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Abstract—This paper describes the initial steps towards the
design of a robotic system that intends to perform actions
autonomously in a naturalistic play environment. At the same
time it aims for social human-robot interaction (HRI), focusing
on children. We draw on existing theories of child development
and on dimensional models of emotions to explore the design
of a dynamic interaction framework for natural child-robot
interaction. In this dynamic setting, the social HRI is defined
by the ability of the system to take into consideration the
socio-emotional state of the user and to plan appropriately by
selecting appropriate strategies for execution. The robot needs
a temporal planning system, which combines features of task-
oriented actions and principles of social human robot interaction.
We present initial results of an empirical study for the evaluation
of the proposed framework in the context of a collaborative
sorting game.

I. INTRODUCTION

The capabilities of autonomous robotic systems have increased
significantly over the last few years and are used in increas-
ingly complex environments for a wide range of applications.
One such an application, that we will explore in this paper, is
the use of autonomous robotic systems in socially challenging
environments. In human-robot collaborative settings, robots
require awareness of the current task as well as of the
surrounding social environment. Consequently, they have to
be able to make inferences in multiple levels of abstraction,
to reason about and plan effectively, by combining task related
actions and social interactions with humans [13].
In this paper we explore a social autonomous robotic system
that performs a sorting game together with a small group
of children, while it stays aware of the social-emotional
states of the children in the same environment and keeps
them emotionally engaged and positive. We aim for seamless
social human-robot interaction. We consider existing theories
to design socially appropriate robot strategies - high level
categories for groups of behaviours - for a sustained child-
robot interaction.
We use a planning-centric approach; prior to acting we use a
planner to create a temporal plan that achieves the goals of
the robot (e.g. sort some toys according to predefined rules),
while not breaking any of the constraints (e.g. leaving children
in a prolonged negative emotional state). The benefit of using
a planning-based approach is that by reasoning in advance, we
can find good solutions that minimise time and pre-emptively

interact with children to maintain their positive emotional
states. The alternative is a reactive system that needs to stop
fulfilling its task whenever a child is in a negative emotional
state. Such a system has no guarantee when – or indeed if –
it will finish its tasks.
To create a robust plan, we require a predictive model of the
emotional states of the children. In particular how the emotions
develop over time. Using this model, the planner can reason
how the children’s emotions are affected by the action (or
inaction) of the robot. We present a predictive model based on
the Pleasure-Arousal-Dominance (PAD) emotional state model
[18], which was adapted to capture temporal features for the
development of a dynamic interaction framework.
In Section II we discuss the related work. In Section III we
present the predictive dynamic interaction framework, which
is based on the PAD model. In Section IV we introduce
the formalism of the planning system and some preliminary
results. Then, we present initial steps towards the evaluation
of our predictive model in Section V. We finish by presenting
our conclusions and future directions in Section VI.

II. RELATED WORK

A. Planning-based social child-robot interaction

One of the focus points for the development of autonomous
robots that interact with humans is the social intelligence of
the system. Among the first attempts for the development of
socially intelligent robots was that of Dauntenhahn’s work
[5], who refers to robotic systems that collect mental and
social experiences and based on this input mature over time.
The robot considers user’s behavioural, affective and mental
states to provide appropriate responses for the evolution of
the interaction loop. In this context, for the optimization of
the interaction, robotic systems integrate planning and learning
frameworks by taking into consideration human abilities and
preferences [13], [16]. More specifically, in the area of child-
robot interaction, there is an increasing interest in the devel-
opment of socially intelligent robots acting as learning com-
panions for typically developing children e.g. [11] as well as
therapeutic social agents for children on the autism spectrum
e.g. [9], [24], and [2]. Despite the growing body of research
on socially intelligent systems for child-robot interaction, the
settings are usually well-defined and restricted, while the even
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more challenging area of child-robot interaction in dynamic
play settings needs further investigation and development.

B. Collaborative play and the importance of emotions

This project uses a dynamic play setting for child-robot
collaboration, in which the child and the robot share the same
goal (e.g. sorting toys according to predefined rules) in the
form of a guided activity [23]. The importance of collabo-
rative play for children’s development has been previously
highlighted in terms of children’s developing cognitive and
socio-emotional skills and the establishment of their intrinsic
motivation for learning [17]. Based on the hypothesis that the
development of these skills is more effective when the child
is in an optimum affective state, previous research indicated a
positive correlation of children’s emotional competence with
their concurrent and future social competences [7], as well as
with the development of cognitive abilities [6]. These findings
indicate the importance of maintaining an optimum affective
state for children during play. Towards this direction, this
project incorporates approaches that focus on continuous input
[12] and analysis of children’s affective state.

