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A B S T R A C T

Geothermal systems can be used to produce low-emission energy throughout the day and night, regardless of
the weather conditions. These features make geothermal systems a sustainable and reliable energy source,
which can be exploited on a much larger scale than it is now. Remote sensing techniques can support
detecting areas potentially suitable for geothermal energy production, thereby reducing the costs of preliminary
exploration. The Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) can
provide nighttime thermal imagery, which can be used for geothermal anomaly detection. This paper presents a
method for automated detection of geothermal anomalies using nighttime ECOSTRESS data of the study area
in Olkaria, Kenya. The proposed detection method is a kernel-based one, and includes adaptions of kernel
size for the cases of large geothermal anomalies. The accuracy of the method is verified with reference data
acquired during field work. A producer’s accuracy of 82% is achieved, which is on average 56% points better
than in randomised anomaly maps. The possible sources of errors in detection are heat capacity of surfaces,
terrain features and vegetation masking the thermal signatures. The high producer’s accuracy proves potential
for application in global mapping of geothermal anomalies.
1. Introduction

In the current situation of climate change, a transition towards
sustainable energy sources is urgently needed. One of the renewable en-
ergy sources with low CO2 emissions is heat from volcanic geothermal
systems, where fluids and steam contained in a subsurface reservoir are
brought to the surface and steam is used to produce electricity (Dickson
and Fanelli, 2013; DiPippo, 2012; Mock et al., 1997; van der Meer
et al., 2014). As geothermal heat sources can be utilised constantly,
they provide a reliable alternative to fossil fuel based electricity pro-
duction (Lee, 2004). Geothermal resources could be used much more
extensively than now, therefore it is important to find new geothermal
energy sources on a global scale. For this purpose, remote sensing
techniques can be used.

Presence of a geothermal system at depth is often accompanied by
geothermal surface manifestations, such as hot water springs, steaming
grounds, fumaroles and heated grounds (van der Meer et al., 2014;
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Scott, 2012). Geothermal surface temperature spatial anomalies (fur-
ther in text referred to as ‘‘geothermal anomalies’’) are areas, where
heat from a geothermal system reaches the surface causing the surface
temperature to rise enough to be detected as hotter than the surround-
ings. Sometimes, vegetation in such an area is scarce or phenology
of vegetation differs from the surrounding vegetation; some soil dis-
colouration, hydrothermal mineral deposits, or clay alteration may also
be visible (van der Meer et al., 2014).

Geothermal systems can be detected in remote sensing imagery
acquired from different sources: drone, aircraft, and satellite. Although
using high-resolution imagery provided by drone and aircraft surveys
allows resolving very fine details, such surveys are very costly and
conducting them is dependent on multiple factors such as weather
conditions (including wind), or permits to fly an aircraft or a drone, not
to mention the high travel and customs expenses. Since using space-
borne imagery is independent of most of these obstacles (apart from
cloud cover during acquisition) and is typically more cost-effective,
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therefore, this kind of data seem the most suitable for the primary
exploration.

However, detection of geothermal anomalies in space-borne im-
agery is influenced by several factors, such as strength and size of
the anomaly, its temperature, albedo, moisture content of the surface,
steam interference, weather conditions at the acquisition time, viewing
angle of the instrument, soil compaction, rock coherence, and land
cover (Calvin et al., 2005; Coolbaugh et al., 2007; Qin et al., 2011;
Vaughan et al., 2012; Watson et al., 2008). Additionally, a sensor needs
specific features to detect an anomaly, such as high spatial resolution
and detector sensitivity. Geothermal anomalies can be detected by
identifying geothermal derived mineral deposits (Hewson et al., 2020;
van der Meer et al., 2014), but the more direct method would be to
detect surface thermal anomalies created by heat leakage to the surface.
Such anomalies are often smaller than a typical pixel footprint of a
space-borne thermal sensor (e.g., 100 m in TIRS sensor of Landsat-8),
nd have a low temperature contrast to the surroundings, which poses
challenge for remote sensing based detection methods of geothermal

nomalies (Vaughan et al., 2010, 2012; Gutiérrez et al., 2012).
Until now, there have been only few attempts for automated de-

ection of geothermal anomalies using data of moderate spatial resolu-
ion (<100 m). Often, researchers visually compared thermal imagery
sometimes corrected for some of the aforementioned effects) to maps
f known geothermally active areas and acknowledged visibility of
nomalies, while not providing a method suited for automated de-
ection (Abubakar et al., 2019; Chan and Chang, 2018; Chan et al.,
018; Prayogo et al., 2019; Yuhendra, 2020). Some researchers used
hresholding techniques to automatically identify geothermal anoma-
ies (Coolbaugh et al., 2007; Wang et al., 2019; Gemitzi et al., 2021),
owever the authors do not provide quantitatively assessed accuracy
esults, that provide an overall accuracy.

Global thresholding detection techniques, which are used to detect
.g., forest fires, often cannot be used successfully, because geothermal
nomalies are usually not the strongest source of thermal emission in an
mage (Wang et al., 2019; Coolbaugh et al., 2007). A similar situation
s noted with coal fires (Hecker et al., 2007; Kuenzer et al., 2007;
hang, 2004), which also produce only moderately anomalous (above
ackground), sub-pixel sized temperature anomalies at the surface.
n coal fire detection attempts, authors frequently propose using a
ernel-based thresholding method to detect coal fires in, for example,
andsat-7 ETM+ and MODIS imagery (Kuenzer et al., 2007; Zhang,
004). Such a method retrieves statistical outliers in image subsets,
hich can be suitable for geothermal anomaly detection as well.

