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1. Introduction

Automated design evolution is a process by which a de-
sign can progressively mature using (semi)-automated soft-
ware. Evolution occurs through an algorithm that can produce
design proposals by exploration of a predefined design space.
Automated solutions are becoming more attractive for indus-
tries as they can provide a broader range of design proposals
with reduced efforts [1]. The generation of these design propos-
als allows design experts to save time in repeatable and simple
tasks by initiating design concepts [2]. Exposure to algorithmi-
cally generated designs can also enhance the designer’s imagi-
nation, nudging them towards feasible design solutions [3]. The
current research aims to improve the design of welding fixtures
by means of parametric design automation.

The challenge lies in formulating a design problem for an
automation system. The development of an automated sys-
tem requires continuous iterations [4] to account for varia-
tions/changes in a design problem and its formulation. In ad-
dition, an automation system has to produce designs that sat-
isfy conflicting design criteria such as cost, material, and de-
sign time while generating a design proposal that is considered

feasible based on the design objectives and experts’ opinions.
A distinction is made in the paper between a design solution
and a design proposal, the latter being a generated design that
does not meet all requirements but is a local minimization to
the design optimization that could lead to a design solution with
minor designer efforts.

The primary industrial application discussed in the paper is
the automation of conceptual design proposals for welding fix-
ture designs. However, the paper makes some generalizations
to broaden the solution’s applicability to other industrial design
problems and manufacturing systems that can be formulated in
a similar approach [5, 6]. Welding fixtures are assemblies used
to enable a welding process by securing the components that
compile the final welded product [7, 8]. In addition to securing
the components, a welding fixture has a series of design require-
ments (see Section 2) that should be fulfilled for a robust and
high-quality welding process [9, 10]. Due to geometrical and
physical restrictions in the design of the welding fixture [11],
the fixture may impact the course and quality of the welding
process. Hence, fixture geometry is a dynamic variable during
product development [12]. Furthermore, it can be deduced that
reducing the lead time of a fixture design can positively impact
a product’s design and lead time.
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The paper proposes welding fixture design’s parameteriza-
tion [13] and optimization through meta-heuristic evolutionary
algorithms. The aim is to design an automated design system
to produce design proposals that meet the design requirements.
Considering the iterative design process to design both an auto-
mated system and a welding fixture, the proposed methodology
accounts for future improvements and iterations in the design
problem formulation. The paper’s focus is to provide the fol-
lowing evidence: i) design parameterization and meta-heuristic
algorithms are a viable approach to solve the geometrical de-
sign problem of a welding fixture, and as such, ii) the design
objective can be revised to fit varying expectations of the auto-
mated design system.

The suggested approach is to express the welding fixture ge-
ometry through standalone fixture blocks, each designated to
contribute to the product’s fixation through clamping, position-
ing, and supporting [14, 15]. Each fixture block is evaluated
individually, while a global design objective is derived for the
fixture design (Section 3). This approach can be perceived as
a cooperative/competitive environment [16, 17] or a swarm-
intelligence [18] between the blocks under a common objec-
tive. This paper defines each block by the following properties:
i) geometry design parameters, ii) welding process stages, and
iii) local design evaluation. Subsequently, a global design ob-
jective is constructed by the weighted sum of the blocks’ evalu-
ation (Section 4). The weights are tuneable coefficients that de-
fine the prioritization of objectives according to the designer’s
needs.

Evolutionary algorithms are based on the trade-off between
convergence (risk of sub-optimal solutions) and exploration
(risk of unproductive search). The choice between the two of-
ten boils down to the choice between optimizing for the best
design or optimizing for the best method to get to a feasible
design. This paper uses two meta-heuristic algorithms: Genetic
Algorithm [19] and Simulated Annealing [20]. The two algo-
rithms, presented in Section 5, are implemented for the same
welding fixture design to demonstrate the feasibility of conver-
gence and minimization of the design objective. The methodol-
ogy and models are validated in Section 6.

2. Welding Fixture Design Requirements

Computer-aided welding fixture design is one of the cate-
gories of fixture designs [7, 11] used to position and fixate a
set of components during welding. This paper addresses con-
ceptual, explorative welding fixture design problems. Resulting
fixture proposals produced through automation aim to satisfy
the design requirements for a feasible design proposal, as spec-
ified in the problem formulation of a use case. The requirements
imposed during early design conceptualization are summarised
as follows:

Physical requirements: Fixtures must be able to fit the com-
ponents and support their weight. Fixture geometry must al-
low access to the components for external actors (e.g., operator,
welding robot, etc.)

Tolerance: Fixture accuracy shall be enough to satisfy refer-
ence points and product tolerances.

Constraining: Positioning and fixation of the components in
all DOFs, force, and moment equilibrium.

