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Multiple Andreev reflections in topological Josephson junctions with chiral Majorana modes
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Andreev bound states (ABSs) occur in Josephson junctions when the total phase of the Andreev and normal
reflections is a multiple of 2π . In ballistic junctions with an applied voltage bias, a quasiparticle undergoes
multiple Andreev reflections before entering the leads, resulting in peaks in the current-voltage I (V ) curve.
Here we present a model for a two-dimensional S/TI/MTI/TI/S junction, where S is a superconductor, TI is a
topological insulator, and MTI is a magnetic topological insulator barrier. We show that the interplay of broken
time-reversal symmetry and topology results in an asymmetric I (V ) curve. Such junctions are predicted to host
chiral Majorana modes. We demonstrate that the peak positions in I (V ) are directly linked to ABSs. We use this
to show how the angle-resolved I (V ) curve becomes a spectroscopic tool for the chirality and degeneracy of
ABSs.
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I. INTRODUCTION

Andreev reflection is the conversion of an electron into a
hole with opposite spin upon reflecting from a superconduc-
tor interface [1]. Andreev bound states (ABSs) arise when
a combination of a number of Andreev and normal reflec-
tions fulfills the Bohr-Sommerfeld quantization condition in
which the total phase adds up to multiples of 2π . Renowned
examples include bound states that carry the supercurrent
between two superconducting leads across a normal metal
[2], the Yu-Shiba-Rusinov bound states that involve scattering
from a magnetic impurity [3–5], and the Caroli–De Gennes–
Matricon bound state in the core of an Abrikosov vortex [6].
Generally, the required phase quantization is fulfilled either
by incorporating spin-active scattering with different phases
for the reflection of different spins [7–9] or by picking up a
phase difference due to an anisotropic order parameter in the
superconductor (an unconventional superconductor) [10–12].

At the surface or interface of an unconventional supercon-
ductor, surface ABSs at zero energy (relative to the Fermi
energy) arise when the phase difference between the energy-
dependent Andreev reflection of the electron and hole is
π . This has been measured at the surface of a 45◦ grain
boundary junction involving a dx2−y2 cuprate superconductor
[12] and predicted for the surface of a chiral p-wave su-
perconductor [13]. Surface ABSs become (chiral) Majorana
bound states upon lifting the spin degeneracy by breaking
time-reversal symmetry in a topological superconductor [14],
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either by a vortex [15] or an external magnetic field [16]. The
distinguishing feature of a Majorana bound state is the zero-
bias conductance peak in the tunneling conductance [10,17],
which is quantized at the value 2e2/h in the nondegenerate
single-mode regime [14,18].

Here, we theoretically study the influence of (chiral) inter-
face ABSs on the current-voltage characteristics of Josephson
junctions. Besides a zero-voltage supercurrent, Josephson
junctions are characterized by a subgap structure in the finite-
bias conductance that arises from multiple Andreev reflections
(MARs). In a Josephson junction with a normal metal inter-
layer (S/N/S), MARs provide peaks at 2�/n, where � is
the superconducting energy gap, and n is the integer num-
ber of times that the electrons or holes traverse the junction
before entering the leads [19]. If a topological insulator (TI)
interlayer featuring a magnetic topological insulator (MTI)
barrier is used instead of a normal metal barrier, the sub-
gap state opens an extra conduction channel and the peaks
in a one-dimensional (1D) S/TI/MTI/TI/S junction are lo-
cated at �/n [20]. Our work focuses on the two-dimensional
(2D) S/TI/MTI/TI/S junction, where we consider the charge
transport through the surface of a three-dimensional TI. The
aforementioned S/N/S and 1D S/TI/MTI/TI/S junctions are
limiting cases.