C. Models for affective states identification

Emotional states in humans have been traditionally described
by categorical or dimensional models. Categorical models such
as the Differential Emotions Theory (DET) [14] and Ekman’s
theory of basic discrete emotional states [8] emphasize the
existence of particular emotions that are assumed to have in-
nate neural substrates, unique and universally recognized facial
expressions and distinctive universals in antecedent events. On
the other side, according to the dimensional approaches the
emotion domain can be represented by a small number of
continuous dimensions. Plutchik [20], for example, suggested
three dimensions: the emotional state, the intensity and the
degree of similarity to other emotions. Recently, [1] suggested
the theory of constructed emotion, according to which an
instance of emotion is constructed the same way that all other
perceptions are constructed, using the same neuroanatomical
principles for information flow within the brain, cancelling the
distinct categorical nature of emotions. The dynamic nature
of our setting requires a dimensional approach of emotions to
depict changes of affective states over time.

III. TOWARDS A DYNAMIC INTERACTION FRAMEWORK

For the purpose of this project, we adopted the dimen-
sional model of the Pleasure - Arousal - Dominance (PAD)
framework to detect, evaluate and predict users’ emotional
states. We used this model to develop a dynamic interaction
framework that takes into consideration temporal features of
affective development.

A. The PAD model of emotions

Given the developmental nature of this project, which aims for
long-term social human-robot interaction, we adopted the PAD
model. The PAD model is a dimensional model that can be
used to represent changes of emotional states over time. The

PAD dimensional framework assumes that the dimensions of
pleasure, arousal and dominance are necessary and sufficient to
represent emotional states [18]. They are described as follows:

1) Pleasure-displeasure: Defined as positive versus negative
affective states. Pleasure-displeasure corresponds to cog-
nitive judgements of evaluation, with higher evaluations
of stimuli being associated with greater pleasure induced
by the stimuli;

2) Arousal-nonarousal: Defined in terms of level of mental
alertness and physical activity;

3) Dominance-submissiveness: Defined as a feeling of con-
trol and influence over one’s surroundings and others
versus feeling controlled or influenced by situations and
others.

Adopting a model that considers the level of dominance, in
addition to the traditionally used valence and arousal dimen-
sions, represents children’s emotional state more accurately.
Especially given the collaborative nature of the settings in this
project. For instance, both anger and anxiety arise from low-
pleasure and high-arousal events. However, anger and anxiety
are on opposite sides of the dominance dimension. The PAD
framework has been previously used for the development of
robotic systems in the context of social human-robot interac-
tion [19]. However, a recent systematic literature review [3]
showed that there are a limited amount of studies that focus on
developmental perspective for long-term sustained child-robot
interaction in dynamic settings.

B. Temporal considerations

Emotional processing is a dynamic phenomenon which is
subject to stimuli such as external interventions from social
agents. According to the generic timing hypothesis, an emotion
is thought to come into being and develop through a recursive
situation attention appraisal response sequence [22]. The
interventions distinguish between: antecedent-focused strate-
gies that start operating early in a given iteration of the
emotion-generative process, before response tendencies are
fully activated; and response-focused strategies that start op-
erating later on, after emotion response tendencies are more
fully activated [21]. Based on this theory we hypothesize that
temporal planning supports a balance of best performance in
completing a task whilst maintaining appropriate emotions and
engagement of the children.
In the context of this project, we focused on external inter-
ventions which are made by the robot. The robot starts with a
perceived initial emotional state of the children. To maintain
children’s optimum emotional level, it applies an intervention /
strategy to achieve user’s reappraisal or attention deployment
early in the emotion-generative trajectory, while monitoring
the evolution of the user’s emotional state.

IV. PLANNING SYSTEM

We model our problem and domain files with PDDL 2.1 [10].
This modelling language supports durative actions and tem-
poral constraints. These features are necessary to capture the
evolution of the emotional states over time. We will first define



a temporal planning problem, followed by the model of the
problem formulated in this paper.
Definition 1: Temporal Planning Problem Representation We
represent a temporal planning problem C as P = 〈F, I,A,G〉
where F is a set of atoms, I is the set of clauses over F
representing the initial state, G is a conjunction over F that
represents the goal that needs to be achieved, A is a set of
operators that affect the world. Every operator a ∈ A has a
precondition pre(a) and a set of effects eff (a). Each clause
in the preconditions and effects are annotated with a temporal
constraint; A precondition clause must either hold: at the
beginning of the action, at the end of the action, or during
the entire duration. Effects are applied either at the beginning
or end of an action.

