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Abstract. In this paper, we propose an approximating framework for
analyzing parametric Markov models. Instead of computing complex
rational functions encoding the reachability probability and the reward
values of the parametric model, we exploit the scenario approach to syn-
thesize a relatively simple polynomial approximation. The approxima-
tion is probably approximately correct (PAC), meaning that with high
confidence, the approximating function is close to the actual function
with an allowable error. With the PAC approximations, one can check
properties of the parametric Markov models. We show that the scenario
approach can also be used to check PRCTL properties directly – with-
out synthesizing the polynomial at first hand. We have implemented our
algorithm in a prototype tool and conducted thorough experiments. The
experimental results demonstrate that our tool is able to compute poly-
nomials for more benchmarks than state-of-the-art tools such as PRISM
and Storm, confirming the efficacy of our PAC-based synthesis.

1 Introduction

Markov models (see, e.g., [52]) have been widely applied to reason about quanti-
tative properties in numerous domains, such as networked, distributed systems,
biological systems [37], and reinforcement learning [4,59]. Properties analyzed on
Markov models can either be simple, such as determining the value of the prob-
ability that a certain set of unsafe states is reached and how an expected reward
value compares with a specified threshold, or complex, involving employing tem-
poral logics such as PCTL [10,35] and PRCTL [1]. To verify these properties, var-
ious advanced tools have been developed, such as PRISM [44], Storm [24,36],
MRMC [42], CADP 2011 [28], PROPhESY [23] and IscasMc [33].

In this paper we consider parametric discrete time Markov chains (pDTMCs),
whose transition probabilities are not required to be constants, but can depend
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on a set of parameters. For this type of model, the value of the analyzed prop-
erty can be described as a function of the parameters, mapping either to truth
values or to numbers. In many cases, these functions are rational functions,
that is, fractions of co-prime polynomials. The exact rational function is com-
monly challenging to compute as it often involves polynomials with very high
degree [5,41]. Moreover, the Markov models applied in real life may be very
large, with thousands of states, so it is very complicated to compute the rational
functions accurately. However, to analyze the properties of such Markov models
in practical applications, we often allow for a certain acceptable level of error,
without guaranteeing that the given property holds absolutely.

Contribution of the Paper. In this work, we propose an alternative app-
roach to replace the exact solution of function fϕ that describes the value of
the analyzed property ϕ in the given pDTMC and pDTMRM. The main idea
is exploiting the scenario approach [16,18] to learn an approximating function –
polynomial f̃ϕ with low degree to approximate the actual function fϕ with prob-
ably approximately correct (PAC) guarantee, i.e., with high confidence 1 − η,
the probability that the approximation error is within an error margin λ is at
least 1 − ε.

We demonstrate how to use PAC approximation f̃ϕ to synthesize parameters
and analyze the properties of original functions fϕ. We use PAC approxima-
tion to check the safe region of the parameter space and some global probabil-
ity properties. We also extend to reward properties: we show how to use PAC
approximation to estimate the lower bound of the expectation of fϕ over the
domain of the parameters. Extending our approach to parametric MDPs is also
feasible, as long as we treat the MDP strategy as in [2], we allow the strategy
to change for the different MDP instances.

Experimental results show that our prototype PacPMA can solve more
properties under the same conditions than the state-of-the-art verification tools
Storm and PRISM, and provide PAC approximations with a statistical guar-
antee. We demonstrate that as the degree of the polynomial approximation
increases, the computed error margin λ approaches zero, indicating that the
polynomial with higher degree provides a more accurate approximation of the
original function. As for the accuracy of the approximation, we show that PAC
approximation f̃ϕ can approximate fϕ two to three orders of magnitude more
accurately than the Taylor expansion of the actual function fϕ. We also demon-
strate that the PAC approximation can approximately capture the lower bound
of the expected reward of pDTMRM with high confidence, thus can help to
verify the reward properties.

Related Work. Model checking of parametric Markov models is not a new
area and a number of related works exist, each with different strengths and
weaknesses. In the following, we demarcate our work from the existing ones.

Daws has devised a language-theoretic approach to solve the reachability
problem of parametric Markov chains [22], where the model is viewed as a finite
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automaton. Based on the state elimination approach [38], the regular expression
describing the language of such an automaton is computed, which is transformed
into a rational function over the parameters of the model in a postprocessing
step. The method has been improved by intertwining the state elimination and
the computation of the rational function [32], this improved algorithm has been
implemented in the tool PARAM [31]. PARAM also supports bounded reacha-
bility, relying on matrix-vector multiplication with rational function entries, and
reachability rewards [11,25]. All these works [31,32] compute the precise rational
function that describes the property of interest. Unfortunately, it is challenging
to evaluate it, due to the large coefficients and high exponents. Moreover, the
works discussed above do not consider properties specified by a temporal logic.

Several improvements have been proposed in later works. Jansen et al. [39]
perform the state elimination in a more systematic order, often leading to bet-
ter performance in practice. The work [53] provides the first sound and feasible
technique for parameter synthesis of Markov decision processes, Spel et al. [57]
achieved efficient parameter optimization by combining monotonicity checking
and parameter lifting, allowing for further evaluation of the safety of parameter
space. The work [27] uses arithmetic circuits, which are DAG-like structures, to
represent such rational functions. A further work [30] follows a related approach
to solve (potentially nested) PRCTL formulas for Markov decision processes: the
state space is divided into hyperrectangles, and one has to show that a particular
decision is optimal for a whole region. The work [5] improves the computation of
the rational function by means of a fraction-free Gaussian elimination; the exper-
imental evaluation confirms its effectiveness. There are also methods for checking
parametric continuous time Markov chains [34], by using a scenario approach [3]
or by being based on Gaussian processes [13,14]. A recent work [26] proposes a
fast parametric model checking method named fPMC, which extends the cur-
rent parametric model checking approaches to systems with complex behaviors
and multiple parameters. A recent survey [40] provides an overview of parame-
ter synthesis for Markov models. In the above Markov model checking methods,
the accurate algorithm is computationally complex, while the approximate algo-
rithms rarely provide a probability guarantee. However, our proposed method
for verifying parametric Markov models based on scenario approach provides
both efficiency and probabilistic guarantee.