Furthermore, selecting the optimal remote sensing dataset is
aramount for the analysis, because its parameters can strongly influ-
nce the accuracy of detection. An ideal dataset for detecting geother-
al anomalies would have bands in thermal infrared, high spatial

esolution, revisit time of less than 10 days, and acquisition at pre-
awn local time. However, these parameters are challenging to fulfil:
nly a few currently available thermal sensors have GSD <100m,
ue to longer wavelength, with its implication on detector size and
ptical system. Moreover, the sensors with fine GSD typically have
ow revisit time, which decreases a probability of acquiring cloud free
magery. The most currently available sensors have Sun-synchronous
rbits that have acquisition time in the early night, although imagery
cquired pre-dawn is optimal for geothermal anomaly detection. Pre-
awn imagery is optimal for geothermal anomaly detection, because
t this time the land masses have had the maximum time to radiate
he accumulated solar heat, thereby increasing the contrast between
geothermal anomaly which stays hot overnight and its surroundings
hich cool down (Romaguera et al., 2018; Coolbaugh et al., 2007).

Researchers attempting to automatically detect geothermal anoma-
ies mainly used imagery from ASTER and various sensors of the
andsat platform series e.g., Coolbaugh et al. (2007) and Watson
t al. (2008). ASTER images seem to be suitable for detecting surface
2

emperature anomalies due to high spatial resolution of data (90 m
within a swath width of 60 km), and multiple spectral bands in thermal
infrared (Coolbaugh et al., 2007; Eneva et al., 2006; Vaughan et al.,
2010). The advantage of using Landsat data is the large area coverage
(swath width is 185 km in TIRS and very similar for other sensors of
Landsat platforms) (Watson et al., 2008) with a high spatial resolution
of 100 m in thermal sensors of Landsat-9 and Landsat-8. Despite the
favourable spatial dimensions of Landsat and ASTER imagery, their
fixed orbits do not allow for acquisitions at optimal pre-dawn times.

The ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS) is a thermal infrared instrument, which
fulfils most of the above-mentioned requirements. The swath width
of ECOSTRESS at 384 km is even larger than the swath width of
Landsat’s sensors, while the pixel footprint of its products is 70 m,
which is finer than that of ASTER and Landsat series. ECOSTRESS data
have not been used for automated detection of geothermal anomalies
so far (as of 2023). Some studies started analysing the feasibility of
using ECOSTRESS data in geothermal exploration, including Silvestri
et al. (2020b) who used ECOSTRESS data in a study that compared
temperatures sensed with ASTER, Landsat-8, and ECOSTRESS from
geothermally active areas in Parco delle Biancane, Italy. The purpose of
the study was to evaluate the reliability of the retrieved Land Surface
Temperature (LST) for future geophysical studies in geothermal field,
and concludes that ECOSTRESS provides a valuable data source for
such analyses. Silvestri et al. (2020a) also used ECOSTRESS data in
comparison to aircraft and drone imagery. Thus, a multiscale validation
of ECOSTRESS data was conducted that confirmed its calculated LST.
However, these studies only provide some punctual comparisons of
retrieved LST and not a detailed study on detection feasibility with
quantified accuracy results.

In the presented research, a method for the automated detection
of LST anomalies in a geothermally active area using ECOSTRESS
data is described. Our study area, located in Olkaria (Kenya), is an
example of a geothermally active area in the East African Rift. The used
method detects local statistical outliers in subsets of the study area to
avoid errors being introduced by a global temperature threshold. The
detected anomalies are validated using ground observations from field
work and auxiliary maps.

2. Materials and methods

2.1. Study area

Our study area is located in the Olkaria region of Kenya (Fig. 1),
south of Lake Naivasha. The area, which covers almost 400 km2, is
typical of the East African Rift, with volcanic geology and a mix of
savanna vegetation. The whole terrain has a high elevation at ap-
proximately 2000 m above sea level. Numerous volcanic craters can
be found there (such as Longonot volcano, Suswa caldera, and the
Eburru volcanic complex), as well as old lava flows, hot grounds, and
fumaroles (Hewson et al., 2020; Clarke et al., 1989).

The lithology consists of six main rock groups: the basement for-
mations from the Pleistocene, Pre-Mau volcanics, Mau tuffs, plateau
trachytes, Olkaria basalt and upper Olkaria volcanic (Omenda, 1998).
The plateau trachytes, which can be found in the subsurface, are the
holding rocks for the geothermal reservoir in the Olkaria East field,
while the basalt (which can have up to 500 m thickness) serve as a cap
rock (Clarke et al., 1989). The geologic structures in the Greater Olkaria
area consist of a ring structure, the Ol’Njorowa gorge, and several fault
lines cutting through the area (Munyiri, 2016) (Fig. 1).

Fumaroles in Olkaria exhibit temperatures ranging between 312–
371 K (40–99 ◦C; with boiling temperature at 93.4 ◦C at the height of
2000 m above sea level), and the circulation of hydrothermal fluids can
cause soil alteration, resulting in discolouration. In the altered areas,
the vegetation cover is often scarce or only the so-called geothermal
grass is present (Fimbristylis exilis; a species of grass growing typically

in geothermally active areas).
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Fig. 1. The study area extent (red box) in Olkaria, Kenya. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Table 1
Specification of ECOSTRESS sensor and its LSTE product.

Parameter Value

Wavelengths sensed [μm] 8.29, *8.78, 9.20, *10.49, 12.09
*Not available for some datasets

Swath width ≈384 km
Nominal radiometric accuracy 0.5 K at 300 K
Revisit time Irregular, ≈4 days
Acquisition time Irregular, due to the precessing orbit of the ISS
Product name Land Surface Temperature and Emissivity (LSTE)
Product pixel footprint 70 m

The geothermal exploration in Olkaria started in 1955, and com-
mercial generation of electricity has been conducted since 1981. The
geothermal power production is conducted in 5 large conventional
single flash condensing type power plants and 16 well-head units with
capacity of 799 MWe. Additionally, there are over 250 wells pumping
hot brine-steam mixture to the power plants, or injecting cooled off
water back into the reservoir.

2.2. Satellite data

The ECOSTRESS sensor is installed on the International Space Sta-
tion (ISS), which has a precessing orbit, allowing acquisitions at dif-
ferent local times across day and night. ECOSTRESS was launched
in mid-2018, and acquisition of images continues until September
2029 (Hook, 2023).1 Due to its characteristics, such as high spatial res-
olution and large swath width (Table 1), ECOSTRESS can be important
for geothermal anomaly detection.

