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Abstract

Microclimate and vegetation structure control evapotranspiration (ET) from land sur-

faces at stand and landscape scales. Tropical rainforests are among the most diverse

and complex terrestrial ecosystems, harbouring vast plant and animal species

throughout their dense multistory canopy. They contribute substantially to global

precipitation through their high ET. However, there is little information about ET

influences at very small spatial scales under given climatic conditions. In a tropical

rainforest on Sumatra, we studied the relationship between pixel-level ET as derived

from high-resolution (�10 cm), near-surface thermography from an unmanned aerial

vehicle (UAV) and canopy structure as derived from red–green–blue (RGB) image and

three-dimensional (3D) point cloud analyses. The 16 derived potential predictors

encompassed vegetation height, height variability, vegetation density and reflectance

variables. Using regression models, several of the studied variables had a significant

linear relationship with ET, but the explained variance was only marginal. However,

applying a random forest algorithm including forward feature selection and target ori-

ented cross validation explained substantial parts of the pixel-level variance in ET

(R2 = 0.56–0.65), thus indicating multiple non-linear relationships with interactions

among predictor variables. Therein, green leaf index, leaf area density and vegetation

height were often the most important variables for the prediction outcome, but their

sequence varied among the four study plots. Overall, combining canopy structure

variables derived from RGB photogrammetry explained relatively large parts of spa-

tial ET variations. Our study thus indicates the large potential of combining UAV-

based thermography and photogrammetry techniques with machine learning

approaches to better understand ET but also suggests that more work remains to be

done in explaining ET patterns at very small spatial scales.
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1 | INTRODUCTION

Climate change is projected to lead to an intensification of the hydro-

logical cycle (Allan et al., 2020; Yeh & Wu, 2018) and to increases in

frequency and severity of extreme meteorological events such as

droughts or floods (Barichivich et al., 2018; Donat et al., 2019;

Kundzewicz, 2008; Trenberth, 1999). Terrestrial evapotranspiration

(ET) as a key component in the hydrological cycle accounts for

approximately 40% of global precipitation (Schlesinger &

Jasechko, 2014). ET is the combination of water evaporation from

surfaces and transpiration from plants. The contribution of transpira-

tion to ET varies across biomes, around 50% in drylands and up to

70% in tropical rainforests (Schlesinger & Jasechko, 2014). Assess-

ments of ET in tropical rainforests are generally very challenging due

to the remoteness and high topographical and structural complexity

of the ecosystem.

ET dynamics are driven by micrometeorological variables includ-

ing solar radiation, vapour pressure deficit and wind speed. The com-

bination of these variables can be expressed in the maximum possible

ET rate under ideal conditions, the potential evapotranspiration (PET;

Allen et al., 1994). PET assumes an unlimited supply of water, while

actual ET is strongly governed by water availability, that is, precipitation

and soil moisture, and is further strongly influenced by topographical

and physiological aspects (Dimitriadou & Nikolakopoulos, 2021). The

transpiration component of ET largely depends on leaf surface and can-

opy properties. Crown leaf density and vertical vegetation structure

(e.g. tree or crown height) have been proposed as key regional controls

of ET (Coronel et al., 2011), while studies at the local level also report

strong influences of canopy conductance and plant health

(e.g. Marques et al., 2020; Nazarbakhsh et al., 2019). While ET controls

at larger spatial scales thus are relatively well studied (e.g. Nelson

et al., 2020; Williams et al., 2012), small-scale controls of ET have

received less attention, particularly in tropical rainforests. Studies at the

tree level indicate a dominant influence of tree and crown size on per-

tree transpiration (Ahongshangbam et al., 2020; Kotowska et al., 2021;

Meinzer et al., 2005). Local differences in tree density and sizes and the

associated differences in local ‘canopy packing’ were reported to lead

to considerable small-scale variability in transpiration patterns at eight

lowland rainforest sites (Ahongshangbam et al., 2020). Assessments of

rainforest ET at even higher spatial resolution (i.e. in cm or dm scales)

are to our knowledge not yet available. From the studies at larger spa-

tial scales, one may speculate that key variables such as vegetation

height and its variability and vegetation and leaf density may also influ-

ence ET at smaller spatial scales under given micrometeorological

conditions.

A widely used method to measure ET fluxes is the eddy covari-

ance technique, where ET is measured at very high temporal resolu-

tion and over long periods of time. However, the technique averages

ET in a single value over a footprint of typically a few hectares around

the measurement tower (Baldocchi, 2020). At larger spatial scales, ET

is often assessed via thermography from satellites, but even modern

products such as ECOSTRESS have only moderate spatial and tempo-

ral resolution, that is, 70 m and one overflight a day (Fisher

et al., 2020). A further major constraint of passive satellite methods is

cloud cover, which can result in only few usable images per year for a

given (tropical) region. A promising method for the assessment of ET,

at landscape scale and with high temporal (e.g. hourly) and very high

spatial resolution (i.e. cm scale), is thermography from unmanned

aerial vehicles (UAV), also referred to as drones (Rauneker &

Lischeid, 2012). While establishing high-resolution temporal ET time

series from multiple UAV flights is logistically more challenging, spatial

ET patterns at a given sites can often be assessed from a single flight,

for example, carried out close to noon under conditions of relatively

high solar irradiance. To derive ET from land surface temperatures,

energy balance models with varying levels of complexity can be

applied. Timmermans et al. (2015) developed the ‘Deriving Atmo-

sphere Turbulent Transport Useful To Dummies Using Temperature’
(DATTUTDUT) model, a simplified one-source energy balance model