Collision prevention: Fixture geometry shall allow a clear
path for welding (or other tools). The fixture shall not collide
with the product components except for the expected contact
points. Fixture internal collisions shall be prevented.

Placement Sequence: Fixtures shall accommodate proper
component placement sequences.

Welding & Process: Fixtures shall allow for adequate po-
sitioning of welding tools to minimize spatters, stubbing, arc
flare, etc.

The use case addresses the above design requirements
through design objectives and constraints. The reference points
between the fixture and the components are predetermined to
adhere to the welded components’ tolerances [9] and welding
quality [10]. Those are applied as constraints to the welding fix-
ture design. The reference points abide by the fixation require-
ments of the components towards forces and moments in the
welded components. Similarly, stresses allowed on the fixture
are also implemented through constraints on the fixture geom-
etry. The placement sequence feasibility of the welded compo-
nents, the reachability for the operator and weld gun, the in-
ternal fixture collisions, and the collisions between the fixture
and components are the design requirements to be optimized
through parameterization of the welding fixture design. The pa-
rameterization of the fixture and its exact composition is elabo-
rated in later sections.

3. Design Parameterization

In essence, any conceptual welding fixture design challenge
is a configuration problem in which various standardized blocks
can be selected and positioned so that the welding components
are adequately positioned and fixated. Hence, the variety and
unique combination of welded components, one example seen
in Figure 1 (middle), presents a large design space. To navigate
this design space in a manageable manner, the design problem
is parameterized. The parameters are associated with the geo-
metric properties of the fixture blocks, as seen in Figure 1. Each
fixture block has a set of variable parameters related to its de-
sign. Each fixture block fulfills one or more fixture functions
(i.e., locator, clamp, support), where blocks within the same
functionality can be interchanged. Figure 1 (left) shows an ex-
ample of one locator, one support, and two clamp variations.
The expert defines the selection of a block within a function
group; however, additional steps can be performed to include
the choice as a variable parameter to the design automation.

A welding fixture design comprises its block constituents
and multiple stages of the welding process. The overall ap-
proach considers the welding process stages as a series of steps
that alter the fixture configuration. With each stage, the weld-
ing process evolves, thus changing the fixture configuration ac-
cordingly. For the welding fixture use case, the welding pro-
cess starts with the stages of the operator placing and secur-
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Fig. 1. Representation of the fixture design problem into fixture blocks (left), welded components (middle), and welding process stages (right). An example welding
fixture design proposal can be seen in the welding process stages.

ing the welded components based on the defined placement se-
quence. This is followed by welding the components using a
robot manipulator. The final stages include retracting the fixture
and removing the welded components. Figure 1 (right) shows a
snapshot of fixture configurations in various stages. Distinctly
shown are the stages of the welding process representing plac-
ing the components, securing the component, and welding. The
proposed fixture design evolution assumes that each stage can
be assessed independently from the other stages.

Geometric parameters and stages can be used to define a
mathematical model per fixture block as shown in equation 1.
A fixture block can be defined as the function fb,k(pb) where
subscript b is the specific block and k the welding process
stages. The fixture block parameters are defined as p describing
the geometry of that block. The function represents the fixture
block collisions and interferences with other fixture blocks, the
welded components, the welding robot, and the operator. These
are all part of the welding process and are associated with a dif-
ferent stage k. A general representation of a fixture block can
be defined as

Fb(pb) =
∑

k

Ik fb,k(pb) (1)

where Ik is the indicator function of the stages. This means
that F is a k × 1 matrix representing the evaluation of the block
across all welding process stages.

4. Design Objective

An essential element of design automation is to define a tar-
get design objective. This objective describes the goal of the

design automation system in deriving feasible design propos-
als. A multi-objective problem can be formulated as a weighted
sum in a single objective cost function. The choice of how the
design objective is formulated dictates the algorithm selection,
or at least the family of algorithms that can be used and are com-
patible with the design problem. This section addresses how the
mathematical model of the fixture design is derived through in-
dividual evaluation of the fixture blocks.

A local representation of a fixture block evaluation is already
defined in equation 1 as Fb(pb) for a block b and all stages k.
The weighted sum of all blocks can be expressed as

J =
∑

b

WT
b Fb(pb) (2)

where Wb is a vector of dimensions k × 1 corresponding
to block functionality and stage weights. For the purpose of
this paper, the weights are assumed to be derived from expert
knowledge and through a trial-and-error process. From equa-
tion 2, the sum of objectives J can be expressed as the mini-
mization objective of the design problem, subject to constraints
g(·) applied to the geometric parameters.

min
p

(J) s.t.
∑

b

g(pb) ≤ c (3)

5. Algorithm Model

The next step in developing the design system is the identifi-
cation and setup of the algorithm. The algorithm needs to apply
an exploration strategy to avoid path-dependent convergence
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and local optima. For explorative methodologies, the paper dis-
cusses two evolutionary algorithms, chosen based on their sim-
plicity and frequent use in literature across many meta-heuristic
algorithms: genetic algorithm and simulated annealing. The im-
plementation approach is discussed in this section, whereas fur-
ther elaboration on the methodologies can be found in the sug-
gested literature.