(define (problem squirrel_emotion_problem)
(:domain squirrel_emotion)
(:objects
toy1 toy2 toy3 - object
box1 - box
kenny - robot
kenny_wp toy1_wp toy2_wp toy3_wp box1_wp - waypoint

)
(:init
(not_busy)
(robot_at kenny kenny_wp)
(box_at box1 box1_wp)
(object_at toy1 toy1_wp)
(object_at toy2 toy2_wp)
(object_at toy3 toy3_wp)
(gripper_empty kenny)

(= (pleasure c1) 0.4)
(= (arousal c1) 0.4)
(= (dominance c1) 0.45)

(= (pleasure c2) 1.0)
(= (arousal c2) 1.0)
(= (dominance c2) 1.0)

(= (pleasure c3) 0.83)
(= (arousal c3) 0.98)
(= (dominance c3) 0.6)

)
(:goal (and
(in_box box1 toy1)
(in_box box1 toy2)
(in_box box1 toy3)

)))

Fig. 1. The problem.

A. Modelling the planning problem

Using the PAD model described in Section III we created a
planning model that encapsulates the children’s emotional state
and its evolution of time. In this paper we use a case study
from the EU project SQUIRREL 1; The robot is tasked with
sorting a set of toys while at the same time collaborating with
three children that are active in the same area. We assume we
know the initial emotional state of the children and we have
an array of sensors to monitor the children’s emotional state
during execution as described in section V.
The PDDL Domain is listed in Figure 2, most actions have
been abbreviated due to space constraints. Children’s emo-
tional states are encoded using a triplet of functions that

1http://www.squirrel-project.eu/

(define (domain squirrel_emotion)
(:requirements ...)
(:types robot child waypoint box object)
(:functions
(pleasure ?c - child)
(arousal ?c - child)
(dominance ?c - child)
)

(:constants c1 c2 c3 - child)

(:predicates
(robot_at ?v - robot ?wp - waypoint)
(object_at ?o - object ?wp - waypoint)
(box_at ?b - box ?wp - waypoint)
(classified ?o - object)
(in_box ?b - box ?o - object)
(holding ?v - robot ?o - object)
(gripper_empty ?v - robot)
(not_busy)
)

(:durative-action accommodate-distress
:parameters (?c - child)
:duration (<= ?duration 30)
:condition (and
(over all (< (pleasure ?c) 1))
(over all (< (arousal ?c) 0))
(at start (< (pleasure ?c) 0.5))
(at start (> (arousal ?c) 0.5))
(at start (> (dominance ?c) 0.5))
(at start (not_busy))

)
:effect (and
(at start (not (not_busy)))
(at end (not_busy))
(at end (increase (pleasure ?c)

(* ?duration 0.01)))
(at end (decrease (arousal ?c)

(* ?duration 0.02)))
)
)

(:durative-action improve-distress ...)
(:durative-action accommodate-sadness ...)
(:durative-action improve-sadness ...)
(:durative-action improve-boredom ...)
(:durative-action maintain-happiness ...)
(:durative-action improve-introvert ...)

(:durative-action kid_give
:parameters (...)
:duration (= ?duration 60)
:condition (and
(over all (robot_at ?v ?robot_wp))

(at start (gripper_empty ?v))
(at start (object_at ?o ?object_wp))
(at start (not_busy))
(over all (<= (pleasure ?c) 1))
(over all (<= (arousal ?c) 1))
(over all (<= (dominance ?c) 1))

)
:effect (and
(at start (not (not_busy)))
(at end (not_busy))
(at start (not (gripper_empty ?v)))
(at end (holding ?v ?o))
(at start (not (object_at ?o ?object_wp)))
(at end (increase (pleasure ?c) (* ?duration 0.005)))
(at end (increase (arousal ?c) (* ?duration 0.005)))
(at end (increase (dominance ?c) (* ?duration 0.005)))

)
)

(:durative-action move ...)
(:durative-action classify ...)
(:durative-action pickup ...)
(:durative-action tidy ...)
)

Fig. 2. Fragment of the PDDL domain.



correspond to the three domains of the PAD-model: pleasure,
arousal, dominance. All actions in the domain affect the
emotional state of each child. It is assumed that robot’s task-
related actions usually have less effect on the emotional state
of the children and generally tend to lower pleasure which
will eventually lead to boredom.
Social-emotional actions, like accommodate-distress, have
more effect on the children’s emotional states as they tend to
interact with children directly and not contribute to the overall
task. We present three strategies that can be used by the robot
to alter the children’s emotions. There are:

1) Accommodate: The robot gives the time for the child to
familiarize him/herself to the new situation.