that requires only surface temperature data and few auxiliary vari-

ables such as time and location as input. The DATTUTDUT model was

implemented in the QGIS plugin QWaterModel (Ellsäßer, Röll, Stiegler,

et al., 2020) to provide a simple-to-use graphical interface for ET

assessments. The approach showed high agreement with reference

ground methods across spatial scales from leaf to ecosystem when

tested in a in tropical oil palm plantation (Ellsäßer et al., 2021; Ellsäßer,

Röll, Stiegler, et al., 2020) and in a tropical agroforest (Ellsäßer, Röll,

Ahongshangbam, et al., 2020).

Using the structure from motion (SfM) technique, the images

recorded with UAVs can be used to calculate high-density three-

dimensional (3D) point clouds and orthomosaic maps (Westoby

et al., 2012). Commonly, this is carried out with UAV-recorded red–

green–blue (RGB) images. In analogy to point clouds derived from the

typically much more expensive LiDAR technology, forest structure vari-

ables and crown and canopy metrics can be extracted from the photo-

grammetrically derived point clouds (Iglhaut et al., 2019). Previous

studies at the tree level showed that crown metrics derived from RGB

3D point cloud analysis were better predictors of per-tree and per-palm

transpiration than conventionally applied variables like stem diameter

(Ahongshangbam et al., 2019, 2020). We are not aware of any previous

studies connecting ecohydrological forest functions such as transpira-

tion or ET to forest structure at even smaller spatial scales. Potential

variables of interest derived from RGB images and point clouds in the

context of small-scale ET patterns include simple indices such as the

green leaf index (GLI; Louhaichi et al., 2001) and visual atmospherically

resistance index (VARI; Gitelson et al., 2002), point cloud variables

related to, for example, voxel density or height distribution
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(McGaughey & Carson, 2003) as well as classic ecological variables such

as the leaf area index or leaf area density (LAD) (Kricher, 2011).

High-resolution UAV imagery produces large datasets with poten-

tially millions of georeferenced pixels and multiple variables derived

from different sensors, with complex, often non-linear relationships and

variable interactions. For analysing such large datasets, machine learn-

ing techniques are widely employed across the ecological sciences

because of their typically much better model performance and predic-

tion accuracy compared to conventional methods (e.g. Camps-

Valls, 2009; Maxwell et al., 2018; Meyer & Pebesma, 2022). Regardless

of the applied algorithm, spatial predictions via machine learning are

time consuming and computationally intensive, limiting the application

of multiple algorithms at the same time and highlighting the importance

of the choice of an appropriate algorithm for the given study context.

For spatial predictions in ecological studies, random forest stands out

among the available algorithms as particularly well performing (Ahmad

et al., 2017; Fernandez-Delgado et al., 2014), for example, when applied

to predict reference ET (Dias et al., 2021; Feng et al., 2017), ET of tropi-

cal mountain forests (Valdés-Uribe et al., 2023), water stress (Virnodkar

et al., 2020), sap flux and leaf stomatal conductance (Ellsäßer, Röll,

Ahongshangbam, et al., 2020), net ecosystem exchange (Reitz

et al., 2021) or land-cover change (Aide et al., 2013). Recent studies

have proposed solutions to previous autocorrelation and overfitting

issues in spatial predictions via forward feature selection (FFS) and tar-

get oriented cross validation, thus minimizing the risk of spatial overfit-

ting with random forests and showing realistic overall model

performances (Gasch et al., 2015; Meyer et al., 2018, 2019).

In our study, we used an UAV to capture high-resolution, close-

to-surface thermal and RGB images of the canopy at four study plots

in a lowland rainforest in Sumatra, Indonesia. We applied the DAT-

TUTDUT model to assess pixel-level ET and derived spatially

matching structural canopy variables from RGB image and point cloud

analysis. The objectives were to further explore small-scale patterns in

ET, with a focus on (i) assessing the relationship between ET and sin-

gle structural variables and (ii) evaluating whether ET can be predicted

reliably from multiple canopy variables with a random forest machine

learning approach.

2 | MATERIAL AND METHODS

2.1 | Study region and plots

The study area was in the Harapan rainforest in Jambi province

(Sumatra, Indonesia) (Figure 1a). The climate is tropical humid with

mean annual precipitation of 2235 mm year�1 and average annual

temperature of 26.7�C, with two peak rainy seasons in March and

December, and a drier period from June to September. The soils in

this area are loamy Acrisols (Drescher et al., 2016). The Harapan rain-

forest is a tropical lowland rainforest that has a legacy of selective log-

ging and wood extraction (Harrison & Swinfield, 2015). Today, the

region almost has no natural forest left and has largely been converted

to agricultural land including large proportions of oil palm and rubber

plantations (Clough et al., 2016). The Harapan rainforest is a protected

area managed by the governmental PT REKI company.