The approach is as follows: we first deconstruct the
S/TI/MTI/TI/S junction into two half-junctions: S/TI/MTI
and MTI/TI/S. We write down the Hamiltonian in Sec. II
and use it to study the topological invariant in Sec. III. We
investigate the existence and energy dependence of ABSs in
S/TI/MTI and MTI/TI/S half-junctions in Sec. IV. We cou-
ple the two half-junctions into an S/TI/MTI/TI/S junction
and calculate the I (V ) spectrum in Sec. V. In Sec. VI, we
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FIG. 1. (a) Schematic illustration of the S/TI/MTI/TI/S junc-
tion setup, where Andreev reflection occurs in the two TI regions
which are coupled via a scattering region MTI of width d . (b) and
(c) The top view of the S/TI/MTI/TI/S junction split in two half-
junctions S/TI/MTI and MTI/TI/S, where normal (ree, rhh) and
Andreev (reh, rhe) reflections occur. tan θ = ky/kx , with kx and ky

being the components of the plane-wave momenta. (d) and (e) The
two half-junctions host chiral Majorana modes of opposite chirality
χ∓. Their normalized bound-state levels EABS/�0 as a function of the
incident angle θ are shown for (d) an MTI/TI/S junction and (e) an
S/TI/MTI junction. The dashed, dotted, and solid lines correspond
to μTI/mz = 0.5, 1, and 2, respectively. The other parameters are
mz = 300�0, μMTI = 0, and μTI = μS.

show that the features in I (V ) are asymmetric and are directly
linked to the presence of ABSs. We show how I (V ) changes
for lateral junctions and nanowires in Sec. VII. Finally, we
generalize our results for nontopological systems and discuss
how angle-resolved MARs can become a spectroscopic tool
for the chiral nature and degeneracy of ABSs in Sec. VIII.

II. HAMILTONIAN

We present a generalized model for a 2D S/TI/MTI/TI/S
Josephson junction, as illustrated in Fig. 1(a). We note that
the S is an s-wave superconductor, the MTI is a magnetic
TI in which the magnetism is either intrinsic or induced (a
ferromagnetic insulator placed on top of the TI) and the TI is a
three-dimensional topological insulator of which we consider
the top surface, creating a 2D junction. Throughout this paper,
the interface normal is along the x axis and we use periodic

boundary conditions along y. We assume the junction length
to be smaller than the coherence length and the elastic mean
free path, making the transport coherent and ballistic.

Quasiparticles undergo normal (Andreev) reflection at
the TI/MTI (S/TI) interface. In the MTI/TI/S junction in
Fig. 1(c), we consider an incoming electron with the angle
θ consecutively undergoing Andreev (reh), normal (rhh), An-
dreev (rhe), and normal (ree) reflection. Figure 1(b) shows the
equivalent process in the other half-junction. To generalize
the reflection processes and incorporate phase differences due
to topology and/or magnetism, we introduce the so-called
reflection asymmetry phase eiχ := rhh/r∗

ee as the ratio between
the hole-hole and electron-electron reflection coefficients of
the MTI. We compute rhh and ree, by imposing the continuity
of the wave function across the junction. The spinor part of
the wave function is derived from the Bogoliubov–De Gennes
Hamiltonian in the basis (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ )T ,

Ĥ =
[

ĥ(k) �̂

�̂∗ −σyĥ∗(−k)σy

]
, (1)

where ĥ(k) = vFh̄k · �σ + σzmz − μ jσ0 is the single-particle
Hamiltonian, with vF being the Fermi velocity, k the momen-
tum vector, �σ = (σx, σy, σz ) the Pauli-matrix vector, μ j with
j = S, TI, MTI the chemical potential in the three regions, mz

the induced magnetic gap, and σ0 the 2 × 2 identity matrix.
�̂ = σ0�0, with �0 ∈ R is the s-wave superconducting gap.
�0 and mz are only nonzero in their respective regions.

III. TOPOLOGICAL INVARIANT

The Hamiltonian (1) obeys particle-hole symmetry. In
the absence of a magnetic barrier (mz = 0), it is also time-
reversal symmetric. This means that the system is placed
in the symmetry class BDI when both particle-hole and
time-reversal symmetry are present, while it is in class D
when time-reversal symmetry is broken [21]. Based on the
system’s symmetries, the topological invariant Q (the num-
ber of symmetry-protected edge states present at the Fermi
level) per spatial dimension can be calculated through the
reflection block of the scattering matrix [22] for the TI/MTI
interface, r̂ = diag(ree, rhh) ≡ diag(ree, eiχ r∗

ee). In 2D, the
topological invariant is a winding number, given by Q2D =

1
2π i

∫ 2π

0 dk d
dk log(det r̂), where det r̂ = eiχ and we integrate

over the momentum k. Details on the symmetry classes and
calculation of Q2D are provided in Sec. S1 of the Supplemental
Material [23].

