP-based models [62].
Therefore, they can be a promising direction for future time series analysis research. However, PALS
is orthogonal to forecasting models and can be applied to any deep learning-based model to reduce
its computational costs.

Table 9: Effectiveness of PALS for pruning DLinear model [62]. Each row presents the results of
DLinear before and after applying PALS in terms of MSE, for each prediction length. The achieved
sparsity level is shown in parenthesis as %.

Model Electricity ETTm2 Exchange Illness Traffic Weather

96/24 DLinear 0.140 0.172 0.094 1.997 0.413 0.175
+PALS 0.141 (90.2%) 0.181 (90.0%) 0.086 (25.5%) 1.984 (34.1%) 0.412 (90.3%) 0.177 (90.2%)

192/36 DLinear 0.153 0.235 0.168 2.090 0.424 0.217
+PALS 0.154 (90.2%) 0.249 (90.1%) 0.173 (20.8%) 2.130 (29.8%) 0.424 (90.2%) 0.218 (90.2%)

336/48 DLinear 0.169 0.307 0.322 2.058 0.437 0.263
+PALS 0.170 (90.2%) 0.301 (82.7%) 0.324 (24.7%) 2.124 (32.6%) 0.436 (90.1%) 0.262 (90.2%)

720/60 DLinear 0.204 0.390 0.959 2.375 0.467 0.328
+PALS 0.204 (90.1%) 0.433 (90.3%) 0.963 (38.0%) 2.358 (44.3%) 0.467 (90.2%) 0.324 (90.2%)

G Efficiency of PALS

In this appendix, we discuss the efficiency of PALS in terms of computational costs from various
perspectives.

G.1 Pruning Capabilities

Based on the observations in Section 6.1, PALS achieves the highest average sparsity level among
the considered pruning and sparse training methods. More importantly, it finds the optimal sparsity
level automatically without requiring any prior information, while most pruning and sparse training
algorithms need to receive the sparsity level as an input of the algorithm. In short, PALS can find a
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network with higher sparsity than the competitors (GMP, GraNet, and RigL), where the sparsity level
is found automatically.

G.2 Convergence Speed

Another factor that we consider regarding the efficiency of the methods is the convergence speed. If a
method converges faster than the others, it can be considered to be more efficient in terms of resource
usage.

To compare the convergence speed of each model, we compare the training epochs. As we use early
stopping during training, each training round might not need the full training epochs (which is set to
10). In Table 10, we report the average number of training epochs for various datasets. The results
are an average for different prediction lengths and three random seeds. While GraNet needs almost
full training time due to using a fixed pruning schedule which is determined based on the number of
epochs, PALS can automate the pruning speed based on the loss. On four out of six datasets, PALS
converges faster than GraNet and the dense model. On the Weather dataset, PALS requires longer
training time than the dense model. As will be explained in Section G.3, PALS performs most part of
this training at a very high sparsity level (∼ 90%), thus being resource-efficient. Overall, PALS is
able to achieve a higher or comparable speed to the dense model in most cases considered.

Table 10: Comparison of convergence speed in terms of the number of training epochs on the NSTrans-
former model. The results are average over various prediction lengths of H ∈ {96, 192, 336, 720}
(except for the Illness dataset for which H ∈ {24, 36, 48, 60} ).

Dataset PALS GraNet Dense

Electricity 8.83 9.75 8.92
ETTm2 4.58 9.00 4.92

Exchange 5.83 9.42 4.33
Illness 7.97 9.58 8.92
Traffic 8.83 9.50 9.5

Weather 7.00 9.08 4.08

G.3 Sparsity During Training

Another factor affecting the efficiency of PALS is the sparsity during training. As in our experiment,
PALS starts from a dense network, we analyze when it reaches the final sparsity and how the sparsity
changes during training. Then, would be able to analyze whether the forward pass is mostly performed
sparsely or not.

To achieve this, we plot the sparsity level during the training of PALS for each transformer model and
dataset for various prediction lengths. The sparsity levels are measured after each pruning iteration
which is repeated every 5 batches on the Illness dataset and every 20 batches on the other datasets.
These values are measured till the last pruning iteration before saving the model. The results for all
models are presented in Figure 4.

In Figure 4, due to different convergence speeds on each dataset, each model requires a different
number of training epochs. As the pruning is tuned based on the loss value, the pruning speed varies
for each dataset and model. For example, on the Weather, Electricity, and Ettm2 datasets, for most
of the considered transformer models and prediction lengths, the models reach the final sparsity
level within a few training epochs. However, for the Exchange, Illness, and Traffic datasets, the
convergence speed can be different among different models and prediction lengths. Also, in these
datasets, the final sparsity is reached slower than the earlier category (Weather, Electricity, and Ettm2
datasets). However, in most cases considered, the final sparsity is reached only within half of the
training period.