Our study plots (plot codes: HF1, HF2, HF3, HF4; Drescher

et al., 2016; Figure 1) were upland rainforest sites located inside the

Harapan rainforest. The plots were 50 � 50 m2 in size, with a mean

elevation of 65 m a.m.s.l. (for more details, see Ahongshangbam

et al., 2020; Drescher et al., 2016). A previous assessment found over

200 tree species with a diameter at breast height (DBH) of more than

10 cm across the four plots (Rembold et al., 2017). Stand densities

F IGURE 1 Study region in Jambi province, Sumatra, Indonesia (a) and location of the four lowland rainforest study plots (HF1, HF2, HF3,
HF4) in the Harapan rainforest (b).
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and average DBH were similar among the plots, ranging from 616 to

728 trees ha�1 and 19.5 to 22.0 cm, respectively (Kotowska

et al., 2015).

2.2 | Thermal and RGB image acquisition and
processing

At each of the four study plots, an octocopter UAV (MK EASY Okto

V3, HiSystems, Germany) was used for data acquisition. The UAV was

equipped with a radiometric thermal sensor FLIR Tau 2 640 (FLIR Sys-

tems, USA) and a RGB camera with an Omnivision OV12890 CMOS

sensor (Omnivision, USA). Both cameras were simultaneously

mounted in a stereo configuration and on a gimbal to ensure nadir

view. GPS location was recorded with an onboard GPS device

(MKBNSS V3 GPS/Glonass/Beidou, HiSystems, Germany). Flight

planning was conducted using the MikroKopter-Tool V2.14b soft-

ware. Flight paths were designed as a series of overlapping circular

and grid patterns to ensure high overlap (>80%) between images.

Flight altitude was set to 80 m above ground, which corresponds to

approximately 30–40 m above the canopy. One flight was carried out

over each plot in August 2017, always close to noon and preferably

during clear-sky conditions. At the respective times of the data cap-

ture, air temperature ranged from 31 to 38�C, and short-wave radia-

tion from 700 to 935 W�m�2 (Stiegler, 2021; Table S1).

The ThermoViewer 3.0.7 software (TeAX Technology, 2021) was

used to delete blurry or non-relevant thermal images, to export the

images to TIFF format and to convert the data to degrees Kelvin. To

process the individual georeferenced RGB images (220–300 per site)

and thermal images (330–370 images per site) to orthomosaic maps,

AgiSoft MetaShape 1.8.2 (Agisoft LLC, 2021) was used. It applies the

SfM technique (Westoby et al., 2012) and further outputs digital ele-

vation models (DEM) and RGB point clouds. We then used QGIS 3.16

(QGIS Development Team, 2020) to resample all RGB-derived raster

layers to match the native 10 cm resolution of the thermal orthomo-

saics and to clip all layers to the respective plot boundaries (coordi-

nates from Ahongshangbam et al., 2020).

2.3 | ET assessment via thermography

From the thermal orthomosaic maps of each of the four plots, ET was

modelled with the QGIS plugin QWaterModel (Ellsäßer, Röll, Stiegler,

et al., 2020), which bases on the one-source energy balance model

DATTUTDUT (Timmermans et al., 2015). We used the default settings

of QWaterModel (version 1.3) in deriving ET. We used a previously

established and tested modelling workflow to incorporate measured

short-wave irradiance data into the modelling process (Ellsäßer

et al., 2021; Ellsäßer, Röll, Stiegler, et al., 2020) and also included mea-

sured air temperature data. For all four plots, we used in situ

measured data from a nearby microclimatic station operated by the

EFForTS project (Stiegler, 2021) where short-wave irradiance was

measured in an open area (at 3 m height) with a CMP3 pyranometer

(Kipp & Zonen, The Netherlands) in 10 min intervals and air tempera-

ture was measured (at 2 m height) with a thermohygrometer (type

1.1025.55.000, Thies Clima, Göttingen, Germany); therein, we used

the climate data that matched the time stamp of the respective UAV

flight at each plot. From the thermal orthomosaic maps of the study

plots and the short-wave radiation and air temperature data, QWater-

Model then processes ET maps.

2.4 | Structural variables derived from
photogrammetry

From the RGB orthomosaics and point clouds of each plot, several

canopy-related variables were derived at the pixel level, in alignment

with the 10 cm resolution of the thermal orthomosaics. From the RGB

orthomosaics, we obtained the VARI (García-Martínez et al., 2020;

Gitelson et al., 2002); (Equation 1) and the GLI (Louhaichi et al., 2001;

Raymond Hunt et al., 2011) (Equation 2), which are measures of vege-

tation fraction based on normalized RGB bands.

VARI¼ Green�Redð Þ= GreenþRed�Blueð Þ ð1Þ

GLI¼ 2� Green�Red–Blueð Þð Þ= 2� GreenþRedþBlueð Þð Þ ð2Þ

From the RGB 3D point clouds, we obtained several

height-related metrics (Table 1) at the pixel level with the Gridmetrics

algorithm from the Fusion software (McGaughey, 2018), that is, the

‘relative height’ [Height_rel, the maximum z value among all voxels

belonging to a given pixel in the two-dimensional (2D) plane, divided

by the mean z value observed in the respective plot], the absolute

minimum (Height_abs_min) and maximum z values (Height_abs_max)

within a given pixel, the percentiles 25 (P25), 50 (P50), 75 (P75) and

90 (P90) of the z-value distribution within a given pixel as well as

their coefficient of variation (CV_Height) and the percentage of

points above mean height (PM). Further outputs of the algorithm

include the canopy cover of a given pixel above 10 m (Cover10), the

canopy relief ratio (CRR), which characterizes canopy shape

(McGaughey, 2018) as well as point cloud density (PCD) per pixel.

