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The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is
addressed experimentally, theoretically and numerically. The experiments are performed
by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance
frequencies and quality factors are extracted from the measurement of the power spectrum
density of the probe oscillation for a broad range of gap distances and Womersley numbers.
The shift in the resonance frequency of the colloidal probe as the probe goes close
to a solid wall infers the wall-induced variations of the effective mass of the probe.
Interestingly, a crossover from a positive to a negative shift is observed as the Womersley
number increases. In order to rationalize the results, the confined unsteady Stokes equation
is solved numerically using a finite-element method, as well as asymptotic calculations.
The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are
obtained and agree well with the experimental results. All together, the experimental,
theoretical and numerical results show that the hydrodynamic force felt by an immersed
sphere oscillating near a wall is highly dependent on the Womersley number.

Key words: low-Reynolds-number flows, micro-/nano-fluid dynamics

1. Introduction

The motion of particles in a fluid is one of the central problems in fluid mechanics, across
many scales. The hydrodynamic drag force exerted by the fluid on the particles is the
fundamental quantity that dictates the motion. Applications include the sedimentation of
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synthetic entities, the swimming of biological microorganisms (see Wang & Ardekani
2012; Wei et al. 2019, 2021; Redaelli et al. 2023), blood flows (see Ku 1997), peristaltic
pumping (see Shapiro, Jaffrin & Weinberg 1969), microfluidic flows (see Dincau,
Dressaire & Sauret 2020) and Brownian motion at short times (see Felderhof 2005; Mo &
Raizen 2019). At small Reynolds number, while the steady, bulk, Stokes drag force exerted
on a translating sphere is well known, addressing further the transient contributions is
more intricate – even though the implications of such effects are potentially numerous.

For an isolated spherical particle with radius R translating in a viscous liquid
at velocity V , the bulk drag force F at small Reynolds number is given by the
Basset–Boussinesq–Oseen (BBO) expression (see Basset 1888; Gatignol 1983; Maxey &
Riley 1983; Lovalenti & Brady 1993; Landau & Lifshitz 1987)

F = −6πηRV − 6R2√πρη

∫ t

−∞
1√

t − τ

dV
dτ

dτ − 2πρR3

3
dV
dt

, (1.1)

where ρ and η are the density and dynamic viscosity of the viscous liquid, respectively.
The right-hand side of this equation includes three terms successively: a Stokes viscous
force, a Basset memory term, and an added-mass term. The Basset force originates from
the diffusive nature of vorticity within the unsteady Stokes equation, and the added-mass
force can be interpreted as an inertial effect due to the displaced fluid mass. Equation (1.1)
provides a good description of particle dynamics in a large variety of particle-laden and
multi-phase flows, as long as the particle Reynolds number is small (see Balachandar &
Eaton 2010).

Nevertheless, the effect of nearby solid boundaries on the unsteady drag is still an open
question. The canonical situation is that of an immersed sphere oscillating near a planar
rigid surface. Some asymptotic expressions of the drag in the large-distance limit have
been derived recently, by using a point-particle approximation together with the method
of images (Felderhof 2005, 2012; Simha, Mo & Morrison 2018), or by using low- or
high-frequency expansions of the unsteady Stokes equations (Fouxon & Leshansky 2018).
However, theoretical descriptions of the confined limit, i.e. where the sphere is in close
proximity to the surface, are scarce. We thus aim here to investigate the unsteady drag,
in the full spatial range from bulk to confinement, by combining numerical simulations,
asymptotic calculations and colloidal-probe atomic force microscopy (AFM) experiments.