1 More information can be found in https://ecostress.jpl.nasa.gov/.
3

In the processing, nighttime level-2 Land Surface Temperature and
Emissivity (LSTE) ECOSTRESS products were used, which were ac-
quired since the start of the mission. Images in which the majority of
the study area was covered with clouds were excluded from the analy-
sis; altogether, 22 mostly cloud-free all-nighttime images from Build 6
were used.2 The list of the used datasets is provided in Table A.6.

The LSTE products are atmospherically corrected and have a spatial
resolution of ≈70 × 70m. L1B GEO products, containing geographic
coordinates per pixel, were used for georeferencing. Further details on
the image product used can be found in Hook and Hulley (2018). An
example of ECOSTRESS images is presented in Fig. 2.

2.3. Auxiliary data

Several auxiliary datasets were used in the validation, which are
described in detail below. The datasets are presented in Fig. 3, and
comprise:

Soil temperature measurements from a field campaign. During a field cam-
paign conducted in March 2022, 56 sites in the study area were visited
to create a ground validation dataset. The locations of the ground
validation sites were chosen based on a preliminary anomaly map,
locations of fumaroles, hot grounds, and other features suggesting the
existence of an LST anomaly. While visiting the locations during field
work, a temperature measurement was made right beneath (≈1 mm
depth) the soil surface and at 20 cm depth, resulting in two classes:
geothermal and non-geothermal. The temperature measurements were
conducted using Tempmate M1 sensors with extensions for the areas
where the temperature was above 343 K. The accessibility of the ter-
rain influenced the spatial distribution of the ground validation sites

2 Build 7.1 was released in November 2022, and backwards processing of
the archive has started in January 2023 and is not finished as of 2023.

https://ecostress.jpl.nasa.gov/
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Fig. 2. Example ECOSTRESS LST product; image acquired on the 4th April 2021, at 19:02 UTC (22:02 local time). For illustrative purposes, an image before masking is presented,
with annotations for ease of interpretation.
and caused that the size of the classes is not equal. We discuss the
consequences of the class size inequality in Section 4.

In the ground validation data, the sampling locations, where tem-
peratures at 20 cm depth surpassed the surface temperatures by more
than 5 K, or the temperature at 20 cm depth exceeded 313 K, are con-
sidered geothermal areas. Contrary, non-geothermal areas are typically
cooler at depth (but allowing up to 5 K above the surface temperatures,
to account for sudden weather changes), and the temperature at 20 cm
depth does not exceed 313 K.

Additionally, information regarding vegetation cover and type, the
presence of hydrothermal alteration (such as discolouration of the
soil), and any other signs of geothermal activity were noted at each
location. Based on these pieces of information, the ground validation
sites were divided into two categories, indicating presence or absence
of geothermal anomalies.

Fumarole and heated ground location layer. Another validation dataset
used, was a GIS layer containing locations of fumaroles and heated
grounds. The layer containing 102 points is based on locations from a
geological structure map (Clarke et al., 1989), locations visited during
fieldwork, and interpretation of high resolution aerial photos from
ArcGIS high resolution imagery (DigitalGlobe et al., 2021). The extent
of these anomalies is variable, ranging from few meters to few hundred
meters in diameter, however since the dataset consists of points, their
extent cannot be considered in the analysis. Examples are shown in
Fig. 4.

Power plant/well-head location layer. Since power plants and some well-
heads have heat expressions as well, a GIS layer with their locations was
created based on information provided by Kenya Electricity Generating
Company PLC (KenGen) and photo interpretation. This dataset was not
4

included in the accuracy measures, but used for visual comparison of
the results.

2.4. Data processing

The processing of the data consisted of pre-processing and anomaly
detection, which will be described in the following sections.

The pre-processing of the data consists of georeferencing, georef-
erencing improvement, and masking of clouds and radiometric errors.
Due to the fact that only nighttime imagery was used, no topographic
correction was conducted.

Our georeferencing process uses the nearest neighbour resampling,
and georeferencing information provided by the ECOSTRESS L1B GEO
data but with two important adjustments: Firstly, data from one scan
mirror side are used: The ECOSTRESS sensor is using a push-whisk
scanning principle with a continuously rotating double-sided mirror.
The detector array of 256 pixels scans the field of view with one side
of the mirror; the next scan is using the other side. There are always
a few pixels overlap between the two scans (Logan and Smyth, 2019).
During the analysis, a 2-pixel geolocation offset between adjacent scans
was discovered. As a result, the nearest neighbour algorithm, which
by default is used in the standard georeferencing process, leaves a
chessboard pattern (Logan, 2022), that could influence the anomaly
detections. We therefore adapted the georeferencing algorithm to use
pixels from only one scan in the overlapping areas. This approach
creates a discontinuity line between the scans, however these lines do
not influence the detection results.

Secondly, an improved georeferencing approach was used: The geo-
referencing included in the standard processing of ECOSTRESS images
is based on an image matching algorithm (described in ECOSTRESS
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Fig. 3. Auxiliary data used for validation: ground validation sites from the field work (red and blue dots), and fumarole and heated ground locations (yellow diamonds). Background:
high resolution imagery. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: ArcGIS Map Service: Esri, Maxar, Earthstar Geographics, and the GIS User Community.
Level-1 Product User Guide Logan and Smyth, 2019). In the imagery
used, the accuracy of georeferencing was not accurate enough: a mean
error of 14.9 pixel was observed; thus, it was necessary to improve it.
The procedure used to improve the georeferencing of the imagery is
based on matching of water body edges between the reference and
target image. Due to dynamic land cover changes in the region, which
include strong changes of water levels (and thus water body extent), a
separate up-to-date reference is created for each target image. Further
details on the method are described in Soszynska et al. (2023).

