
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Mosad Zineldin,
Linnaeus University, Sweden

REVIEWED BY

Trine Theresa Holmberg Sainte-Marie,
Mental Health Services in the Region of
Southern Denmark, Denmark
Brian Schwartz,
University of Trier, Germany

*CORRESPONDENCE

Jannis T. Kraiss

j.t.kraiss@utwente.nl

RECEIVED 09 August 2023
ACCEPTED 08 February 2024

PUBLISHED 13 March 2024

CITATION

Huisman SM, Kraiss JT and de Vos JA (2024)
Examining a sentiment algorithm on session
patient records in an eating disorder
treatment setting: a preliminary study.
Front. Psychiatry 15:1275236.
doi: 10.3389/fpsyt.2024.1275236

COPYRIGHT

© 2024 Huisman, Kraiss and de Vos. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 March 2024

DOI 10.3389/fpsyt.2024.1275236
Examining a sentiment algorithm
on session patient records in an
eating disorder treatment
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Background: Clinicians collect session therapy notes within patient session

records. Session records contain valuable information about patients’

treatment progress. Sentiment analysis is a tool to extract emotional tones and

states from text input and could be used to evaluate patients’ sentiment during

treatment over time. This preliminary study aims to investigate the validity of

automated sentiment analysis on session patient records within an eating

disorder (ED) treatment context against the performance of human raters.

Methods: A total of 460 patient session records from eight participants diagnosed

with an ED were evaluated on their overall sentiment by an automated sentiment

analysis and two human raters separately. The inter-rater agreement (IRR) between

the automated analysis and human raters and IRR among the human raters was

analyzed by calculating the intra-class correlation (ICC) under a continuous

interpretation and weighted Cohen’s kappa under a categorical interpretation.

Furthermore, differences regarding positive and negative matches between the

human raters and the automated analysis were examined in closer detail.

Results: The ICC showed a moderate automated-human agreement (ICC =

0.55), and the weighted Cohen’s kappa showed a fair automated-human (k =

0.29) and substantial human-human agreement (k = 0.68) for the evaluation of

overall sentiment. Furthermore, the automated analysis lacked words specific to

an ED context.

Discussion/conclusion: The automated sentiment analysis performed worse in

discerning sentiment from session patient records compared to human raters

and cannot be used within practice in its current state if the benchmark is

considered adequate enough. Nevertheless, the automated sentiment analysis

does show potential in extracting sentiment from session records. The

automated analysis should be further developed by including context-specific

ED words, and a more solid benchmark, such as patients’ own mood, should be

established to compare the performance of the automated analysis to.
KEYWORDS

eating disorders, automated sentiment analysis, session patient records, validation,
sentiment extraction
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1 Introduction

Eating disorders (EDs) are serious psychological disorders

characterized by disturbed eating patterns that can lead to

(severe) somatic and psychological complications (1, 2). The three

most common EDs are anorexia nervosa (AN), bulimia nervosa

(BN), and binge-eating disorder (BED) (1). EDs that do not meet

the criteria of one of the aforementioned disorders but do create

significant distress or functional impairment are classified under the

category of “other specified feeding and eating disorders” (OSFED)

(2). The lifetime prevalence of all EDs is 8.4% for women and 2.2%

for men, which has increased during the last decades (3–5).

Despite the different types of therapy available for EDs, they

remain challenging to treat and are followed by high levels of

relapse, reflecting the often chronic nature of these disorders (6–9).

Hence, it is essential to better understand and monitor the recovery

process to protect individuals against relapse. One way to facilitate

recovery is by monitoring the responsiveness of patients to

treatment with routine outcome monitoring (ROM) (10). The

ROM is an instrument to periodically evaluate patients’ progress

through using diagnostic indicators and severity scales (11, 12).

ROM can alert therapists when treatment is ineffective, indicate a

worsening of symptoms, or reassure patients by providing insight

into slight improvements in their situation (13).

However, ROM requires patients to fill out self-report

questionnaires, which may lead to subjective bias resulting in an

over- or underestimation of patient’s states (14). Furthermore,

ROM is supposed to be administered at fixed time intervals

during treatment, which is burdensome for patients and time-

consuming for therapists, making it costly and not always feasible

within clinical settings (11, 15–17). As a result, ROM is often only

completed at the beginning and end of therapy, leading to a limited

representation of patients’ treatment progress (16, 18). The

limitations of the ROM demonstrate that therapists could benefit

from a less burdensome procedure and data utilization to

continuously monitor patients’ treatment progress.

Therapists already collect information about patients’ treatment

progress within session-by-session patient records (session records)

(19). Clinicians write the session records after therapy sessions that

may contain valuable information, such as patients’ reactivity to

and states during treatment, details of therapeutic conversations,

and clinicians’ impressions of the patient (20, 21). Session records

are essential to treatment as they improve patient care by ensuring

effective communication between clinicians and can support the

substantiation of treatment choices (22, 23). Exhaustive evaluation

of the session records could yield insightful information into

patients’ treatment process and progress.