The AFM colloidal-probe methods and their surface force apparatus analogues were
first introduced in the 1990s in order to measure molecular (e.g. electrostatic or van der
Waals) interactions between surfaces (see Butt 1991; Ducker, Senden & Pashley 1991;
Butt, Cappella & Kappl 2005). Recently, these methods have been extended and used to
study flow under micro-to-nanometric confinement, e.g. near soft (see Leroy & Charlaix
2011; Leroy et al. 2012; Villey et al. 2013; Guan et al. 2017; Zhang et al. 2022) or capillary
interfaces (see Manor et al. 2008; Vakarelski et al. 2010; Manica, Klaseboer & Chan
2016; Maali et al. 2017; Wang et al. 2018; Bertin et al. 2021), using complex fluids (see
Comtet et al. 2017a,b, 2019), or to measure the friction at solid–liquid interfaces (see
Cottin-Bizonne et al. 2003; Maali, Cohen-Bouhacina & Kellay 2008; Cross et al. 2018),
and electrohydrodynamic effects (see Liu et al. 2015, 2018; Zhao et al. 2020; Rodríguez
Matus et al. 2022). More specifically, for dynamic colloidal AFM measurements, a
micron-size spherical colloidal probe is placed in a viscous fluid, in the vicinity of a
surface, with a sphere–wall distance D. Then the probe is driven to oscillate without direct
contact, via either acoustic excitation or thermal noise. The force exerted on the sphere
is inferred from the colloidal motion, through the cantilever’s deflection, which allows us
to extract specific information on the confined surfaces or fluid properties. We point out
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Unsteady drag on an immersed sphere oscillating near a wall

that other experimental techniques were used to probe the bulk streaming flow around an
oscillating sphere at finite Reynolds numbers, like particle visualization techniques (Kotas,
Yoda & Rogers 2007; Otto, Riegler & Voth 2008) and optical tweezers (Bruot et al. 2021).

If the typical angular frequency of the flow is ω, then the vorticity diffuses on
a typical distance δ ∼ √

η/(ρω) called the viscous penetration length. The dynamic
force measurements are usually restricted to low Reynolds numbers and low probing
frequencies, and to the confined regime where D � R. In such a case, the penetration
length is large, the flow is located mainly in the confined fluid layer, it is purely viscous
and quasi-steady, and the lubrication theory holds (see Reynolds 1886; Leroy & Charlaix
2011). Consequently, in all the above examples, the fluid inertial effects are disregarded
in the analysis of the measured hydrodynamic force. This omission is justified by the
low Reynolds number, expressed as Re = ρωAR/ν, where A represents the amplitude
of the probe’s oscillation, and where ν = η/ρ is the kinematic viscosity of the fluid.
However, when the colloidal probe oscillates at high frequencies, the penetration depth
δ might become comparable to, and even smaller than, the characteristic length scale of
the flow. Thus unsteady effects may become important (see Clarke et al. 2005), even
though Re might remain small. The relevant dimensionless number to characterize the
crossover to such a regime is the Womersley number Wo = R

√
ω/ν, the square of which

corresponds to the ratio between the typical diffusion time scale R2/ν and the period of
the oscillation. Unsteady inertial effects should be predominant when it takes more time
for the vorticity to diffuse than for the sphere to oscillate, i.e. Wo > 1. In such a situation,
the hydrodynamic force exerted on the sphere not is only a viscous lubrication drag, but
also contains contributions due to the unsteady fluid inertia, which were studied partly in
previous works (see El-Kareh 1989; Sader 1998; Benmouna & Johannsmann 2002; Clarke
et al. 2005; Devailly et al. 2020).

The paper is organized as follows. In § 2, we introduce the experimental method of
thermal noise AFM and present the typical experimental results. We show that as the
distance to the wall is reduced, the resonance frequency increases for low Womersley
numbers but decreases for high Womersley numbers. In contrast, the dissipation increases
monotonically with decreasing distance for all Womersley numbers. In order to rationalize
the results, in § 3, we compute the hydrodynamic drag force in terms of added mass and
dissipation, in the asymptotic limit of large distance, and we perform a detailed calculation
in the low-Womersley-number limit using the Lorentz reciprocal theorem. Furthermore, a
finite-element method is employed to obtain the full numerical solution in all regimes.
Finally, the experimental, theoretical and numerical results are summarized and compared
in § 4. Mainly, the variation of the resonance frequency is rationalized by the change of
the effective mass with distance and Womersley number.