We compute Q with and without time-reversal symmetry,
i.e., with and without a magnetic barrier. In time-reversal
symmetric junctions (mz = 0), we find r∗

ee = rhh, such that
eiχ = 1 and Q2D = 0, implying that the system is topolog-
ically trivial and there are no edge modes. In the case of
broken time-reversal symmetry (mz 
= 0), we obtain Q2D =
−1 (Q2D =+1) for the S/TI/MTI (MTI/TI/S) half-junction.
A topological invariant of ∓1 means that a topologically
protected chiral edge mode is present. Importantly, the sign
difference of Q between the two half-junctions indicates op-
posite chirality (winding direction), as illustrated in the inset
of Figs. 1(d) and 1(e). The protected chiral edge mode in 2D
is the nonzero energy chiral Majorana mode originating from
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the localized zero-energy Majorana bound state present in the
1D channel at the symmetry point θ = 0.

IV. CHIRAL MAJORANA MODES

Chiral Majorana modes have been predicted in MTI/S
junctions [15], and their bound-state energies EABS(θ ) were
previously found as poles in the conduction [24]. We compute
EABS(θ ) as the energy E when the Bohr-Sommerfeld quan-
tization condition αree + αreh + αrhh + αrhe = 2πn, n ∈ Z, is
satisfied for the reflection coefficients depicted in Figs. 1(b)
and 1(c). For subgap energies |E | < �0, the quantization con-
dition can be written in terms of χ as −2 arccos (E/�0) +
χ = 2πn (Sec. S2 of the Supplemental Material [23]). Since
2 arccos (E/�0) is bound between 0 and 2π , the condition is
met for a nonzero χ . So, the value of χ dictates whether ABSs
exist. In time-reversal symmetric systems (mz = 0), χ = 0
and no ABS forms. Whereas in time-reversal symmetry-
breaking systems, χ is nonzero. The bound-state energies vs
incident angle for magnetic S/TI/MTI and MTI/TI/S junc-
tions are shown in Figs. 1(d) and 1(e). At θ = 0 (i.e., the 1D
limit), the ABS is located at zero energy and is therefore a
Majorana bound state. For nonzero angles, the ABS moves
away from zero energy and obtains a chirality. We recall
that the two half-junctions have opposite chirality (Q = ∓1),
which results in the EABS having a different sign for a fixed
nonzero value of θ . Crucially, this means that in the coupled
S/TI/MTI/TI/S junction, for a fixed θ , there are bound states
of opposite energy on the left and right sides of the MTI
barrier.

V. MULTIPLE ANDREEV REFLECTIONS

To consider the transport in the S/TI/MTI/TI/S junction,
we construct the left and right moving wave functions in the
two TI regions, as eigenfunctions of Eq. (1). The wave func-
tions live in two-dimensional space (x, y) and time dimension
t . We assume translational symmetry along y, and therefore,
the y component of the wave function is the propagating
wave eikyy, with ky being the momentum in the y direction.
The x component contains a weighted sum over all moving
quasiparticles, where the weights represent the reflection and
transmission probabilities.

We consider an incoming electronlike quasiparticle from
the left TI with amplitude J . We define n as the number of the
Andreev reflections. At the MTI, the quasiparticle is either
transmitted (amplitude Cn) or reflected (amplitude Bn).

If this electronlike quasiparticle is transmitted, it reaches
the TI/S interface on the right side and is Andreev reflected
as a hole with amplitude a1C0, where an is the Andreev am-
plitude. We consider a potential difference eV in the MTI
region, such that in the MAR picture [19,20], every time
an electron passes from left to right, crossing the MTI, its
energy increases by eV , while the hole energy increases when
it passes in the opposite direction. The Andreev reflection
coefficient an changes accordingly to an ≡ reh(E + neV ). We
note that the choice of basis results in equal Andreev reflection
coefficients an at the left and right S interface [25], which is
crucial for the MAR calculations.

FIG. 2. Schematic illustration of the S/TI/MTI/TI/S junction
which illustrates the An, Bn, Cn, and Dn reflection and transmission
coefficients. J is the incoming particle in the left TI and eV is the
potential difference contained in the MTI.

