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Abstract

Boolean functions are mathematical objects with numerous ap-
plications in domains like coding theory, cryptography, and telecom-
munications. Finding Boolean functions with specific properties is a
complex combinatorial optimization problem where the search space
grows super-exponentially with the number of input variables. One
common property of interest is the nonlinearity of Boolean functions.
Constructing highly nonlinear Boolean functions is difficult as it is
not always known what nonlinearity values can be reached in practice.
In this paper, we investigate the effects of the genetic operators for
bit-string encoding in optimizing nonlinearity. While several mutation
and crossover operators have commonly been used, the link between
the genotype they operate on and the resulting phenotype changes is
mostly obscure. By observing the range of possible changes an operator
can provide, as well as relative probabilities of specific transitions in
the objective space, one can use this information to design a more effec-
tive combination of genetic operators. The analysis reveals interesting
insights into operator effectiveness and indicates how algorithm design
may improve convergence compared to an operator-agnostic genetic
algorithm.

Keywords Boolean functions, Walsh-Hadamard Transform, Nonlinear-
ity, genetic algorithms, local search, mutation, crossover
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1 Introduction

Boolean functions are used in many applications, including combinatorial
designs [20], coding theory [8], sequences [14], telecommunications [15], and
cryptography [5]. For Boolean functions to be useful, they need to fulfill
certain properties. One of the core properties considered across multiple
domains is nonlinearity, and the requirement is to have it as high as possible.
To design such functions, one can employ algebraic constructions, random
search, and metaheuristics. With metaheuristics, it is important to consider
what will be the solution encoding and objective function. The most common
choice to encode Boolean functions is to use the truth table encoding. Unfor-
tunately, the problem is that by considering the truth table, it is difficult to
assess the quality of most of the relevant properties, including nonlinearity.
To evaluate the nonlinearity, one first needs to translate the truth table into
the Walsh-Hadamard spectrum and then calculate the nonlinearity value.

Metaheuristics commonly operate by constructing solutions in one way
but evaluating their quality in another way, where the connection is not
necessarily straightforward. The problem becomes even more challenging
when considering larger Boolean functions as the search space size equals 22

n

for a Boolean function with n inputs. Thus, even small Boolean functions
with, e.g., 7 inputs would result in a huge search space of 2128. Then, the
argument that metaheuristics does not work well because the considered
Boolean functions are too large sounds natural. Moreover, certain properties
can be computationally expensive to evaluate1 for larger Boolean sizes,
making it difficult to be checked often in the optimization process. Alleviating
any of those issues is important as it could allow finding more well-performing
Boolean functions in different sizes, having practical ramifications for diverse
application domains.

While the aforesaid reasons are natural difficulties when using meta-
heuristics, potential solutions are different. For instance, considering the
computational complexity of evaluations, a solution can be to “simply” par-
allelize the objective function calculation and/or the search algorithm [6].
To facilitate optimization of Boolean functions of larger size, besides more
efficient calculations, another option could be to design constructions of
Boolean functions [16] that work for any Boolean function size. Finally, to
avoid the problems between the genotype and phenotype mapping/evaluation,
one could consider the intuitive option of working with the “correct” en-
coding from the beginning. There are efforts like that, see, e.g., [4], but
unfortunately, there are still issues since working with the Walsh-Hadamard
encoding of solutions will commonly result only in pseudo-Boolean functions,
limiting the practicality of the approach. Interestingly, we found no works

1For instance, the naive implementation of the Walsh-Hadamard transform has com-
plexity O(22n) while the optimized butterfly algorithm has complexity O(n2n).

2



that aim to understand what is the influence of a certain change (e.g., stem-
ming from crossover or mutation) in genotype (truth table) to phenotype
(Walsh-Hadamard spectrum).

This work aims to fill in this gap and assess the influence that some
common crossover and mutation operators have on the nonlinearity property
changes in the genetic algorithm (GA) and local search (LS). We consider two
objective functions, eight mutation operators, and two crossover operators.
We conduct our analysis by exhaustively checking the space of Boolean
functions with three and four inputs and by sampling for larger Boolean
function sizes. Our main contributions are:

1. We are the first to systematically evaluate different mutation and
crossover operators for evolving Boolean functions with high nonlinear-
ity.