The scenario approach was first introduced in [15], based on constraint sam-
pling to deal with uncertainty in optimization. The works [16,18,19] study a
probabilistic solution framework for robust properties, the work [50] proposes a
method to solve chance constrained optimization problems lying between robust
optimization and scenario approach, which does not require prior knowledge of
the probability distribution of the parameters. Based on [15,16], the work [17]
allows violating some of the sampled constraints in order to improve the opti-
mization value, and the work [58] expands the scenario optimization problem to
multi-stage problems. Recently, the scenario approach has been applied to verify
safety properties of black-box continuous time dynamical systems [60] and the
robustness of neural networks [48].
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Fig. 1. An example of discrete time Markov chain

The most related to our work is [2], which also applies the scenario approach
for analyzing parametric Markov chains and Markov decision processes. The
main difference with our work is that in [2], the authors compute the probability
that the instances of the parametric MDP satisfy a given property ϕ, by sampling
the parameter values according to some assumed distribution. Instead, our work
targets at computing an approximation of the complicated function fϕ depending
on the parameters – such as the one corresponding to the reachability probability
ϕ. Our framework can bound the error between the actual function and the
approximation we compute. Moreover, as a side result, our PAC approximations
can be used for visualizing the reachability probability, finding counterexamples,
and analyzing the properties of the original functions with a certain confidence.

Organization of the Paper. After giving in Sect. 2 some preliminaries, models,
and logic we use in this paper, in Sect. 3 we present our PAC-based model check-
ing approach; we evaluate it empirically in Sect. 4 before concluding the paper
in Sect. 5 with some final remarks.

Due to space constraints, the proofs are provided in the technical report [49].

2 Preliminaries

In this section, we first recall DTMCs, a well-known probabilistic model (see,
e.g., [6]), reward structures, the probabilistic logic PRCTL we adopt to express
properties on them, and then consider their extension with parameters.

2.1 Probabilistic Models

Definition 1. Given a finite set of atomic propositions AP, a (labelled) discrete
time Markov chain (DTMC) D is a tuple D = (S, s̄,P, L) where S is a finite set
of states; s̄ ∈ S is the initial state; P : S × S → [0, 1] is a transition function
such that for each s ∈ S, we have

∑
s′∈S P(s, s′) = 1; and L : S → 2AP is a

labelling function.

The underlying graph of a DTMC D = (S, s̄,P, L) is a directed graph 〈V,E〉
with V = S as vertices and E = { (s, s′) ∈ S × S |P(s, s′) > 0 } as edges.

As an example of DTMC, consider the DTMC D shown in Fig. 1. D has
5 states (from s0 to s4), with s0 being the initial one (marked with the gray
background and the small incoming arrow); transitions with probability larger
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than 0 are depicted as arrows, so for example we have P(s0, s1) = 0.8 > 0, while
the labels assigned to each state are shown on the top-right corner of the state
itself, e.g., L(s2) = {�} while L(s0) = ∅.

DTMCs can be equipped with reward structures that assign values to states
and transitions; such reward structures can be used to count the number of
transitions taken so far or to attach “costs” or “gains” to the DTMC.

Definition 2. A discrete time Markov reward model (DTMRM) R is a pair
R = (D, r) where D is a DTMC and r : S ∪ (S ×S) → R≥0 is a reward function.

For example, the reward function c defined as c(s) = 0 and c(s, s′) = 1 for
each s, s′ ∈ S allows us to “count” the number of steps taken by the DTMC.

Let D be a DTMC; a path π of D is a (possibly infinite) sequence of states
π = s0s1s2 · · · such that for each meaningful i ∈ N, we have P(si, si+1) > 0; we
write πi to indicate the state si. We let Paths∗(D) (Paths(D), resp.) denote the
sets of all finite (infinite, resp.) paths of D. Given a finite path π = s0s1s2 · · · sn,
we denote by |π| the number of states n + 1 of π.

Given a DTMRM R = (D, r), we can define the expected cumulative reward
ExpRewR

s as follows (cf. [6,32,43]): given set T ⊆ S of states, ExpRewR
s (T ) is

the expectation of the random variable XT : Paths(D) → R≥0 with respect to
the XT defined as follows:

XT (π) =

⎧
⎪⎨

⎪⎩

0 if π0 ∈ T,

∞ if πi /∈ T for each i ∈ N,
∑min{ n∈N | πn∈T }−1

i=0 r(πi) + r(πi, πi+1) otherwise.

2.2 Probabilistic Reward Logic PRCTL

To express properties about probabilistic models with rewards, we use formulas
from PRCTL, the Probabilistic Reward CTL logic [1], that extends PCTL [10,35]
with rewards. Such formulas are constructed according to the following grammar,
where ϕ is a state formula and ψ is a path formula:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | P��p(ψ) | R��r(Fϕ)

ψ ::= Xϕ | ϕ U ϕ | ϕ U≤k ϕ

where a ∈ AP , �	 ∈ {<,≤,≥, >}, p ∈ [0, 1], r ∈ R≥0, and k ∈ N. We use freely
the usually derived operators, like ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), tt = a ∨ ¬a, and
Fϕ = ttU ϕ. The PCTL logic is just PRCTL without the R��r(Fϕ) operator.

The semantics of a state formula ϕ and of a path formula ψ is given with
respect to a state s and a path π of a DTMRM R = (D, r), respectively. The
semantics is standard for all Boolean and temporal operators (see, e.g., [6,20]);
for the P��p operator, it is defined as s |= P��p(ψ) iff Prs({π ∈ Paths(D) |π |=
ψ }) �	 p and, similarly, s |= R��r(ψ) iff ExpRews({π ∈ Paths(D) |π |= ψ }) �	 r.