If the quasiparticle is instead reflected, it reaches the S/TI
interface on the left side and is Andreev reflected with am-
plitude a0B0. The holelike quasiparticle at the MTI is either
reflected or transmitted with amplitude An or Dn (depending
on which side it comes from) and the process repeats itself.
The reflection and transmission processes and the correspond-
ing coefficients are illustrated in Fig. 2.

The time component of the wave function contains the
quasiparticle energy. If the quasiparticle is in the left TI re-
gion, it has passed MTI an even number of times and its
energy is ε + neV . If it is in the right TI region, it has
gone through MTI an odd number of times and its energy is
ε + (2n + 1)eV .

In the left TI region, the electron and hole wave functions
are ψe,h(x, y, t ) = ψ (x)eikyye−i(ε+2neV )t/h̄, with [19]

ψe(x) =
∑

n

(a2nAn + Jδn0)eikxx + Bne−ikxx,

ψh(x) =
∑

n

Aneikxx + a2nBne−ikxx,

where kx is the momentum in the x direction.
Similarly, in the right TI region, the wave functions are

ψe,h(x, y, t ) = ψe,h(x)eikyye−i(ε+(2n+1)eV )t/h̄, with

ψe(x) =
∑

n

Cneikxx + a2n+1Dne−ikxx,

ψh(x) =
∑

n

a2n+1Cneikxx + Dne−ikxx.

The MTI is a scattering region that is governed by the
scattering matrices for electrons and holes (Sec. S3 of the
Supplemental Material [23]):

Se =
⎡
⎣r t

t − r∗t

t∗

⎤
⎦, Sh =

⎡
⎣eiχ r∗ t∗

t∗ −e−iχ rt∗

t

⎤
⎦, (2)
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where r ≡ ree and t ≡ tee are the electron-electron reflection
and transmission coefficients for the MTI barrier and we used
rhh/r∗

ee = eiχ . Two known limits of the scattering matrices are
eiχ = 1 for an S/N/S junction [19] and eiχ = −1 for a 1D
ferromagnetic S/TI/MTI/TI/S junction [20].

The wave functions in the two TI regions are coupled by
the scattering matrices (2) as follows:[

Bn

Cn

]
= Se

[
δn0 + a2nAn

a2n+1Dn

]
,

[
An

Dn−1

]
= Sh

[
a2nBn

a2n−1Cn−1

]
.

The vector on the left contains the quasiparticles outgoing
from MTI. The vector on the right represents the quasiparti-
cles incident to MTI. From these matrix equations, we obtain
a system of equations with four unknowns, An, Bn, Cn, and Dn:

Bn = r[δn0 + a2nAn] + ta2n+1Dn,

Cn = t[δn0 + a2nAn] − r∗t

t∗ a2n+1Dn,

An = eiχ r∗a2nBn + t∗a2n−1Cn−1,

Dn−1 = t∗a2nBn − e−iχ rt∗

t
a2n−1Cn−1.

We substitute these equations into each other to find a single
recurrence relation for Bn (details can be found in Sec. S3 of
the Supplemental Material [23]):

Bn+1 + γnBn + χnBn−1 = ζnδn0, (3)

with

γn = − 1

D

(
1 − eiχa2

2n

)(
1 − e−iχ a2

2n+1

)
a2n+1a2n+2

− eiχa2
2n

1 − e−iχ a2
2n−1

1 − e−iχ a2
2n+1

a2n+1a2n+2

− e−iχ a2n+1

a2n+2
,

χn = a2na2n−1
(
1 − e−iχ a2

2n+1

)
a2n+1a2n+2

(
1 − e−iχ a2

2n−1

) ,

ζn = r

D

1 − e−iχ a2
2n+1

a2n+1a2n+2
,

and D ≡ tt∗ = 1 − rr∗ is the barrier transparency. The re-
currence relation (3) is solved numerically using forward
elimination by backward substitution [26]. We use Bn to ex-
press An as

An+1 + γ ′
nAn = f (n), (4)

with γ ′
n = −a2n+1a2n and f (n) = r∗(eiχa2n+2Bn+1 −

a2n+1Bn) + a1δn0.
The time dependency of the wave functions ψe,h(x, y, t )

implies that the current I (t ) oscillates with the Josephson fre-
quency ωJ = 2eV/h̄. Therefore, it is expanded in the Fourier
components I (eV, t ) = ∑

l Il (eV )eilωJ t , where the compo-
nents Il (eV ) are obtained by averaging over the incident angle,