2. Experiments

2.1. Colloidal-probe AFM set-up
A schematic of the experimental system is shown in figure 1(a). A borosilicate sphere
(MOSci Corporation, radius R = 27 ± 0.5 μm) is glued (Epoxy glue, Araldite) to the
end of an AFM cantilever (SNL-10, Brukerprobes), and located near a planar mica
surface. The cantilever stiffness kc = 0.68 ± 0.05 N m−1 is calibrated using the drainage
method proposed by Craig & Neto (2001). The experiments were performed using an
AFM (Bruker, Dimension3100) in three different liquids, i.e. water, dodecane and silicone
oil, whose densities and dynamic viscosities are 1000 kg m−3 and 1 mPa s, 750 kg m−3

and 1.34 mPa s, and 930 kg m−3 and 9.3 mPa s, respectively, at room temperature.
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Figure 1. Schematics of the system. A borosilicate sphere with radius R is glued at the end of an AFM
cantilever, and fluctuates thermally within a viscous liquid and near a mica substrate, with a distance D between
the sphere and the substrate. The sphere and mica surfaces are denoted as S0 and Sw, respectively.

The sphere–wall distance D was controlled by an integrated stage step motor. Each
separation distance was adjusted by displacing the cantilever vertically using the step
motor with precision in position <0.1 μm. The zero distance was determined as the point
where the deflection signal changed sharply due to the solid–solid contact of the probe with
the wall. The cantilever’s deflection produced by thermal and hydrodynamic forces acting
on the probe was acquired directly using an analogue to digital (A/D) acquisition card
(PCI-4462, NI, USA) with sampling frequency 200 kHz. The amplitude of the thermal
fluctuation of the probe remained smaller than ∼1 nm, in all the experiments.

2.2. Confined thermal dynamics
The time-dependent position of the spherical probe is denoted Z(t). For a given
sphere–wall distance D, the probe dynamics can be modelled by a forced harmonic
oscillator (see Jai, Cohen-Bouhacina & Maali 2007; Kiracofe & Raman 2011; Maali &
Boisgard 2013), as

m∞Z̈ + γ∞Ż + kcZ = Fth + Fint, (2.1)

where m∞ is the effective mass of the probe in the bulk, and γ∞ is the bulk damping
coefficient. These two coefficients correspond to the free dynamics of the probe far from
the surface, and can thus be obtained by measuring the resonance properties of the AFM
probe in the far field, as shown below. Besides the elastic restoring force by the cantilever
of stiffness kc, and in the absence of conservative forces (e.g. van der Waals or electrostatic
forces), the two main forces acting on the sphere along the z direction are the random
thermal force Fth and the hydrodynamic interaction force with the wall Fint. The latter
corresponds to the deviation of the hydrodynamic drag with respect to the bulk drag force
and depends on the sphere–wall distance.

Taking the Fourier transform of (2.1), we find

− m∞ω2Z̃ + iωγ∞Z̃ + kcZ̃ = F̃th + F̃int, (2.2)

where f̃ (ω) = (1/2π)
∫ ∞
−∞ dt f (t) e−iωt is the Fourier transform of the function f (t). The

real and imaginary parts of F̃int correspond to an inertial force and a dissipative force,
respectively, that can be recast into

F̃int = mintω
2Z̃ − iωγintZ̃, (2.3)

where mint and γint are the wall-induced variations of the effective mass and dissipation
coefficient. For the sake of simplicity, we neglect in the following the possible frequency
dependencies of mint and γint. With this main assumption, and injecting (2.3) into (2.2),
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Unsteady drag on an immersed sphere oscillating near a wall

the probe’s motion follows a thermally forced harmonic oscillator dynamics with spring
constant kc, effective damping coefficient γ ≡ γ∞ + γint, and effective mass m ≡ m∞ +
mint. For the latter problem, one can then derive the one-sided power spectral density
S(ω) ≡ 2〈|Z̃(ω)|2〉, as

S(ω) = 2〈|Fth|2〉/(m2ω4
0)[

1 −
(

ω

ω0

)2
]2

+
(

ω

ω0Q

)2
= 2kBT/(πQmω3

0)[
1 −

(
ω

ω0

)2
]2

+
(

ω

ω0Q

)2
, (2.4)

where 〈·〉 denotes the ensemble average, kBT is the thermal energy, ω0 = √
kc/m is the

resonance angular frequency, and Q = mω0/γ is the quality factor. The second equality
in (2.4) is obtained by using the correlator of the noise 〈Fth(t) Fth(t′)〉 = 2γ kBTδD(t − t′),
where we assumed a white noise through the Dirac distribution δD , and where we invoked
the fluctuation–dissipation theorem to set the amplitude of the noise. The experimental
power spectral densities are fitted by the function (Honig et al. 2010; Bowles, Honig &
Ducker 2011)

S(ω) = c1[
1 −

(
ω

ω0

)2
]2

+
(

ω

ω0Q

)2
+ c2, (2.5)

where ω0 and Q are the key adjustable parameters indicating the position and width of the
resonance, and c1 and c2 are unimportant extra parameters allowing us to accommodate
for potential spurious experimental offset and/or prefactor.