2) Maintain: The robot has an interactive role to maintain
the positive state of the child.

3) Improve: The robot initiates and actively applies strate-
gies to trigger a change from a neutral to a positive state.

Each strategy contains a set of various behaviours for execu-
tion.One action does both at the same time; the action kid-
give has the robot ask a child to give it an item. This action
contributes to the task and improves the emotional state of the
child that helps the robot. The effect of these strategies depend
on the current emotional state of the child. For instance, if
a child is in a very positive emotional state (e.g. Pleasure,
Arousal, and Dominance are both high) then applying the
Improve strategy will not affect the emotional state much.
However, if the child is sad (e.g. Pleasure and Arousal are low,
but Dominance is high) then applying the improve strategy will
have a noticeable, positive, effect on the child’s emotion.
We have modelled four separate emotions we can detect in
children, Distress, Sadness, Boredom, and Happiness. The
relevant relations between these emotions and the PAD levels
are depicted in Table I.

PAD values
Emotions Pleasure Arousal Dominance
Distress Low High High
Sadness Low Low High
Boredom Low Low Low
Happiness High High/Low High

TABLE I
RELATIONS BETWEEN EMOTIONS AND THE PAD VALUES.

The effects of the actions on the emotional states are listed
in Table II. In our domain we model the three domains of
the PAD model using numerical values. We limit the range of
these values between -1 and 1, where 1 is the highest value
and corresponds to the high value. 0 is considered to be low.
We do not want any of these domains to become low during
planning execution, so the robot is unable to execute any task-
related action until the emotional states of all children are not
negative.
An example planning problem is listed in Figure 1. We define
the emotional state of each of the three children (c1, c2, and
c3). The child c1 is bordering boredom, c2 is very happy, and
c3 is satisfied but not very active. The goal is to store away

Accommodate Maintain Improve
Emotions P A D P A D P A D
Distress + – 0 0 0 0 ++ – 0
Sadness + 0 0 0 0 0 ++ 0 0
Boredom 0 0 0 0 0 0 + + +
Happiness 0 0 0 0 - 0 0 0 0

TABLE II
EFFECT OF THE POSSIBLE ACTIONS ON THE STATE OF THE CHILDREN.

the three toys (toy1, toy2, and toy3) in the provided box.
We use the temporal planner POPF [4] to solve this planning
problem. A solution is depicted in Figure 3.
The evolution of the Pleasure, Arousal, and Dominance are
depicted in Figure 4. The planner aims to minimise the time
it takes to complete the task; It allows the emotional states of
the children to border the acceptable and keep it there.

0.000: (move kenny kenny_wp toy1_wp) [10.000]
10.001: (classify kenny toy1 toy1_wp) [60.000]
70.002: (kid_give c1 kenny toy1 toy1_wp toy1_wp) [60.000]
130.003: (move kenny toy1_wp toy3_wp) [10.000]
140.004: (classify kenny toy3 toy3_wp) [60.000]
200.005: (accomodate-distress c1) [30.000]
230.006: (move kenny toy3_wp box1_wp) [10.000]
240.007: (tidy kenny toy1 box1 box1_wp) [30.000]
270.008: (improve-distress c3) [30.000]
300.009: (kid_give c3 kenny toy3 box1_wp toy3_wp) [60.000]
360.010: (tidy kenny toy3 box1 box1_wp) [30.000]
390.011: (improve-distress c2) [30.000]
420.012: (improve-sadness c1) [10.000]
430.013: (move kenny box1_wp toy2_wp) [10.000]
440.014: (classify kenny toy2 toy2_wp) [60.000]
500.015: (improve-sadness c1) [10.000]
510.016: (pickup kenny toy2 toy2_wp) [60.000]
570.017: (improve-sadness c1) [10.000]
580.018: (move kenny toy2_wp box1_wp) [10.000]
590.019: (tidy kenny toy2 box1 box1_wp) [30.000]

Fig. 3. A possible plan.

V. PRELIMINARY EVALUATION

We present an empirical pilot study for the evaluation of the
proposed Dynamic Interaction Framework; in this study we
detect and interpret children’s arousal level as an indicator of
their task engagement. We define a threshold of arousal level.
The robot performs a strategy to improve children’s arousal
level by executing an unexpected behaviour.