With some abuse of notation, we write R |= ϕ if s̄ |= ϕ; we also consider
P=?(ψ) and R=?(ψ) as PRCTL formulas, asking to compute the probability (resp.
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Fig. 2. An example of parametric discrete time Markov chain

expected reward) of satisfying ψ in the initial state s̄ of R, i.e., to compute the
value Pr s̄({π ∈ Paths(D) |π |= ψ }) (resp. ExpRew s̄({π ∈ Paths(D) |π |= ψ })).

Consider the DTMC D shown in Fig. 1. As an example of PRCTL formula,
there is P=?(F�) that asks to compute the probability of eventually reaching a
state labelled with �, for which we have P=?(F�) ≈ 0.78.

2.3 Parametric Models

We now recall the definition of parametric models from [30,32]. Given a finite
set of variables, or parameters, V = {v1, . . . , vn}, let v = (v1, . . . , vn) denote
the vector of parameters and range: V → R be the function assigning to each
parameter v ∈ V its closed interval range(v) = [Lv, Uv] ⊆ R of valid values. Given
the ring PV of the polynomials with variables V over the field R of real numbers,
a rational function f is a fraction f(v) = g1(v)

g2(v)
where g1, g2 ∈ PV; let FV denote

the set of rational functions. An evaluation ν is a function ν : V → R such that
for each v ∈ V, ν(v) ∈ range(v). Given f = g1

g2
∈ FV and an evaluation ν, we

denote by f〈ν〉 the rational number f(ν(v)) = f(ν(v1), . . . , ν(vn)); we assume
that f〈ν〉 is well defined for each evaluation ν, that is, we assume that g2〈ν〉 �= 0
for each evaluation ν.

Definition 3. Given a finite set of parameters V, a parametric discrete time
Markov chain (pDTMC) DV with parameters V is a tuple DV = (S, s̄,P, L)
where S, s̄, and L are as in Definition 1, while P : S × S → FV.

Definition 4. Given a pDTMC DV = (S, s̄,P, L), an evaluation ν induces the
DTMC D〈ν〉 = (S, s̄,Pν , L), provided that Pν(s, s′) = P(s, s′)〈ν〉 for each s, s′ ∈
S satisfies the conditions given in Definition 1.

The extension to parametric DTMRMs (pDTMRMs) is trivial: a pDTMRM
RV is just a pair RV = (DV, r) where DV is a pDTMC and r is a reward function.

To simplify the presentation and ensure that the underlying graph of DV

does not depend on the actual evaluation, we make the following assumption:

Assumption 1 (cf. [30]). Given a pDTMC DV, for each pair of evaluations
ν1 and ν2, for the induced DTMCs DV〈ν1〉 and DV〈ν2〉 we have that for each
s, s′ ∈ S, it holds that Pν1(s, s

′) = 0 if and only if Pν2(s, s
′) = 0.

By this assumption, either a state s′ has probability 0 to be reached from s
(i.e., it is not reachable) independently of the evaluation, or it is always reachable,
with possibly different probability values.



164 Y. Liu et al.

As an example of pDTMC, consider the model shown in Fig. 2: now, p and
q are the parameters, with e.g. range(p) = [0.01, 0.09] and range(q) = [0.25, 0.8].
One evaluation is ν(p) = 0.05 and ν(q) = 0.8, which gives us the DTMC shown
in Fig. 1. The rational function corresponding to the PRCTL formula P=?(F�)
is q2

q+2p−2pq ≈ 0.78 when evaluated on ν, as one would expect.

3 Probably Approximately Correct Function Synthesis

In this section, we show how to approximate the exact functions for the properties
of Markov models such as reachability probability with low-degree polynomials,
while providing a statistical PAC guarantee on the closeness of the approximating
polynomial with the approximated function.

3.1 Probably Approximately Correct Models

Our method provides a PAC approximation, with respect to the given signif-
icance level η and error rate ε. First, we define the PAC approximation of a
generic function f as follows.

Definition 5. Given a set of n variables V = {v1, . . . , vn}, their domain X =∏n
i=1 range(vi), and a function f : X → R, let P be a probability measure over

X, λ ∈ R≥0 be a margin to measure the approximation error, and ε, η ∈ (0, 1]
be an error rate and a significance level, respectively.

We say that the polynomial f̃ ∈ PV is a PAC approximation of f with (ε, η)-
guarantee if, with confidence 1 − η, the following condition holds:

P (|f̃(v) − f(v)| ≤ λ) ≥ 1 − ε.

In this work, we assume that P is the uniform distribution on the domain
X =

∏n
i=1 range(vi) unless otherwise specified. Intuitively, our aim is to make

the PAC approximation f̃ as close as possible to f , so we introduce the margin
λ to describe how close the two functions are. The two statistical parameters
η and ε are the significance level and error rate, respectively; they are used
to measure how often the difference between f̃ and f respects the threshold λ.
Specifically, the significance level η is a threshold set to describe the degree of risk
of accepting an error while the error rate ε is used to describe the probability that
the difference between the value f(v) and f̃(v) obtained by randomly sampled
v in the domain X exceeds λ, so we can adjust these parameters to change the
quality of the approximation.

3.2 The Scenario Approach

PAC approximation is inspired by the scenario approach proposed in [16,18],
where the scenario approach was originally applied to robust convex program-
ming problems [7,8,29]. Robust convex programming problems are a type of
uncertain convex optimization problem, which has a general form as follows:
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min
θ∈Θ⊆Rm

aT θ

s.t. fω(θ) ≤ 0 ∀ω ∈ Ω
(1)

under the assumption that fω : Θ → R is a convex function of θ ∈ Θ for every
uncertain parameter ω ∈ Ω. We also assume that the set Θ is convex and closed.

The set Ω has an infinite number of elements in general, the main obstacle on
solving the optimization problem (1) is that it has infinitely many constraints.
In most cases, robust convex optimization problems are NP-hard [7,8]. Instead
of solving the problem (1), based on the famous Helly theorem in convex anal-
ysis [54], the work [16] transform problem (1) to scenario optimization problem
as formalized in Definition 6 by using finitely many constraints, while providing
statistical guarantee on the error rate made with respect to the exact solution
of (1).