2.3. Power spectral density
Figure 2 displays the power spectral densities for probes immersed in dodecane or silicone
oil (water was employed as well, but the similar results are not shown here), and for a
variety of sphere–wall distances. A well-defined peak can be observed for each spectrum,
indicating the fundamental resonance. The resonance properties are well described by
the damped harmonic oscillator model above. The largest sphere–wall distance (D =
100 μm) corresponds to nearly four times the sphere radius, so that the hydrodynamic
interactions between the probe and the wall can be neglected. At such distances, the
bulk resonance frequency ω∞

0 = √
kc/m∞ and bulk quality factor Q∞ = m∞ω∞

0 /γ∞ are
extracted from the fitting procedure, giving respective values 7070 ± 5 Hz and 3.3 ± 0.1
in dodecane, and 5320 ± 5 Hz and 1.3 ± 0.1 in silicone oil. In the more viscous fluid
(silicone oil), the resonance is broader since the dissipation is larger, as expected. Also,
in both liquids, we observe that the resonance is broader as the sphere gets closer to
the hard wall, which indicates that the near-wall dissipation is larger as compared to the
bulk situation, as expected too. Besides, and interestingly, the bulk resonance frequency
changes significantly from silicone oil to water (≈20 % difference in ω∞

0 , which means
≈50 % difference in effective mass), although the liquid density is similar (less than 10 %
difference). Hence the effective mass depends on the viscosity of the ambient fluid in a
non-trivial way. Moreover, the resonance frequency depends on the sphere–wall distance.

To be quantitative, the fitted values of the resonance frequency ω0 and the quality factor
Q are shown in figure 3 as functions of the normalized separation distance D/R, for the
three liquids studied. Intriguingly, we observe an increase of the resonance frequency in
silicone oil near the wall as compared to the bulk resonance frequency (figure 3a), and a
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Figure 2. Experimental power spectral densities in arbitrary units (a.u.), for the colloidal probe’s vertical
position, in (a) dodecane and (b) silicone oil, for various sphere–wall distances as indicated. The curves are
shifted vertically for clarity. The solid lines show the best fits to the damped harmonic oscillator model, using
(2.5).

corresponding decrease in dodecane (figure 3c) and water (figure 3e). We point out that
the sphere–wall distances in the present experiments are large enough (D > 0.5 μm) so
that molecular interactions (e.g. electrostatic or van der Waals forces) can be neglected
safely. Therefore, the changes in resonance frequency observed here should result only
from hydrodynamic contributions. The next section aims to model this intricate behaviour.

3. Theory

3.1. Governing equations
We aim here to calculate the hydrodynamic force exerted on an immersed sphere moving
normally near a rigid, flat and immobile wall. The hydrodynamic pressure field is denoted
p. The fluid velocity field v satisfies the incompressible Navier–Stokes equations. In order
to identify the relevant terms in these, we non-dimensionalize them. Rescaling times by
ω−1, lengths by R, velocities by Aω, and pressures by ηAω/R, and adding bars for all the
dimensionless variables, the dimensionless Navier–Stokes equations read

Wo2 ∂t̄v̄ + Re v̄ · ∇̄v̄ = −∇̄p̄ + ∇̄2v̄, ∇̄ · v̄ = 0, (3.1)
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Figure 3. Resonance frequency ω0/(2π) (blue dots) and quality factor Q (orange dots) of the normal mode of
the colloidal AFM probe as a function of dimensionless sphere–wall distance D/R. The dashed lines represent
the resonance frequencies and quality factors calculated by (4.3) and (4.4), respectively, without adjustable
parameter. (a,b) Results for silicone oil (η = 9.3 mPa s, ρ = 930 kg m−3), with squared Womersley number
Wo2 = 2.4. (c,d) Results for dodecane (η = 1.34 mPa s, ρ = 750 kg m−3), with Wo2 = 18.1. (e, f ) Results for
water (η = 1 mPa s, ρ = 1000 kg m−3), with Wo2 = 31.7.