2. We show how simple mutation operators can improve the nonlinearity
value and how a more informative fitness function helps where operators
do not work well.

3. We observe that highly successful crossovers occur only for parents of
lower nonlinearity and when both parents have a similar nonlinearity.

4. We demonstrate that LS can outperform GA, and it benefits more
from the additional information in the fitness function.

2 Preliminaries on Boolean Functions

Let n be a positive integer, i.e., n ∈ N+. We denote by Fn
2 the n-dimensional

vector space over F2 and by F2n the finite field with 2n elements (i.e., of
order 2n). The set of all n-tuples of elements in the field F2 is denoted by Fn

2 ,
where F2 is the Galois field with two elements. The usual inner product of a
and b equals a ·b =

⊕n
i=1 aibi in Fn

2 . Since for every n, there exists a field F2n

of order 2n, which is an n-dimensional vector space, we can endow the vector
space Fn

2 with the structure of that field when convenient. Adding elements
of the finite field F2n is denoted “+”, as usual in mathematics. Since often,
we identify Fn

2 with F2n , and if there is no ambiguity, we denote the addition
of vectors of Fn

2 when n > 1 “+” as well.
An n-variable Boolean function is a mapping f : Fn

2 → F2. A Boolean
function f can be uniquely represented by the truth table that is the list
of pairs of function inputs x ∈ Fn

2 and corresponding function values f(x).
The value vector is the binary vector Ωf composed of all f(x), with x ∈ Fn

2 ,
where some total order has been fixed on Fn

2 (commonly, the lexicographic
order). The size of the value vector is 2n, and the size of the search space
equals 22

n
.

A second option to uniquely represent a Boolean function f is the Walsh-
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Hadamard Transform:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x. (1)

The coefficient Wf (a) measures the correlation between f and the linear
function a ·x. Notice that the mapping Wf is injective, from which it follows
that the spectrum of a Boolean function f uniquely identifies f . In particular,
one can retrieve the truth table of f from its Walsh-Hadamard representation
by using the Inverse Walsh-Hadamard Transform.2

The minimum Hamming distance3 between a Boolean function f and all
affine functions is called the nonlinearity of f , denoted by nlf . This property
can be characterized in terms of the Walsh-Hadamard coefficients as follows:

nlf = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)|. (2)

A common requirement is that nonlinearity should be as large as possible.
From Eq. (2), this happens if the largest absolute value Walsh-Hadamard
coefficient is as small as possible. The Parseval’s relation

∑
a∈Fn

2
Wf (a)2 =

22n implies that the mean of Wf (a)2 equals 2n. Finally, maxa∈Fn
2
|Wf (a)| is

then at least equal to the square root of this mean. This allows for deriving
the following inequality, known as the covering radius bound:

nlf ≤ 2n−1 − 2n/2−1. (3)

A Boolean function can be considered highly nonlinear if its nonlinearity
is close to the covering radius bound. The functions whose nonlinearity
equals the maximal value 2n−1− 2n/2−1 are called bent. Bent functions exist
only for even values of n.

3 Related Work

A literature review reveals that nonlinearity is the most explored property
when optimizing Boolean functions. Most of the works using metaheuristics
to optimize properties do not try to investigate the influence of recombination
operators but concentrate on finding Boolean functions in specific dimensions
and property values. For a more recent overview of metaheuristic techniques
for constructing Boolean functions, we refer readers to [5].

Millan et al. were the first to apply genetic algorithms (GAs) to evolve
Boolean functions with good cryptographic properties [12]. The authors

2Inverse Walsh-Hadamard Transform follows Eq. (1), except that x and (−1)f(x) are
replaced by a and Wf (a), respectively, and the sum is normalized by a 2−n factor.