However, the utilization of session records in research is limited

due to the records being lengthy and complex, requiring more

advanced and customized approaches to manage the difficulties in

extracting information from such texts (21, 24–26). The session

records are classified as unstructured data, meaning that the

qualitative texts are not stored in an organized predefined format,

making them challenging to analyze with conventional analysis

techniques (27, 28). One conventional method to analyze such texts

is by using human raters. However, this task is demanding and
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time-consuming and is often not feasible when large amounts of

text data are involved (29). Throughout the last few years, new

techniques have emerged that allow for more cost-effective and

efficient analysis of unstructured text data (30). One such method is

natural language processing (NLP) in which computer programs

attain the ability to understand natural language in text or spoken

words (31). A subfield within NLP is automated sentiment analysis,

aiming to analyze natural language by using an algorithm operating

through a set of rules to identify sentiment encompassing attitudes,

emotions, appraisals, and the emotional tone within a text (32).

Hence, automated sentiment analysis could be particularly suited to

analyze session records because these often contain sentiment.

Sentiment analysis has become increasingly popular and was

mainly used for the mining of sentiment from online customer

reviews. However, prior research has started to examine the

sentiment of patients’ medical records, which showed potential

regarding the mining of sentiment from such texts (33–36). Despite

this, sentiment analysis applications within clinical practice remain

limited; especially, the sentiment within session records has hardly

been examined.

A few sentiment analysis studies have been executed within a

clinical setting. A study by Provoost et al. (37) investigated the

performance of an automated sentiment analysis on texts from

online behavioral therapy interventions regarding different

psychological disorders against a set of human raters. They found

that the sentiment analysis performed similarly to the human raters

in discerning sentiment from such mental health texts.

Furthermore, a study investigating the performance of four

different sentiment analyses on healthcare-related texts against a

human baseline found three sentiment analyses to have fair

agreement and one to have moderate agreement with the human

raters (38). Moreover, a study evaluating the sentiment on videos

and comments about AN found a fair agreement between the

automated sentiment analysis and human raters (39). However,

to date, only one study has investigated the performance of an

automated sentiment analysis on written statements from patients

diagnosed with anorexia nervosa regarding their body perception

(40). This study showed that a relationship existed between patients’

vocabulary in written texts and their mental states, Furthermore,

the texts could be categorized in one of the six predefined

subcategories related to AN (40).

Despite these studies showing promising results, a challenge

within this type of research is that there is no solid benchmark to

compare the performance of automated sentiment analyses with,

because research regarding the analysis of sentiment from session

records within the mental healthcare domain is very limited. For

example, Provoost and colleagues (37) used the agreement among

the human raters as benchmark to compare the performance of the

automated sentiment analysis too. Their research suggested that the

automated sentiment analysis performed similar to the human

raters. However, the aforementioned study showed a moderate

human-human agreement, meaning that the human raters

differed in many cases regarding the sentiment of the texts.

Hence, because of a lack of consensus between raters, it cannot be

determined with certainty whether the performance of the

automated sentiment analysis is either “good” or “bad”. Another
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point is that this research is conducted within the field of clinical

psychology; therefore, thorough research is required on new

technologies before they can actually be applied in practice (37,

41). Furthermore, automated sentiment analyses can be highly

context-specific, as texts within different contexts may require

different vocabulary and language, such as analyzing social media

texts in contrast to clinical documents (42–45). Thus, the

vocabulary within an ED context may differ from the vocabulary

used within other domains of mental healthcare.

In all, limited evidence exists on the performance of automated

sentiment analyses on session patient records within an ED treatment

context. The automated sentiment analysis is not tailored to an ED

context; however, because of the context specificity of such analyses, it

is not clear whether an automated sentiment analysis (without

tailoring) can extract sentiment reliably and validly from session

records within such a context. Furthermore, because of little

understanding about the application of an automated sentiment

analyses within clinical practice, it must be thoroughly researched

and validated before such analyses can be applied within the clinical

field. The session records are readily available to examine patients’

treatment progress; therefore, efficient analysis of these records by an

automated sentiment analysis may provide a less burdensome

method for both patients and clinicians to monitor treatment

progression over time and be used on different texts related to EDs.

Therefore, this study will examine how an existing Dutch automated

sentiment analysis evaluates unstructured text data from session

patient records compared to human raters.
2 Materials and methods

2.1 Participants

Participants were Dutch patients with the criteria of having a

minimum age of 17 at the time of providing an informed consent

and an ED diagnosis during data collection. A total of 149 patients

were asked to sign the consent form, of which 12.1% rejected. A

total of 131 patients provided consent. A random selection was

made for this preliminary study, including patients with different

ED diagnoses and a minimum of forty session records.

The sample consisted of eight patients: two patients diagnosed

with AN, three patients with BN, one with BED, and two with

OSFED. Five patients were between the ages of 21 and 25, two

between the ages of 26 and 30, and one between the ages of 31 and

35. The average duration of patients’ treatment up to the start of the

study was approximately 10 months (SD = 4.8).
2.2 Procedure

Patients’ session records were evaluated on their sentiment by

an automated sentiment analysis and separately by two human

raters. The two human raters examined each session patient record

and allocated a sentiment score to each record individually.

Data collection occurred between February 2019 and April 2022,

during which participants received outpatient treatment at a
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specialized ED treatment institution in The Netherlands (46).

Patients were diagnosed with an ED by a psychiatrist or clinical

psychologist in collaboration with an intake team. Participants visited

their therapist once or twice a week for individual face-to-face

treatment sessions, which were partly online due to the restrictions

regarding the COVID-19 pandemic in The Netherlands (47).