where Re = ρRAω/η is the Reynolds number, and Wo2 = R2ω/ν is the squared
Womersley number. The amplitude of thermal oscillations in the experiments is
nanometric, which implies a relatively small Reynolds number for all accessible
frequencies. Therefore, we can neglect the convective term of the incompressible
Navier–Stokes equations. Nonetheless, the typical resonance frequency is in the kHz
range, such that the squared Womersley number Wo2 = R2ω/ν is in the 1–50 range. As a
consequence, we expect unsteady inertial effects to be important. The fluid velocity field
thus satisfies the unsteady incompressible Stokes equations. Putting back dimensions, the
latter reads

ρ ∂tv = −∇p + η ∇2v, ∇ · v = 0. (3.2)

Without loss of generality, the sphere’s position is supposed to oscillate normally to the
substrate at frequency ω and with amplitude A, which correspond to a given Fourier
mode of the full fluctuation spectrum. Applying the Fourier transform to the unsteady
incompressible Stokes equations, we get

iρωṽ = −∇p̃ + η ∇2ṽ, ∇ · ṽ = 0. (3.3)

A no-slip condition is assumed at both the wall and the sphere surfaces, denoted by Sw
and S0, respectively (see figure 1b), leading to the following boundary conditions for the
fluid velocity field:

ṽ(r ∈ S0) = iωAez, ṽ(r ∈ Sw) = 0, (3.4a,b)

with ez the unit vector in the z direction. Here, we suppose that the sphere position is fixed
at its average position during one oscillation, as the oscillation amplitude is assumed to
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be small. The hydrodynamic drag force applied on the sphere is given by

F̃ =
∫
S0

n · σ̃ dS0, (3.5)

where σ̃ = −p̃I + η[∇ṽ + (∇ṽ)T] is the fluid stress tensor, and n denotes the unit vector
normal to S0 oriented towards the fluid. To the best of our knowledge, there is no
closed-form solution of the problem, in contrast with the steady case (see Brenner 1961).
Indeed, the stream function follows the Helmholtz equation (resp. the Laplace equation)
associated with the unsteady (resp. steady) Stokes equation. The steady Stokes equation
can be solved exactly, using the spectral decomposition of the Laplacian operator in the
bispherical coordinate system. Nevertheless, the same methodology cannot be applied to
the Helmholtz equation, hence to the unsteady Stokes problem.

By symmetry, the drag force is directed along the z direction, i.e. F̃ = F̃zez. Using
dimensional analysis, and assuming that the oscillation amplitude A is much smaller than
D, one can show that the drag force F̃z normalized by the bulk Stokes reference −6iπηRAω

to form the dimensionless drag force f̃z = F̃z/(−6iπηRAω), depends on only two
dimensionless parameters: (i) the Womersley number Wo, and (ii) the sphere–wall distance
relative to the sphere radius D/R. As a consequence, the dimensionless hydrodynamic
interaction force (see § 2.2 and (2.3)) reads

F̃int

6iπηRAω
= f̃z(D/R → ∞, Wo) − f̃z(D/R, Wo) = (mintω

2 − iωγint)Z̃
6iπηRAω

. (3.6)

Although there is no general analytical solution of (3.3) with the boundary conditions
(3.4a,b), the hydrodynamic drag force has known asymptotic expressions in certain limits,
some of which are given in the next two subsections.

3.2. Large-distance regime
In the infinite-distance limit, the force expression reduces to the BBO equation (see (1.1))
for a sphere in an unbounded space, which gives in Fourier space

F̃z = −6iπηRAω

(
1 + √−i Wo − i Wo2

9

)
, for D/R → ∞. (3.7)

The last term of (3.7) corresponds to an inertial force of added mass 2πρR3/3,
and the

√−i Wo term corresponds to the Basset force, with
√−i = (1 − i)/

√
2. The

large-distance asymptotic correction to the added-mass contribution due to a rigid wall has
been computed using the potential flow theory, and gives 2πρR3{1 + 3R3/[8(R + D)3]}/3
(see Lamb 1932). By using a boundary integral formulation of the unsteady incompressible
Stokes equations, Fouxon & Leshansky (2018) have generalized the latter result by
including the Basset force, to obtain the large-distance asymptotic drag force that reads