3The Hamming distance between two functions f and g is the size of the set
{x ∈ Fn

2 : f(x) 6= g(x)}.
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used a genetic algorithm to evolve Boolean functions with high nonlinearity.
Dawson et al. used a combination of simulated annealing and hill-climbing
with a cost function motivated by the Parseval theorem to find functions
with high nonlinearity and low autocorrelation [3]. Aguirre et al. were the
first to use a multi-objective random bit climber to search for balanced
(having the same number of zeros and ones in the truth table) Boolean
functions with high nonlinearity [1]. Picek et al. were the first to use genetic
programming to find Boolean functions with high nonlinearity (alongside
more properties) [17]. Mariot and Leporati proposed using Particle Swarm
Optimization to find Boolean functions with good trade-offs of cryptographic
properties [11]. Manzoni et al. systematically investigated crossover operators
that preserve balancedness and applied them to maximize the nonlinearity
of Boolean functions [9]. These works either use the truth table encoding or
symbolic encoding mapped to the truth table.

Picek and Jakobovic were the first to propose using evolutionary algo-
rithms (genetic programming) to evolve algebraic constructions of Boolean
functions [16]. Carlet et al. followed a similar principle but concentrated
on algebraic constructions fulfilling more than one property [2]. While such
works do not use the truth table encoding in the design of solutions, once the
construction is evolved, it is applied to get a truth table of a Boolean function,
which is then evaluated in the same way as in the previously discussed works.

Stepping away from the truth table encoding (or symbolic one), several
works tried to evolve Boolean functions with good properties by using the
Walsh-Hadamard spectrum as the solution encoding. While an intuitive
approach, the issue here is that the Walsh-Hadamard transform is injective,
so using a random Walsh-Hadamard spectrum will most likely result in
pseudo-Boolean functions. The first work that considered using the Walsh-
Hadamard spectrum to encode solutions is by Clark et al. [4]. While less
“popular” than truth table encoding discussed before, several more works
appeared that give good results but generally cannot compete with the truth
table encoding [21, 10].

To the best of our knowledge, there are only a few papers concentrating
on the difficulties when using metaheuristics to construct Boolean functions
with good properties like nonlinearity. Picek et al. investigated the symmetry
structure and fitness landscapes in the bit-string representation (truth table
encoding) of Boolean functions [18]. The authors concluded that due to a
large number of symmetries, crossover behaves as a macro-mutation until
the symmetries have been broken. Picek et al. conducted fitness landscape
and deception analysis and found no significant differences that could justify
the difficulty in increasing the Boolean function size from 6 to 8 inputs [19].
Jakobovic et al. used fitness landscape analysis based on Local Optima
Networks (LONs) and investigated the influence of several optimization
criteria and variation operators [7]. The authors considered the truth table
encoding and three neighborhood variants.
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4 Operator Analysis

The analysis here is performed exhaustively for functions with 3 and 4
variables and by sampling for larger sizes. All the operators are defined for
bit-string representation, with Boolean functions encoded in the truth table
form.

4.1 Problem Statement

When optimizing Boolean functions to have a high nonlinearity, we require
the Walsh-Hadamard spectrum to calculate nonlinearity. In this context,
the spectrum corresponds to the phenotype of candidate solutions. However,
if the solution encoding is different from the Walsh-Hadamard, it becomes
unclear how the change in the genotype maps to the phenotype. As most
works use the truth table encoding for metaheuristics, there is a problem
with properly assessing the influence of a certain change (i.e., the result of
a variation operator) in the solution. This motivates the question of how a
specific variation operator change in the genotype changes the phenotype and
whether we can find some changes that can be observed for both genotype
and phenotype. Indeed, consider a case where a mutation operator flips a
single bit in the truth table encoding. Consequently, the Walsh-Hadamard
spectrum will change, but the change will not necessarily align concerning
the magnitude or position.

4.2 Fitness Functions for Optimization of Boolean Functions

Several objective functions can be defined to optimize Boolean function
nonlinearity regardless of how the optimization is performed. These fitness
functions were selected based on the literature study of common choices in
related works [5]. More options are possible, but they commonly include
additional weight factors, making the operator analysis more complex. The
first fitness function is the simplest one and maximizes the nonlinearity value:

fitness1 : nlf . (4)

The second fitness function extends the first one to consider the whole
Walsh-Hadamard spectrum and not only its extreme value (see Eq. (2)).
Here, we count the number of occurrences of the maximal absolute value in
the spectrum, denoted as #max values. As higher nonlinearity corresponds
to a lower maximal absolute value, we aim for as few occurrences of the
maximal value as possible in the hope it would be easier for the algorithm
to reach the next nonlinearity value. In this way, we provide the algorithm
with additional information, making the objective space more gradual. With
this in mind, the second fitness function is defined as:

6



Table 1: Selected mutation operators and their neighborhood sizes

Mutation operator Neighborhood size

bit set (0 to 1) ≤ n
bit reset (1 to 0) ≤ n
bit flip (1 bit inverted) n
two bit flip n(n− 1)/2
two bit flip, only if both equal ≤ n(n− 1)/2
two bit set ≤ n(n− 1)/2
two bit reset ≤ n(n− 1)/2
rotation n− 1

fitness2 : nlf +
2n −#max values

2n
. (5)

The second term never reaches the value of 1 since, in that case, we effectively
reach the next nonlinearity level.

4.3 Mutation Operators

We experimented with the mutation operators listed in Table 1. The table
also reports the neighborhood sizes of these operators if used in the local
search. All these operators are commonly used in evolutionary algorithms,
although with different levels of efficiency.

4.4 Changes in the Walsh-Hadamard Spectrum

As the first question in the analysis, we investigate whether a specific genotype
(truth table) modification will yield a consistent change in the phenotype
(the Walsh-Hadamard spectrum, denoted for brevity spectrum), which can
be utilized to maximize the objective value. To answer this, we perform an
exhaustive search for all mutation operators. For each operator, a mutation
with every possible position is performed on every possible Boolean function.
Here, a mutation position may refer to a single bit, two bit positions, or a
number of rotations, depending on the operator. Then, after each genotype
change, we record new values of the spectrum and check whether the differ-
ences in values of the spectrum were the same for the same mutation position.
For example, if inverting a single bit at position 0 (the least significant bit
in our implementation) yields the same changes in every element of the
spectrum, this is considered a consistent phenotype change. As it turns out,
this phenomenon is only evident with simple operators that either only set
or reset certain bits: bit set/reset and two bit set/reset since they result in a
consistent change in spectrum values for any Boolean function. For example,

7



Table 2: Changes in the Walsh-Hadamard spectrum: bit set operator, n = 3

bit set Changes in spectrum values

0 -2 -2 -2 -2 -2 -2 -2 -2
1 -2 2 -2 2 -2 2 -2 2
2 -2 -2 2 2 -2 -2 2 2
3 -2 2 2 -2 -2 2 2 -2
4 -2 -2 -2 -2 2 2 2 2
5 -2 2 -2 2 2 -2 2 -2
6 -2 -2 2 2 2 2 -2 -2
7 -2 2 2 -2 2 -2 -2 2

for n = 3 and bit set, we observe the changes in the spectrum presented in
Table 2.

The reset operator results in the changes with the same values but with
the opposite sign; the same is true for two bit set and reset (we omit presenting
their patterns as they depend on two bit positions, which yields n(n− 1)/2
combinations). Depending on the initial spectrum, a single bit set/reset will
either increase or decrease the nonlinearity by one, which over the set of all
possible functions occurs in the equal number of cases, while the two bit
operators modify nonlinearity by ±2. The above patterns are present in a
higher number of variables and can be generalized to any Boolean function
size.

For some Boolean functions, it is possible to use this information in the
following way: given the initial spectrum, we can choose a specific change
pattern that would make the transition to a spectrum with a smaller maximal
absolute value and consequently with a higher nonlinearity. Unfortunately,
this is not possible for every function; one can easily verify that in some cases,
as discussed in the next section (when nonlinearity is not already at the
maximum value), no change using these operators can make the transition
to a function with a higher nonlinearity.

4.5 Probability of Changes in Nonlinearity

Since a consistent change is evident only for a few operators, and by itself,
their neighborhood cannot always be used to traverse to a higher nonlinearity,
we tried to answer the following question: what is the probability that a
specific mutation will result in a higher (or same or lower) nonlinearity?
In this case, we again performed an exhaustive search where, for a specific
operator, we iterated over every mutation position and every Boolean function
of the same given nonlinearity. For each change, we record the outcome and
accumulate over all functions with the same nonlinearity.