Definition 6. Let P be a probability measure over set Ω and ω1, . . . , ωl be l
independent identically distributed samples taken from Ω according to P . The
scenario optimization problem corresponding to the problem (1) is defined as

min
θ∈Θ⊆Rm

aT θ

s.t.
l∧

i=1

fωi
(θ) ≤ 0 ωi ∈ Ω

(2)

The optimization problem (2) can be seen as the relaxation of the prob-
lem (1), since we do not require that the optimal solution θ∗

l of the problem (2)
satisfies all constraints fω(θ∗

l ) ≤ 0 for each ω ∈ Ω, but only the constraints
corresponding to the l samples from Ω according to P . The issue now is how to
provide a strong enough guarantee that the optimal solution θ∗

l of (2) also satis-
fies the other constraints fω(θ) ≤ 0 with ω ∈ Ω\{ωi}l

i=1 we have not considered.
To answer this question, an error rate ε is introduced to bound the proba-

bility that the solution θ∗
l violates the constraints of problem (1); we denote by

η the significance level with respect to the random sampling solution algorithm.
Statistics theory ensures that as the number of samples l increases, the probabil-
ity that the optimal solution of the optimization problem (2) violates the other
unseen constraints will tend to zero rapidly. The minimal number of sampled
points l is related to the error rate ε ∈ (0, 1] and significance level η ∈ (0, 1] by:

Theorem 1 ([18]). If the optimization problem (2) is feasible and has a unique
optimal solution θ∗

l , then P (fω(θ∗
l ) > 0) < ε, with confidence at least 1 − η,

provided that the number of constraints l satisfies

l ≥ 2
ε

·
(

ln
1
η

+ m
)
,

where m is the dimension of θ, that is, θ ∈ Θ ⊆ R
m, ε and η are the given error

rate and significance level, respectively.

Theorem 1 indicates that the number of sampling points can be flexibly
changed according to the error rate, confidence level, and the number of param-
eters. We can observe that when the error rate ε is fixed, the number of sampling
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points l is linearly related to the number of parameters m. In Theorem 1, we
assume that the optimization problem (2) has a unique optimal solution θ∗

l . This
is not a restriction in general, since for multiple optimal solutions we can just
use the Tie-break rule [16] to get a unique optimal solution.

3.3 Synthesizing Parametric Functions

We now apply the above scenario approach to the synthesis of the paramet-
ric functions for pDTMRMs. Given a pDTMRM RV = (DV, r) with DV =
(S, s̄,P, L), let v denote the vector of parameters (v1, . . . , vn) of DV. For a
PRCTL state formula ϕ, the analytic function fϕ(v), representing the prob-
ability or the expected reward of the paths satisfying ϕ in the pDTMRM RV,
can be a rational function with a very complicated form [31,32] since the polyno-
mials in these rational functions may have exponentially many terms. Our aim
is to approximate the function fϕ(v) with some low degree polynomial f̃ϕ(v).

The reason why we choose a polynomial f̃ϕ(v) with low degree to fit the
rational function fϕ(v) is that the graph of polynomials f̃ϕ(v) and original
functions fϕ(v) are both surfaces and the polynomial f̃ϕ(v) can approximate
the rational function fϕ(v) well if we synthesize appropriately the coefficients
c = (c0, c1, c2) of the polynomial by learning them.

It is worth mentioning that no matter how complicated the function fϕ(v) is
(it could also be any kind of function other than rational functions), we can still
obtain an approximating polynomial f̃ϕ(v) of fϕ(v) by solving an optimization
problem, and utilize it to analyze various properties the original function fϕ(v)
may satisfy. In the remainder of this section, we show how we synthesize such
coefficients c, and thus the polynomial; we first introduce some notations.

Given the vector of parameters v and a degree d ∈ N, we denote by vd the
vector of monomials vd = (vα)‖α‖1=d, where each monomial vα is defined as
vα = vα1

1 vα2
2 · · · vαn

n , with α = (α1, . . . , αn) ∈ N
n and ‖α‖1 =

∑n
i=1 αi. Then,

we associate a vector ci of coefficients to each of the monomials in the vector
(vi)d

i=0, obtaining the PAC approximation f̃(v) =
∑d

i=0 ci · vi. For example,
if the pDTMC DV has two parameters v1 and v2, then for d = 2 we get the
quadratic polynomial f̃(v) = c0 + c1 · v + c2 · v2 = c0 + (c11 · v1 + c12 · v2) +
(c21 · v2

1 + c22 · v1 · v2 + c23 · v2
2). In general, for n parameters and a polynomial

of degree d, we need
(
n+d

n

)
coefficients.

Given a PAC approximation schema f̃(v) =
∑d

i=0 ci ·vi = c ·(1,v, · · · ,vd)T ,
we solve the following Linear Programming (LP) problem with infinitely many
constraints to learn the coefficients c = (ci)d

1 of the polynomial f̃(v):

min
c,λ

λ

s.t. − λ ≤ f(v) − c · (1,v, . . . ,vd)T ≤ λ, ∀v ∈ X,

c ∈ R
(n+d

n ), λ ≥ 0

(3)

where f(v) is the analytic function on the domain X =
∏n

i=1 range(vi), the
domain R

(n+d
n ) of vectors c is convex and closed, and the constraints of (3) are
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continuous convex functions with respect to the variable c for any v, which
satisfies the condition of Theorem 1. Note that for pDTMRMs we do not need
to compute the rational function fϕ used as f in problem (3) to get its value
on v, since we can first instantiate the pDTMRM with v and then compute the
value of ϕ in the instantiated DTMRM.

Given the error rate ε and the significance level η, by Theorem 1 we need
only to independently and identically sample at least l ≥ 2

ε

(
ln 1

η +
(
n+d

n

)
+ 1

)

points X̃ = {vi}l
i=1 to form the constraints used in the relaxed LP problem, as

done in the problem (2). Concretely, we get the following LP problem:

min
c,λ

λ

s.t.
l∧

i=1

−λ ≤ f(vi) − c · (1,vi, · · · ,vd
i )T ≤ λ, ∀vi ∈ X̃,

c ∈ R
(n+d

d ), λ ≥ 0.