Therapy sessions concerned topics regarding recovery, autonomy,

and decreasing problematic eating behavior using cognitive

behavioral therapy and insight-giving therapy. Patients also

received homework after the sessions to apply what they had

learned (46). Furthermore, at the start of treatment, each patient

received an account for an eHealth environment in which

questionnaires and exercises were offered, where patients were

provided with a brochure explaining the aim of the research as

well. Patients were able to contact the researchers for further

information and signed an informed consent form which they

could withdraw from when they no longer wished to participate

(see Appendix A and B).

The client advisory board of Human Concern advised on the

execution of the study regarding adherence to ethical principles

concerning patient privacy, possible risk, and harm and clarity of

the study brochure. The study protocol was approved by the board

of directors at Human Concern and the Ethical Committee of the

University of Twente (EC-220422).
2.3 Materials

2.3.1 Session patient record data
The data utilized for this study were session patient record data.

The session records were written electronically within the used

system by the clinicians during treatment; they were free to use their

own format in writing the records and could include any

information they deemed important. The records included

information from therapy sessions, treatment progression, ROM

results, and patients’ background information. The records varied

in length, language, and format. However, not all session records

were suited for the analysis. Some records only contained brief

information about arranged appointments with other clinicians or

institutions or descriptions of actions taken by the clinician(s)

regarding administrative activities. Therefore, records that

included one (or several) of the aforementioned actions or

contained less than five words were excluded from the analysis by

the human raters. In contrast, the automated analysis only excluded

records with less than five words or records that did not include

sentiment words.

2.3.2 Anonymization
The model “deduce” tailored to the Dutch language was

executed on the pseudonymized session patient records to

anonymize the data (48). First, patient and postal codes,

addresses, email addresses, telephone numbers, URLs, and other

contact information, including those of relatives, clinicians, and

other care providers and institutions, were excluded. Second, the

session records were tokenized; names and initials were changed to

(NAME-1) and dates to (DATE-1); and dates indicating the start or
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end of treatment were transformed to a month and year, ages to

(AGE), and locations or cities to (LOCATION-1).

2.3.3 Automated sentiment analysis
To analyze the sentiment within the session records, an

automated sentiment analysis from 6Gorillas tailored to the Dutch

language and mental healthcare domain was used (49). Before

analyzing the data, the sentiment analysis automatically pre-

processed the data by transforming capital letters to lowercase

letters and removing stop words, numbers, words with only one

character, and underscores to improve the data mining functionality

and prevent misleading results (50). The automated sentiment

analysis employed a top-down lexicon-based approach, using three

lexicons to extract sentiment. The primary lexicon used was from

NRC Word-Emotion Association containing English sentiment

words translated into Dutch; furthermore, a healthcare-specific

lexicon created by 6Gorillas and an adjustment dictionary from

Ynformed (a data science company) changed or removed words

with multiple meanings within a text (51).

The lexicon indicated whether a positive or negative sentiment

score was awarded to a sentiment-bearing word within a session

record. Furthermore, the automated sentiment analysis searched for

words prior to a sentiment-bearing word to examine the semantic

context by using N-grams, including bigrams (a two-word

sequence) and trigrams (a three-word sequence). Consequently,

the automated analysis could account for negations that reverse the

polarity of a sentence (e.g., “not good”) and strengthening words

(“extremely good”) (52, 53). The sentiment score of a bigram was

calculated by scoring the sentiment-bearing word with either “0,”

“+1,” or “−1,” which was multiplied by two when the preceding

word was a reinforcer, and the sentiment score was inverted when

the preceding word was a negation. The final score was calculated

by adding all the bigram scores of a session record divided by the

total number of bigrams (49). For trigrams, the same approach was

used; the sentiment-bearing word determined the sentiment, and

the two preceding words indicated whether the score was inverted

or reinforced. The final score was calculated by adding all the

trigrams scores of a session record divided by the total number

of trigrams.

A final overall sentiment score was awarded to each session

record, which was an average of all the sentiment scores within a

record ranging between an interval of −1 and 1. Higher (positive)

scores indicated greater positive sentiment, scores close to zero

indicated a neutral sentiment, and lower (negative) scores indicated

a greater negative sentiment of the record.
2.3.4 Human sentiment analysis
The procedure of Provoost and colleagues (37) was followed for

the human sentiment analysis as a guideline because this was the

only study examining the extraction of sentiment from texts within

a Dutch mental health context.

Two human raters were involved in the human sentiment

analysis; the first author was considered the first human rater, and

the last author the second human rater. First, the human raters rated

the first 20 session records together to explore variations in their
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ratings. After individually rating a session record, they discussed their

reasoning and justifications for their scores. This collaborative

approach served as the foundation for the preliminary protocol.

Subsequently, they independently rated the next eighty session

records. After, a feedback session was arranged to discuss issues

and difficulties concerning the sentiment rating, upon which the

protocol was refined and finalized. Hereafter, the new protocol was

used to evaluate the overall sentiment of the remaining session (see

Appendix C). Every record was rated on a scale from 1 to 7, with “1”

indicating very negative, “2” indicating negative, “3” indicating

somewhat negative, “4” indicating neutral, “5” indicating somewhat

positive, “6” indicating positive, and “7” indicating very positive.

The category “neutral” was assigned when a record was

considered objective (including no sentiment) or contained about

the same number of positive and negative sentiments. Furthermore,

a separate category “mixed” was created to indicate that a session

record contained both an equal number of positive and negative

sentiment. Because the automated sentiment analysis frequently

scored such records as “neutral,” the category “mixed” was created

to explore the frequency of this occurrence.
2.4 Data analysis

Analyses were performed within the statistical program R (54)

and Statistical Package of the Social Sciences (SPSS) 28 (55). The

alpha level was set at 0.05.