Il (eV ) = 1

π

∫ π/2

−π/2
Il (eV, θ ) cos(θ ) dθ,

where l is the order of the current. In this work, we consider
the DC current, which is found by setting l = 0. Higher-order
currents, such as the AC current, can be obtained by using
l > 0. The angle-dependent components Il (eV, θ ) are calcu-
lated in terms of An and Bn [19]. Simplifying the expression at
zero temperature, we find

IDC(eV, θ ) = e

π h̄

[
eV −

∫
J2

D

(
a∗

0A∗
0 + a0A0

+
∑

n

(1 + |a2n|2)(|An|2 − |Bn|2)

)
dε

]
,

where the source term J is taken as J =
√

1 − a2
0.

VI. ASYMMETRIC I(V ) CURVES

First, we investigate the angle-resolved MAR spectra for a
2D S/TI/MTI/TI/S Josephson junction (Fig. 3). In a trivial
junction (e.g., S/N/S), there are no states inside the gap, elec-
trons (holes) undergo MARs until they have gained enough
energy to leave the gap at eV = +(−)2�0 [19]. The presence
of an ABS in the gap gives rise to extra conduction channels
[20]. When the ABS aligns with the ABS on the other side
(eV = 2EABS) [27] or the continuum (eV = �0 + |EABS|),
additional features appear in the I (V ) curve. Furthermore,
due to the nature of MARs, higher-order features appear for
successive Andreev reflections. Generally, features in the I (V )
curve are expected at eV = (�0 + |EABS|)/n, with n ∈ Z,
stemming from the alignment of the ABS with the continuum,
and at eV = 2EABS/m, for odd m ∈ N, stemming from the
alignment of the two ABSs. These alignments are illustrated
in Fig. 3. We note that the modes with opposite chirality on
the left and right sides of the MTI barrier are retained in
the coupled Josephson junction (Sec. S1 of the Supplemental
Material [23]). The energy asymmetry resulting from these
modes of opposite chirality dictates that m must be odd. This
can be seen by considering an electron initially incoming from
the left subgap state. For it to scatter to the empty subgap state
on the other side of the barrier it can only traverse the system
an odd number of times, gaining an odd multiple of eV in
energy.

The asymmetry of the bound-state energies due to the
opposite chirality for the left and right half-junctions in
Figs. 1(d) and 1(e) gives rise to the asymmetric I (V ) curve
in Fig. 3. For a fixed θ , a positive bias voltage eV aligns levels
(associated with higher-order MAR resonances) different than
those of a negative bias. In the latter case, the density of
states in Figs. 3(c)–3(e) shift in the opposite direction, the
eV = 2EABS levels never align, and the associated features
in I (V ) are absent for eV < 0. The I (V ) curve for −θ is the
vertical mirror image of Fig. 3. The value eiχ in the scatter-
ing matrices (2) indicates whether ABSs are present; eiχ = 1
means there are no ABSs and results in a trivial I (V ) curve
(meaning no additional subgap features), whereas eiχ = −1
indicates a nontrivial I (V ) curve with asymmetric peaks, as
shown in Fig. 3(a). By changing θ , we smoothly transition
from the trivial regime to the nontrivial regime [28].

Figure 4 shows the I (V ) spectra of an S/TI/MTI/TI/S
junction for positive θ ranging from 0 to π

2 , with
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FIG. 3. (a) An asymmetric I (V ) curve of an S/TI/MTI/TI/S
junction for a single incident angle θ = 0.45π , with correspond-
ing EABS/�0 = 0.75. IDC is normalized by I� = De�0/h, for the
transparency D = 0.1. The other parameters are μTI/mz ≈ 0.7, with
mz/�0 = 300, μS = μTI, and μMTI = 0, and the MTI barrier width
is d = 1.5h̄vF /mz. (b) The density of states of the two superconduc-
tors including the subgap ABSs. The solid (empty) ABS positions
correspond to a positive (negative) incident angle. The bias voltage
eV shifts the density of states of the right superconductor relatively
upwards. When considering only the solid ABSs for θ > 0, transport
occurs with the alignment of (c) ABS-ABS, (d) ABS-continuum, and
(e) continuum-continuum.