(4)

We solve the optimization problem (4) to get the coefficients c, hence the PAC
approximation f̃ of the original function f , with the statistical guarantees given
by Definition 5; in the context of a pDTMRM RV and a PRCTL state formula
ϕ, we get the PAC approximation f̃ϕ of the original function fϕ.

3.4 PRCTL Property Analysis

Given the probabilistic formula ϕ = P=?(ψ) with path formula ψ, we can obvi-
ously use the PAC approximation f̃ϕ to check whether the domain of parameters
X is safe, with PAC guarantee. In this section, we introduce a direct PAC based
approach for checking domain’s safety, without having to learn the approxima-
tions first. Then, we consider linear approximations and discuss how counterex-
amples can be generated in this case before showing how the polynomial PAC
approximation f̃ϕ can be used to analyze global properties of fϕ over the whole
parameter space X. Lastly, we present how to extend the approach to the reward
formula ϕ = R=?(Fϕ′).

Definition 7 (Safe Region). Let X =
∏n

i=1 range(vi) be the domain of a set
of n parameters V. Given a function f : X → R≥0 and a safety level ζ ∈ R≥0,
we say that the point v ∈ V is safe if and only if f(v) < ζ; we call X safe if and
only if each v ∈ V is safe.

Intuitively, we hope that the probability of the pDTMRM RV to reach an
unsafe state under any choice of the parameters will be less than the given safety
level, to check whether the domain X of the parameters is safe, we can resort to
solve the following optimization problem with respect to the given error rate ε
and significance level η, and compare the obtained optimal solution λ∗ with ζ:

min λ

s.t. f(v) ≤ λ ∀v ∈ X̃,
(5)



168 Y. Liu et al.

Fig. 3. The rational function fϕ(p, q) = q2

q+2p−2pq
and its linear approximations f̃ϕ(p, q)

with different choices of ε and η

where X̃ ⊆ X is a set of samples such that |X̃| ≥
⌈
2
ε · (ln 1

η + 1)
⌉
. The optimiza-

tion problem (5) can be solved in time O(|X̃|), since it only needs to compute
the maximum value of fϕ(v) for v ∈ X̃ as the optimal solution λ∗. Although the
calculation is very simple, polynomials with degree 0, i.e., constants, also have
good probability and statistical meaning, so we have the following result as a
direct consequence of the definitions:

Lemma 1. Given the safety level ζ, if the optimal solution λ∗ of the problem (5)
satisfies λ∗ < ζ, then the domain X is safe with (ε, η)-guarantee. Otherwise, if
λ∗ ≥ ζ, then the parameter point v∗ ∈ X̃ corresponding to λ∗ is unsafe.

By Lemma 1, we can analyze with (ε, η)-guarantee whether the parameter
space is safe or not. For example, consider the pDTMC DV shown in Fig. 2 and
the safety property P<0.8(F(×c ∨×o)). If we set ε = η = 0.05, by sampling in the
region X = [0.01, 0.09] × [0.25, 0.8] at least 160 points and solving the resulting
optimization problem (5), we get the optimal value λ∗ = 0.747 by rounding to
three decimals. Since λ∗ = 0.747 < 0.8, by Lemma 1, the region X is safe with
(0.05, 0.05)-guarantee.

Linear PAC Approximation and Counterexamples. Since constants can
approximate the maximum value of the function f with the given (ε, η)-PAC
guarantee, linear functions can also be used to approximate f , which are more
precise than constants. Also, we can check whether there is an unsafe region in
the domain of parameters X with a given confidence, by the following Lemma 2,
and further search counterexamples by linear PAC approximations.

Lemma 2. Given the domain of parameters X, a function f : X → R≥0, and
a probability measure P over X, let f̃ be a PAC approximation of f with (ε, η)-
guarantee. Given the safety level ζ ∈ R≥0, if for each v ∈ X we have f̃(v)+λ < ζ,
then P (f(v) < ζ) ≥ 1 − ε holds with confidence 1 − η. In turn, if P (f̃(v) − λ >
ζ) > ε, then there exist v ∈ X such that f(v) > ζ holds with confidence 1 − η.
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The plots in Fig. 3 show the results of applying linear PAC approximation
on the function fϕ(p, q), with ϕ = P=?(F�), for the pDTMC DV shown in
Fig. 2. We sampled 280 points for ε = η = 0.05 and 2182 points for ε = 0.01
and η = 0.001, respectively, according to Thm. 1. The plot on the left, where
we fix the parameter p = 0.05, shows that even if we sample just 280 points,
fϕ(p, q) and f̃ϕ(p, q) are closer than the computed margin λ. For the case ε =
η = 0.05, the linear approximation is f̃ϕ(p, q) = −0.035 + 1.063q − 0.718p with
λ = 0.011 by rounding the coefficients to three decimals. We can easily check
that for each (p, q) ∈ X we have f̃ϕ(p, q) + λ < 0.85 by linear programming, so
X = [0.01, 0.09] × [0.25, 0.8] is a 0.85-safe region with respect to fϕ(p, q) with
(0.05, 0.05)-guarantee. However, if we set ζ = 0.6, we can prove P (f̃ϕ −λ > ζ) =
0.288 > ε = 0.05, so by Lemma 2 we get that there exist an unsafe region such
that f(p, q) > ζ, with confidence 95%.

We can take advantage of the easy computation of linear programming with
linear functions to further search for potential counterexamples that may exist.
The maximum value of f̃ϕ can be found at (0.01, 0.8), according to the linearity
of f̃ϕ, so we can instantiate the pDTMC DV in Fig. 2 with the parameter point
(0.01, 0.8) to get that fϕ(p, q) = 0.796. Since fϕ(p, q) > 0.6 for the safety level
ζ = 0.6, we can claim that the real counterexample (0.01, 0.8) is found. In the
case that the parameter point v0 = (p, q) corresponding to maximum value of f̃ϕ

is a spurious counterexample for the pDTMC with respect to ϕ, we can learn a
more precise approximation by adding v0 to X̃. One may also divide the domain
X into several subdomains and analyze each of them separately.