2.4.1 Data preparation
The raw sentiment scores from the automated sentiment

analysis and scores from the human raters were standardized in

order to compare the automated and human sentiment analysis.

2.4.1.1 Automated sentiment analysis

Categories were created for the standardized sentiment scores

on the session records from the automated analysis. For the

standardized sentiment scores, no score of zero existed indicating

the category “neutral,” given the wide range of scores generated by

the automated analysis. Therefore, the category “neutral” was

defined as a range bounded by the first positive and first negative

standardized sentiment score. The category “negative” was defined

by the scores below the first negative standardized sentiment score,

and the category “positive” was defined by the scores above first

positive standardized sentiment scores. Consequently, the

categories for the standardized overall sentiment scores from the

automated analysis were defined as follows: negative for values

smaller than −0.03 and positive for values larger than 0.11.

2.4.1.2 Human sentiment analysis

Categories were created for the raw sentiment scores of each

human rater as these are similar to the standardized sentiment

scores. Values smaller than 4 were categorized as negative, values

larger than 4 as positive, and scores equal to 4 as neutral.

Furthermore, the sentiment scores of each human rater were

standardized. An overall human sentiment score was calculated by
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taking the average of both raters’ sentiment score on each record,

which was standardized and is referred to as the average human

rating. A contingency table was created, including both human

raters’ raw sentiment scores and a frequency distribution of

negative, neutral, and positive scores between the human raters.

2.4.2 Human-automated agreement
2.4.2.1 Categorical interpretation

A weighted Cohen’s kappa was calculated to assess the inter-

rater agreement (IRR), which measured the extent that two (or

more) examiners agreed on their assessment decisions (56). The

weighted Cohen’s kappa accounted for ordinal categorical data and

was used to measure a text’s polarity in terms of its direction

(category). The weighted Cohen’s kappa was calculated to examine

the IRR between the standardized categorical sentiment scores of

the automated analysis and categorical scores of rater 1 and rater 2

(57, 58). Values for the weighted Cohen’s kappa range between −1

and 1; the degree of agreement was interpreted as none (<0), slight

(0 to 0.20), fair (0.21 to 0.4), moderate (0.41 to 0.60), substantial

(0.61 to 0.80), or almost perfect reliability (> 0.80) (59).

2.4.2.2 Continuous interpretation

The intra-class correlation (ICC) can be used to assess the IRR

on continuous data and data with missing values (58). The ICC

correlated the standardized sentiment scores of the automated

analysis against the standardized sentiment scores of rater 1 and

rater 2 to measure the intensity of the agreement between the two

analyses, accounting for a two-way mixed effect model based on an

absolute agreement (60). Values for the ICC ranged between 0 and

1; the degree of agreement was interpreted as poor (<0.50),

moderate (0.50 to 0.75), good (0.75 to 0.90), and excellent

reliability (>0.90) (60).

2.4.3 Human-human agreement
2.4.3.1 Categorical interpretation

A weighted Cohen’s kappa was calculated to assess the IRR

between the categorical scores of the human raters. The Cohen’s

kappa was interpreted as aforementioned.

2.4.3.2 Continuous interpretations

The ICC was calculated to assess the IRR between the raw

sentiment scores of the human raters. The ICC was interpreted

as aforementioned.

2.4.4 Human-automatic agreement per
individual patient
2.4.4.1 Continuous interpretation

The ICC was calculated to assess the IRR between the standardized

scores of the automated sentiment analysis and each human rater for

each patient individually. The ICC was interpreted as aforementioned.

2.4.4.2 Differences between the automated sentiment
analysis and human sentiment analysis

A line graph was created for each patient to visualize the

differences between the automated and human sentiment analysis,
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illustrating a patient’s sentiment score over time. The graphs

included the standardized automated sentiment analysis’s and

average human sentiment scores on each session record (y-axis)

and the number of records (x-axis). The average human sentiment

rating was used due to the good (ICC = 0.89) and substantial (k =

0.68) human-human agreement. Furthermore, deviations in

sentiment scores between the automated and human raters were

examined and reflected upon. The sentiment-bearing words and its

assigned positive or negative match by the automated sentiment

analysis and human raters were explored in closer detail.

Accordingly, a word list was created for words specific to an ED

context, which were not considered during the automated analysis.

Furthermore, a word list was created for words considered of

positive or negative sentiment by the automated analysis, which

were not considered or considered of the opposite sentiment by the

human raters.
3 Results

3.1 Patient session records

Out of the total 460 session patient records with an average of

57.50 (SD = 48.02) records per patient, 268 (58.3%) records were

deemed relevant for the analysis by the first human rater and 263

(57.1%) by the second rater, whereas the automated analysis scored

315 (68.5%) records as relevant for the analysis.
3.2 Categorical comparison between the
human raters and automated
sentiment analysis

The automated sentiment analysis rated more session records as

positive compared to the human raters, whereas the scores for the

categories neutral and negative from the automated analysis and

human raters are closer to each other (see Table 1). The human

raters showed similar ratings for each category, with the largest

difference for the category “positive” (see Table 1).