5.1. Simulated Annealing

Simulated annealing is a meta-heuristic optimization algo-
rithm originating from metallurgy heating and controlled cool-
ing processes [20]. This process is executed in sequential iter-
ations. For implementation, the algorithm is used to progres-
sively update the parameters through random sampling over
distributions of a ∆p property. This creates a relative update
to the design proposal to the previous iteration. An improved
design is accepted for each iteration if it outperforms the results
of the previous iteration. On the other hand, a worse design has
a lower probability of being accepted based on the exploration
policy. This approach allows the algorithm to explore and con-
verge accordingly, as seen in Figure 2. The algorithm param-
eters that determine the rate of exploration are empirically de-
termined and are described as hyper-parameters. The algorithm
can benefit from good initialization of the welding fixture block
parameters. Through initialization, the design expert can influ-
ence the design proposals of the evolutionary system to possible
solutions that seem viable for the expert.

Fig. 2. Simplified diagram of the simulated annealing algorithm

5.2. Genetic Algorithm

The genetic algorithm is another metaheuristic optimiza-
tion algorithm based on genetic evolution and natural selection
[19, 21]. The algorithm selects design parameters by extract-
ing them from previous design evolutions. A set of designs is
generated on each algorithmic iteration, referred to as parent
designs. Those designs subsequently form the basis for creating
new designs with mixed elements of selected parents. The algo-
rithm implementation uses three genetic operators: elite parent,
cross-over, and mutation (seen in Figure 3). Elite parent refers
to designs with the best evaluation and whose parameters are
carried over to the next iteration. Cross-over is performed by
combining the parameters from parent designs. Mutation de-
notes the chance that a parameter is not carried over by an ex-
isting parent, in which case the parameter is sampled from a
known distribution. This algorithm also benefits from a good

initialization of the fixture block parameters, where parameters
defined by the experts can be carried through to new design
proposal generations.

Fig. 3. Graphical representation of evolution in a genetic algorithm

6. Implementation and Validation

The proposed approach is incorporated in the design evolu-
tion of the welding fixture use case. To validate the approach,
the earlier automation system requirements are revisited. To re-
cap, those are the generation of feasible design proposals and
modularity of the system towards the interpretation and formu-
lation of the design problem. Figure 1 shows an example of
an evolved design proposal by the simulated annealing algo-
rithm. The welding fixture design proposal can be seen in some
welding process stages, where major collisions are prevented.
The design expert can handle minor collisions that are present
through modifications and improvements of the welding fixture
design that exceed the capabilities of the automation system and
the current parameterization.

The two evolutionary algorithms presented in Sections 5.1
and 5.2 have been implemented in an industrial use case to
demonstrate the approach’s validity and gain experience with
the initialization of parameters and the derivation of weight co-
efficients. The algorithm convergence speed and consistency
depend on the initialization of the parameters, the complex-
ity of the fixture design (i.e., the number of parameters), and
the fine-tuning of weight coefficients dependent on the specific
welding fixture design problem. The algorithm could provide
viable design proposals within a few iterations for fixture de-
sign problems with a small number of parameters and welding
process stages. An example of this type of design problem is
presented in this paper (Figure 1), whose implementation is dis-
cussed later in this section. The convergence time exponentially
increases for larger welding fixture designs (i.e., more parame-
ters and more stages). The current implementation is performed
on existing CAD software (SolidWorks), where communication
with the software consumes 80% of the evaluation time. Viable
design proposals were evaluated for welding fixture designs
with fewer parameters within the first few hours. Alternatively,
the algorithm would require running overnight for welding fix-
ture designs with more parameters. In both scenarios, the ef-
fort to initialize and execute the algorithms was approximately
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30% of the time required to design the welding fixture manu-
ally, showing a substantial reduction in designer efforts. In con-
trast, the processing period to execute the algorithm was two to
five times longer than the manual design process, depending on
the complexity of the welding fixture design. Multiple mitiga-
tion strategies are available to improve the computational per-
formance; however, this is not yet addressed in the current work
[22].