As for the computational complexity, it is easy to find the maximum value
of a linear function by linear programming; on the other hand, computing the
maximum value of polynomials and rational functions is rather difficult if their
degree is very high or the dimension of the parameter space is too large. So a
linear function is a good alternative to compute the maximum value of f with
PAC guarantee, while polynomials are suitable for analyzing more complicated
properties, such as the global ones considered below.

Polynomial PAC Approximation. One advantage of polynomials over ratio-
nal functions is that they make it easy to compute complex operations such
as inner product and integral [55], as needed to evaluate e.g. the Lp norm

‖g‖p = p

√∫
Z
|g(z)|p dz of a function g : Z → R, with p ≥ 1. This means that

we can adopt polynomials to check some more complicated properties of a
pDTMRM RV, such as whether the function fϕ is close to a given number β on
the whole parameter space X. This is useful, for instance, to evaluate how much
the behavior of RV with respect to the property ϕ is affected by the variations
of the parameters. We can model this situation as follows:

Definition 8. Given the domain X of a set of parameters, a function f : X →
R≥0, a safety level ζ, and β ∈ R≥0, we say that f is near β within the safety
level ζ on X with respect to the Lp norm, if ‖f − β‖p < ζ.

To verify the above property, we can rely on the following result:
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Lemma 3. Given X, f , ζ, and β as in Definition 8, let M be an upper bound
of f(X) and f̃ be a PAC approximation of f with (ε, η)-guarantee and margin
λ; let |X| =

∫
X

1 dv. For each p ≥ 1, if f̃ satisfies the condition

p

√(
λ p

√
(1 − ε) · |X| + ‖f̃ − β‖p

)p

+ ε · |X| · max(|M − β|p, βp) < ζ (6)

then ‖f − β‖p < ζ holds with confidence 1 − η.

Consider again the pDTMC DV shown in Fig. 2 and ϕ = P=?(F�); since fϕ

represents probabilities, we have the well-known upper bound M = 1. Here we
consider the L2 norm, which is widely used in describing the error between func-
tions in the signal processing field (see, e.g., [12,21]), as it can reflect the global
approximation properties and is easy to compute. To simplify the notation, let
UB denote the complex expression occurring in the formula (6), that is:

UB(f̃ϕ,X, β) =

√(
λ
√

(1 − ε) · |X| + ‖f̃ϕ − β‖2
)2

+ ε · |X| · max(|1 − β|2, β2).

We want to know whether fϕ(p, q) = q2

q+2p−2pq is near 0.5 within 0.05, i.e., given
the safety level ζ = 0.05, we want to check ‖fϕ − 0.5‖2 < 0.05. According to
Lemma 3, we first compute a PAC approximation f̃ϕ of fϕ. By setting ε =
η = 0.05, we get the quadratic polynomial f̃ϕ(p, q) = 0.013 + 0.925q − 1.442p +
0.953pq + 2.072p2 + 0.085q2, by rounding to three decimals. In this case, we get
UB(f̃ϕ,X, β) = 0.0432 < ζ = 0.05, so Lemma 3 applies. If, instead, we would
have chosen ζ ′ = 0.04, then we cannot prove ‖fϕ − 0.5‖2 < 0.04 by relying on
Lemma 3. To do so, we need to consider the more conservative values ε = 0.01
and η = 0.001, which give us UB(f̃ϕ,X, β) = 0.0379 < ζ ′ = 0.04, so we can
derive that ‖fϕ − 0.5‖2 < 0.04 holds with confidence 99.9%.

Extension to Reward Models. The extension of the constructions given
above to reward properties is rather easy: for instance, we can approximate
the rational function representing the state property ϕ = R=?(Fϕ′), the reward
counterpart of P=?(ψ′), by instantiating fϕ(vi) in Problem (4) with the expected
reward value computed on the pDTMC instantiated with vi. Similarly, we can
compute linear and polynomial PAC approximations for safe regions, with the
latter defined in terms of the value of the reward instead of the probability.

We can consider also the following case: given a pDTMRM RV, we want
to verify whether the expected value of ϕ = R=?(Fϕ′) over the parameters v,
denoted fϕ(v), can reach a given reward level ρ. This model the scenarios where,
to make a decision, we need to know whether the expectation of the rewards for
a certain decision satisfies the given conditions. We formalize this case as follows:

Definition 9. Given the domain X of a set of parameters, a function f : X →
R≥0, a reward level ρ, and a probability measure P over X, we say that the
expectation of f on X with respect to P can reach the reward level ρ, if

∫

X

f(v) dP (v) > ρ. (7)
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We can resort to the following lemma to check condition (7):

Lemma 4. Given X, f , P , and ρ as in Definition 9, let f̃ be a PAC approxi-
mation of f with (ε, η)-guarantee and margin λ. If f̃ satisfies the condition

∫

X

(f̃(v) − λ) dP (v) − ε · |X| · max
v∈X

(f̃(v) − λ) > ρ, (8)

then Condition (7) holds with confidence 1 − η.

4 Experimental Evaluation

We have implemented the PAC-based analysis approach proposed in Sect. 3 in a
prototype tool named PacPMA1, the PAC-based Parametric Model Analyzer,
and evaluated it on several benchmarks: we considered the DTMCs from the
PRISM benchmark suite [45], some of the resulting models are also available as
examples in the Storm [36] repository2. We replaced the probabilistic choices
in them with parameters. The probabilistic choices in most of the models corre-
spond to the flip of a fair coin, so we considered three possibles ranges for the
parameters, namely [0.01, 0.33], [0.33, 0.66], and [0.66, 0.99], to represent the fact
that the coin is strongly unfair to head, rather fair, and strongly unfair to tail,
respectively. For the remaining models, where the choice is managed by the uni-
form distribution over several outcomes, we split the outcomes into two groups
(e.g., odd and even outcomes) and then used a parametric coin and five intervals
to choose the group. By considering the reachability properties available for each
DTMC and the choice of the constants controlling the size of the DTMCs, we get
a total of 936 benchmarks for our evaluation for probabilistic properties and 620
benchmarks for expected rewards. We performed our experiments on a desktop
machine with an i7-4790 CPU and 16 GB of memory running Ubuntu Server
20.04.4; we used BenchExec [9] to trace and constrain the tools’ executions:
we allowed each benchmark to use 15 GB of memory and imposed a time limit
of 10 min of wall-clock time.