Furthermore, the human raters showed the most consensus on

the scoring of the session records in the “positive” category, followed

by the “negative” category (see Table 2). The lowest consensus was

observed for the category “neutral” where, when one human rater

categorized a record as “neutral,” the other human rater more often

categorized the record in one of the other two categories.
3.3 Automated-human agreement

3.3.1 Categorical interpretation
The weighted Cohen’s kappa indicated a fair agreement, k = 0.29

(95% CI, 0.199 to 0.387, p < 0.001), between the automated sentiment

analysis and rater 1 regarding overall sentiment of the session records.

The weighted Cohen’s kappa indicated a fair agreement, k =

0.29 (95% CI, 0.191 to 0.378, p < 0.001), between the automated
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sentiment analysis and rater 2 regarding overall sentiment of the

session records.

3.3.2 Continuous interpretation
The ICC analysis revealed a moderate IRR [ICC = 0.51, CI = 0.37–

0.61, F(267, 267) = 2.02, p < 0.001] between the automated analysis and

rater 1 regarding overall sentiment on the session records.

The ICC analysis revealed a moderate IRR [ICC = 0.57, CI = 0.43–

0.65, F(262, 262) = 2.245 p < 0.001] between the automated analysis

and rater 2 regarding overall sentiment on the session records.
3.4 Human-human agreement

3.4.1 Categorical interpretation
The weighted Cohen’s kappa indicated a substantial agreement

[k = 0.68 (95% CI, 0.62 to 0.75), p = 0.000] between rater 1 and rater

2 regarding overall sentiment on the session records.

3.4.2 Continuous interpretation
The ICC analysis revealed a good IRR [ICC = 0.89, CI = 0.86–

0.91, F(262, 262) = 9.02, p < 0.001] between rater 1 and rater 2

regarding overall sentiment on the session records.
3.5 Automated-human agreement per
individual patient

3.5.1 Continuous interpretation
The ICC revealed a poor IRR for participants 1 (OFSED), 4

(AN), and 6 (BN) for rater 1 (see Table 3). The ICC revealed a poor

IRR for participants 1, 4, and 5 (BED) for rater 2 (see Table 4).
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Moderate ICC values were found for the remaining participants for

both raters. The values were significant for four cases for rater 1 and

five cases for rater 2 (see Tables 3, 4).

3.5.2 Differences between the automated and
human sentiment analysis

The visualizations of the sentiment over time per patient

regarding sentiment scores from the automated analysis and

human raters can be seen in Figures 1–8. Figure 1 shows a large

difference between the average human rating and the automated

analysis on session record 106 of participant 1, where the automated

analysis showed a sentiment score of 4.0; however, the human raters

identified this record as irrelevant. Likewise, in Figure 2, the

automated sentiment analysis peaked at record 34 of participant

2, whereas the human raters considered this record irrelevant.

Participants 4, 5, and 6 illustrate this occurrence as well, showing

a larger peak of the automated analysis without the human raters

having assigned a sentiment score to the record in question, such as

on record, 10, 13, and 17, respectively, in Figures 4-6. The

automated sentiment analysis presenting a considerably larger

sentiment score compared to the human rater is often paired with

the human raters evaluating the session record as irrelevant.

3.5.2.1 Sentiment words specific to ED context.

The automated sentiment analysis did not consider words

specific to an ED context. An example can be seen from

participant 4 diagnosed with AN in session record 37, where the

average human rating showed a sentiment score of 1.97 and the

automated sentiment analysis a score of 0.40 (see Figure 4). When

examining the positive and negative matches from the automated

analysis on the record, it was observed that the automated analysis

did not rate certain context-specific positive ED words or

expressions. For instance, the automated analysis did not rate the

expression “beautiful recovery line,” “feeling more,” or “taking

space,” which are of positive sentiment within the context of EDs.

The aforementioned examples are not the only ones encountered

when examining the differences between positive and negative

matches of the human raters and the automated sentiment

analysis. Therefore, a list with context-specific ED words and the

different diagnoses can be found in Appendix D.

Lastly, the automated sentiment analysis categorized certain

words to have a positive or negative polarity, which were not

considered or considered of the opposite sentiment within the

human analysis. For example, the automated analysis indicated
TABLE 1 Comparison of categorical sentiment evaluations on the
session patient records from the human raters and automated
sentiment analysis.

Rater 1
N (%)

Rater 2
N (%)

Automated
Analysis
N (%)

Negative (%) 126 (47.0%) 127 (48.3%) 135 (36.8%)

Neutral (%) 64 (23.9%) 70 (26.6%) 64 (20.3%)

Positive (%) 78 (29.1%) 66 (25.1%) 116 (42.9%)

Total 268 263 315
TABLE 2 Comparison between the human raters’ categorical sentiment evaluations on the patient session records.

Rater 2

Rater 1 Negative
N (%)

Neutral
N (%)

Positive
N (%)

Total
N (%)

Negative 106 (83.5%) 14 (20.0%) 5 (7.6%) 125 (47.5%)

Neutral 14 (11.0%) 43 (61.4%) 4 (6.1%) 61 (23.2%)

Positive 7 (5.5%) 13 (18.6%) 57 (86.4%) 77 (29.3%)

Total 127 70 66 263
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“exercising” or “compensating” as a positive match on a record with

a patient diagnosed with AN when, in fact, these expressions are

mostly not of a positive polarity within such a context. Moreover,

the words “emotion regulation” and “body experience” were

categorized as a negative match. However, these were not

considered sentiment-bearing words in the human analysis.