Overall, it can be observed that in most cases PALS reaches the final sparsity level in a few epochs.
Therefore, the forward pass during training is performed sparsely for a large fraction of the training
process.
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(a) NSTransformer
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Figure 4: Sparsity level of each network during training of PALS. In most cases, the final sparsity is
achieved within a few epochs after the training starts. Therefore, the forward pass during training is
performed sparsely for a large fraction of the training process.

G.4 Sparse Implementation.

Another aspect regarding efficiency is concerned with the true sparse implementation. Further steps
are required to achieve the full advantage of GPU speedup. However, this is a challenging research
question that is out of the scope of the current work. Unstructured sparsity (e.g., pruning connections
of a network as we use in this paper) still suffers from hardware support [30], while proven to be
more effective than structured sparsity (e.g., pruning neurons or other units) [17]. Although there
have been some works that have implemented truly sparse neural networks efficiently on CPUs
[31, 7, 2] and just for MLPs and Autoencoders, proper and efficient GPU support for sparse matrix
computation is yet to be developed. In this paper, we focus on the algorithmic aspect of developing
resource-efficient algorithms, while getting full advantage of sparsity is a large amount of research
that we cannot address with our current human resources. We hope that works such as ours can light
an awareness signal, bringing more researchers from the community together to start addressing
seriously the “elephant in the room”.
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H Model Size Effect

In this Appendix, we study the effect of model size on the performance of PALS by changing the
hidden dimension (dmodel) in {256, 512(default), 768} to analyze the trade-off between loss and
parameters count. We have also considered the results of the original dense model (dmodel = 512).
The results for all models in terms of MSE and parameters count (which are the average results over
different prediction lengths) are presented in Figure 5.

In Figure 5, we can observe that in most cases considered, the model can be pruned significantly
with little or no increase in loss. Similar to our discussion in Section 3, we see consistent behavior
among the Electricity, Illness, and traffic datasets, where a higher number of parameters is mostly
in favor of loss reduction. This might come from the inherent complexity of predicting these
datasets due to either a high number of variables (such as Electricity and Traffic datasets) or the
relatively non-stationary nature of data (such as the illness datasets as shown in [35]). While being
a non-stationary dataset, on the Exchange dataset, a small (dmodel = 256) sparse model can perform
very closely or better than the original (dmodel = 512) dense model on average among various
transformer architectures. This might be caused by the abilities of the transformer variants to learn
this behavior such that even a pruned small model can substitute this model. On the other datasets
(ETTm2 and Weather which are relatively stationary with a low number of variables), sparsity results
mostly in a better performance than the dense model.

In short, it can be concluded that various time-series datasets do not demonstrate homogenous
behavior due to their intrinsic differences. Therefore, we need to take these differences into
consideration when choosing the model size or the right sparsity level (Section 3).

I Prediction Quality

In this Appendix, we evaluate the prediction of different models and discuss how PALS affects this
prediction when pruning them.
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Figure 5: Model size effect by varying dmodel ∈
{256, 512(default), 768}) on the prediction per-
formance of PALS compared to the original dense
model.
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Figure 6: Forecasting Visualization on Trans-
former with and without PALS on three datasets.
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The predictions for the transformer on the Weather, ETTm2, and Exchange datasets, where the most
significant changes in loss and parameters count were seen, are visualized in Figure 6. It can be
observed that PALS significantly improves the prediction of this model on these three datasets. As
summarized in Table 5 (Appendix C), PALS is able to gain very close prediction performance on
the transformer to the best performer on the Weather dataset (NStransformer) with only pruning
90% of unimportant connections.

Next, we visualize the predictions for each model with and without PALS on the Weather, Illness,
ETTm2 (periodic dataset), and Exchange (without obvious periodicity) datasets for all transformer
variants in Figures 7, 8, 9, and 10, respectively. In most cases considered in these figures, PALS
is able to gain very similar or better performance than the dense counterpart model. By removing
unimportant connections, the prediction using PALS is mostly smoother than the prediction of the
dense model. Therefore, it can be concluded that it is possible to significantly prune transformers
for time series forecasting using PALS without compromising performance.
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Figure 7: Forecasting Visualization on transformers with and without PALS on the Weather dataset
(H = 192).
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Figure 8: Forecasting Visualization on transformers with and without PALS on the illness dataset
(H = 60).
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Figure 9: Forecasting Visualization on transformers with and without PALS on the ETTm2 dataset
(H = 336).
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Figure 10: Forecasting Visualization on transformers with and without PALS on the Exchange dataset
(H = 720).
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