Pixel-level LAD was estimated with the leafR package (Almeida

et al., 2019).

2.5 | Data analysis

Due to the non-simultaneous nature of the data acquisition and the

therewith associated varying climatic conditions that can potentially

affect ET, the analysis was carried out separately for the four study

plots. The dataset for each plots consisted of up to 226,000 pixels,

with information on the target variable ET and the 16 potential

explanatory variables (Table 1) for each 10-cm pixel. We first exam-

ined the ET distributions at the four plots in violin plots.

For subsequent analysis, all pixels were removed from the accord-

ing datasets that had at least one no data (NA) entry among the

4 of 13 CORT�ES-MOLINO ET AL.
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17 variables. As an initial step, we computed correlation matrices

among all variables with the R package corrplot (Wei & Simko, 2021).

To examine the influence of single variables on pixel-level ET, we

applied linear regressions between ET and each of the 16 potential

predictor variables, separately for each study plot. For visualization in

scatterplots, we selected the variables LAD and maximum vegetation

height (Height_abs_max) due to their importance for modelling forest

structure (Andersen et al., 2005; McGaughey, 2018; Mutlu, 2006) and

their reported strong influence on ET in studies at larger spatial scales

(Coronel et al., 2011).

For predicting pixel-level ET from multiple variables, we applied a

random forest approach, therein closely following best-practice meth-

odology as outlined in previous studies (e.g. Valdés-Uribe et al., 2023).

To consider spatial autocorrelation and avoid overfitting, we imple-

mented the following approach: (i) The assignation of spatial ID to

1 � 1 m blocks (Roberts et al., 2017), (ii) The random selection of spa-

tial predictors through FFS and k-fold leave-location-out cross valida-

tion (LLO-CV; Meyer et al., 2018, 2019) with the CAST R package

(Meyer et al., 2021) and (iii) random forest modelling and k-fold LLO-

CV with the caret package (Kuhn, 2021). First, using the R package

‘blockCV’ (Valavi et al., 2018), we partitioned each plot into spatial

blocks of 1 m2 (the minimum area accepted by the function). For

every pixel inside that block, a distinct ID number between 1 and

5 was allocated, which corresponds to the desired number of cross-

validation folds (set to 5 by default) (Roberts et al., 2017). Then, each

dataset was split randomly into 60% training and 40% model valida-

tion data before feature selection. To reduce computation times for

the FFS, we subsampled 50,000 pixels from the training datasets

through stratified random sampling (Ludwig et al., 2019). The subsam-

ples were divided by k-fold = 5 for spatial cross validation (Roberts

et al., 2017). At each split, the maximum combination of predictor var-

iables (mtry) was set to two. The FFS algorithm is based on pairing fea-

ture combinations, wherein it saves the best initial model and adds

additional features through LLO-CV improvement detection. Thus,

the model improves incrementally until no further decreases in root

mean square errors (RMSE) are detected (Meyer et al., 2018). For each

plot, the combination of features selected by the FFS was used as

input for the final random forest with k-fold LLO-CV and 1000 trees

(following Valdés-Uribe et al., 2023). We performed model validation

by predicting over the 40% testing dataset. To evaluate model perfor-

mance, we calculated RMSE and R2 as an indicator of the variance

explained by each model. We examined variable importance (in % of

contribution to final model outcome) to assess the contribution of

each feature at each plot using the varImp wrapper function from

caret R package (Kuhn, 2021).

For all statistical analyses, R 4.3.0 (R Core Team, 2023) was used.

TABLE 1 Variables from thermography, RGB orthomosaics, 3D point clouds and digital elevation models (DEM) at each of the four study
plots.

Variable category Abbreviation Units Variable Source Reference

Target variable ET mm h�1 Evapotranspiration Thermal

orthomosaic

Timmermans

et al., 2015

RGB related GLI Dimensionless Green leaf index RGB

orthomosaic

Louhaichi

et al., 2001

RGB related VARI Dimensionless Visual atmospherically resistance index RGB

orthomosaic

Gitelson

et al., 2002

Vegetation height Height_abs_max m Maximum canopy height Point cloud McGaughey, 2018

Height_abs_min m Minimum canopy height Point cloud McGaughey, 2018

Height_abs_sm m Absolute canopy height obtained from the

smoothed digital elevation model (DEM)

DEM McGaughey, 2018

Height_rel Dimensionless Relative canopy height Point cloud McGaughey, 2018

P25 m 25th percentile Point cloud McGaughey, 2018

P50 m 50th percentile Point cloud McGaughey, 2018

P75 m 75th percentile Point cloud McGaughey, 2018

P90 m 90th percentile Point cloud McGaughey, 2018

Vegetation height

variability

CRR Dimensionless Canopy relief ratio calculated as:

(mean (h) � min (h))/(max (h)

� min (h)), where h is canopy height

Point cloud McGaughey, 2018

CV_height % Coefficient of variance of height distribution Point cloud McGaughey, 2018