Further differences regarding the positive and negative matches

between the automated analysis and human raters can be found in

Appendix E.
4 Discussion

The aim of this study was to examine the performance of an

automated sentiment analysis at extracting sentiment from session

patient records within an ED treatment context compared to

human raters. In addition, the purpose of this study was to

provide feedback to the designers of the automated sentiment

analysis to optimize the analysis’ future utilization potential. The

results showed a fair automated-human agreement with rater 1 and

rater 2 (k = 0.29) under categorical interpretation and a moderate

automated-human agreement with rater 1 (ICC = 0.51) and rater 2
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(ICC = 0.55) under continuous interpretation regarding the

extraction of overall sentiment from the session records. The

human-human agreement regarding overall sentiment was

substantial under the categorical interpretation (k = 0.68) and

good (ICC = 0.89) under the continuous interpretation.

Furthermore, the automated analysis scored the sentiment of the

session records more positive than the human raters. The

automated analysis did not demonstrate increased difficulties in

assessing sentiment related to specific types of EDs, despite its

challenges with disorder-specific vocabulary.
4.1 Automated-human agreement

The findings of the automated-human agreement are partly in

line with other studies. While this study found a moderate

continuous automated-human agreement and a fair categorical

agreement for both human raters, the exemplary study by

Provoost et al. (37) found a moderate automated-human

agreement under both continuous and categorical interpretations.

Furthermore, a study investigating the performance of four different

sentiment analyses compared to a baseline of multiple human raters
TABLE 3 Intra-class correlation value for the agreement between the first human rater and the automated sentiment analysis per participant.

ICC 95% CI F-statistics

Lower Upper Value df1 df2

Participant 1 (OFSED) 0.13 −0.47 0.48 1.14 56 56

Participant 2 (AN) 0.63 0.34 0.79 2.65** 49 49

Participant 3 (BN) 0.50 −0.29 0.82 2.10 15 15

Participant 4 (AN) 0.37 −0.18 0.67 1.58 41 41

Participant 5 (BED) 0.60 0.25 0.78 2.42** 43 43

Participant 6 (BN) 0.38 −0.60 0.75 1.57 20 20

Participant 7 (BN) 0.69 0.19 0.87 3.05* 19 19

Participant 8 (OFSED) 0.60 −0.11 0.85 2.41* 17 17
ICC, intra-class correlation; CI, confidence intervals, * < 0.05, ** < 0.01.
TABLE 4 Intra-class correlation value for the agreement between the second human rater and the automated sentiment analysis per participant.

ICC 95% CI F-statistics

Lower Upper Value df1 df2

Participant 1 (OFSED) 0.30 −0.18 0.59 1.44 55 55

Participant 2 (AN) 0.72 0.51 0.84 3.52** 49 49

Participant 3 (BN) 0.66 −0.05 0.88 2.93* 15 15

Participant 4 (AN) 0.41 −0.09 0.68 1.69* 41 41

Participant 5 (BED) 0.40 0.10 0.67 1.66* 43 43

Participant 6 (BN) 0.69 0.21 0.88 3.24* 18 18

Participant 7 (BN) 0.68 0.14 0.88 3.07* 17 17

Participant 8 (OFSED) 0.54 −0.26 0.83 2.12 17 17
ICC, intra-class correlation; CI, confidence intervals, * < 0.05, ** < 0.01.
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found a fair automated-human agreement for three sentiment

analyses and one moderate agreement, all under a categorical

interpretation (38). Similarly, a study by Oksanen et al. (39)

found a fair automated-human categorical agreement between an

automated sentiment analysis and each of its three human raters,

rating the sentiment of videos and comments related to AN.

Some shortcomings of the automated analysis could explain the

findings of the automated-human agreement. The automated

analysis’ lexicon did not include vocabulary of sentiment specific

to an ED context and labeled negative words as positive and vice

versa. Besides, the automated analysis assigned a sentiment score to

words that were not sentiment-bearing and not considered by the

human raters. Literature has shown that sentiment analyses are

often domain and context-specific, accordingly, a word’s polarity

may have been altered due to the context and domain within which

it occurred and labeled as of the opposite sentiment (42–45).

Furthermore, the automated analysis used “n-grams,” which only

considered words before a sentiment-bearing word and not after; as

a result, it may have overlooked the context of certain words and

labeled them incorrectly. A study investigating the performance of

different machine and deep learning methods showed that the

accuracy of n-grams was best for unigrams (one-word sequences)

and decreased with bigrams and trigrams, as these may contain

more complex human language (61). These shortcomings could

have led to a discrepancy in sentiment scores between the two

analyses, leading to a lower automated-human agreement and

potential more positive rating of the records’ sentiment opposed

to the human raters.

Another explanation that may cause a variance in the sentiment

scores between the two analyses is the difference in approach

regarding the rating of the session records. The automated analysis’

word-by-word analysis with use of two and three-word combinations

in comparison the human raters’ holistic interpretation of the
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records’ sentiment may result in diverging sentiment scores on the

session records. This effect was amplified when only one or two words

were rated by the automated analysis within a record compared to the

human raters considering the entire record and, hence, caused a

difference in the observed sentiment scores.