F̃z = −6iπηRAω

(
1 + √−i Wo − i Wo2

9
+ B

R3

(D + R)3

)
, for D/R � 1, (3.8)

where the numerical prefactor B depends on Wo:

B = 1
4

(
1 + √−i Wo − i Wo2

3

) [
1
3

+ 3i
2 Wo2

(
1 + √−i Wo − i Wo2

9

)]
. (3.9)
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3.3. Small-distance regime
In the limit of small sphere–wall distance, which is of importance for colloidal-probe
experiments, the drag force is usually dominated by viscous effects. The out-of-phase
component of the force can be described by lubrication theory (see Batchelor 1967), in
which the main contribution to the drag comes from the confined region between the
sphere and the wall, which leads to the expression

F̃z = −6iπηR2Aω

D
. (3.10)

We stress that the in-phase correction to the latter is still unknown in the lubricated limit. It
would be interesting to perform asymptotic-matching calculations on the unsteady Stokes
equations (see Cox & Brenner 1967) to obtain a self-consistent expression of the effective
added-mass in this limit.

3.4. Low-Womersley-number regime
As pointed out by Fouxon & Leshansky (2018), in the small-frequency limit, which
corresponds to a small Womersley number, the drag force can be expressed in terms of
known integrals by using the Lorentz reciprocal theorem (see Masoud & Stone 2019;
Fouxon et al. 2020). We provide here an alternative derivation of this result.

We introduce the model steady problem of a sphere moving normally to a surface in a
viscous fluid, which corresponds to the problem of § 3.1, at zero frequency, i.e.

∇ · σ̂ = 0, ∇ · v̂ = 0, (3.11a,b)

with the same boundary conditions

v̂(r ∈ S0) = iωAez, v̂(r ∈ Sw) = 0, (3.12a,b)

where σ̂ and v̂ are the fluid stress and velocity fields of the model problem, respectively.
Integrating the Lorentz identity ∇ · (σ̃ · v̂ − σ̂ · ṽ) = iωρṽ · v̂ on the total fluid volume,
we obtain

(iωAez) ·
[∫
S0

σ̂ · n dS0 −
∫
S0

σ̃ · n dS0

]
= iωρ

∫
V

ṽ · v̂ dV, (3.13)

where the divergence theorem has been used. Recalling (3.5), we get

F̃z = F̂z − ρ

A

∫
V

ṽ · v̂ dV. (3.14)

The force F̂z and velocity field v̂ of the model problem correspond to those derived
analytically by Brenner (1961) and Maude (1961) using a modal decomposition. The force
of the model problem thus reads

F̂z

6iπηRωA
= 4

3
sinh(α)

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)

×
{

1 − 2 sinh[(2n + 1)α] + (2n + 1) sinh(2α)

t[2 sinh((n + 1
2)α)]2 − [(2n + 1) sinh(α)]2

}
, (3.15)

with cosh(α) = 1 + D/R. Nevertheless, the unsteady velocity field ṽ in (3.14) is still
unknown, so the drag force F̃z cannot be found exactly.
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Figure 4. (a) Typical mesh used in the finite-element method. (b) Streamlines of the in-phase flow field,
obtained numerically. (c) Streamlines of the out-of-phase flow field, obtained numerically. The squared
Womersley number is set to Wo2 = 10, such that δ ≈ 0.31R. The red dashed lines indicate a sphere of radius
R + δ.

Analytical progress can be made in the low-Wo regime, where the unsteady velocity
field can be approximated by the steady solution with O(Wo2) corrections, as ṽ = v̂[1 +
O(Wo2)]. In this limit, at leading order in inertial contributions, the drag force reduces to

F̃z = F̂z − ρ

A

∫
V

v̂2 dV. (3.16)

The volume integral in (3.16) can then be evaluated numerically using the model velocity
field provided by Brenner (1961). The volume integral in (3.16) always converges as the
velocity field v̂ decays exponentially at large radius.