Vegetation density Cover10 % Canopy cover of a given pixel above 10 m Point cloud McGaughey, 2018

LAD m2�m�3 Leaf area density Point cloud Almeida

et al., 2019

PCD Points Point cloud density: number of points in each

pixel

Point cloud McGaughey, 2018

PM % Percentage of points above mean height Point cloud McGaughey, 2018

CORT�ES-MOLINO ET AL. 5 of 13
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3 | RESULTS

3.1 | Spatial ET patterns

ET was highly variable among the pixels of a given plot and among the

four study plots. At similar times of day, pixel-level ET varied from 0.0 to

1.2 mm h�1 across the plots. Pixel-level minima of ET were below

0.1 mm h�1 at all four plots, while the respective maxima were larger

than 1.0 mm h�1, resulting in at least 15-fold within-plot variations in ET

(Figures 2 and S1). The within-plot variation of ET expressed as the coef-

ficient of variation (CV) was similar among the plots, ranging from 16.2%

to 18.9%. Mean ET values among the four plots varied 1.7-fold, ranging

from 0.5 to 0.8 mm h�1 (Figure S2). The higher ET values at the plots

HF2 and HF4 correspond to higher air temperature and short-wave radi-

ation at the time of overflight than at HF1 and HF3 (Table S1).

3.2 | Prediction of ET

Among the 16 canopy variables derived from RGB orthomosaics and

point clouds, correlations with the target variable ET were very weak

across all plots (R = �0.21–0.21; Figure S3). Initial speculations that

pixel-level variations of ET may be largely driven by vegetation height,

its variability or vegetation density (incl. leaf density) were not con-

firmed at the level of single variables when applying linear regressions.

Therein, although often significant (P < 0.05), the models explained

only marginal amounts of the observed variance in pixel-level ET

(R2 < 0.05; Table S2), that is, there was no suitable single predictor of

pixel-level ET among the studied variables.

The FFS approach for the random forest modelling resulted in the

selection of 9–10 out of the 16 available variables per plot. The selec-

tion differed across plots (see Figure 3), but five variables related to

vegetation height (P25, P50, P75, P90, Height_abs_min) were consis-

tently present as predictors in all plots. Three further variables related

to vegetation height (Height_abs_max), height variability (CV_Height)

and reflectance (GLI) were present in three out of the four models.

Using the final sets of variables for each plot for pixel-level ET predic-

tion with a random forest approach resulted in fair to good model per-

formance, with RMSE between 0.04 and 0.09 mm h�1 and 56% (HF1),

64% (HF3 and HF4) and 65% (HF2) of the observed variance in ET

explained by the prediction models. Model performance was similar for

training and prediction datasets across all plots (Table 2), indicating that

F IGURE 2 RGB (left) and evapotranspiration (ET) orthomosaics (right) for the four study plots. Hourly ET (mm h�1) as indicated in the legend
was derived from UAV-based thermal images with the plugin QWaterModel (Ellsäßer, Röll, Stiegler, et al., 2020). The flights were carried out
close to noon on successive days in August 2017. Air temperatures at the respective times of flight were 31.5�C (HF1), 36.5�C (HF2), 32.2�C
(HF3) and 38.4�C (HF4), and short-wave radiation was at 704 W m�2 (HF1), 936 W m�2 (HF2), 858 W m�2 (HF3) and 893 W m�2 (HF4).
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spatial overfitting did not occur and that the models can predict ET for

pixels that were not part of the respective training data.

Variable importance for the random forest model outcome

differed substantially across the four plots (Figure 3), with no clear

dominance of any variable or variable category but some observed

common patterns. One to three variables per plot were of very high

importance (>75%), and another one to four variables of high

importance (50%–75%). Variables of high or very high importance

came from all categories, that is, vegetation height, height variability,

vegetation density and reflectance. Specifically, the variables GLI

(in three plots), CV_Height (two plots) and Height_abs_min, LAD, VARI

and P75 (one plot each) were of very high importance for model out-

come, and further variables of high importance in at least one of the

plots included P50, P90 and Height_abs_max.

F IGURE 3 Variable importance (%) for the random forest model outcome at the four study plots. Refer to Table 1 for abbreviations and
further variable details across the variable categories vegetation height (Height_abs_min, Height_abs_max, Height_abs_sm, P25, P50, P75, P90),
height variability (CV_Height, Cover10), vegetation density (PCD, LAD) and reflectance (GLI, VARI).

TABLE 2 Performance of random
forest models at the four study plots. The
variables as selected with the forward
feature selection approach were applied.
The total amount of pixels at a given site
was randomly split into training (60%)
and prediction (40%) datasets.

Plot Total number of pixels

Training models Prediction models

RMSE (mm h�1) R2 RMSE (mm h�1) R2

HF1 169,248 0.03 0.56 0.06 0.56

HF2 167,857 0.04 0.65 0.07 0.65

HF3 211,345 0.02 0.64 0.04 0.64

HF4 169,887 0.05 0.65 0.09 0.64

Note: The number of pixels varied across plots and differs from the presented ET pixel numbers in

Figure S2 because of no data value removal (7%–23% of pixels removed).