A. Setting

We conducted two sessions. In each session two children aged
8-9 years played together with a non-humanoid robot with the
aim to sort a set of toys according to predefined rules. In
order to record individual behaviours (including speech, pose,
and gestures) and avoid occlusions, we used individual Lapel
microphones and 4 Kinects. We did not employ a speaker
identification system in this study; We relied on individual
recordings that are not easily applicable to children in the
wild. The speaker identification issue is considered in future
work.

B. Speech Emotion Detection System

In a dynamic play environment, we assume that children
frequently show occlusions between their motions and it would



(a) Pleasure (b) Arousal (c) Dominance

Fig. 4. The evolution of the emotions of the children over time.

(a) (b) (c)

Fig. 5. Observations on children’s behaviours and visualised arousal levels, at the left corner, a small circle indicates low-level of arousal, a large circle
indicates high-level of arousal.

be challenging to track their faces constantly. Hence, we used a
speech emotion recognition system to monitor their affective
states. In this pilot study, we focused only on measurement
of children’s arousal level. To this end, we have developed
a deep multi-task learning based speech emotion recognition
model using aggregated corpora that provides better gener-
alisation. The model has two layers of Long-Short-Term-
Memory (LSTM) with 128 cells. Details of the method and
used corpora can be found in [15]. The unweighed accuracy
on the arousal dimension (low, high levels) was 82%.
The system consists of three modules: voice activity detector,
feature extractor, and classifier. For robustness in a noisy
environment, we adopt Gaussian Mixture Models classifying
frames with a length of 20ms into speech and non-speech
frames. Then, consecutive speech frames bridged by a short
silence (shorter than a half sec.) but segmented by a long
silence (longer than a half sec.) forms an utterance to classify.
We only classify sufficiently long utterances (longer than 1
sec.). Next, manually-engineered feature vectors are extracted
from an utterance (See the details in [15]. Lastly, the trained
LSTM network estimates the probabilistic distribution of the
two classes.

C. Results

We classified utterances extracted from each recording of a
child to analyse their arousal level. Table III summarises the
classified states. As shown, we found more utterances with the
high level of arousal in session 1 than those in session 2, which
is aligned with our behavioural observations. In addition, we
observed how the robot’s strategy of unexpected behaviour

Session Child A Child B Average
High Low High Low High Low

1 72.4 27.6 70.2 29.8 71.2 28.8
2 46.8 53.2 34.6 65.4 44.4 55.6

TABLE III
DISTRIBUTION (%) OF EMOTIONAL STATES: HIGH AND LOW AROUSAL

(i.e. the robot did not follow the verbal command of the child)
affected arousal states of children. Figure 5 presents examples.
We detected arousal states regardless of who speaks. First,
(a) shows there was no high-level of arousal when the robot
behaved as expected by the children. However, (b) and (c)
showed high-level of arousal when the robot demonstrated
unexpected behaviours, which indicate the efficiency of the
strategy in the specific context.

VI. DISCUSSION AND FUTURE WORK

This paper describes the initial steps towards the design of
a planning based robotic system for social child-robot inter-
action in a play environment. We have proposed a Dynamic
Interaction Framework based on the existing PAD model of
emotions for social HRI. The robot uses a planning to create
plans that complete tasks while being socially aware and
executing specific strategies to keep the interacting children
positive and engaged.
The temporal model we created for this scenario includes task-
related actions and social-emotional actions that have the robot
interact with the children directly to improve their emotional
state. By creating a plan in advance we can pre-emptively
improve children’s emotional states and finish the task in a
good time.



Finally, we have presented a pilot study; we evaluated part of
the proposed Dynamic Interaction Framework as well as the
strategy of robot’s unexpected behaviour. We demonstrated
that the framework is applicable in real settings and the
strategy has a positive impact on children’s arousal level.
The proposed Dynamic Interaction Framework aims to support
child-robot interaction in dynamic play settings but it has some
limitations. One of the major challenges relates to temporal
considerations. While, the framework takes into account tim-
ing aspects for the execution of a specific strategy, due to the
complexity of the dynamic setting this is challenging to be
accurate enough during the execution.
In future work, we intend to empirically investigate tempo-
ral aspects of robot’s behaviour in play environments and
their effectiveness. In addition, we aim to integrate further
modalities for the identification of children’s emotional states
and engagement level. By further developing the Dynamic
Interaction Framework for planning based robotic systems, we
aim to improve its transferability in socially complex settings
such as children’s play environments.
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