Some pixels have been excluded from further analysis, as they can
contain cloud cover or their radiometric quality is insufficient, due to
technical reasons (e.g., radiometric artefacts). Such pixels can influence
anomaly detection and cause errors in the resulting map. The low-
accuracy and cloud pixels were masked using information provided
in the Quality Control layer of the image product. Any pixel with
quality flag ‘‘mandatory’’ greater than 0 (best quality: meaning no
cloud detection, no missing data, and no indicators suggesting high
water vapour), was masked. After this step, the data were ready for
the detection algorithm.

A detection product for each image is calculated by finding outlying
LST values in subsets of the image. The final results of the processing
are the anomaly index map, and the binary anomaly map, which are
created from a time series of detection products.

To derive a detection product, a kernel of 25 × 25 pixels is iterated
over the image, and for each kernel position, its central pixel is anal-
ysed. To test whether the pixel is anomalous, its LST is compared to
its direct neighbourhood (the kernel). A detection threshold is defined
separately for each kernel position: detection threshold = 𝑚𝑒𝑑𝑖𝑎𝑛kernel+
2 K. If the LST of the analysed pixel exceeds the detection threshold, it
is considered anomalous. The 𝑚𝑒𝑑𝑖𝑎𝑛kernel+2K detection threshold was
chosen based on the modelling of ECOSTRESS LSTE accuracy provided
in Hook and Hulley (2018), with the assumption that below this value,
noise might influence the detection.
5

The kernel size of 25 × 25 pixels was chosen to be significantly
larger than the known geothermal anomalies in the field. However,
if the area of a geothermal anomaly comprises most of the consid-
ered kernel, the detection threshold would be calculated mostly from
anomalous pixels, which leads to an omission error. In such a case,
the median LST of the kernel will be substantially larger than the
median LST of the image of the entire study area. Therefore, the median
temperature of each considered kernel is tested first, and in case it
exceeds the median of the image by more than 1 K, the kernel size
is enlarged by 1 pixel in each direction. The enlargement is repeated
until the median LST of the kernel is less than 1 K above image median
(Fig. 5).

The method yields detections that contain possible geothermal
anomalies, from a single image (called ‘‘detection product’’). The
detection products are subsequently summed and post-processing is
conducted. The summed product is normalised to the range between
0–100 in values to enhance interpretation.

The changes of the geothermal activity of an area happen over
many years, which makes it different from, e.g., flooding or fire, image
artefacts, and cloud-mask errors. To distinguish geothermal anomalies
from short-term events, post-processing on the resulting anomaly index
map is conducted to maintain long-term persisting detections only. All
pixels that were detected in two images or less are masked. In addition,
isolated pixel detections were removed in the final product, to ease
interpretation. This product is further referred to as the ‘‘anomaly index
map’’, and contains anomaly index values representing the percentage
of images in which the pixel was detected as an anomaly.

To quantify the detection accuracy compared to ground data, a
binary map of detections was created, by masking all the pixels which
are detected in two or less images and setting the rest of the detected
pixels to 1. The result is a map with detections and background (‘‘binary
anomaly map’’), where each detected contiguous area was given a

unique label.
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Fig. 4. Field work documentation photos for example fumaroles.
2.5. Validation

The validation of the obtained results was done threefold. First, the
anomaly index map was compared to the fumarole and heated ground
location layer. This was done by correlating each pixel with an anomaly
index value greater than 0 with the Euclidean distance to the nearest
fumarole/heated ground. This procedure allows for the quantitative
comparison of the spatial patterns of the geologic structure (depicted
by the fumarole and heated ground locations dataset) to the anomaly
map. Fumaroles and heated grounds do not have clear boundaries,
and therefore it is difficult to account for their extent. The fuma-
role/heated ground location layer contains points only, and therefore
using the Euclidean distance to the nearest fumarole/heated ground
allows accounting for their extent. No spatial correlation between the
two datasets yields random distribution of the scatter plot, while a
high spatial correlation results in concentration of high anomaly index
values in the shortest distances to the nearest fumarole or heated
ground.

In the second validation approach, the binary anomaly map was
treated as a classification result, and compared to the ground vali-
dation sites, which were divided into two categories: geothermal and
non-geothermal. Thus, both commission and omission errors could be
estimated, as well as producer’s and user’s accuracies (as described
in Lillesand et al. 2015). Producer’s accuracy in our case defines
how many geothermal ground validation sites correctly detected in
the binary anomaly map are found in relation to the number of all
geothermal ground validation sites (i.e., number of true positives di-
vided by all positive (geothermal) ground validation sites). Omission
error complements the producer’s accuracy and describes how many
6

geothermal ground validation sites have not been detected in relation
to all geothermal ground validation sites. User’s accuracy describes in
our research the proportion of correctly detected geothermal ground
validation sites to all ground validation sites detected as geothermal
in the binary anomaly map (i.e., true positives divided by the sum
of true and false positives). Commission error complements the user’s
accuracy, and describes how many ground validation sites falsely de-
tected in the binary anomaly map are there in comparison to all ground
validation sites detected as geothermal (i.e., number of false positives
divided by the sum of true and false positives). To accommodate for
a georeferencing error, a tolerance of ± 2 pixels was introduced when
comparing the anomaly map to the ground validation locations. Hence,
a true positive anomaly detection consists of a geothermal ground
validation site, and one or several detected pixels within a 2-pixel
radius in the binary anomaly map. A true negative result, on the other
hand, consists of a non-geothermal ground validation site and not a
single detected pixel within a 2-pixel radius in the binary anomaly
map. All other situations represent either false positives or negatives in
the error matrix. In addition, an auxiliary dataset containing fumarole
and heated ground locations, was used to calculate the producer’s
accuracy. The addition of the 2-pixel radius in validation of the binary
detection map creates a bias, by increasing the number of false positive
detections. We discuss this bias and its consequences in Section 4.