In this experiment, we restricted the analysis to three operators: single
bit flip, two bit flip, and rotation. The reason for this is that the solutions

8



Table 3: Probabilities of change (increase/no change/decrease) in nonlinearity
for different starting value and mutation operator, n = 4

starting nlf
0 1 2 3 4 5 6

bit flip
100/0/0 93/0/7 87/0/13 81/0/19 48/0/52 7/0/93 0/0/100

two bit flip
100/0/0 87/13/0 75/25/0 40/57/3 4/86/10 0/50/50 0/0/100

0 1 2

100 87

10013

Figure 1: Nonlinearity transitions for bit flip, n = 3

from those operators include the solutions for all the remaining mutation
operators in their neighborhood. The results for bit flip and two bit flip
reveal an interesting characteristic; over all functions with the same initial
nonlinearity, the cumulative probabilities of nonlinearity changes are the
same regardless of the mutation position! For instance, for n = 4 and over
all the functions with initial nonlinearity of 2, the bit flip operator on any
position will have the same probability of increasing the nonlinearity; this
holds for every initial nonlinearity value. The resulting probabilities for bit
flip and two bit flip are shown in Table 3.

The values in the table are shown in percentages so that the numbers
in the triple respectively indicate the probability of increase, no change,
and decrease in nonlinearity. The mutation bit position is omitted because
the probabilities add to the same amounts for all mutation positions. This
behavior allows us to depict it in the form of a Markov chain; the transitions
for all the possible nonlinearity values in Boolean functions of n = 3 variables
are shown in Figures 1 and 2 and for n = 4 in Figures 3 and 4.

In contrast to this, the probabilities for the rotation operator depend on
the number of rotated bits; this operator seems to adhere to the following
pattern:

• the rotation makes no change in nonlinearity for all shifts in n · i bits;
• for other cases, the probabilities are the same for all shifts in odd and

even numbers of bits.
For example, for n = 4 the rotation produces changes with the probabilities
shown in Table 4 (the first column represents the number of rotated bits).

In principle, the above information could allow the algorithm, given
the current nonlinearity, to select the operator that will result in a higher

9



Table 4: Probabilities of change (increase/no change/decrease) in nonlinearity
for rotation operator, n = 4

rot starting nlf

0 1 2 3 4 5 6
1 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
2 50/50/0 50/50/0 40/60/0 22/75/1 1/92/5 0/71/28 0/42/57
3 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
4 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0
5 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
6 50/50/0 50/50/0 40/60/0 22/75/1 1/92/5 0/71/28 0/42/57
7 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
8 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0
9 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
10 50/50/0 50/50/0 40/60/0 22/75/1 1/92/5 0/71/28 0/42/57
11 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
12 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0 0/100/0
13 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78
14 50/50/0 50/50/0 40/60/0 22/75/1 1/92/5 0/71/28 0/42/57
15 75/25/0 68/31/0 57/41/0 31/66/1 2/89/7 0/60/39 0/21/78

0 1 2

100

85

100

15

Figure 2: Nonlinearity transitions for two bit flip, n = 3

0 1 2 3 4 5 6

100 93 87 81 48 7

100935219137

Figure 3: Nonlinearity transitions for bit flip, n = 4

0 1 2 3 4 5 6

13 25 57 86 50

100 87 75 40 3

10050103

Figure 4: Nonlinearity transitions for two bit flip, n = 4
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Table 5: Number of functions with starting nlf where selected mutation
operators can increase nonlinearity, n = 4

Operator starting nlf

rot bit flip 2 bit flip 0 1 2 3 4 5

3 3 3 24 384 2688 8704 1408 0
3 3 7 0 0 0 0 0 0
3 7 3 0 0 0 0 0 0
3 7 7 0 0 0 0 0 0
7 3 3 8 128 1152 9216 25472 0
7 3 7 0 0 0 0 0 14336
7 7 3 0 0 0 0 0 0
7 7 7 0 0 0 0 1120 0

Total no. of functions 32 512 3840 17920 28000 14336

nonlinearity with the highest possible probability. Unfortunately, while
this may increase the efficiency, it does not guarantee obtaining a higher
nonlinearity value for all starting Boolean functions, as discussed next.