corresponding positive EABS [27]. Two limiting cases are the
red curve with the ABS near the continuum (EABS = �0 and
eiχ = 1), for which we observe the strong resonance step near
2�0 as in the trivial S/N/S case [19], and the navy curve de-
scribing ABS positions in the middle of the gap (EABS = 0 and
eiχ = −1), for which we obtain the topological 1D S/TI/S
limit [20]. The intermediate curves look strikingly different.
For negative voltages, there is a gradual transition from one
limit to the other, whereas the positive eV -side features the
distinct additional 2EABS/m peaks for odd m due to the asym-
metric ABSs. For negative incident angles [θ ∈ (−π

2 , 0)], we
obtain the vertical mirror image of Fig. 4.

Next we consider the effect of the varying barrier trans-
parency D on the I (V ) curves. The barrier transparency,
defined as D = 1 − rr∗, scales exponentially with the MTI

width d . Since eiχ is independent of d , we can probe the
effect of D on the MAR spectra for a fixed EABS (see
Fig. 5). A more transparent interface (D � 0.1) results in
broad 2EABS/m peaks and spread-out (EABS + �0)/n steps in
I (V ), and the enhanced transparency obscures any possible
signatures of the ABSs coupling. The results for intermediate
transparencies (0.1 � D � 10−2) are as in Fig. 4. In the low-
transparency limit (D � 10−2), the features in I (V ) become
sharp, resembling a tunnel barrier [29]. Subtle features in the
normalized current are enhanced for low D, and previously
suppressed resonance features at −2EABS/m now become vis-
ible (at eV/�0 = 2 × 0.7 = 1.4 in Fig. 5). These features are
an indication of avoided level crossing relating to the overlap
between the left and right bound states. The effect is most
pronounced at low EABS, and when the bound states move
away from the middle of the gap (|EABS| > 0), the overlap
quickly diminishes (see Sec. S4 of the Supplemental Material
[23]). Since the observed signatures of coupling are weak, we
can primarily explain the features in the reported I (V ) curves
(Figs. 3 and 4) by two isolated chiral Majorana modes.

VII. NANOWIRES AND LATERAL JUNCTIONS

We now consider the consequences of the presence of
ABSs and their effect on the I (V ) spectra in realistic exper-
imental setups. A system that the MAR scheme can be readily
applied to is topological nanowires [30–33]. We consider
a cylindrical geometry with periodic boundary conditions,
where, due to the confinement, we obtain a set of allowed
quantized ky values. Throughout this work, we assumed an
infinite junction in the y direction, meaning that there is a con-
tinuum of ky channels and every incident angle θ is allowed. In
the nanowire picture, only the θ and −θ channels per confined
ky value are present, and we estimate the current through
the nanowire by ∼I (θ ) + I (−θ ). The subgap resonances at
eV = 2EABS, which are a signature of the asymmetric chiral
Majorana modes, are retained in the nanowire (see the inset of
Fig. 4).

In 2D samples (lateral junctions on thin films), one gen-
erally measures the angle-averaged I (V ) and the asymmetric
features disappear (see the black dashed line in Fig. 4). To
probe the proposed angle asymmetry, specialized setups for
measuring Andreev-reflection angles are required; patterned
TI nanostructures offer such capabilities [34]. The caveat is
that the conservation of ky is an assumption to the current
proposal, but in any experimental setup, the junction is finite
in the y direction. Experimental realizations should target
a small selection of angles to probe the asymmetry, while
sufficiently conserving ky over a length scale of typically the
coherence length. A natural experimental starting point could
be placing (one of) the S leads or the MTI under an angle.
Testing potential experimental geometries is an interesting
and nontrivial problem, but it is beyond the scope of this work.