Furthermore, other possible explanations may be due to the

characteristics of the session records. The records included

occasional misspellings or incorrect sentences, implicit statements

of sentiment, or varied in their length, content, and written

language due to differences in writing of clinicians. This will

make the extraction of sentiment from the records more complex

and misinterpretation more likely by the automated analysis,

whereas human raters possess the ability and intelligence to

comprehend difficult and ambiguous sentences and to extract

sentiment from these more precisely (40, 62). The automated

sentiment analysis rated more records than the human raters due

to its inability to consistently identify and exclude “irrelevant”

records. This occasionally resulted in the algorithm rating records

with minimal sentiment content, leading to outliers often paired

with the human raters rating the records as “irrelevant.”

Furthermore, the session records often contained a summary of

patients’ difficulties and successes from the past days or weeks in

between therapy sessions. Seventy percent of the session records

classified as “neutral” within the human analysis were also

categorized as “mixed,” meaning that the records contained both

an equal positive and negative polarity. Furthermore, the automated

analysis’ sentiment scores were mostly centered around zero,

whereas the majority of the human raters’ sentiment scores were

mostly centered around slightly positive or slightly negative,

meaning that sentiment may be difficult to extract from session

records, often containing sentiment from both polarities.

Furthermore, the sentiment within the session records does not

directly stem from the patients; rather, it is a clinician’s
FIGURE 1

Sentiment scores from the automated sentiment analysis and the human sentiment analysis over time for participant 1 (OFSED) (N = 175).
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interpretation of patients’ sentiment and may, therefore, contain a

subjective view of clinicians. The human raters agreed to only score

sentiment stemming from the patients. Whereas human raters are

able to distinguish between sentiment stemming from the patient or

the clinician, the automated analysis could not. The human raters

were able to take this into account when scoring the records that

could have resulted in the observed difference in sentiment ratings.

In summary, the automated analysis performed worse in

discerning sentiment from session patient records as opposed to

the human raters, meaning that the automated sentiment analysis
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cannot be used within practice in its current state, assuming that the

gold standard of the human-human agreement is considered

good enough.
4.2 Agreement between human raters

The finding of the substantial categorical human-human

agreement is in line with previous research, which investigated

the performance of an automated sentiment analysis against two or
FIGURE 2

Sentiment scores from the automated sentiment analysis and the human sentiment analysis over time for participant 2 (AN) (N = 68).
FIGURE 3

Sentiment scores from the automated sentiment analysis and the
human sentiment analysis over time for participant 3 (BN) (N = 22).
FIGURE 4

Sentiment scores from the automated sentiment analysis and the
human sentiment analysis over time for participant 4 (AN) (N = 61).
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three human raters and found a substantial agreement as well,

under the categorical interpretation (42, 63, 64). In contrast, a lower

(moderate) categorical and continuous human-human agreement

was found in the study of Provoost and colleagues (37), who used an

average of eight human raters per text.

A possible explanation for the findings could be due to the

human raters’ utilization of a feedback session and clear protocol.

Likewise, a study by Moreno-Ortiz et al. (64) incorporated a
Frontiers in Psychiatry 10
feedback session to optimize the followed protocol. They found a

significant increase in the human-human agreement between the

first and second trial, ensuring that the session records were rated

similarly. Furthermore, both raters of this study possessed

knowledge of EDs as they were both educated within the field of

psychology. Hence, they may have similarly interpreted words or

expressions specific to an ED context and whether these were of

positive or negative sentiment.
FIGURE 5

Sentiment scores from the automated sentiment analysis and the
human sentiment analysis over time for participant 5 (BED) (N = 56).
FIGURE 6

Sentiment scores from the automated sentiment analysis and the
human sentiment analysis over time for participant 6 (BN) (N = 30).
FIGURE 7

Sentiment scores from the automated sentiment analysis and the
human sentiment analysis over time for participant 7 (BN) (N = 22).
FIGURE 8

Sentiment scores from the automated sentiment analysis and the
human sentiment analysis over time for participant 8 (OFSED) (N = 19).
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The human-human agreement within this study was chosen as

the “gold standard” to compare the performance of the automated

analysis with. Nevertheless, no perfect agreement has been found

within literature regarding human-human agreement for the

validation of an automated sentiment analysis within a mental

healthcare context, meaning that human raters still lack consensus

regarding the rating texts’ sentiment (42). For this reason, it cannot

be determined with certainty whether the automated analysis

performed either “good” or “bad” as there is no solid benchmark.
4.3 Qualitative differences between the
automated sentiment analysis and
human raters

The automated sentiment analysis was tailored to the Dutch

language and mental healthcare context but not to the context of

EDs. Hence, because of the context of the records and limited domain-

specificity of the used lexicons, differences in positive and negative

matches between the automated analysis and human raters were

identified. Furthermore the automated analysis does not seem to

encounter more difficulties with rating the sentiment within the

context of a specific diagnosis, as each diagnosis once showed to

have a lower automated-human agreement in comparison to the

overall automated-human agreement, except for BN which showed a

lower ICC value two times.
4.4 Strengths and limitations

A strength of this study is that the session records were written

by trained clinicians providing real contextual data from patients

from an actual ED treatment center. The findings of this study will

also be provided as feedback to the developers of the automated

sentiment analysis to improve its performance for future usage.

Furthermore, the utilization of a feedback session may have

supported that the records were rated similarly by the human

raters (64). A limitation of this study was that there is no solid

benchmark to compare the performance of the automated analysis

with. The human raters were chosen as gold standard; however, the

human raters still lack solid consensus when rating the session

records. Hence, the results should be interpreted with caution.