To get a robust estimation on how reliable the results of the pre-
sented method are, we also compared the detection accuracies reported
here, against what the detection accuracy would look like on a com-
pletely random classification. For this step, the same parameters are
used as in the anomaly index map and binary anomaly map (study
area range, pixel size) and create randomised anomaly maps. The
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Fig. 5. Detection method of anomalous pixels in an image.
randomised anomaly maps were created by randomly distributing de-
tections (acquired from the ECOSTRESS anomaly map) through the
image area: in the first case in the form of contiguous areas, which
were randomly rotated and randomly located in the study area (ran-
dom binary anomaly map), in the second case the anomaly index
value per pixel (random anomaly index value). Both randomisation at-
tempts were conducted 100 times, and the accuracy results provided in
Section 3 were calculated by averaging over all random combinations.

Lastly, the binary anomaly map was visually inspected, compared
to the auxiliary datasets and to the visual inspection protocols from
the ground validation sites, to find potential sources of errors.

3. Results

3.1. Anomaly maps

The anomaly index map has a distinct distribution, forming multiple
7

clusters (Fig. 6). Approximately 25% of the detected pixels have the
lowest anomaly index value (<10), while an anomaly index value above
50 is found in less than 5% of the pixels.

The binary map of detected geothermal anomalies, presented in
Fig. 7, contains a total of 267 detected areas. The detected anomalies
cover together 43 km2, which is approximately 11% of the study
area. The detection method identified two very large geothermal areas
(which comprise approximately 18 and 4 km2 respectively), 16 smaller,
and multiple very small geothermal anomalies located mostly in the
southern part of the study area.

3.2. Validation

A visual comparison shows some similarity between the known
fumaroles or heated ground locations and the detected areas (Fig. 8(a)).
For instance, fumaroles and heated grounds in the bottom-centre of the
map (forming a U-shaped group) are clearly depicted in the detection
map. At the same time, some distinct groups of fumaroles have not been

detected at all (e.g., the group to the East from the U-shaped fumarole
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Fig. 6. Anomaly index map. The anomaly index values per pixel represent the percentage of images in which the pixel was detected as an anomaly.
Fig. 7. The binary map of detected surface temperature anomalies. For clarity, only labels of the anomalies referenced further in text have been kept.
group). Additionally, some areas detected in the satellite data are not
reflected in the fumarole/heated ground locations. This might happen
due to an error, but it is also possible that new fumaroles or heated
grounds are detected with the proposed method.
8

To give a more quantified result for the spatial pattern agreement,
the anomaly index can be correlated to the distance to the nearest
fumarole or heated ground, which accounts for remaining geolocation
errors of the images, and the fact that fumaroles are represented as
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Fig. 8. Anomaly index value in comparison to the distance to the nearest fumarole or heated ground. The area depicted in plots is the study area.
point in the reference data, and their area is neglected. The comparison
presented in Fig. 8(c) has a skewed distribution with the highest peak at
the lowest Euclidean distance, and multiple smaller peaks. The highest
anomaly index values are found at the lowest distance to the nearest
fumarole or heated ground, which suggests a correct sensitivity of
the detection method. The secondary peaks suggest that some large
detections are located in areas where no fumaroles or heated grounds
are present (for example, in the north-western part of the study area).

A similar comparison was conducted for a randomised anomaly
map (Fig. 8(b)). The pixels with high anomaly index values are spread
randomly in the image, while fumaroles and heated grounds are con-
centrated in the centre of the map. In Fig. 8(d), the distribution of the
ground validation sites is close to random, especially for the highest
anomaly index.

Ground validation sites were used to calculate confusion matrices
and accuracy measures of the binary anomaly map as well as ran-
domised versions of the anomaly map (described in Section 2.5) in
Tables 2, 3, 4 and 5. The confusion matrix for the detection method
(Table 2) presents the highest number of correctly classified geothermal
ground validation sites (geothermal in the reference and in detection),
which is confirmed by the high producer’s accuracy in Table 5.

Overall, producer’s and user’s accuracy, as well as commission
and omission errors, are calculated from the ground validation sites.
The producer’s accuracy calculated from fumarole and heated ground
location adds information to the measures from ground validation
sites. Generally, the detection method obtained several percent points
higher overall accuracy than its randomised versions. The producer’s
9

Table 2
Confusion matrices for the detection method.

Detection 𝛴 reference

Geothermal Non-geothermal

Reference
Geothermal 14 3 17
Non-geothermal 15 24 39

𝛴 detection 29 27 56

Table 3
Confusion matrices for the randomised contiguous areas.

Randomised 𝛴 reference
contiguous areas

Geothermal Non-geothermal

Reference
Geothermal 6 ± 3.7 11 ± 3.7 17
Non-geothermal 13 ± 3.9 26 ± 3.9 39

𝛴 Randomised
contiguous areas

19 ± 3.8 37 ± 3.8 56

accuracy is much higher in the anomaly map, which means that the
geothermal ground validation sites are found much more reliably in
the anomaly map (48% points higher in randomised contiguous areas,
and 63% in randomised pixels). The user’s accuracy of the anomaly
map is slightly lower than the producer’s accuracy, which causes that
the overall accuracy decreases as well. The high commission error
in the binary detection map causes the overall accuracy to decrease,
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Table 4
Confusion matrices for the randomised pixels.

Randomised pixels 𝛴 reference

Geothermal Non-geothermal

Reference
Geothermal 3 ± 1.6 14 ± 1.6 17
Non-geothermal 8 ± 2.4 31 ± 2.4 39

𝛴 Randomised pixels 11 ± 2.0 45 ± 2.0 56

Table 5
Accuracy results for the detection binary map and for the randomised versions using
random contiguous areas and randomised anomaly index values. The results for
randomised versions are averaged over 100 random maps. The accuracies have been
calculated using ground validation sites (both geothermal and non-geothermal points),
and fumarole locations.