VIII. WIDER APPLICATIONS

The proposed MAR scheme can be applied to nontopolog-
ical Josephson junctions as well. Subgap states are present
in any s-wave Josephson junction with broken time-reversal
symmetry, but the (a)symmetric nature of the ABSs is not
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FIG. 4. The angle-resolved asymmetric I (V ) curves for an S/TI/MTI/TI/S junction normalized by I� = De�0/h. Each curve corresponds
to a single incident angle θ ∈ (0, π/2), with corresponding bound-state energy EABS(θ ). The black dashed line is the angle average obtained
in the lateral 2D junction limit. The parameters are μTI/mz ≈ 0.7, with mz/�0 = 300, μS = μTI, and μMTI = 0. The transparency ranges from
D = 0.05–0.2, and the MTI barrier width is d = 1.5h̄vF /mz. Inset: Nanowire limit. Each I (V ) curve corresponds to a single (normalized)
quantized py = sin θ channel where the current is estimated by I (−θ ) + I (θ ). The graph is identical for ±eV/�0.

universal. For instance, in ferromagnetic Josephson junctions
[7–9] the ABSs are degenerate (on both sides of the barrier),
no energy asymmetry is present, and the I (V ) curves are
symmetric.

An asymmetry in the I (V ) curves is, however, not unique
to topological junctions. In fact, any non-centrosymmetric
system with broken time-reversal symmetry features nonre-
ciprocal (asymmetric) responses [35]. In the S/TI/MTI/TI/S
system under consideration, the presence of the chiral Ma-
jorana modes of opposite chirality on opposite sides of the
barrier breaks inversion symmetry (playing the role of non-
centrosymmetry), which in combination with the breaking of
time-reversal symmetry due to the MTI leads to the asym-
metric I (V ). An interesting extension of the current work
would be to apply the MAR scheme to the case of an in-plane
magnetization in the MTI [36] and study its effect on the I (V )
spectra.

So far, we have considered different interlayer materials,
but the required broken symmetries can also be included
in the superconductors. Unconventional superconductors are

FIG. 5. Effect of increasing transparency D on the MAR I (V )
spectra for EABS/�0 = 0.7. The parameters are μTI/mz ≈ 0.5, with
mz/�0 = 300, μS = μTI, and d ≈ 3.3h̄vF /mz.

characterized by an anisotropic order parameter with a
phase—e.g., px wave as in the Kitaev chain [37] and d-wave
high-Tc cuprates [11,12]. Unconventional superconductors
can have a range of exotic properties such as intrinsic chirality,
which ensures the existence of chiral bound states, or intrin-
sically broken time-reversal symmetry, which eliminates the
need for a magnetic barrier.

To implement unconventional superconductivity in our
model, we recall that the choice of basis is crucial to get equal
Andreev reflection coefficients an at the left and right S inter-
faces. One can construct a unitary transformation to transfer
the phase from the order parameter to eiχ such that an remains
equal at both S interfaces and the MAR scheme is still valid
(see Sec. S5 of the Supplemental Material [23] for details).

IX. CONCLUSIONS

In conclusion, we have investigated the emergence of
ABSs in 2D topological magnetic Josephson junctions and
studied their effect on calculated I (V ) spectra. When an ABS
on one side of the junction aligns with an ABS on the other
side or with the continuum, a conduction channel opens which
appears as a peak in the I (V ) curve. This directly links the
I (V ) curve to the ABS energies.

Due to the nature of the TI, a single topologically pro-
tected ABS is present at both MTI interfaces, which obtains
a chirality (winding number) in 2D. The S/TI/MTI/TI/S
junction features bound states of opposite chirality on either
side of the MTI barrier and the corresponding bound-state
energies are inverted. This energy asymmetry is responsible
for the asymmetric I (V ) curve. We have investigated two
limits of the S/TI/MTI/TI/S I (V ) curve. In the nanowire
limit, the distinct peaks, which are an artifact of the present
asymmetric chiral Majorana modes, are robust for quantized
ky channels. In lateral 2D junctions where one experimentally
obtains an angle-averaged I (V ) curve, the asymmetry disap-
pears but nontrivial steps related to the presence of subgap
states remain.

The concept of nonreciprocity has regained interest in the
field of superconductivity as a potential probe for broken
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symmetries [35]. In the S/TI/MTI/TI/S case, the nonre-
ciprocity arises from the energy asymmetry as a function of
θ between the two emergent bound states of opposite chirality
on either end of the MTI barrier. Particle-hole symmetry is
not violated in this case since the energy of the subgap state
also inverts as θ is inverted. We propose angle-resolved ABS
spectroscopy to resolve the predicted asymmetry.
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