PacPMA is written in JAVA and uses Storm [36] and MATLAB to get the
value of the analyzed property and the solution of the LP problem, respectively.
We also used Storm v1.7.0 and PRISM [44] v4.7 to compute the actual rational
functions for the benchmarks, to check how well our PAC approximation works in
practice. We were unable to compare with the fraction-free approach proposed
in [5] since it is implemented as an extension of Storm v1.2.1 that fails to
build on our system. To avoid to call repeatedly Storm for each sample as
an external process, we wrote a C wrapper for Storm that parses the input
model and formula and sets the model constants only once, and then repeatedly
instantiates the obtained parametric model with the samples and computes the
corresponding values of the property, similarly to the batch mode used in [3]. We

1 https://github.com/iscas-tis/PacPMA/.
2 https://github.com/moves-rwth/storm/.

https://github.com/iscas-tis/PacPMA/
https://github.com/moves-rwth/storm/
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Table 1. Overview of the outcomes of the experiments

Outcome PRISM Storm PacPMAd (1 thread/8 threads)

d = 1 d = 2 d = 3 d = 4 d = 5

P=?[ψ] Success 522 576 594/629 585/621 576/621 576/621 576/603

Memoryout 18 63 0/306 0/306 0/306 0/306 0/306

Timeout 396 297 342/1 351/9 360/9 360/9 360/27

R=?[ψ] Success 153 224 302/302 302/302 302/302 302/302 302/302

Memoryout 0 0 0/282 0/282 0/282 0/282 0/282

Timeout 467 396 318/36 318/36 318/36 318/36 318/36

also implemented a multi-threaded evaluation of the sampled points, by calling
multiple instances of the wrapper in parallel on a partition of the samples.

4.1 Overall Evaluation

In Table 1 we show the outcome of the different tools on the 936 probabilistic
(marked with P=?[ψ]) and 620 reward (marked with R=?[ψ]) benchmarks, namely
whether they successfully produced a rational function or whether they failed by
timeout or by running out of memory. Besides the results for PRISM and Storm
computing the actual rational function, we report two values for each outcome
of PacPMAd, where the superscript d indicates the degree of the polynomial
used as template: in e.g. the pair 594/629, the first value 594 is relative to the
single-threaded PacPMA1, while the value 629 is for the 8-threaded PacPMA1,
i.e., PacPMA with 8 instances of the Storm wrapper running in parallel. As
parameters for PacPMA, we set ε = η = 0.05; for the benchmarks with two
parameters, this results in sampling between 280 and 1000 points, for d = 1 to
d = 5, respectively. To make the comparison between the different templates
fairer, we set the same random seed for each run of PacPMA; this ensures that
all samples used by e.g. PacPMA2 are also used by PacPMA5.

As we can see from Table 1, PacPMA is able to compute polynomials
with different degrees for more benchmarks than Storm and PRISM. By
inspecting the single experiments, for the probabilistic properties we have that
PRISM ⊆ Storm ⊆ PacPMAd

n ⊆ PacPMAd′
n for each d′ < d degrees and

n threads, as sets of successfully solved cases; we also have that PacPMAd
1 ⊆

PacPMAd
8 for each d. For the reward properties we have that PacPMAd

n =
PacPMAd′

n′ for each combination of d, d′ ∈ {1, · · · , 5} and n, n′ ∈ {1, 8} and
that Storm,PRISM ⊆ PacPMAd

n; however Storm and PRISM are incom-
parable, with cases solved by Storm but not by PRISM, and vice-versa. In the
next section we will evaluate how the margin λ changes depending on the degree
d and the statistical parameters ε and η through the induced number of samples.
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Fig. 4. Scatter plot for the margin λ for different PacPMAd and box plots for the
margin λ

Fig. 5. Value of ‖fϕ − f̃ϕ‖2 and of λ vs. degree of polynomials and number of samples

4.2 Relation of the Polynomial Degree d and the Number
of Samples with the Margin λ and the Distance ‖fϕ − f̃ϕ‖2

In Fig. 4 we present plots for PacPMA using polynomial templates with different
degrees and how the computed λ changes. As we can see from the plots, by using
a higher degree we get a lower value for the margin λ, as one would expect given
that polynomials with higher degree can approximate better the shape of the
actual rational function: from the box plots on the right side of the figure, we
can see that using higher degree polynomials allows us to get values for λ that
are much closer to 0. Note that in these box plots we removed the lower whiskers
since they are 0 for all degrees, and we use a logarithmic y-axis. The scatter plot
shown on the left side of Fig. 4, where we compare the values of λ produced by
PacPMA1 with those by PacPMAd, for d = 2, 3, 4, 5, confirms that the higher
the degree is, the closer to 0 the corresponding mark is, since the points for the
same benchmark share the same x-axis value.