Abbreviation: RMSE, root mean square error.
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4 | DISCUSSION

4.1 | Spatial ET patterns

We assessed pixel-level ET patterns across four study plots in a tropi-

cal lowland rainforest with a UAV-based thermography approach and

subsequent energy balance modelling. The therein applied energy bal-

ance model DATTUTDUT (Timmermans et al., 2015) and the associ-

ated workflow from image acquisition to high-resolution ET

orthomosaic maps had previously been established and validated

against ground-based reference measurements such as eddy covari-

ance and sap flux measurements across different land-use systems in

the same study region (Ellsäßer, Röll, Ahongshangbam, et al., 2020;

Ellsäßer, Röll, Stiegler, et al., 2020; Ellsäßer et al., 2021) and including

study sites in lowland rainforest (Bulusu et al., 2023). The mean mid-

day hourly ET rates for our lowland rainforest study plots under

mostly cloud-free conditions (0.5–0.8 mm h�1) are similar to values

from a nearby commercial, mature oil palm plantation, with mean ET

of 0.4 mm h�1 and peaks up to 0.9 mm h�1 (Ellsäßer et al., 2021). This

is in line with previous findings that stand-scale (evapo)transpiration

of oil palm plantations can match or even surpass rates observed in

(previously logged) lowland rainforests (Röll et al., 2019; Tarigan

et al., 2020). Somewhat lower diurnal ET peak values (around

0.5 mm h�1) than in our study were, for example, reported for tem-

perate ecosystems such as grasslands and coniferous forests (Kelliher

et al., 1993). Overall, the mean ET values in our study are within

expectation, giving credibility to the applied methods and to the

observed spatial ET patterns.

At the coarsest spatial scale in our study, that is, when looking at

plot-to-plot differences in ET, mean ET was approx. 50% higher in the

study plots HF2 and HF4 than in HF1 and HF2. The higher ET values

for HF2 and HF4 are partially driven by the climatic conditions at the

time of data recording, that is, air temperature was on average 18%

higher and short-wave radiation was 17% higher than for HF1 and

HF3 (Table S1). However, the site-to-site differences in ET are higher

than the differences in temperature and radiation, thus indicating spa-

tial variability in mean ET after accounting for the non-simultaneous

nature of the measurements and the associated climatic differences.

Therein, while our results are consistent with previous sap flux-based

transpiration assessments at the same four study sites in terms of sub-

stantial observed plot-to-plot variability (Ahongshangbam et al. 2020;

Röll et al., 2019), they do not match the previous reports of lower

transpiration rates at HF4. However, HF4 has higher stand basal area,

stand structural complexity, canopy cover and total biomass compared

to the other three study plots (Drescher et al., 2016; Kotowska

et al., 2015; Röll et al., 2019), which is in line with the observed high

ET at the plot in our study. Correspondingly, an enhanced UAV-based

sap-flux scaling method suggests the highest stand transpiration rates

at HF4, with 7%–13% lower transpiration at the other three plots

(Ahongshangbam et al., 2020). Magnitude and patterns of plot-to-plot

variability in ET in our study thus are mostly in line with previous

studies, with some divergences. Those may be due to inaccuracies

and uncertainties associated with all applied methods, which were

reported to be 30%–57% for estimating transpiration in tropical rain-

forests with ground-based sap-flux scaling schemes (Ahongshangbam

et al., 2020; Granier et al., 1996; Röll et al., 2019) and to be around

20% when scaling sap flux via UAV data-derived crown assessments

(Ahongshangbam et al., 2020). While the uncertainties of the applied

UAV-based ET method have not yet been quantified specifically for

lowland rainforests, in a nearby oil palm plantation, a comparison to

eddy covariance reference measurements indicated high agreement

between the two methods (Ellsäßer et al., 2021).

At very fine spatial resolution (�10 cm), we also found substantial

differences in ET. At all four plots, pixel-level minima of ET were

below 0.1 mm h�1, while the respective maxima were larger than

1.0 mm h�1. Taking the CV as a measure of within-plot variability in

ET, we obtained values of 18.9% (HF1), 16.2% (HF2), 16.4% (HF3)

and 16.9% (HF4). These values are lower than the reported within-

plot variability of canopy transpiration (31% CV) at the same study

plots, notably at a much coarser spatial resolution of 3 m

(Ahongshangbam et al., 2020). Interestingly, when exemplarily resam-

pling our ET maps to 3 m resolution, within-plot variability of ET

remains lower (10.9%–22.0% CV) than reported for transpiration by

Ahongshangbam et al. (2020). We are not aware of any further studies

assessing rainforest (evapo)transpiration at such fine spatial resolu-

tion, that is, at the sub-canopy scale. At the level of individual trees,

several studies also point to substantial spatial variability in tree-

to-tree transpiration patterns due to differences in tree size

(e.g. Kotowska et al., 2021; Meinzer et al., 2005), which introduces

spatial variability in stand-scale (evapo)transpiration patterns in

dependence of stand density, tree sizes and associated local canopy

packing (Ahongshangbam et al., 2020). Overall, we consider the

applied UAV-thermography-based scheme a powerful tool for

the spatially explicit, high-resolution analysis and prediction of ET

within and across sites. New generations of UAVs and imaging tech-

nology allow for further enhanced spatial resolutions over increasingly

large areas, synchronized multi-site campaigns and fully integrated

cameras that reduce operation effort and thereby contribute to better

temporal coverage.