3.5. Finite-element method
We complement the previous asymptotic expressions of the drag force with full numerical
solutions. Using the open-source finite-element library Nutils (see van Zwieten, van
Zwieten & Hoitinga 2022), we solve (3.3). The axisymmetric velocity and pressure fields
are defined on a 320 × 320 element mesh, spaced uniformly on a rectangular domain
[0 ≤ τ ≤ α, 0 ≤ σ ≤ π]. We then use the bipolar coordinate transform

r = a
sin(σ )

cosh(τ ) − cos(σ )
, z = a

sinh(τ )

cosh(τ ) − cos(σ )
, (3.17a,b)

with a = R sinh α. The resulting mesh, when axisymmetry is considered, spans the entire
domain where r > 0 and z > 0, with the exception of a circular region corresponding to the
sphere, as shown in figure 4. On the symmetry axis (r = 0), the flow in the radial direction
is constrained and the vertical flow is required to be shear-free. At the wall surface (z = 0),
the velocity field is set to zero. Finally, on the surface of the sphere, the radial and vertical
velocity components are set to zero and unity (imaginary part) respectively, following
(3.4a,b). From the calculated velocity and pressure fields, the total force exerted on the
particle can be computed directly using (3.5). Typical flow fields are shown in figures
4(b,c).
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Figure 5. Real part of the total hydrodynamic force, normalized by the inertial force scale,
Re[F̃z]/(ρR3Aω2) = m/(ρR3), as a function of the normalized sphere–wall distance D/R. The four panels
(a–d) correspond to different Womersley numbers, as indicated. The numerical solutions of § 3.5 are shown
with solid lines. The bulk BBO force of (3.7) is displayed with light orange dashed lines. The large-distance
asymptotic expression of (3.8) is shown with blue dashed lines. The low-Wo expansion of (3.16) is shown with
a dark orange dashed line in (a) and (b). The insets in (c) and (d) show zooms near the wall.

4. Results

4.1. Drag force
The total hydrodynamic force is decomposed into its in-phase and out-of-phase parts as
F̃z = mAω2 − iγ Aω, and shown in figures 5 and 6 versus the dimensionless sphere–wall
distance. First, the BBO force of (3.7) agrees well with the simulation results at large
distance, for all Wo. The infinite-distance rescaled effective mass is found to increase with
decreasing Womersley number as ∼ 1/Wo, for Wo2 � 1. This effect arises from the Basset
term in (3.7). Indeed, invoking the velocity scale Aω, one finds a Basset force that scales as
R2√ρηω Aω ∼ ρR3Aω2/Wo. This could rationalize the experimental observations made
in figure 2, where the large-distance resonance frequency of the colloidal probe changes
in liquids of different viscosities. Conversely, the rescaled damping coefficient increases
with increasing Womersley number as Wo, for Wo2 � 1 (see figure 6). Here again, this
effect originates from the Basset force that also scales as ηRAω Wo.

Interestingly, the behaviour of the rescaled effective mass with dimensionless distance
is not universal. For large Wo, the rescaled effective mass decreases with increasing
normalized distance. Furthermore, the large-distance asymptotic expression of (3.8)
describes accurately the rescaled effective mass in the Wo2 � 1 regime. Indeed, (3.8)
is valid as long as the sphere–wall distance exceeds the viscous penetration length,
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Figure 6. Opposite of the imaginary part of the total hydrodynamic force, normalized by the viscous force
scale, −Im[F̃z]/(ηRAω) = γ /(ηR), as a function of the normalized sphere–wall distance D/R. The four panels
(a–d) correspond to different Womersley numbers, as indicated. The numerical solutions of § 3.5 are shown
with solid lines. The bulk BBO force of (3.7) is displayed with light orange dashed lines. The large-distance
asymptotic expression of (3.8) is shown with blue dashed lines. The viscous solution of (3.15) is shown with
red dashed lines.

i.e. D � δ = R/Wo. Near the wall, deviations of the rescaled effective mass from the
large-distance asymptotic expression are observed systematically (see insets in figures
5c,d), and are comparable to ∼ 1 in magnitude. In sharp contrast, for small Wo, the
rescaled effective mass decreases with decreasing dimensionless distance. The typical
Wo value at which the effective mass variation with distance changes sign is given by
Wo2 ≈ 5. In addition, in the small-Wo regime, the numerical solution agrees well with the
asymptotic expression (3.16) (see figure 5a) at small dimensionless distances. Eventually,
at vanishing sphere–wall distances, the effective mass tends towards a constant value,
found numerically to be

m ≈ 11.45ρR3, for D � R � δ. (4.1)