In Fig. 5 we show the value of ‖fϕ − f̃ϕ‖2 for different degrees of the poly-
nomial and the number of samples, as well as the corresponding values of the
computed λ. The plots are relative to one benchmark such that the correspond-
ing rational function (a polynomial having degree 96) computed by Storm can
be managed by MATLAB without incurring obvious numerical errors while
having the margin λ computed by PacPMA2 reasonably large (λ ≈ 0.063).
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Fig. 6. Comparison of ‖fϕ − β‖2 with UB(f̃ϕ, X, β) for η = 0.05 and different ε

From the plots, we can see that we need at least 100 samples to get a rather
stable value for ‖fϕ − f̃ϕ‖2, so that the value of ‖fϕ − f̃ϕ‖2 is smaller for higher
degrees, which reflects the more accurate polynomial approximation of the orig-
inal function, in line with the plots in Fig. 4. However, for the same degree,
increasing the number of samples does not always lead to a decrease in ‖fϕ−f̃ϕ‖2
value. This happens because with few points, the polynomial can fit them well,
as indicated by the low value of λ; however, such few points are likely to be not
enough to represent accurately the shape of fϕ. By increasing the number of
samples, the shape of fϕ can be known better, in particular where it changes
more; this makes it more difficult for the polynomials to approximate fϕ, as
indicated by the larger λ; on the other hand, they get closer to fϕ, so ‖fϕ − f̃ϕ‖2
stabilizes.

4.3 Relation of the Statistical Parameters ε and η with the Distances
‖fϕ − β‖2 and UB(f̃ϕ , X, β)

We now consider the behavior of fϕ and whether it remains close to some num-
ber β within ζ, that is, we want to check whether ‖fϕ − β‖2 < ζ holds. Here
we set the safety level ζ to be 0.1 and consider different β’s values for differ-
ent functions fϕ. We consider 20 rational functions computed by Storm that
MATLAB can work without incurring in obvious numerical errors, such as those
outside the probability interval [0, 1]. For each of the function, we computed the
corresponding value of β by sampling 20 points for the parameters and taking
the average value, rounded to the first decimal, of the function on them. We rely
on Lemma 3 to perform the analysis; the results are shown in Fig. 6.

In the figure, we plot the actual value of ‖fϕ − β‖2, the boundary ζ, and the
value of UB(f̃ϕ,X, β) computed with respect to η = 0.05 and different choices
of ε for the 20 functions. As we can see, the smaller ε, the higher the number
of cases on which Lemma 3 ensures ‖fϕ − β‖2 < ζ; this is expected, since a
smaller ε increases the number of samples, so the approximating polynomial f̃ϕ

gets closer to the real shape of fϕ. Moreover, when ‖fϕ − β‖2 is already close
to ζ, there is little space for f̃ϕ to differ from fϕ, as happens for the e.g. the
function 1. Thus it is more difficult for us to be able to rely on Lemma 3 to check
whether ‖fϕ − β‖2 < ζ holds, even if this actually the case.



Scenario Approach for Parametric Markov Models 175

Fig. 7. Distance from fϕ of the Taylor expansion vs. the approximating polynomial

4.4 Comparison with the Taylor Expansion

We compare the accuracy of PAC approximation against that of the Taylor
expansion on the same cases used for Fig. 6; the comparison is shown in Fig. 7. For
the comparison with fϕ, we consider the degree 2 for both the Taylor expansion
f t

ϕ and the approximating polynomial f̃ϕ computed with ε = η = 0.05. For the
Taylor expansion f t

ϕ, we considered two versions: the expansion at the origin,
i.e., (0, 0) for two parameters (marked as “‖fϕ − f t

ϕ‖2 at (0, 0)” in Fig. 7), that
is commonly used since it is cheaper to compute than the expansions at other
points; and the expansion at the barycenter of the space of the parameters
(marked as “‖fϕ − f t

ϕ‖2 at center” in Fig. 7).
As we can see from the plot, that uses a logarithmic scale on the y-axis, the

distance ‖fϕ − f̃ϕ‖2 is between one and three orders of magnitude smaller than
‖fϕ − f t

ϕ‖2 at the origin. If we consider ‖fϕ − f t
ϕ‖2 at the barycenter, we get

values much closer to ‖fϕ − f̃ϕ‖2, but still larger up to one order of magnitude.
One of the reasons for this is that the Taylor expansion reflects local properties
of fϕ at the expansion point, while the PAC approximation provides a global
approximation of fϕ, thus reducing the overall distance. Compared with the
Taylor expansion, the PAC approximation has also other advantages: the PAC
approximation can handle both white-box and black-box problems, i.e., we do
not need to get the analytical form of fϕ; this means that we can treat it as a
black box and get a good approximation of it while the Taylor expansion can
only be applied after computing the actual function fϕ. Moreover, the PAC
approximation is able to generate polynomials with any given error rate and
provide probabilistic guarantee, while Taylor expansion cannot.

4.5 Extension to Reward Models

In Fig. 8 we show how Eq. (8) applies to
∫

X
fϕ(v) dP (v) for a selection of 30

reward properties fϕ computed by Storm; as usual, we compute f̃ϕ with ε = η =
0.05. In the figure, we report the actual value of

∫
X

fϕ(v) dP (v) as well as that of
the expression in Eq. (8) computed for the polynomial PAC approximations f̃ϕ at
different degrees. As we can see from Fig. 8, the higher the degree of f̃ϕ, the more
accurate the estimation of the

∫
X

fϕ(v) dP (v)’s lower bound is. In particular,
the quadratic f̃ϕ provides a very close lower bound for

∫
X

fϕ(v) dP (v); this
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Fig. 8. Lower bound for Eq. (7) by PAC approximation with different degrees

is remarkable, since evaluating max(f̃(v) − λ) in Eq. (8) is often an NP-hard
non-convex optimization problem [51,56] and, for cubic or higher polynomials,
it requires specialized theories and tools to solve [46,47,61].

5 Conclusion

In this paper, we presented a PAC-based approximation framework for studying
several properties of parametric discrete time Markov chains. Within the frame-
work, we can analyze the safety regions of the domain of the parameters, check
whether the actual probability fluctuates around a reference value within a cer-
tain bound, and get a polynomial approximating the actual probability rational
function with given (ε, η)-PAC guarantee. An extended experimental evaluation
confirmed the efficacy of our framework in analyzing parametric models.

As future work, we plan to investigate the applicability of the scenario app-
roach to other Markov models and properties, such as continuous time Markov
chains and Markov decision processes with and without rewards, where param-
eters can also control the rewards structures. Moreover, we plan to explore the
combination of the scenario approach with statistical model checking and black-
box verification and model learning.
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