Detection Randomised Randomised
contiguous pixels
areas

Overall accuracy
(geothermal and non-geothermal) 68% 57% ± 7.1% 60% ± 4.9%
Producers accuracy (geothermal) 82% 34% ± 22.0% 19% ± 9.5%
Producers accuracy (non-geothermal) 62% 68% ± 9.9% 78% ± 6.2%
Users accuracy (geothermal) 48% 29% ± 13.2% 28% ± 11.5%
Users accuracy (non-geothermal) 89% 71% ± 6.8% 69% ± 2.9%
Omission error (geothermal) 18% 66% ± 22.0% 81% ± 9.5%
Omission error (non-geothermal) 38% 32% ± 9.9% 22% ± 6.2%
Commission error (geothermal) 52% 71% ± 13.2% 72% ± 11.5%
Commission error (non-geothermal) 11% 29% ± 6.8% 31% ± 2.9%
Fumarole accuracy 55% 33% ± 13.0% 21% ± 4.4%

likely due to the introduction of the 2-pixel tolerance. Nevertheless,
the user’s accuracy is still higher in the anomaly map than in the
randomised versions. Importantly, the omission error of the geothermal
ground validation sites is much higher in the randomised versions of
the anomaly map. The same situation is visible in the fumarole/heated
ground accuracy (which is producer’s accuracy for the fumarole and
heated ground location layer): this accuracy measure in the anomaly
map is higher than in the randomised versions. In general, the anomaly
map clearly identifies geothermal areas more accurately, although the
overall accuracy is not significantly higher. At the same time, the
accuracies for the non-geothermal ground validation sites are similar
in all versions of the map, which is explained by the fact that the
non-geothermal ground validation sites comprise a majority of the
ground validation dataset (70% of all ground validation sites) as well
as the majority of the pixels (89% of all pixels). Thus, the statistical
probability that a pixel considered non-geothermal will also cover a
point which is non-geothermal in reality is 62%. This introduces an
additional positive accuracy bias for the randomised versions of the
map.

A visual inspection of the binary anomaly map allows identifying
several omitted geothermal ground validation sites, and presume the
cause of omission (Fig. 9). For instance, the ground validation sites
K26 and HF02 were omitted most probably due to too small size
of the geothermal area (which is approximately 40% of a pixel area
in both cases), and vegetation coverage causing insulation. Another
possibility for explaining the omission of HF02 is the low temperature
of the anomaly (approximately 323 K at 20 cm depth). This is an area
with relict fumarolic activity which is in some distance to the sites
with strong heat signatures. Another reason for omission error, can be
presumed at the site K24. This site is placed within a terrain crack
covered by vegetation, possibly causing masking of the thermal signal
and directing the majority of thermal emission not towards the sensor.

Several sources of commission errors can also be interpreted on the
map. In the case of ground validation sites K25, K38, and K55, the de-
tections are false positive due to a thermal signal from a neighbouring
power plant or well-head (detections 8 and 9 in Fig. 7). Altogether, 11
out of 16 power plant or well-heads have prominent thermal signatures
which are detected in the binary anomaly map. Although these areas do
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not fulfil the temperature conditions to be considered geothermal (see
Section 2 for details), they do emit thermal radiation higher than their
surroundings, and therefore are detected as anomalies. Heat signature
from the neighbouring active fumaroles can be another cause for a
commission error, due to signal being spread among the neighbouring
pixels. This is the case of ground validation sites K17, K32, and K33. In
the anomaly map, detections are validated within a tolerance limit of
±2 pixels, which causes false positive detection in these ground valida-
tion sites (detections 5, 6 and 11). Lastly, ground validation sites K11
and K36 are placed on rocky hills with barely any vegetation, which
possibly lose heat in the night more slowly than their surroundings,
due to a high heat capacity (detections 1 and 4).

4. Discussion

Finding new, renewable and sustainable sources for energy produc-
tion, such as heat from volcanic geothermal systems, is an important
task to support energy transition from fossil fuels. The particular orbit
of the International Space Station (on which the ECOSTRESS sensor
is mounted), allows acquiring imagery at different times, which is a
promising asset for early exploration of geothermal sources.
ECOSTRESS data have not been used for automated geothermal anomaly
detection until now, and testing its detection ability is an important
task.

The main difficulty in detecting the geothermal anomalies is the
fact that they are usually rather small and weak thermal emission
sources, especially with respect to water bodies and cities in an image.
Therefore, a kernel based method was developed that uses statistical
measures of the observed image subset for derivation of anomalous pix-
els. Since our method allows considering the direct surroundings of an
anomaly, even a weak geothermal anomaly can be identified because
of its contrast to its neighbourhood, given that the neighbourhood does
not contain warmer surfaces, such as water bodies or urbanised areas.
A kernel-size adaption was added in our method, to account for large
anomalies that would be omitted in a smaller kernel.

Using a time series of nighttime ECOSTRESS data, allowed to detect
82% of geothermal anomalies in our study area. Since remote sensing
detection of geothermal anomalies serves as a preliminary exploration
support, it is much more important to obtain high producer’s accuracy
than high user’s accuracy. This strategy accepts a bias towards detec-
tion, because false positives potentially provide less financial losses
than false negatives. This is fulfilled in the presented results: the
producer’s accuracy achieved in the anomaly map is high (although the
user’s accuracy is lower). The validation procedure introduces a bias,
because a non-geothermal point will be considered a false negative,
when a detection was made within 2 pixel distance.

In order to better understand the accuracy results, it is important
to find the potential error sources in the anomaly map. The visual in-
spection of the anomaly map, allowed identifying five potential sources
of errors related to the terrain: (1) Terrain features, vegetation, and
steam, which can cover the anomaly or block the thermal emission in
the sensor’s direction, (2) heat capacity and heat decay of surfaces,
which can cause false positive detection, (3) too low temperature of
the anomaly to be detected, (4) too small extent of the anomaly to
be detected, and (5) uncertainty of what a true detection is. The last
point refers to the fact, that we do not have a clear understanding of
the anomaly characteristics necessary to allow a detection in a space-
borne thermal image. The method is not designed to detect fumaroles
or heated grounds, but rather surface temperature anomalies, such as
geothermal grounds, although in some cases it detects fumaroles and
heated grounds very accurately. In fact, detection 6 (Fig. 7) is at a
fumarole location marked in the fumarole/heated ground locations,
while at the same time the measurement at the ground validation site
K33 revealed it as non-geothermal (Fig. 9).