4.2 | Prediction of ET

We extracted 16 potential predictor variables via RGB image and

point cloud analysis to further examine the drivers of small-scale ET

patterns under given climatic conditions. The UAV-based image acqui-

sition and the processing to georeferenced orthomosaics and 3D

point clouds followed previously established and tested workflows

(Ahongshangbam et al., 2020). In correlation and regression analyses,

we found no clear influence of the studied predictors on pixel-level

ET across the variable categories vegetation height, height variability,

vegetation density and reflectance in any of the four study plots.

While many of the studied variables had a significant linear relation-

ship with ET (P < 0.05), the models explained less than 5% of the

observed variance and thus are not suitable as single predictors of

pixel-level ET. To our knowledge, there are no studies available for
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comparison that examine the influence of forest structural variables

on (rain)forest ET patterns at very small, sub-canopy spatial scales. A

related UAV-based study in a tropical oil palm agroforest showed an

important influence of canopy characteristics on pixel-level predic-

tions of sap flux and stomatal conductance, but the role of structural

variables for small-scale patterns was not further assessed (Ellsäßer,

Röll, Stiegler, et al., 2020).

From results of previous studies at larger spatial scales, that is,

examining tree-to-tree and site-to-site patterns in rainforest (evapo)

transpiration, one could well speculate that forest structural variables

may also influence ET under given climatic conditions at very small

spatial scales. As such, given previous results that tree-level transpira-

tion mainly scales with tree size (e.g. Kotowska et al., 2021; Meinzer

et al., 2005) and that taller vegetation generally has access to windier

and more turbulent atmospheric exchange layers (Kricher, 2011), a

pattern of increasing ET with increasing vegetation height would seem

reasonable. However, the relationships between several available veg-

etation height variables and pixel-level ET instead suggested no clear

influence of vegetation height variables on ET. Likewise, height vari-

ability variables such as the canopy relief ratio or the CV_Height had

no clear influence on pixel-level ET, despite evidence from studies at

larger spatial scales that increasing canopy heterogeneity (as,

e.g. characterized by the variable canopy roughness length) leads to

enhanced (evapo)transpiration (Bauerle et al., 2004; Lawrence

et al., 2022; Tan et al., 2019). Similarly, the lack of a clear influence of

vegetation density variables such as PCD and specifically the derived

variable LAD on pixel-level ET stands out, with further studies at

larger spatial scales reporting enhanced (evapo)transpiration at higher

biomass and higher crown leaf density (Ruhoff et al., 2013; Tian

et al., 2015).

Reasons for a lack of relationships between small-scale (pixel

level) ET and structural canopy variables could be of ecological nature,

due to methodological limitations, or a combination of both. From an

ecohydrological point of view, it is well conceivable that a complex

process such as rainforest ET, which is influenced by and interacting

with a multitude of micrometeorological, pedological and forest struc-

tural processes, among others, is not explained by single structural

variables, particularly at such small spatial scales as in our study. Possi-

bly, the heterogeneity and dynamics within the rainforest canopy

regarding micrometeorological conditions, tree species and age and

associated biomass and leaf area (density), among other factors, are

too large, and influences of the direct and indirect pixel-level 3D envi-

ronment (e.g. understory, neighbouring pixels) are too prominent to

see clear relationships between pixel-level ET and single structural

variables. From a methods point of view, the applied UAV-based ther-

mography method is limited to recording the uppermost canopy sur-

face temperature of a given pixel, from which ET is subsequently

modelled. It remains unclear how or to what degree ET of the multiple

lower canopy strata microclimatically affects land surface tempera-

tures of the recorded upper canopy and what levels of uncertainty

this introduces into remotely sensed ET maps. It also remains disputed

how high the contribution of lower canopy strata to (evapo)transpira-

tion in tropical rainforests is in general, with estimates ranging from as

low as 20% to as high as 35% (Iida et al., 2020). While the problem is

common to all above-canopy thermography methods, studies across

several different ecosystems reported high congruence of UAV-

derived ET estimates with ground-based reference measurements

such as the eddy covariance technique (Aboutalebi et al., 2019;

Brenner et al., 2017; Ellsäßer, Röll, Ahongshangbam, et al., 2020), thus

indicating the reliability of the method. Despite such methodological

limitations, our study demonstrates the large potential of bringing

together UAV-based thermography and photogrammetry methods for

examining the relationship between ecosystem function (ET) and for-

est structure at very small spatial scales.