Furthermore, this study used fewer texts for the analysis than

other research investigating the performance of automated

sentiment analyses, as more than 40% of the records within this

study were not suitable for the analysis, decreasing the reliability of

the results and possibly leading to a selective sample of records (37,

39, 42, 65). The human raters only evaluated sentiment related to

the patient, whereas the automated analysis rated an entire session

record, which may have led to a discrepancy in the content

evaluated by the human raters and the automated analysis.

Therefore, the interpretation of the IRR between the human

raters and the automated analysis requires caution. Another

limitation is that the human raters may have been subjected to
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emotional bias, which is a distortion in one’s cognitions due to

emotional factors such as personal feelings at the time of decision-

making (66). Consequently, the affective state of the human raters at

the time of rating the session records could have influenced the

sentiment score that was given to a certain text. Furthermore, this

study only included two human raters, which makes for a less

representative interpretation of the overall sentiment within the

session records compared to using multiple raters (67). Lastly, the

method for the standardized sentiment scores regarding the

category “neutral” differed between the automated analysis and

human raters, as establishing a clear median or “neutral” point was

challenging. The decision to use a range for the algorithm was made

to accommodate the nuances and variability inherent in an

automated sentiment analysis to represent the category “neutral.”

However, this may have resulted in differences within the category

“neutral” between the automated analysis and human raters.
4.5 Future research and implications

The findings suggest that the automated analysis performs

worse than human raters in discerning sentiment from session

records. However, it is questionable whether the human-human

agreement can be considered the gold standard to determine the

performance of the automated analysis. Nevertheless, no clinically

relevant IRR values that would allow methods to be applied within

practice could be identified within the literature sufficient enough to

apply such methods within practice, and, therefore, although

excellent reliability should be strived for, it is of interest to

investigate what IRR values are sufficient enough to apply such

methods within clinical practice.

This research is among the first to assess the performance of

automated sentiment analysis on contextual patient data. Its

potential application in clinical practice could serve as a feedback

system, allowing for quick analysis of patients’ sentiment over time.

This could be especially long-term treatments, where subtle changes

in sentiment might be challenging to discern through manual

review alone. Consequently, this approach could reduce the

burden on both clinicians and patients and, importantly, aid in

identifying when treatment adjustments are necessary or detect

deterioration in patients’ conditions. Such an application could be a

significant step forward in optimizing mental healthcare delivery.

For future research, it is recommended to increase the number

of human raters and examine the differences between the raters’

sentiment scores in closer detail to improve the gold standard.

Moreover, because of limited evidence regarding the utilization of

human raters as the gold standard, patients’ ratings of their own

moods after or before therapy sessions or utilization of patients’

diaries and accompanying mood ratings could make an additional

benchmark to validate the automated sentiment analysis to.

Furthermore, the sentiment scores of the automated analysis

could be compared to therapists’ sentiment ratings of the session

records, which may not only yield insightful information about the

efficacy of the tool but also identify sentiments that might not be
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immediately apparent to the therapist and could give an additional

layer of insight into patient progress.

Another key recommendation is to update the automated analysis

lexicon with context-specific ED words and investigate its performance

again on texts or session records within an ED treatment setting to

improve its accuracy (68). Furthermore, potential confounding

variables should be investigated by operating the automated

sentiment analysis on more homogenized samples of texts with

controlled participant demographics such as specific age groups and

types of EDS to investigate the impact of different variables on the

sentiment analysis.

Furthermore, the usability of session records for the extraction

of patients’ sentiment can be questioned because of its

characteristics and it is primarily an account by the clinician of

the patients’ sentiment. Therefore, the sentiment of the session

records and whether these could give an accurate representation of

the patients’ sentiment should be further investigated. In addition,

future research could focus on exploring novel procedures to

document patients’ sentiment more directly, such as, by

requesting the patient to summarize their feelings about the past

week(s) in a few sentences at the beginning or end of a session,

which could be used for the monitoring of patients’ sentiment

over time.

However, despite the session records including complex and

ambiguous information, which makes them difficult to analyze, the

records do contain valuable information about processes and

underlying patterns contributing to EDs. Hence, it may be

particularly interesting to use an open coding, through which the

session records are examined on recurring ED themes, which may be

beneficial for the understanding of the mechanisms exhibited by

individuals with an ED disorder. Furthermore, it would be

particularly interesting to explore session records capturing both

sentiment from patients and clinicians to investigate the therapeutic

alliance and dynamic, as this is a contributing factor within treatment

and may yield insightful information about such processes.
5 Conclusion

To conclude, this study suggests that the current automated

sentiment analysis tool does not perform as well as human raters in

discerning sentiment from session patient records within a Dutch

ED treatment context when compared against the human-human

agreement standard. However, it is crucial to acknowledge the

limitations of this benchmark. The lack of a solid consensus

among human raters on sentiment evaluation indicates a need for

alternative benchmarks in future research to more accurately assess

the efficacy of automated sentiment analysis tools in clinical

practice, such as patients’ own mood ratings. Furthermore, this

study showed that the sentiment of patients extracted from session

records can be portrayed over time. Moreover, the automated

sentiment analysis must be optimized by including context-
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specific ED terms and expressions within its lexicon to increase

the analysis’ accuracy, requiring further investigation. Lastly, it

remains uncertain whether the patient session records are suitable

for the extraction of patients’ sentiments due to their complex and

ambiguous nature containing both an equal number of positive and

negative sentiment.
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