The land cover might induce errors; for instance, in areas where
vegetation cover is not present, heating up during the day will be
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Fig. 9. Binary anomaly map and auxiliary layers: ground validation sites (labelled), fumarole and hot ground locations, and power plant/well-head locations.
stronger. It was observed that the LST of bare grounds is higher
than the LST of vegetated areas all throughout the night. Hence, non-
vegetated areas will appear warmer in the imagery, and possibly cause
a false detection. A detailed study on vegetation (or in broader terms:
land cover) would be beneficial for understanding of remote sensing
potential for geothermal anomaly detection.

Some errors might be introduced, due to the form of the terrain. This
conclusion is also found in Coolbaugh et al. (2007) and Gutiérrez et al.
(2012). In our case, detections 2 and 3 in Fig. 7 are located at the steep
edges of a gorge. The gorge appears cooler in the ECOSTRESS imagery,
possibly because it receives less insolation. Contrast to a neighbouring
cooler area may cause a commission error, however it was not possible
to verify these detections during the field work, due to its limited
accessibility.

Another source of commission errors related to the terrain is slope
aspect (Eneva et al., 2006). Although for the equatorial regions like
Olkaria, aspect may not play the most important role (especially for
the equinox periods), for other regions located further away from
the Equator, heating up of southern or northern slopes can be much
stronger than others. This heat may still be visible in nighttime imagery,
notably if the image acquisition time is shortly after sunset.

Some fumaroles and heated grounds in the study area release steam
in irregular time intervals, which can obstruct the thermal emission
from reaching the sensor. The steam occurrence is unpredictable and
therefore its influence on detection accuracy is difficult to quantify.
Since the fumaroles are monitored only from time to time (and never
in the nighttime), there is no information on steam occurrence during
the acquisition times of ECOSTRESS images.

All the previously described effects are additionally influenced by
heat capacity, density, conductivity, and thermal emissivity of materi-
als in a pixel. Different lithologies affect the situation: rock outcrops,
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soil, and ash deposits will all have different cooling rates, in addition
to different emissivity (Coolbaugh et al., 2007). Moreover, moisture
will affect emissivity, and in some cases heat capacity (e.g., of soil) as
well (Coolbaugh et al., 2007). These effects play a considerable role
in the accuracy of geothermal anomaly detection with remote sensing
techniques. A detailed study regarding heat decay in different litholo-
gies, weather conditions, and land cover types would be beneficial for
the understanding of all those aforementioned effects.

Another group of error sources can be related to data and pre-
processing. We observed that inaccurate cloud masking can lead to
false positive detections; as clouds are colder than the land masses,
the areas surrounding the clouds, will be detected as anomalies. Such
detections were removed, if all pixels marked as anomalous in less
than three images are removed in post-processing. Additionally, the
georeferencing accuracy can introduce errors as well. The ±2 pixel
buffer was included to account for such errors, although this introduces
a positive bias towards detections and causes commission errors in
some cases.

The sensitivity of a sensor, and image quality, play an impor-
tant role for detection accuracy. The coarser the spatial resolution,
the lower the contrast between the pixel containing the geothermal
anomaly and surroundings, which is the most important parameter in
for detection. Sharpness of images and low level of noise can addi-
tionally decrease this contrast. Generally, long-wave infrared Mercury–
Cadmium–Telluride sensors are more prone to noise, than, for instance,
mid-wave-IR sensors of the same type; in many cases, some line arte-
facts are visible in the image (e.g., visible in the north-eastern part of
the ECOSTRESS image in Fig. 2). This leads to errors if line artefacts
are not masked, but even in cases when line artefacts are correctly
masked (e.g., using quality flags provided with ECOSTRESS LST image)
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an anomaly falling in such a line will be omitted. A sensitivity analysis
of image quality, including the minimum size of the anomaly to be
detected for the given ground sampling distance of a sensor, radiomet-
ric accuracy, Signal-to-Noise-Ratio, and Point-Spread-Function, would
complement the analysis on feasibility of a sensor for this application.

The study area of Olkaria, Kenya, provides a typical example of
geothermally active areas in the East African Rift. The study was
limited to only one area, due to availability of reference data. The
LST in Olkaria is fairly homogeneous, and the detection threshold of
𝑚𝑒𝑑𝑖𝑎𝑛 + 2K yields satisfactory results. The findings of this study are
applicable to areas of similar characteristics, such as in other areas
of the East African Rift, but possibly parameter values (e.g., detection
threshold) may require adjustments for other study areas. Factors such
as snow cover, and climate differences possibly need to be accounted
for in other study areas. It would be beneficial to test this approach in
a different study area, possibly with different climate, to find out how
regional characteristics influence the accuracy of detections.

Moreover, considering the accuracy of the results obtained, it is
important to understand the limitations of the validation. The thermal
anomalies presented in Fig. 7 were validated, by comparing the location
of detections with reference layers: fumaroles and heated grounds,
ground validation sites, and power plant/well-head locations. In the
course of field work, it was not possible to visit all the places detected,
and distribution of the ground validation sites was influenced by ac-
cessibility of the terrain. The accuracy results are possibly positively
biased, because of the ±2 pixel tolerance for detections. However, it is
important to note that lack of ground validation site suggesting geother-
mal activity in specific detected areas, does not necessarily mean that
these detections are false positive. At the same time, the geothermal
ground validation sites are underrepresented: there are 17 geothermal
ground validation sites, and 39 non-geothermal validation sites. This
increases the probability that a non-geothermal ground validation site
will be randomly associated to a non-detected pixel. Thus, the accuracy
measures regarding the non-geothermal points are less reliable in the
case of randomised anomaly maps.