4.6 Effect of Neighborhoods

The fact that it is possible to traverse from any nlf to a higher nonlinearity
does not mean this is possible for all functions with a given nlf . To see the
limitations of these operators, we performed the following: for a given value
of nlf , we iterated over every function with this nonlinearity and over every
operator and every mutation position. For each function and operator pair,
we only recorded whether it is possible to reach (any) higher nonlinearity
using that operator. Since there are three operators (bit flip, two bit flip, and
rotation), this gives eight possibilities regarding each operator’s application
success for a given function.

For Boolean functions with three variables, for every function of every
nonlinearity, there is at least one of these operators that can be applied to
increase nonlinearity. However, this is not true for n = 4, for which the
results are presented in Table 5. Each row in the table reports the number
of functions (with nlf in that column) for which it was possible or not to get
higher nlf with all operators in that row. Ignoring the nonlinearity of 6, which
is the highest possible value, there are 1120 functions of nonlinearity 4, for
which neither operator can transition to a higher nonlinearity function. These
functions represent the dead-end of any local search with these neighborhoods
(later verified in the experiments, as local search converges to the nonlinearity
of either 4 or 6).

The same is evident for a higher number of variables; we present the
results for n = 5 in Table 6. Here, the functions are only sampled (1% of all
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Table 6: Percentage of functions with starting nlf where selected mutation
operators can increase nonlinearity, n = 5

Operator starting nlf

rot bit flip 2 bit flip 0 1 2 3 4 5 6 7 8 9 10 11

3 3 3 100 74 74 74 73 73 73 73 71 51 6 0
3 3 7 0 0 0 0 0 0 0 0 0 0.53 0 0
3 7 3 0 0 0 0 0 0 0 0 0 0 0 0
3 7 7 0 0 0 0 0 0 0 0 0.001 0 0.097 0
7 3 3 0 26 26 26 27 27 27 27 29 47 90 0
7 3 7 0 0 0 0 0 0 0 0 0 1.704 0 100
7 7 3 0 0 0 0 0 0 0 0 0 0 0 0
7 7 7 0 0 0 0 0 0 0 0 0.003 0 3.62 0

functions), and the results are presented as percentages. The last two tables
provide an interesting observation: there are no functions for which only two
bit flip operator makes a transition to a higher nonlinearity. For single bit
flip and rotation, there are functions where only these mutations can improve
nonlinearity. This may indicate that the two bit flip operator is redundant
in a local search algorithm, which is encouraging since its neighborhood size
is considerably larger. Still, the experiments do not always support this
observation, as presented in Section 6.

4.7 Crossover Operators

As the last experiment in operator analysis, we tested the effect of two
crossover operators:

• single-point crossover: break point always in the middle;

• uniform crossover: even bits from the first and odd from the second
parent.

These operators were intentionally simplified to reduce the search size
since we aim to investigate the influence that the nonlinearity of parent
solutions has on the product of crossover. We iterated over every pair of
functions (or over a sample) and recorded the result of the crossover. We
differentiate three outcomes: the child solution has a greater nlf than both
parents, lower than both, or some other value in between. Naturally, we are
mostly interested in the first outcome, so we only present the probabilities
of the child having a greater nonlinearity. We perform only sampling due
to a large number of possible pairs, and the results for n = 4 and both
crossovers are presented in Tables 7 and 8. The row indexes correspond to
the nonlinearity of the first parent and columns of the second one, while the
values present probability in percentages.

It is interesting to note that the probabilities of “success” of both operators
are very similar. This indicates that obtaining a higher nlf depends solely on
the nonlinearity of the parents, at least for these two operators. Additionally,
highly successful crossovers occur only for parents of lower nonlinearity

12



Table 7: Probability of increasing the nonlinearity with single-point crossover

nlf 0 1 2 3 4 5

0 71 74 66 21 0 0
1 91 93 87 51 13 0
2 78 84 87 57 19 1
3 27 46 57 62 22 1
4 0 11 18 22 24 1
5 0 0 0 1 1 1

Table 8: Probability of increasing the nonlinearity with uniform crossover

nlf 0 1 2 3 4 5

0 85 85 76 27 0 0
1 88 91 85 46 11 0
2 80 84 87 56 18 0
3 31 47 57 63 22 1
4 0 10 18 22 24 1
5 0 0 0 1 1 1

and when both parents have a similar nonlinearity. From the algorithm
perspective, this would indicate it is beneficial to perform crossover in the
population of low-quality individuals, but for higher nonlinearity levels,
mutation operators would present a better choice.