Furthermore, an intermediate regime where the rescaled effective mass increases in an
affine manner with the dimensionless distance is observed in figure 5(a), as predicted by
Fouxon & Leshansky (2018):

m = 9π

4
ρR2(R + D), for R � D � δ. (4.2)

The latter asymptotic expression has been obtained by considering the Lorentz correction
to the Stokes drag at large distance (see Lorentz 1907; Happel & Brenner 1983).
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Unsteady drag on an immersed sphere oscillating near a wall

The rescaled damping coefficient decreases with increasing dimensionless distance
(see figure 6). At low Wo, which corresponds to the low-frequency regime, the rescaled
damping coefficient is well described at all distances by the steady drag force of (3.15).
However, at large Wo, we observe a transition from the BBO expression at large distance to
the steady drag force at small distance. The typical distance at which the transition occurs
is D ≈ δ, which is smaller than R. In this regime, the rescaled damping coefficient diverges
as ∼ 1/D, as predicted by lubrication theory (see (3.10)).

4.2. Comparison of the model with experiments
We now turn to a comparison of the model with experiments. The resonance properties of
the colloidal probe are quantified by the resonance frequency ω0/(2π) and quality factor
Q, as measured by fitting the power spectral density to the harmonic oscillator model
(see § 2.3). The resulting values of these two quantities were already shown in figure 3,
as functions of the sphere–wall distance, for three different liquids of various kinematic
viscosities.

Since the resonance frequency variations are small, typically of the order of 5 % or
less of the bulk resonance frequency, we perform a Taylor expansion of the resonance
frequency at first order in mint/m∞:

ω0 =
√

kc

m∞ + mint
≈ ω∞

0

(
1 − mint

2m∞

)
. (4.3)

We then compute the resonance frequency at all distances from the numerical simulations,
by using (3.6). The Womersley number is set by using the bulk resonance frequency,
through Wo2 = R2ω∞

0 /ν. The resulting Wo2 values are 2.4, 18.1 and 31.7 for silicone
oil, dodecane and water, respectively. As shown in figures 3(a,c,e), the experimental
results agree with the numerical simulation, which confirms that the modification of
the resonance frequency of the oscillator originates from the hydrodynamic interactions
between the sphere and the wall.

Similarly, we invoke an approximate expression of the quality factor:

Q = Q∞
m∞ω∞

0
mω0

(
1 + γintQ∞ω∞

0
kc

) ≈ Q∞(
1 + γintQ∞ω∞

0
kc

) . (4.4)

We then compute the quality factor at all distances from the numerical simulations, by
using (3.6), and setting the same Wo values as given above. As shown in figures 3(b,d, f ),
the experimental results agree with the numerical simulation, confirming that the decrease
of the quality factor is essentially due to the increase of the viscous Stokes drag as the
sphere–wall distance is reduced.

5. Conclusion

We investigated the hydrodynamic force exerted on an immersed sphere oscillating
normally to a rigid planar wall, by using a combination of colloidal-probe AFM
experiments, finite-element simulations and asymptotic calculations. The in-phase and
out-of-phase components of the hydrodynamic force are obtained from the measurements
of the resonance frequency and damping of the thermal motion of the probe for various
sphere–wall distances. A shift in the resonance frequency of the probe was observed
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with decreasing sphere–wall distance, revealing a striking wall-induced unsteady effect:
the resonance frequency was found to increase with decreasing sphere–wall distance
in viscous liquids, whereas the opposite trend was observed in low-viscosity liquids
such as water. By solving the unsteady incompressible Stokes equations numerically,
the hydrodynamic force was computed at all distances. The added mass and dissipation
increase due to the presence of the wall were then extracted and compared to their
experimental counterparts – with excellent agreement. In addition, at large distance, we
recovered the analytical expression derived by Fouxon & Leshansky (2018). Besides, in
the low-Womersley-number limit, the hydrodynamic force could be expressed in a simple
integral form using the Lorentz reciprocal theorem, which was validated by the numerical
simulations. Beneath the fundamental interest for confined or interfacial fluid dynamics,
the present results might be of practical importance for colloidal experiments, because
they clarify the hydrodynamic drag acting on a spherical particle near a wall. Essentially,
our findings highlight the crucial but sometimes overlooked role played by unsteady fluid
inertia in a low-Reynolds-number flow.
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