Both algorithms are implemented on the same fixture prob-
lem with the same design objective cost function as defined in
equation 3. For the genetic algorithm, exploration is achieved
by creating a population of six fixture designs. A design expert
sets the parameters of the first design, while the other fixtures’
parameters are initialized randomly. For simulated annealing,
the parameters are updated based on a delta-value update. The
parameters are initialized identically by a design expert. Geo-
metric parameter updates are sampled through probability dis-
tributions for rotations and linear distances. Used distributions
are Von-Mises, beta, and uniform distribution applied accord-
ingly in both algorithms. The coefficients of the distributions
were set up empirically. Figure 4 shows the performance of
both algorithms in deriving a similar quality design proposal
after a given number of steps. The objective cost refers to the
numerical approximation of collisions and interferences asso-
ciated with the fixture during all welding process stages. Due
to the computational demand of performing a single evaluation,
the algorithms are compared on the number of evaluations, not
algorithm iterations. This is a one-to-one association for sim-
ulated annealing, whereas, for the genetic algorithm, the asso-
ciation is six evaluations for one algorithm iteration. The algo-
rithms have equivalent performance, and any indicative advan-
tages between the algorithms depend on the empirical setup of
the algorithm’s hyper-parameters [20]. The evolved design pro-
posals from both algorithms were validated by design experts
and approved as viable design concepts.

Fig. 4. Convergence of two algorithms, (red) genetic algorithm and (blue) sim-
ulated annealing, on the same fixture design using the same design objective
cost function.

Modifying the interpretation of the design objective cost
function can tailor the design solution closer to the expectations
of such a solution. This modification is possible by defining
the weight coefficients of the objective cost function. Assum-
ing that a limited computational period is provided to derive
a design proposal, the algorithm could run the risk of propos-
ing a sub-optimal design solution. In that scenario, experts state
that providing favoritism across requirements could derive de-

sign proposals with more manageable and easily corrected is-
sues [6]. The impact of the design objective modification can
be observed by the control given to the designer to alter the
direction of design solutions by selecting the weights of the de-
sign requirements accordingly. To demonstrate this, a welding
fixture block is observed when comparing two executions of
a simulated annealing algorithm with variations in the design
objective cost function. The algorithm versions differ only in
the weighting of collisions during the welding stage. The first
version prioritizes collision prevention with the welding tool,
and the second prioritizes collision prevention with the welded
components. Figure 5 shows the same crop section of two re-
sulting design proposals for the same fixture design problem.
The design proposal in the figure (left) prevents collisions with
the product, but a collision with the weld gun is still present.
The opposite is true for the design proposal shown in the fig-
ure (right). The choice between the two depends on the experts’
perspective on which collision can be resolved with minimum
effort by the expert. This varies between welding fixture design
problems.

Fig. 5. Collision prevention of fixture with (left) prioritization on the welded
product (right) prioritization on welding tool.

A revision to an existing design problem, such as the fixture
design, can be of many forms, such as removing, adding, or up-
dating elements of the fixture, such as fixture blocks, stages, or
numerical approximation methods of the design objectives. To
demonstrate the ease of substituting, a scenario is used where
a numerical approximation method is revised due to compu-
tational cost. The scenario assesses the ability to remove the
welded component from the fixture after completing welding.
This objective is addressed through feasible pathfinding to ex-
tract the components while avoiding interference with the weld-
ing fixture. The objective cost was computed based on total col-
lision areas over the identified path. Due to the computational
cost of this evaluation, the evaluation was revised into colli-
sion detection following a predefined extraction path defined by
the design expert. This substantially reduced the computational
cost of executing an evaluation without significantly increasing
design expert efforts or causing a drop in the design proposals’
quality.

7. Conclusion

The paper proposed an approach to automating welding fix-
ture design problems as a parametric optimization problem de-
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rived from multiple fixture blocks. The proposed methodology
uses individual assessments for each fixture block to describe
the overall performance of the fixture design. The fixture de-
sign process is also divided into welding process stages, each
assessing the viability of the fixture geometry towards mini-
mization of collisions and interference. The presented problem
is evaluated by means of two evolutionary algorithms that show
equivalent performance in proposing viable designs.

The multi-objective design problem is formulated in terms of
a single objective cost function whose weights can be modified
based on the experts’ intentions and the framework in which
the automation is implemented. Automation and expert cooper-
ation can lead to tailored improvements and specific, localized
optimizations. Similarly, the fixture block options could be ex-
panded and added to the automation solution without changing
the design objective.

Implementing the algorithms in an industrial use case
showed a reduction of manual designer efforts to 30% for gen-
erating early concepts of welding fixture design proposals. This
is countered by increased process time, where automated design
proposals take longer than a manual design. The current system
is coupled with CAD software resulting in extended communi-
cation and updating time per algorithm iteration. Future work
could look into methods to improve the design evaluation ap-
proach with the intention of real-time optimization.

Additional work is required for welding fixture designs with
many parameters, where complexity and computation time in-
crease. Different algorithm families, such as swarm intelli-
gence, game theory, or multi-objective optimization, could ad-
dress the problem dimensionality more efficiently. The current
implementation is a stepping stone in generating geometry con-
straint welding fixture proposals toward the overall product de-
velopment of challenging welded components, where the lim-
itations of the welding fixture geometry can influence welding
quality and product tolerances.
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