5 Search Algorithms

5.1 Genetic Algorithm

To evaluate the influence of operators and their combinations, we use a
genetic algorithm as a baseline. We employ a canonical genetic algorithm
with bit-string encoding and a steady-state replacement strategy. In each
iteration, three solutions are selected at random and placed into a tournament.
The worst solution from the tournament is removed from the population; the
remaining two individuals are used as parents to create a replacement solution.
The child solution then undergoes a mutation with a given probability and
is added to the population. The algorithm’s parameters are as follows: the
population size is 100, and the crossover is performed either as a uniform
crossover (with every gene inherited from both parents with equal probability)
or a single-point crossover (with any possible crossing point). The mutation
operators are a single bit flip mutation, two bit flip, and a mixing mutation,
which randomly shuffles bits between two randomly chosen points; mutation
is applied with the probability of 0.5 to every child solution. The parameters
were selected based on the related works.
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Algorithm 1 A greedy local search

1: repeat
2: for each mutation operator do
3: for each mutation position do
4: if better solution found then
5: accept new solution and continue the main loop
6: end if
7: end for
8: end for
9: until there is no improvement

5.2 Greedy Local Search

Since, in the previous section, it was evident that only mutation operators can
reach high nonlinearity solutions with relatively large probabilities, we employ
the operators in a greedy local search (LS) algorithm. The first LS variant
(Algorithm 1) iterates over the selected mutation operators (corresponding
to different neighborhoods) and accepts the first solution with a better
fitness function - thus being greedy. If a better solution is found, the search
is iterated with the new solution until no improvement is possible. This
algorithm is applied with different combinations of operators, as well as
different orders of operators within the main loop since that may also affect
the outcome.

The last section showed that there are Boolean functions for which even
the combined neighborhood of all three operators does not contain any
Boolean function with a higher nonlinearity. Therefore, we modify the simple
LS: if there is no improvement in the current solution, the algorithm reverts
to the previous solution and continues exploring its neighborhood. In other
words, when the algorithm reverts, it does not repeat the move that resulted
in a dead-end but continues iterating over unexplored mutation positions
and subsequent operators. This modified version of the algorithm is denoted
as LS-revert (LS-R) in the experiments.

6 Experimental Results

All the algorithms are run for a maximum of 500000 evaluations (or until
convergence for the LS), and each experiment is repeated for 30 runs. Addi-
tionally, the GA and LS variants are used with both fitness functions. The
experiments are conducted on Boolean sizes of 8, 9, and 10 variables; these
are the sizes commonly used in related works and the smallest ones for which
the optimal nonlinearity values may not be known.4

4For instance, for Boolean functions with 8 inputs, it is postulated that the maximal
nonlinearity equals 118 when the function is balanced. Yet, the best-known result is 116.
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Figure 5: Performance of greedy LS with fitness 1 and different operator
combinations (“bit”: bit flip, “2bit”: two bit flip, “rot”: rotation)

6.1 Local Search Operators

First, we experimented with different combinations of mutation operators
(neighborhoods) in the simple LS algorithm. As mentioned before, the
analysis indicated that only bit flip and rotation should be sufficient, while
the two bit flip may be redundant. As an example, we test various operator
combinations and their sequences, using the first fitness function (Eq. (4)) on
Boolean functions with 9 variables; the results of this experiment are shown
in Fig. 5.