The lack of clear linear relationships between pixel-level ET and

any of the studied canopy structural variables across all four study

plots point to complex controls potentially involving non-linear rela-

tionships and interactions among multiple variables. Indeed, some pre-

vious studies reported nonlinearity in ET relationships (e.g. Boers

et al., 2015; Zhou, 2011) and one recent study examining remotely-

sensed ET across 100,000 s of pixels also found no clear influences of

single topographic, climatic or forest structure variables on ET across

a large tropical forest region, concluding that accurate ET prediction is

too complex for conventional statistical methods such as linear regres-

sions (Valdés-Uribe et al., 2023). Machine learning approaches are a

powerful tool to analyse such large datasets with complex relation-

ships. Machine learning algorithms can be trained to predict ET

(or other ecosystem processes) from available ancillary variables,

therein often yielding much better prediction performance than con-

ventional prediction methods (e.g. Camps-Valls, 2009; Maxwell

et al., 2018; Meyer & Pebesma, 2022). Unlike conventional methods,

machine learning models do not give information on predictor signifi-

cance, effect direction or size; however, an analysis of model feature

importance shows the importance of each variable for the overall pre-

diction outcome. There are several machine learning algorithms that

are widely applied throughout the environmental sciences (Dou &

Yang, 2018; Kanevski, 2009; Lary et al., 2016). Random forest is one

of the most popular algorithms and often performs well in ecological

contexts (Ahmad et al., 2017; Fernandez-Delgado et al., 2014), for

example, when predicting reference ET, water stress, sap flux, leaf

stomatal conductance, net ecosystem exchange or land-cover change

(Aide et al., 2013; Dias et al., 2021; Ellsäßer, Röll, Ahongshangbam,

et al., 2020; Feng et al., 2017; Reitz et al., 2021; Virnodkar

et al., 2020). The random forest algorithm is particularly suitable for

spatial predictions and was thus the machine learning algorithm of

choice in our study. We applied state-of-the-art techniques such as

FFS and target-oriented cross validation to reduce the risk of spatial

overfitting (Gasch et al., 2015; Ludwig et al., 2019; Meyer et al., 2018,

2019; Roberts et al., 2017), therein achieving an overall realistic model

performance.

In our study, the FFS reduced the dataset for pixel-level ET pre-

diction from the original 16 variables to a final set of 9–10 variables

per plot, with a relatively high consistency of selection, that is, eight

variables (mostly related to vegetation height) occurred in at least

three out of the four models. The similar model performance between

training and testing (prediction) outcomes in the subsequent random
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forest modelling suggests that spatial overfitting did not occur in the

models and that they thus can reliably predict ET for locations

(i.e. pixels) that were not part of the model training. Overall, the per-

formance of the random forest models was fair for HF1 and good for

the other three study plots (HF2, HF3, HF4), with RMSE between

0.03 (HF1) and 0.05 (HF4) and model prediction accuracies (R2)

between 0.56 (HF1) and 0.65 (HF4). These accuracy metrics are com-

parable to other studies applying random forest modelling for predic-

tions of ecological target variables such as reference ET (R2 = 0.91;

Dias et al., 2021), daily ET (R2 = 0.63; Yang et al., 2021), sap flux

(R2 = 0.80) and stomatal conductance (R2 = 0.50; Ellsäßer, Röll,

Ahongshangbam, et al., 2020) as well as actual ET across a large tropi-

cal forest region (R2 = 0.64; Valdés-Uribe et al., 2023).

Variable importance for the random forest model outcome dif-

fered across the four study plots, with no clear dominance of any vari-

able or variable category. One to three variables per plot were of very

high importance (>75% feature importance for final model outcome),

and another one to four variables of high importance (50%–75%).

Therein, variables of high or very high importance came from all vari-

able categories (vegetation height, height variability, vegetation den-

sity, reflectance). The most prominently occurring variables of very

high importance were GLI (reflectance) followed by CV_height (height

variability), followed by Height_abs_min and P75 (vegetation height),

LAD (vegetation density) and VARI (reflectance). To our knowledge,

there are no studies available for comparison involving such a set of

structural canopy variables for predicting ET under given climatic con-

ditions at such small spatial scales. A random forest study predicting

ET at much larger spatial scales (70 m pixel size) found a dominant

influence of topographic variables, and to a lesser extent of forest

structure variables such as the leaf area index, on spatial predictions

of ET (Valdés-Uribe et al., 2023); while climatic variables were found

to be of relatively minor importance in that study, some further previ-

ous studies, also at much larger spatial scales, successfully applied

machine learning techniques to model ET (dynamics) from climatic

datasets (Granata, 2019; Tikhamarine et al., 2019). Both the random

forest ET study by Valdés-Uribe et al. (2023) and our study show

varying variable importance across different studied days in tropical

forests, which may (partially) be related to differences in the given cli-

matic conditions. While in our study the reflectance variable GLI was

for example of much higher variable importance on days receiving less

solar irradiance (flights of plots HF1 and HF3) than on sunnier days

(HF2 and HF4), the underlying mechanisms of vastly varying variable

importance are not yet understood. We consider our study only a first

step in understanding and modelling pixel-level ET patterns, with

many challenges remaining for future studies on the way to holistic

spatial ET models that perform well across all spatial and temporal

scales.

We conclude that combining multiple canopy structure variables

that can relatively easily be derived from RGB photogrammetry

explain substantial parts of the observed variance in pixel-level ET

across four lowland rainforest plots in our study but that much work

remains to be done. With 36%–44% of ET variance remaining unex-

plained, future studies could further improve our understanding of

small-scale (rain)forest ET controls by, for example, including more

sophisticated indices characterizing vegetation greenness and plant

health (e.g. NDVI) derived from simultaneous high-resolution multi- or

hyperspectral UAV imaging. Overall, our study adds to the available

knowledge on ET and its drivers that small-scale ET patterns under

given climatic conditions can well be predicted from structural vari-

ables alone when accounting for complex multiple non-linear

relationships.
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