In validation of detection results, a layer containing fumarole and
heated grounds locations was used as a reference. Correlation of
anomaly index values with distance to the nearest fumarole/heated
ground provides an approximation of accuracy, however the interpreta-
tion requires some caution. Hydrothermal features, such as fumaroles,
depend on geologic structures transporting hot water to the surface.
The location and orientation of such structures depends on the geologic
setting, and they may be located towards the edges of a larger surface
temperature anomaly. Thus, a bias may occur in the validation. Addi-
tionally, fumaroles and heated grounds are very diverse in terms of size,
activity, shape, sometimes even structure, and vegetation cover, which
complicates detection significantly. In order to assess the accuracy
of fumarole (and heated ground) detections, a deeper understanding
of their features such as size, horizontal and vertical temperature
gradients, and diurnal temperature cycle is needed, in addition to
contextual information on features mentioned above.

5. Conclusions

In the presented study, we tested the feasibility of using ECOSTRESS
data for automated detection of geothermal anomalies. The spatial
resolution of ECOSTRESS is the highest available among thermal sen-
sors as of 2023, and this is a big advantage for remote sensing of
geothermal anomalies. Using ECOSTRESS data for preliminary explo-
ration of geothermal anomalies is cost-effective, since the data is free
to download. ECOSTRESS fulfils most of the requirements necessary
for geothermal anomaly detection (nearer described in Section 1),
however the high noise level, striping, and checkerboard pattern which
occur in some parts of the image require special pre-processing, such
as using an adjusted georeferencing method. This is the first study
to test the potential of ECOSTRESS for automated solutions that can
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lead to development of global mapping of geothermal anomalies. Since
other research publications rather acknowledged visibility of known
anomalies, or compared temperatures, it is difficult to compare such
results. We used kernel-based thresholding to automatically detect LST
anomalies in Olkaria, Kenya, and analyse the results in a transparent,
quantitative way. This allows to compare the accuracy with other
methods or other data sources, such as ASTER or TIRS.

Geothermal anomalies can be identified with our approach in
ECOSTRESS imagery with a producer’s accuracy of 82%, which is
on average 56% points better than in randomised anomaly maps.
These results suggest that a time series ECOSTRESS data can be used
for detecting geothermal anomalies, however more work needs to be
conducted to better understands the shortcomings in the accuracy.
Using time series decreases the influence of radiometric errors, clouds,
and single-occurrence events, and the larger the time series, the more
robust the resulting anomaly map. The method proposed is suitable for
global application, especially since it accounts for various sizes of the
anomalies.

Errors in the anomaly map can appear due to anomalies of in-
sufficient dimensions, anomalies of low contrast to backgrounds, ter-
rain features, and thermal inertia differences between surfaces. Image
quality and accuracy of georeferencing also strongly contributes to
the detection accuracy. Despite pre-processing, the image quality of
ECOSTRESS may be one of the most important reasons for the low
overall accuracy. Including georeferencing correction in the process-
ing chain is a necessary step towards global mapping of geothermal
anomalies with ECOSTRESS data.

From the analysis of the results, a number of new research questions
can be found that can be grouped into the following future direc-
tions. The first direction is related to the image-quality limitations of
ECOSTRESS space-borne imagery for the purpose of automated detec-
tion of geothermal anomalies. Additionally, a thorough characterisation
of variables influencing detection accuracy is needed. Variables, such as
terrain properties, and weather conditions, time of image acquisition,
as well as thermal inertia of surfaces and sub-surface can potentially
lead to large errors in detection maps, and understanding of these
effects is crucial for further applications in this field. Research on these
aspects would enhance understanding of remote sensing of geothermal
anomalies, and thus potentially enable creation of globally applicable
tools.
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Data availability

Reference data included, the code will be shared in GitHub
marchewaka https://github.com/marchewaka/Geothermal_anomaly_d
etection.

Appendix A. List of used datasets

See Table A.6.

Table A.6
List of datasets used in the processing.

Dataset name including the acquisition date and time
in format YYYYMMDDTHHMMSS

1 ECOSTRESS_L2_LSTE_21021_016_20220322T005432_0601_01
2 ECOSTRESS_L2_LSTE_20899_011_20220314T040423_0601_01
3 ECOSTRESS_L2_LSTE_20784_022_20220306T184938_0601_01
4 ECOSTRESS_L2_LSTE_19716_033_20211227T215613_0601_01
5 ECOSTRESS_L2_LSTE_19404_017_20211207T180801_0601_01
6 ECOSTRESS_L2_LSTE_19099_015_20211118T014738_0601_01
7 ECOSTRESS_L2_LSTE_18602_028_20211017T022738_0601_01
8 ECOSTRESS_L2_LSTE_18228_017_20210923T000600_0601_01
9 ECOSTRESS_L2_LSTE_17670_030_20210818T020947_0601_01
10 ECOSTRESS_L2_LSTE_17294_018_20210724T234916_0601_01
11 ECOSTRESS_L2_LSTE_17172_016_20210717T025340_0601_01
12 ECOSTRESS_L2_LSTE_15383_015_20210324T002716_0601_01
13 ECOSTRESS_L2_LSTE_14650_016_20210204T190212_0601_01
14 ECOSTRESS_L2_LSTE_12759_016_20201005T192641_0601_01
15 ECOSTRESS_L2_LSTE_12698_016_20201001T205854_0601_01
16 ECOSTRESS_L2_LSTE_12576_007_20200924T000312_0601_01
17 ECOSTRESS_L2_LSTE_12217_021_20200831T205833_0601_01
18 ECOSTRESS_L2_LSTE_12156_025_20200827T223216_0601_01
19 ECOSTRESS_L2_LSTE_10578_018_20200518T025952_0601_01
20 ECOSTRESS_L2_LSTE_08572_020_20200109T180437_0601_01
21 ECOSTRESS_L2_LSTE_07336_021_20191022T013248_0601_02
22 ECOSTRESS_L2_LSTE_06108_017_20190803T210453_0601_02

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rse.2024.114103.
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