Notice there are no significant differences between different operator
combinations; also, the two bit flip seems not to affect the performance.
However, the situation changes substantially when we use the same algorithm
with the second fitness; the results for this case are presented in Fig. 6. It
is evident that the second fitness function performs much better (see the
scale on both figures). Also, the inclusion of two bit flip operator induces
a large improvement over the other variants, which is in contrast with the
analysis that relied solely on nonlinearity value. Additionally, the variants
with two bit flip as the first used operator yield slightly better results. Based
on these results, any combinations with two bit flip could be chosen as the
best performing one, and the combinations of “2bit/bit” and “2bit/rot/bit”
yield the best mean value. For algorithm comparison, we selected the variant
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Figure 6: Performance of greedy LS with fitness 2 and different operator
combinations (“bit”: bit flip, “2bit”: two bit flip, “rot”: rotation)

with two bit flip and single bit flip since it includes only two operators. While
it may seem counter-intuitive to use both a single and two bit flip, note that
multiple bit flips are performed at once, so it is possible that one operator
succeeds where the other fails.

Finally, the same operator combinations are applied with the LS-revert
algorithm, for which the results are shown in Fig. 7. This algorithm variant
obtains better solutions for every operator combination (the nonlinearity
scale is the same in both figures). This is expected and obtained at the cost
of additional evaluations but still under the maximum evaluation limit.

6.2 Algorithm Comparison

In the second phase, the GA and LS variants are compared on different
function sizes and using both fitness functions. The results for all the
algorithms in n = 8, 9, and 10 variables are shown in Figs. 8, 9, and 10.
Unlike the local search, GA does not benefit from using the second fitness
function, at least not for smaller Boolean sizes. Although the GA obtains
worse results, this could be improved with careful parameter tuning, which
was not performed in this analysis. Still, it is clear that even a simple greedy
local search offers competitive performance while using no other parameters
besides the chosen operator set (which is, in this case, two bit flip and bit
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Figure 7: Performance of greedy LS with revert, fitness 2 and different
operator combinations (“bit”: bit flip, “2bit”: two bit flip, “rot”: rotation)

flip). An evident downside of the LS approach is the prohibitively increasing
time complexity with the increase of the solution size, but this can always
be controlled (as in our experiments) with a set time or evaluation limit.

Based on the obtained results, we make the following general observations:
• Several simple mutation operators result in a consistent change in

spectrum values for any Boolean function.
• Not all mutation operators can make the transition to a Boolean

function with a higher nonlinearity.
• The results for bit flip and two bit flip show that over all functions with

the same initial nonlinearity, the cumulative probabilities of nonlinearity
changes are the same regardless of the mutation position, while the
probabilities for the rotation operator depend on the number of rotated
bits.

• Using simple mutation operators, it is not necessarily possible to reach
higher nonlinearity, but this can be resolved by using a more informative
fitness function.

• Obtaining a higher nlf depends on the parents’ nonlinearity and not on
the choice of a simple crossover operator. Highly successful crossovers
occur only for parents of lower nonlinearity and when both parents
have a similar nonlinearity.

• LS benefits more than GA from a more informative fitness function
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when the Boolean function size is relatively small.
The above observations might be related to the structure of the space

of Boolean functions, especially when considering random sampling. Olejar
and Stanek proved that the cryptographic properties of random Boolean
functions are relatively close to the optimal values [13]. This also holds for
nonlinearity, and it might explain why the operators analyzed in this work
cannot always improve the nonlinearity of the candidate solutions: already
from the initial generation, they could be very close to a local optimum.

The behavior of crossover can be explained by the geometry of the space
of Boolean functions. In particular, we considered geometric operators,
meaning that they produce offspring lying on the segment between the two
parents. Applying crossover to these individuals could have a greater chance
of sampling something on the border of non-overlapping spheres defined by
two linear functions and thus obtain offspring with high nonlinearity.

7 Conclusions and Future Work

This paper investigates the effect of commonly used mutation and crossover
operators on the Boolean functions’ bit-string representation when optimizing
nonlinearity. Our findings show that the effects of different operators depend
mainly on the starting nonlinearity of the Boolean function being affected
rather than on the intrinsic operator parameters. The investigated crossover
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operators behave almost identically and offer no comparative advantage over
mutation operators.

In future work, it would be interesting to investigate symbolic encoding
as it provides better results than bit-string. Thus, we would consider the
effect of changes there, from the tree encoding, into the truth table and,
finally, the Walsh-Hadamard spectrum. Finally, a natural extension would
be to consider S-boxes (vectorial Boolean functions), as there, one needs to
assess all non-trivial combinations of Boolean functions, making the mapping
between genotype and phenotype even more complex.
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